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Abstract

Decision-making is a flexible process dependent on the aglation of various kinds of information; however, the capending neural mech-
anisms are far from clear. We extended a layered model ofrtimeal eye field to a learning-based model, using computatisimulations to
explain the cognitive process of choice tasks. The coreisfaktended model has three aspects: direction-prefempdigtions that cluster
together the neurons with the same orientation prefereaeemodules that control fierent rule-dependent activities, and reward-based sgnapt
plasticity that modulates connections to flexibly changedécision according to task demands. After repeated atteémp number of trials, the
network successfully simulated three decision choicestagk anti-saccade task, a no-go task, and an associativeVt&sfound that synaptic
plasticity can modulate the competition of choices by sapging erroneous choices while enhancing the correct (daveg choice. In addition,
the trained model captured some properties exhibited imanand human experiments, such as the latency of the radetie distribution of
anti-saccades, the stop signal mechanism for cancelinfieaive saccade, and the variation of latency to half-magd®lity. Furthermore, the
trained model was capable of reproducing the re-learninggutures when switching tasks and reversing the cue-saesadciation.

Keywords: Decision-making, Task switching, Reward-based Hebbiamiag, Direction-preferred population

1. Introduction et al., 1997; Hutton, 2008; Leathers and Olson, 2012). These
. o . ) experiments study the process of accumulating experiemte a
-DeC|S|on-mak|ng in the presence of multiple choices "€ integrating information. The goal of these tasks is to perfo
quires more than sensory signaling and motor response. IRy planned eye movements in response to learned stimuli, and
formation accumulation and processing are also necessary fine gecision is signaled to be correct by reward. At the end of
decision-making (Salinas, 2004; Savine and Braver, 2000r&hi, 5 tja|, rewards can be given based on the performance of this
2014). Decision-making is a flexible process of integratiag  gensory-triggered activity, instructing animals to let®“cor-
ious forms of information, such as past experience andilBgrn et visuomotor mappings and suppress the “erroneousteho
rules (Drugowitsch et al., 2012; Cutsuridis et al., 20143;(;1_(3.t es (Munoz and Everling, 2004; Baldassarre et al., 2013;k8lan
etal., 2006; Chaumon etal., 2014; Kan etal., 2012). InaR ante; 51 2013). In other words, the brain will re-establisk th
saccade testing paradigm, which is an important tool fdr est |k petween the ongoing sensory signals and behavioraltres
mating frontal lobe dysfunction, trial-by-trial trainir@an alter s, under the guidance of rewards (Brown et al., 2004; Luhmann

the visuomotor mapping of macaques and make them saccadgs| 2008). Some experimental findings have emphasized th
to the opposite side against the reflexive response (Munz ane of synaptic plasticity in the functional neural cirtain the

Everling, 2004). Based on this kind of flexibility, humansian fonta| eye fields (FEF), which play a key role in oculomotor
other animals are capable of responding to a specific stBnuluyoniro| of saccadic eye movements and visual attention. For
in different ways (Drea and Wallen, 1999; Platt and G“mCherexample, Chen and Wise (1995b) observed learning-dependen

1999). . _ and learning-selective activities in FEF. Bichot et al. g@pdis-
The visuomotor choice tasks, such as the anti-saccade tagk,ered a type of experience-dependent plasticity thaiated

and no-go task, have been widely used to investigate the-cogn.g the learning of arbitrary stimulus-action associatioRe-

tive process of decision-making, because a saccadic eye-moVeent results present more evidence that learning in ocuomo

ment can readily represent the behavioral outcome (SceagR (o1 pehaviors involves FEF (Lee and Keller, 2008; Tseng.et al
2013; Lewis et al., 2009). All these findings provide supjpart

