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The regulatory mechanism of the respiratory system is always a hot topic in the neurobiology field. 
Many researchers proposed multitudinous respiratory network models and explored their internal 
connections. For further understanding the effect of the respiratory system in breathing, we have built 
a simplified respiratory network model and studied the relations between each neuron in this network. 
We, firstly, removed the pre-I neuron from the network and found that there are abundant bifurcation 
phenomena with respect for the interspike intervals (ISIs). In addition, a large number of unusual firing 
patterns were observed in the network under conditions of AC stimulation. After adjusting the potassium 
conductance in the pre-I neuron by a different tonic drive from the d1 input, we show the transition from 
bursting patterns to analogous single spiking and, subsequently, convert-bursting patterns. Moreover, 
when sodium ion channels were removed or synaptic connections and tonic drives in the network were 
excluded, the network activity showed relevant variations. This may help to explain some functions 
of ion channels or certain neurons of the network. Finally, the biparametric screening plane with the 
excitatory synaptic conductance and persistent sodium conductance has been drawn. Graduations in 
this plane reflected different firing patterns, such as tonic spiking, bursting, and aperiodic bursting. 
Our results provide important insights for understanding the regulatory mechanisms of the respiratory 
network and the surrounding structures.

Keywords: respiratory network model, firing pattern, interspike intervals, ion channels, pre-I 
neuron.
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INTRODUCTION

The respiratory rhythm generator in vertebrates is 
located in particular regions of the lower brainstem 
[1–4], and this rhythm is generated by special neural 
circuits functionally and spatially organized within 
this part of the brain and qualified as the respiratory 
central pattern generator (CPG) [5–9]. Although still 
insufficiently interpreted, the genesis of primary 
respiratory oscillations is likely to be defined, to 
a great extent, by the intrinsic network properties 
of the neurons within the above limited area. The 
control of breathing behavior involves a larger 
network distributed in different parts of the CNS 
and including the medulla, pons, cerebellum, and 
neocortex [10–12].

In previous studies, researchers have tried to 
completely remove the pons from the above integral 
system, which resulted in a gasping-like pattern 

of respiration [13–17]. They confirmed that the  
in vitro breathing rhythm essentially differs from 
that in the eupnea state, and that reduced medullary 
preparations without the pons cannot generate the 
eupneic pattern [18, 19]. 

In recent years, some researches paid more 
attention to the properties of the respiratory 
networks than to those of a single respiratory 
neuron. Jeffrey et al. [20] reviewed a hybrid 
pacemaker network model that, theoretically, was 
able to provide rhythm generation in different 
functional states. Yaroslav et al. [21] developed a 
computational model of the closed-loop respiratory 
system (brainstem respiratory network controlling 
the pulmonary subsystem) where the lung 
biomechanics and gas (O2 and CO2) exchange and 
transport were taken into account. Rubin et al. [22] 
described a reduced model that maintained the 
essential features and architecture of a large-scale 
model to elucidate the mechanisms and dynamics 
of synchronization between the RTN/pFRG and 
BötC/pre-BötC oscillations. Understanding the 
intricate mechanisms of the CPG and effects of 
recombination of its components, which provides 
self-adaption of rhythmic activity to different 
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conditions, is a dominant and ambitious theme in 
neuroscience.

In this paper, we analyze a computational 
model of a simplified respiratory network and 
compare its behavior under different conditions 
with both existing experimental data and results 
of our experiments performed for appraising some 
modeling predictions. The model is considered a 
basis for future interactive modeling/experimental 
studies of the role of the pons in the generation of 
respiratory rhythm.

METHODS

The spatially organized model of the respiratory 
network represents a simplified version of the 
inchoate computational model. The model presented 
here contains four neurons (i∈{1, 2, 3, 4}) and 
three sources of excitatory drive (dk; k∈{1, 2, 3}) 
(see Fig. 1). Among four neurons, there are one 
excitatory neuron and three inhibitory neurons, 
namely the pre-I neuron (i = 1), early-I neuron  
(i = 2), post-I neuron (i = 3), and aug-E neuron  
(i = 4).