*Corresponding author. E-mail address: mashgliu@scutedu synaptic plast|C|ty in FEF.
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In this study, we extended the layered FEF model intro2. Method
duced by Heinzle et al. (2007) into a learning-based model, )
shedding more light on the cognitive process of choice taskg-1. Network architecture
The modification of the model includes four aspects: (1) The The architecture of the learning-based FEF model is illus-
recognition module and layer 6 were removed and the modetated in Fig. 1A. This extended model consists of interegti
could initially only cause a reflexive saccade (pro-sackd@® layers contributing to dierent functions: sensory processing
Two rule modules were added to the fixation input layer. Thesén layer 4 (L4), attention allocating in layey2 (L23), fixa-
modules not only reserved the function of fixation neurons, b tion input layer (FIX) and motor output in layer 5 (L5). L4
could also transform the color signal from V4 into rule-ldhse neurons process orientation-preferred visual input framtye
control. Meanwhile, two functional units were divided otit o visual areas. L23 serves as an attention allocator as is-tran
layer 23 to represent the rule-dependent neurons that are cofferms the sensory signal from L4 into the attention signal at
trolled by the rule modules. Interestingly, the rule-predd  a direction-preferred position. The activities of L23 namur
activity has been observed in FEF and other parts of thedtont s are similar to those of visuomotor neurons in FEF classified
cortex (Hoshi et al., 1998; White and Wise, 1999; Ferrerd et a by Bruce and Goldberg (1985). Visuomotor neurons discharge
1999; Asaad et al., 2000; Everling and Munoz, 2000; Hasegawhoth in response to visual signals and after the visual targe
et al., 2004; Everling and DeSouza, 2005; Johnston and E\s disappear. The response of visuomotor neurons can persist
erling, 2006; Johnston et al., 2007). In the work of Johnstoruntil the monkey makes a saccadic eye movement. Based on
et al. (2009), a mechanism based on two functional populathe winner-take-all competition and strong recurrenttticin,
tions has been proposed to account for task selectivityen thL23 neurons are able to reproduce these activities of visdom
prefrontal cortex. All these evidence support the rule nbdu tor neurons. Strong synaptic weights from the excitatonyl po
in our model. (3) The populations had direction preferencein L5B to the inhibitory poolin L23 are required to suppress t
i.e. different populations in a layer preferred specific directionsL23 neurons when a saccade is made in the present model. L23
Orientation selectivity in FEF has been extensively redezat s divided into two task-relevant units L23L and L23R which
(Douglas et al., 1991; Li and Creutzfeldt, 1984; Schilleakt are controlled by the rule neurons in FIX. In addition, we use
1976; Ringach et al., 2002; Nowak et al., 2008; Hansel andwo populations to simulate the rule neurons which tramsfor
van Vreeswijk, 2012; Hubel and Wiesel, 1959). Additional-the green and red color information from V4 into a rule signal
ly, an increasing number of models have applied this properin FIX (Fig. 1C). The third population in FIX only processes
ty to distinct functional modules to simulate various ploysi fixation input without color information. For the sake of sim
logical experiments (Engel and Wang, 2011; Ardid and Wangplicity, we have designed the network so that E23L and E23R
2013; Shushruth et al., 2012; Wu and Guo, 2011, Zirnsak et alare inhibited by the red and green rule neurons through atnne
2011). (4) We assumed that the connections from layer 4 to laying FIX to 123L and 123R, respectively. L5 is comprised of two
er 2/3 were plastic, employing reward-based Hebbian learningypes of neurons: ramping motor neurons (L5R) and burst mo-
(Pfeiffer et al., 2010; Engel and Wang, 2011; Ardid and Wangtor neurons (L5B), which integrate attention signals agai
2013). In the present model, the connection between E4 arnitie motor output, respectively. The ramping activities 5RL
123 which did not exist in the original model was consider@d t are inhibited by FIX. Except FIX, each layer has 13 retinatop
be weakly linked and plastic. These plastic synapses stetila positions which have their own preferred direction (Fig).1B
the varying inputs to the neuronal population that was wwdl  is noteworthy that a retinotopic position consists of fieden-
in the accumulation of sensory information, allowing demis  t number of neurons in ferent layers. In L4 and L23, each
making to be guided by the associated values of the choicg®sition contains 100 excitatory neurons and 25 inhibitey-
(Gottlieb et al., 2014; Gold and Shadlen, 2002, 2003; Law andons, while L5 is composed of 40 excitatory and 25 inhibitory
Gold, 2009; Connolly et al., 2009). neurons. FIX has 100 neurons in each of the three excitatory
In order to gain insight into thefkect of the plasticity on  populations, and 75 inhibitory neurons.
controlling the oculomotor behaviors in FEF, we trained the
extended model to simulate threeffdirent choice tasks: an 2.2. Neuronal dynamics
anti-saccade task, a no-go task, and an associative task. Th Each neuronis modeled as an integrate-and-fire model which
simulation results successfully accounted for the le@rpiro- s gescribed by
cesses, and quantitatively exhibited the cognitive procedf
decision-making. They also could explain the relearning pr vV ' ‘
cesses when tasks switched without an explicit cue. Thaexte g TV GexV = Ve) = Ginn(V = Vi) + lext (1)
ed model generalizes the learning mechanism to the saccad .
control in IgEF so that it can chooge or switch between multiw%erev. represents the membraqe potgnttal, Is the mem-
ple sensory-motor maps, suggesting that the plasticitysia brane time constant;;, = 20 ms in excitatory neurons and

important role in flexibly controlling the saccade movensent '™ = 12 Ms In inhibitory neurons, and, = 74 mv, Vi = —10
mV denote the excitatory and inhibitory reversal potestidhe

conductancegex. and ginn consist of three distinct parig;,
Onoise aNd gpiastic Which represent synaptic conductance, noise
input and the plastic synapse. The spiking threshold is 20 mV
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Figure 1. Network architecture of the learning-based ma@glThe network structure has four layers that simulaffedént cognitive processes: sensory processing
(L4), attention allocation (L23), fixation input (FIX), amdotor output (L5R and L5B). Each layer has an excitatory wal an inhibitory pool. (B) A functional
pool consists of 13 retinotopic positions. Except the fopeaition, each retinotopic position prefers a distinceotation. Each retinotopic position denotes a
population of neurons. (C) FIX has three excitatory popoiet (EFIX) and one inhibitory population (IFIX). Two of thexcitatory populations encode the green
and red color fixation input while the other only processeati@a input without color information.

and reset value is 10 mV. The absolute refractory period of ex  Second, the noise input mimics the noisy background inputs
citatory and inhibitory neurons are 1.8 ms and 1.2 ms, respeavithin the brain (Destexhe et al., 2001; Salinas, 2003; More

tively. First, the synaptic conductance is given by Bote and Parga, 2004, 2010) and obeys:
k=) _ K] d [ UWej
Bei = nglse,' Thoise™ 4, gndf[nse —(Qnoise— 1) + 'u—élX(t) (4)
(2) Tnoise
d
Tei d&:. =—S; wherey(t) is a random variable that follows a Gaussian distri-

bution with mean 0 and standard deviation ofulis the mean
wheresg; is the activation variable and; is the time constan- external input. The time constanise = 3 ms and the external
t of excitatory and inhibitory synapses. fiéirent connections weights arew, = 0.02 andw; = 0.06.
are given diferent time constants,e; = 50 ms in the connec- Third, the synapses from L4 to L23 are plastic. The plastic
tion ESR-E5R,7e; = 10 ms in the connections E23tE23L,  connection can be either depressing or potentiating. For si
E23R-E23R, I5B-E5R, andre; = 5 ms in the other con- plicity, the plastic synapses project to the connectioomfE4
nections. g; denotes the direction preference factor betweeno E23L (E23R) and from E4 to 123L (123R) refer to left (right)
neurons with preferred directiodgandé; (Ardid et al., 2007).  excitatory modulation and left (right) inhibitory moduilat, re-
This factor is determined by a Gaussian function: spectively. They are described by (Rfer et al., 2010; Engel
(gk,gj)z) and Wang, 2011; Ardid and Wang, 2013):

Ohi(0 — ;) = gael 5 @3)

whereo = 18, g, = 1.0. As an exceptiorg, between E4 and

123 is 0.01, denoting the weak link. It is noted that the fovea
is considered to be next to other retinotopic positions, gud whereg, = 1.0, G gives the strength of the plastic input.
between them ig;(30°). At the end of a training trial, the presynaptic and postsyicap

3

glr()lastic =0p Z Cij (5)
j
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activities determine all plastic synapses to be depresspd-0  period, a cue stimulus in a direction appears at 100 ms. Tieis ¢
tentiated. Then, synapses will update according to a Habbialasts for 500 ms. After a delay period of 1000 ms, two target
reward-dependent learning rule. In this process, theitians stimuli are given on the left side (180and the right side (9.

to potentiation state is given hy — ¢+ q- Q(Smay(1 —¢),  We divide the direction into two categories: (6®@C, 120,
while depression is governed loby— ¢ — - Q(Smayc. Learn- 150, 180, 210) for category 1 and (Q 3¢°, 240, 27C, 300,

ing rate withg = 0.03 in excitatory-based plastic synapses and330°) for category 2 (Freedman and Assad, 2006). When the
g = 0.01 in inhibitory-based plastic synapses. The plasticitygreen fixation cue is presented, the cue stimulus from catego
rate Q(Smax gradually depends on the maximum presynapticl or category 2 is linked to a leftward response or rightward r
firing rateSmax sponse, respectively. When the red fixation is displayeskeh
pairings are reversed. A total of 120 trials for each cue-stim
ulus and each fixation input are performed in this task. The
total number of trials is 2400. Moreover, task switchinglgoa