The membrane potential V1 to V4 for these 
neurons N1 to N4 corresponds to the following 
differential equations:

( )1 1 1 11 /Na NaP K L SynE Syn ppI aV I I II I I I C= − − − − − +−

( )2 2 2 2 22 /Na AD L SynE SynII I I I I CV = − − − − −

( )3 3 3 33 /AD L SynE SynIV I I I I C= − − − −

( )4 4 4 44 /AD L SynE SynIV I I I I C= − − − −

In the aforementioned equations, C  is the 
membrane capacitance, INaP is the persistent sodium 
current, IK is the potassium delayed-rectifier current, 
ILi (i∈{1, 2, 3, 4}) is the leakage current; and ISynEi 
and ISynIi (i∈{1, 2, 3, 4}) are the excitatory and 
inhibitory synaptic currents, respectively. We added 
a sodium current INa for N1 and N2 and a gate variable 
n based on the literature data [23] to the original 
basis. These currents are described as follows:

( )( )3 1
iNa Na Na i NaI g m n V E∞= − −

( )1NaP NaP NaP NaP NaI g m h V E∞= −

( )4
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i iAD AD AD i KI g m V E= −
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iL L i LI g V E= −
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where NaPg , kg , ADg , Lg , SynEg
, and SynIg

 are 
the maximal conductances of the corresponding 
currents; ENa, EK, EL, ESynE, and ESynI are the 
corresponding reversal potentials; a12 defines the 
weight of the excitatory synaptic input from the 
pre-I to the early-I neuron (see Fig. 1); bji defines 
the weight of the inhibitory input from neuron j 
to neuron i (i∈{1, 2, 3, 4}, j∈{2, 3, 4}), and cki 
defines the weight of the excitatory synaptic input 
to neuron i from drive k (dk, k∈{1, 2, 3}). The 
external stimulation Iapp defaults to zero.

The nonlinear function ( )i if V  defines the output 
activity of each neuron (indirectly representing the 
rate of spiking activity):

( ) 1/21/{1 exp[ ( ) / ]}
ii i i Vf V V V k= + − −

 
{1,2,3,4}i∈

,

Source of drive
Excitatory neuron
Inhibitory neuron
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pre-I(N1)
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F i g. 1. Schematic diagram of the four-neuron core model of 
the brainstem respiratory network. Circles represent neurons 
(excitatory: red; inhibitory: blue); green triangles represent three 
sources of tonic excitatory drives (in pons, RTN, and raphé) to 
different neural populations. Excitatory and inhibitory synaptic 
connections are indicated by red or green arrows and small blue 
circles, respectively.
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where V1/2 is the half-activity voltage, and kVi 
defines the slope for the output function for each 
neuron.

The voltage-dependent variables are described as 
follows:

( )( ) ( )1 1/NaP NaP NaP hNaPh h V h Vτ∞= −

( )( ) /
i i i iAD AD i i AD ADm k f V m τ= −

( )( ) ( )1i n i i n i in V n V nα β= − −

.

Voltage-dependent activation and inactivation 
variables and time constants are described as 
follows:

11/{1 [ ( 40) / 6]}NaPm exp V∞ = + − +

1/{1 [ ( 34) / 5]}Na im exp V∞ = + − +

11/{1 [( 48) / 6]}NaP exph V∞ = + +

1/ [( 48) /12]hNaP hNaPmax cosh Vτ τ= +

]8/)92([)02/1()( 11 += VexpVan

]8/)92([)02/1()( 11 +−= VexpVnβ .

The specific parameter values of the model can be 
retrieved in the literature [24]. 

Simulations were conducted in Python and XPP 
using a fourth-order Runge-Kutta method with a 
time step of 0.1 msec. The results were processed 
in Origin to understand them more precisely. 
Numerical results have already been repeatedly 
verified.

RESULTS

Firing Patterns of the Pre-I Neuron, which 
Is Taken Away from the Network. Specifically, 
the excitatory pre-I neuron in our model has 
intrinsic oscillatory properties defined by INaP [27]. 
Obviously, the firing patterns of a single neuron 
manifest more regular phenomena, as compared to 
those of the network. To understand the effect of 
different parameters on the single pre-I neuron, we 
removed it from the network and made sure it has 
nothing to do with the network.

Values of the sodium equilibrium potential ENa 
and potassium equilibrium potential EK were chosen 
to be depicted. The results are shown in Fig. 2.  
These two parameters can introduce the pre-I neuron 
in such a regimen that it demonstrates abun dant phe-
no mena with slight differences. The diagrams A and 

B are the membrane potentials  at the respective 
values of ENa and EK corresponding to the ISIs 
sequences (panels C and D, respectively). Whereas 
the ENa in this neuron decreases approximately 
from 65 to 60 mV, the ISI sequences showed a 
clear period-doubling phenomenon. As the ENa 
was less than 60 mV, the bifurcation pattern turned 
into a chaotic mode. Once the ENa became less 
than 56 mV, the bifurcation pattern jumped out of 
the chaotic state and entered the inverse period-
doubling bifurcation mode, which ultimately stayed 
in period-4 bursting. The firing pattern related to 
the EK is similar to that at ENa. While the EK changed 
from –95 to –87 mV, the bifurcation pattern was 
similar to those determined by the ENa. This also 
appeared as a clear period-doubling phenomenon 
and a series of chaotic-mode spiking. Once the EK 
crossed the 87 mV level, the ISI sequences turned 
into a clear period-adding bifurcation. These 
luxuriant firing characters may be associated with 
intrinsic biophysical properties of the respiratory 
neurons.

Influence of  Alternating Current (AC) 
Stimulation on Variation of the Firing Pattern 
in the Network .  In previous physiological 
experiments, AC stimulation was found to be 
an essential method in modulation of neuronal 
network activity in humans and mammals [28-31]. 
Alternating current stimulation to each neuron in 
the network can induce a large number of disparate 
firing shapes. The membrane potentials have been 
drawn by setting the amplitude and frequency of AC 
stimulation.

As can be seen in Fig.3, all the above six 
diagrams illustrate irregular and periodic bursting. 
For convenience, the value of time per graph already 
includes at least two or three periods. Firstly, we 
compared panels A and B, in which AC stimulation 
had the same amplitude but different frequency. The 
oscillating period in A is tenfold greater than that in 
B, and the intensity of bursting is weakened along 
with a frequency increase. The next comparison of 
A and D is for conditions of the same frequency 
but different amplitudes. It can be observed that 
an increase in the amplitude also crippled the 
oscillation frequency. In general, diagrams A-F 
display a great diversity of the phenomena under 
different AC values. These peculiar firing patterns 
may give us some idea of the relations between 
the distinct stimulus and activity of the respiratory 
network.
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Influence of a Tonic Drive d1 on Variations 
of the Firing Pattern in the Network . Many 
researchers have examined the effects of tonic 
drive in recent years [7, 21, 22, 24]. For example, 
the removal of the pontine input to the medullary 
circuits leads to the generation of an apneustic 
breathing pattern characterized by a significant 
increase in the duration of inspiration and a 
significant reduction of the oscillation frequency.

For further understanding of the role of the tonic 
drive d1 in the network activity, we firstly set the 
potassium conductance gk to 8 nS (Fig.4). Then, we 
began to examine the tonic drive d1 value, which 
comes from the pons. The d1 value was firstly set 

to 0.3 (the diagram corresponds to A), and in this 
case the network exhibited the bursting pattern. The 
connection and transition between the bursts are 
smooth. Yet, from the diagram (B) corresponding 
to the d1 value 0.6, it can be observed that the 
connection between bursts became oscillating. As 
the d1 value continued to increase (to a 1.5 value), 
the bursting patterns were transformed into periodic 
firing, which is similar in some aspect to single 
spiking. A further increment of the d1 value led to 
transformation of the firing patterns into bursting 
again, and the period became shorter. At the same 
time, in the entire network it can be found that when 
the N1 and N2 neurons continued the normal firing, 
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the N3 and N4 neurons were strongly inhibited, 
and vice versa. In summary, variations in the d1 
to different neurons in the network influenced the 
firing pattern and the overall oscillatory period.

Influence of the Removal of Sodium Ion 
Channels or Synapses and Drives on Variation of 
the Firing Pattern in the Network. Physiological 
experiments demonstrated that some blockers, such 
as TTX or riluzole, can cause inactivation of certain 
ion channels [25, 26]. Application of the blockers 
in the physiological experiment in fact corresponds 
to the removal of the respective ion channels in 
numerical model presentation. It is essential for us 

to make clear the impact of certain channels on the 
network functioning.