) . performed in the trained model, similar to the task switghin
whereSmax = max(S(t)) denotes the maximum population fir- i, anii-saccade task. In this case, the cue stimulus is gaire

ing rate of the presynaptic population, and the populatitmgfi 1 gither the left side or the right side. Once the task swisch
rateS(t) is described belowSo = 60 Hz andrq = 5 Hz, which  ater 30 correct trials, the cue-saccade pairing reversairs
give the activity threshold and slope constant, respegtiféie | \ithout an explicit instruction.

stimulus to L4 is also set to be direction-preferred whichysb The performance of the tasks is estimated by firing rate in

two forms: population firing rate and neural firing rate. Popu
(7) lation firing rate is calculated by counting the number okepi

within a population in 1 ms time bins and smoothed3():
wherely = 0.056 nA,os = 15° andd, represents the preferred

orientation. The fixation inputis 0.8 nA. s (1- e(_Tse))e(_@)

2.3. Task simulation and analysis / (1- e(’ﬁ))e(_@)dt'
Using Hebbian reward-dependent learning, we simulated 0

the cognitive processes of three choice tasks: no-go task, a wheretise = 1MS, Tgecay = 10ms. The neural firing rate is

saccade task and associative task. First, in the no-go &ask,determined by the membrane potential of a single neuron:

fixation cue is presented for 100 ms and then a visual target L

is shown. This visual target randomly appears iffiedent po- (V) = (1 N e%) )

sitions in diferent trials. At 300 ms, the fixation input with-

out color information, which serves as the stop signal, appe

The network needs to suppress the erroneous saccade and k¥é}eres = 2.0,y = 165, which denote the slope constant and

“fixating” in the fovea position for 700 ms. If a saccade move-threshold, respectively.

ment produces between 300 ms and 1000 ms, the trial is count- N addition, based on the fiérent characteristics of three

ed as failed (erroneous no-go trial). A total of 150 triale ar t@sks, three corresponding modulation rate are designest to

performed for each direction in this task. Second, in thé ant Veal the average modulatiotfect of two plastic synapsed®

saccade task, a visual target appears after “fixating” ofotres. ~ @ndM":

for 100 ms. This target remains until a saccade occurs. A cor-

rect trial requires making a saccade to the opposite sidieeof t

So-Sma -1
QSma) = (1+e—( 5 ”) ®)

(_(H—Hp)z)
lex(6) = Ime\ 2092

(8)

visual target. In this task, we train the model in 120 contieeu <¥(g"'af‘"‘k”+g$y“‘k"))>

trials. Note that 20 pre-training trials were processedteethe <¥ ¥(gi;asliqkj)+g§;r(k1))>

formal training by presenting another stimulus 600 ms aftet _ (S @iy Sy )

at the mirror location of the visual target, providing ptréa! M&! = g ey o , (10)
information about the correct location for the anti-saecégl- <¥(93'astifiki>+g§wki))>+< ¥(g'r"astifiki>+g'$yﬂki))>

erling etal., 1999). In addition, we also simulate task shiitg < e >

with the model. The network performs alternating blocks of 22 Gpiasicpo * Iy

pro-saccade tasks and anti-saccade tasks. In one blogk, onl
one decision is correct. Without color fixation input, thedab ~ The equations, from top to bottom, are applied in the anti-
has to generate a pro-saccade or an anti-saccade, indtomtye ~ saccade task, no-go task, and associative task, respgctive
by reward. After 30 correct trials, the task switches withmny ~ and j represent the beginning retinotopic positions and the tar-
explicit instruction. In this test, 60 blocks are perform@&dird,  get retinotopic positions of a synapse, respectively. Tle c
the associative task asks the network to associate theioue st culation(a) denotes the trial average affor each task, re-
ulus, either left or right, based on the color of fixation ihpu peated 5 times. The modulation ratio is designed to estimate
The paradigm of the task is similar to that used in the workghe change of synapse weight and avoid the situation thag¢ som
of Asaad et al. (1998) and Pasupathy and Miller (2005). The&ynapse weights are close to zero. The modulation ratioeof th
fixation spot is first shown and lasts for 1600 ms. During thisanti-saccade task denotes the ratio of the sum of all thepsgna

4
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weights targeted to the neurkito the sum of all synapse weight-
s. The modulation ratio of the no-go task is the proportictmef
sum of the synapse weights targeted to the nelatorthe sum
of all excitatory- and inhibitory-based synapse weights. the
associative task, it is the ratios of synaptic weight to e f
synaptic weights targeted to thkeneuron. o

Using Euler method with time steps oflOms, the simu- 0 500 1000 " 1500 2000 °
lations were run in MATLAB (MathWorks, Natick, MA). The B
results did not change significantly when testing with a sdror
time step of 01 ms.