Note that A in Fig. 5 is the original drawing under 
conditions of the default parameters. Primarily, the 
effect of the removal of sodium ion channels from 
pre-I neuron can be researched (B). It is obvious 
that the bursting pattern or subthreshold oscillations 
have already vanished, compared to A. Therefore, 
the sodium ion channels in pre-I neuron may be a 
pivotal element for generating bursting activity. 
Then, in panel C, sodium ion channels were 
removed from the early-I neuron. From this graphs, 
two conclusions can be made. One is that the firing 
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periods became shorter. Another one is that the parts 
that connect the bursting pattern or subthreshold 
oscillations change from an oscillation mode to 
smoothness. Finally, the phenomenon in  seen in 
panel D is described. Each neuron is isolated, and 
the latter three neurons have tended to obtain the 
resting potential, except the pre-I neuron. As the 
pre-I neuron generates stable bursting activity, it can 
be concluded that this cell is actually a pacemaker 
unit that is responsible for the spontaneous firing 
pattern.

Biparametric Screening Plane with Two 
Bifurcation Parameters, gSynE1 and gNaP. Here, 

we present plots of the (gSynE1, gNaP) parameter 
space displaying the dynamic behavior of the pre-I 
neuron in the network, which was obtained by 
calculating NSs. In Fig. 6, the panel is comprised 
of 101*101 points on a homogeneous grid within 
the given parameter range; namely, for this plot, 
no less than 104 simulations have been computed. 
The color-scale bar at the right in the inset of the 
figure yields NSs running from 1 (tonic spiking) 
to 11 (bursting), and the noninterger regions stand 
for aperiodic bursting. It is clearly observable that 
there are boundaries of the spike-adding cascade of 
the model. Figure 6 elaborates different kinds of the 
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(i i)  After subjecting pre-I neuron to AC 
stimulation and adjusting various stimulus strengths, 
i.e., the amplitude and frequency, we can find the 
following. The figures exhibit a lot of strange firing 
patterns, in particular irregular and periodic firing 
ones.

(iii) The tonic drive coming d1 from the pons 
as one of the three main tonic drivers must 
incessantly influence the respiratory rhythm. When 
the potassium conductance value was set to 8 nS, 
depending upon the adjusting the d1 value, variations 
of the membrane potential led to bursting-spiking or 
spiking-bursting transitions.

(iv) After removing the sodium channels from 
neurons N1 and N2, respectively, or breaking each 
neuronal connection in the network, it can be 
concluded that the lack of sodium channels in N1 
will cause the disappearance of the bursting pattern, 
while the lack of sodium channels in N2 will cause 
shortening of the firing period. After breaking of 
neuron-to-neuron connections in the network, only 
the pre-I neuron can produce firing; others remain 
in the resting state.

(v) By depicting the biparametric screening plane 
with the gSynE1 and gNaP and choosing suitable ranges 
for these two parameters, we obtain a figure with 
different color graduations. According to the color-
scale bar at the right of the inset in the figure, the 
range of NSs runs from 1 (tonic spiking) to 11 
(bursting), and the noninterger regions stand for 
aperiodic bursting. 

Based on the findings mentioned above, we 
gain a more in-depth understanding of the role 
of the respiratory network in the modulation of 
the neuronal firing pattern. In this paper, several 
computationally effective tools including voltage 
waveforms, evaluations of ISIs, and approaches 
with respect to NSs, have been tested. We combined 
1D and 2D parametric planes of the complicated 
dynamics of the respiratory network and were able 
to give detailed explanations for various spike-
addition/deletion cascades and various transitions 
between firing patterns. To date, the number of 
studies on respiratory neurons and their kinds in 
the respiratory network remain limited, and an 
effort should be made in the future to broaden the 
applicability of the computing methods suggested 
here for the investigation of larger neuronal 
networks.
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F i g. 6. The number of spikes per burst (NS) was plotted as the 
dependence on the gSynE1 and gNaP. The respective biparametric 
screening plane (gSynE1, gNaP) clearly demonstrates that the phases 
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firing patterns that could exist according to different 
pairs of the parameters. For a given gSynE1, the 
increase in the gNaP may lead to the NSs increasing 
by unity, while for a given gNaP, the NS increases 
by the unity as the gSynE1 increases. An interesting 
phenomenon is that the plot does not contain chaotic 
regions but appears to show aperiodic bursting.

DISCUSSION

In this research, we have studied how different 
parameters or structure of the network affect the 
firing pattern in the computational model of the 
simplified respiratory network. From the results, we 
draw some conclusions presented below.

(i) In the case of pre-I neuron taken without the 
network, the characteristics that it shows can be 
observed in isolation. When we take the ENa and 
EK as examples, the change in their values depicts 
the possibility of highly abundant firing patterns, 
such as period-adding bifurcation, period-doubling 
bifurcation, and chaotic regions.
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