Preferred direction

Preferred direction

3. Results

3.1. Pro-saccade with no orientation preference

Before training in tasks, the network was tuned to a state
that had two properties: (1) makes a reflexive Se}ccade_ taithe Viigure 2. Two examples of the network dynamics over time aigiatopic
sual target, and (2) has no preference for any visual sigdlal. positions in a pro-saccade task before learning. Colonesent the neuronal
choice tasks in this study were based on this initial staitg. F firing rate. (A) A pro-saccade test proves that the networkroake a reflexive
showed two examples of this state. In the first instance. th accade. (B) A test proves that network with no preferencagecific direc-
network first “fixated” on the fovea at 400 ms, and then target
1 was shown in the 90direction (Fig. 2A). Once it has made
a saccade decision, target 1 input was turn@dind the fixa- 3.2. Anti-saccade task

tion signal displayed 100 ms. The next target then revea@led i |n the anti-saccade task, the network was trained to saccade
the 270 direction. After a similar decision process of the first to the opposite side of the given cue stimulus. We chose the 90
target, a 150 preferred input was applied to the network, andretinotopic position and its opposite side 27fbsition as an
the network would saccade to the corresponding visual targeexample of the task. Fig. 3 illustrates the anti-saccatiaet

In E4, persistent activity was triggered by direction-preéd  activities when the network was training. Two graphs plbtte
sensory stimuli, processing the spatial visual signalseséh variations of the population firing rate in 9@nd 270 retino-
persistent visual signals induced a gradual increase iffithe  topic populations, respectively (Fig. 3B). In early trigtse 90

ing rate of corresponding retinotopic positions. Once thiedi  preferred population exhibited overwhelming activitydicat-

rate of a population in E5B reached a threshold, the networlqng that the network mainly produced a saccadic movement to
would determine to saccade to the corresponding visuatarg the target at 90 Subsequently, as the network “learned”, the
At the same time, this population inhibited the activitié®th-  firing rate of the 90 retinotopic population declined to a rel-
er retinotopic positions for a short time, depressing theeot  atively low level. In contrast, the 27(referred population
saccade choices. As a result, these three direction-peelfer  showed much stronger responses at the end of training. To bet
puts all gave rise to the corresponding reflexive saccade. ter capture the characteristics of the process of infoonaic-

The choice tasks also required that the network did not precumulation, we computed the saccade percent probabiltP)S
fer saccading to one specific target when multiple direetion of pro-saccade and anti-saccade in a sliding bin with a waéith
preferred stimuli were presented simultaneously. Thers#co 30 trials, which moved forward by one step in each trial. SPP
example illustrates the response of the network as the isugas defined as the ratio of the number of correct trials to the
target appears in"090°, 180 and 270 directions at the same  total number of trials in a bin. The results in Fig. 3B provide
time (Fig. 2B). It could be observed that the decision of sacan intuitive illustration of the competition between praesade
cade was likely to locate at an arbitrary visual target irséhe and anti-saccade. Because the pre-training suppressed-the
four directions. None of these choices was attractive enougtivity of pro-saccade, the SPP of pro-saccade in the eany bi
to maintain the attention of the network. It should be notedyas around 80% rather than 100%. Although the pro-saccade
that the non-stimulation population activities were maup-s  was the primary decision before approximately the 45ththia,
pressed when multiple targets were presented, as commaredgro-saccade SPP progressively decreased. In contrastie
only one target presented. This was due to L4 in the originaber of anti-saccade was enhanced after learning over sicees
model being endowed with winner-take-all competition, mak trials. After the 45th bin, the anti-saccade decision dated
ing it unable to deal with multiple sensory signals fronffeéli-  and its SPP increased more rapidly. At the end of the task, the
ent directions. This issue was resolved in the present ntgdel network made the anti-saccade decision in more than 90% tri-
weakening the winner-take-all competition in L4 so thatshe als of a bin, indicating it has “learned” the anti-saccaddqre
ingle sensory processing in the present model was analdégousmance. In this process, a natural question arose: How dbiglas
the original model, while allowing sequential winner-chary  synapses modulate the network to perform a specific betfavior
dynamics behavior with multiple sensory signals. To quantitatively answer this question, the modulatioionaas

designed and calculated (Fig. 3C). It could be observedtieat

Time (ms)
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Figure 3. Training process of anti-saccade task. (A) Thpaese of ESR in
9¢° (top panel) and 270(bottom panel) preferred population. Colors refer
to the population firing rate of E5R. (B) The saccade perceobability of
pro-saccade and anti-saccade as a function of bins inrtcaigC) The modula-
tion ratios of diferent direction-preferred populations projected by twasfit
synapses after training. Here, these two plastic synapsesetween L4 and
L23R, which are relevant to anti-saccade.

erroneous targets such as' 680° and 120 exhibited a relative-
ly higher inhibitory modulation ratio than the correct cbmi
By contrast, the excitatory modulation ratios did not progu
such a dramatic change. The excitatory modulation ratib®f t

correct target (27 was 3.94% higher than the other choices
on average. The mechanisms of suppressing erroneous shoic

and enhancing correct choices by synaptic plasticity auieal
for the change in choice behavior.
Fig. 4A illustrates the firing rate time course of the? 2hd

270 preferred populations in the trained network. The red fix-

ation input induced tonic activity in FIX. After stimulus en

set, the fixation response gradually ramped down, while E4 re
sponded to the visual target. Then E23R was activated by th

ongoing sensory signal, indicating that the anti-saccaltiged
attention began to allocate. At the beginning, activityraf 80
preferred population and 27@referred population increased

simultaneously [Fig. 3 in Everling and Munoz (2000); ]. Sub-

sequently, the 270preferred population won the competition
so that the network allocated attention to the visual taiget

this direction. Once the ramping activity of ES5R, which was
induced by the attention signal, reached a threshold, msuro

in E5B rapidly released a motor signal, driving the netwark t
make a saccadic movement to the 27 rget [Fig. 2 in Schall

et al. (2000); Fig. 5 in Hanes et al. (1998), Fig. 4 in Everling

etal. (1999)].

(RT) distribution of these simulations, with RT defined by th
time difference between target onset and saccadic movement. It
was observed that the RTs of anti-saccade task had higher la-
tency compared to the pro-saccade task. The average RTs in
pro-saccade and anti-saccade tasks were 23@.16 ms and
266.01:3.33 ms, respectively. Thus, the average latency of the
anti-saccade was evaluated as about 55.86 ms. Similar RT dis
tributions were found in primate experiments (Everling let a
1998, 1999; Bell et al., 2000; Sander et al., 2010). Accord-
ing to their published data, the time delay of anti-saccédets

a range of 13 ms to 77 ms, which is compatible with our re-
sults. We also analyzed the distribution of RTs for errorseou
responses. The RT distribution of erroneous decisionsén th
anti-saccade task was closer to RTs of the correct pro-dacca
with mean RT of 215.641.79 ms. A majority of erroneous
responses were pro-saccades, so the correspondingutisinib
mirrored the distribution of correct pro-saccades. Simita

sults can also be seen in the work of Everling et al. (1998).
In this work, however, erroneous pro-saccade had shorter RT
than correct pro-saccade, which was opposite that of thdtres

s in Fig. 4B. The average RT for erroneous pro-saccade was
236.68:31.80 ms. The relative large standard error might ac-
count for this contradiction. The number of error pro-saesa
was not large enough to reflect the whole RT distributiongclvhi
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To see whether the trained model can reproduce the later

cy of anti-saccades in psychophysical experiments, theesan,
pro-saccade task and anti-saccade task were simulated 209_

times, respectively. In total, 93.480.78% accuracy was found
in the anti-saccade task, while accuracy was 99 56%2%
in the pro-saccade task. Fig. 4B illustrates the reactiow ti

6

Time from stimulus (ms)

|(g)ure 4. (A) The neural activities of the trained-modelhia ainti-saccade task.
Responses of 90and 270 preferred population in éierent layers are shown.
(B) Reaction time distribution of pro-saccade and antzade for correct trials
and erroneous trials.
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A B _ 3.3. No-go task
gﬂég P % e The network performance in the training process of a no-
£ o E 80} go task is shown in Fig. 6. A sliding bin with a width of 30
p 40 g 0 trials and shifted by 1 trial was used to analyze the vamatio
2 22 % 223 of SPP. A strong firing rate in the 9@referred population was
§ 4o 0 1w @ @ g 76 i D observed to be mainly concentrated on the early bins (Fiy. 6A
c Trial number Tr nyee As the number of trials increased, the average activitiegwe
05 _— =] : gradually inhibited. Such inhibition was also demonsuldig
s n_s.v,/—""'/ . S the decline of SPP. At the beginning of the task, the SPP of
i2 . I 90 preferred population was distributed at approximately 90%
T . +- . — When training was around the last bin, inhibition dominated
0 20 40 60 80 T : X
Trial number the network behavior, inducing the corresponding SPP to be
D o : —— close to 0%. Based on the modulation ratios, the formation
Coe i~ r—~——— of inhibitory dominance depended on the potentiation of the
£8 05/ e I - o S plastic synapses onto the inhibitory neurons (Fig. 6B).
e . - a1 . Next, we compared the activities in the go (pro-saccade) tri
0 20 40 50 80 al, correct no-go trial and erroneous no-go trial, and trieelx-
Trial number plain how the stop signal canceled a reflexive saccade (Fig. 7

In these trials, the fixation inputs with no color informatiact-

ed as the stop signals, and the visual stimulus would disappe
Figure 5. The performance in task switch test between proase and anti- Once the network produced a saccadic signal in ESB. During

saccade. (A) and (B) are the changes of correct trial peagenfrom anti-  fixation period, tonic activities could be observed in figati

saccade to pro-saccade and from pro-saccade to anti-saceagectively. (C)
and (D) are the variations of the excitatory- and inhibitbased plastic synapse

neurons. However, they gradually ramped down after the on-

weight in two blocks. These synapses connect ttfepdéferred population in S_et of the wsgal signal. Before stop signal onset, thQ anego
E4 to the same side (blue) and the mirror side (red) in E233rThe Dashed ~ Visual signal induced the pro-saccade-related attentorthie

line denotes the onset of task switch.

produced a large standard error.

We further performed task switching between pro- and anti-
saccade tasks without an explicit instruction. First, wedesl
to define a new reward rule for trials that occurred just after
task switch but have not received the first reward in a block.
Here, we let the learning ratg,= 0.08 in both the excitatory-
and inhibitory-based plastic synapses for these trialss figt
atively high learning rate caused the erroneous behavibeto
rapidly inhibited until the network knew which choice would
be rewarded. The other reward rules followed the training of
the anti-saccade task. Fig. 5 illustrates the average peaitce
over successive trials, before and after the task switcthdtld
be noted that the last trial before the switch was always 100%
correct, as the protocol required that the task only switche
once 30 correct trials were performed in a block. Trial zeasw
the first trial after the task switch. In both tasks, the petage
of correct trials abruptly dropped to 0% because the saccade
target in the previous block was still considered to be anrre
t. Their performance then increased to approximately 40% in
the pro-saccade task and approximately 50% in the antasacc
task [Fig. 2 in Everling and DeSouza (2005); Fig. 1 in Johmsto
et al. (2007)]. This was caused by the rapid increase of the in
hibitory effect and the dramatic decrease in the excitatéigce
to the now incorrect target (Fig. 5C and Fig. 5D). Within 4-

A
1

Trials

Modulation ratio (%)

50

75

100 1

50 1

50 -

100 A

500 10000 100
Time (ms) % SPP
Untrainad excitatory B Trained excitatory
Untrained inhibitory Traned Inhibitory

" 90°  180°  270°
Preferred direction

5 trials, the proportion of correct trials reached appraaigly ~ Figure 6. (A) The population firing rate in ESR (left) and sade percent prob-
80% and then stayed at this level, indicating that the modsl| h ability (right) of 90° direction-preferred retinotopic positions in the no-gskta

relearned the tasks in both switching tasks.

Colors indicate the population firing rate of E5R. (B) Comgam of the mod-
ulation ratios of the trained model (red and blue) and uné@imodel (orange

and green). Here these two plastic synapses are betweerdl£a8R, which
are relevant to the no-go task.
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Figure 7. The comparison of the performance of the trainedahio three trials: the go trial (A), correct no-go trial (Bid erroneous no-go trial (C). The black
dashed line represents the onset time of the stop signalofEimge dotted line is the threshold of ESR. Once the actfitif5R exceed this threshold, ESB will
produce a burst that represents a saccade signal. In eathtiebaipper panel shows the protocol of the task. The |Eteard T represent the fixation input and the
visual input, respectively. Colors denote the presencewésponding inputs.

9(r target in E23L. The absence of the stop signal made nepletely activated and inhibited the activities of E23L. Hutiv-
rons in E5R persistently transform the attention signal the  ities of FIX and E5R neurons in these three trials were simila
motor signal until their activities reached the threshoid se-  to experimental responses of fixation and movement neurons i
sulted in a reflexive saccade in the go trial. In the no-ga, tria the FEF of behaving primates [Hanes et al. (1998), their ¥ig.
however, the stop signal, which was presented at 300 ms caand Fig. 7; Schall et al. (2002), their Fig. 5; Brown et al.qgy
celed these pro-saccade-relevant responses before tiemedr their Fig. 5].

the threshold. Then, the network began to exhibit no-gateel The performance of the no-go task can be quantitatively
activities. It could be observed that the fovea populatiamw measured by the stop-signal reaction time (SSRT). SSREis th
the subsequent competition at about 400 ms so that the Hetwotime difference between the finish time of the stop process and
maintained its attention on the fovea (Fig. 7B). In addititre  time at which the stop signal is absent (stop-signal del&§Ssr
erroneous no-go trial occurred because the responses of EBR; it provides an estimate of the time needed to cancel the sa
ramped up to the threshold before the fixation neurons comzade movements. However, since it iffidult to measure the

8
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rect cue-saccade association after training. Fig. 9 itdiss two
sample trials, one for non-reversal trial (category 1) dwedcth-
er for reversal trial (category 2) in the trained networkttBof
the responses in E4 showed target selectivity and indusgd ta
related attention after the cue stimulus onset. This attent
signal was maintained until the saccade was produced [Fig. 3
in Asaad et al. (2000)]. However, it is worth noting that the
ongoing attention signal could not make the ramping agtivit
in ESR cross the threshold. This was because ffsebof the
visual target weakened the attention signal, althoughutcco
still maintain firing. Without relatively strong attenti@ttivity,
the inhibitory role of fixation input on E5R was strengthened
so E5R’s activity ramped down [Fig. 3 in Asaad et al. (1998),
Fig. 4 in Asaad et al. (2000), Fig. 3 in Histed et al. (2009, Bi
in Puig and Miller (2014)]. When the targets reappeared, the
activity of E5R was increased, which could induce a saccade.
Fig. 10A-D illustrates the modulation ratios for four plas-
tic connections. The modulation ratios showed a clear remap
ping, while the network could only make a reflexive saccade
before training. Taking directions in category 1 as examsiple
they were remapped to the leftward response. The connsction
from category 1 to 180in E4—E23L exhibited higher modu-
lation ratios. Note that the modulation ratios of remapmiog-
nections were also higher than that of the pro-saccade cenne
tions (minor diagonal in Fig. 10A), indicating that the rgma

Figure 8. (A) The reaction time distributions of the go sigburple) and er-
roneous no-go trials (orange). (B) The cumulative proligbflnctions for
reaction times during go trial (purple) and erroneous narigb(orange).

canceled time of a correct no-go trial directly, we need tm<o
bine the reaction time of the go trial and erroneous no-gd tri
(RTgo andRTnego) to estimate it (Logan et al., 1984). Continu-
ous trials are performed for the go trial and no-go trial @D
correct go trials and 100 erroneous no-go trials are ohdaine
Fig. 8A and Fig. 8B show the distribution and the cumulative
probability of the reaction time for these trials, respesli.

It can be observed that the distribution probabilityRifg0
progressively becomes smaller than thaRdf, after 200 ms.
After 360 ms, the erroneous no-go trial disappears complete
ly, while a number of go trials still exist in these reactiime
intervals, indicating that the go responses are inhibitéds in-
hibitory control is also emphasized by the gap between tioe tw
curves in Fig. 8B. Because the erroneous no-go trials wigela
reaction time have been inhibited, the corresponding camul
tive probability increases at a faster speed [Fig. 2 in Beuch
et al. (2007); Fig. 3 in Middlebrooks and Schall (2014); FAg.
in Thakkar et al. (2015)]. Note that as tR&,,40 0f about 97%
erroneous no-go trial distributes before 300 ms, we cong#ide
the finish time of the stop process. By subtracting S300
ms, the SSRT of the trained model was 100 ms, while it was
around 76- 96 ms in the experiment reported by Boucher et al.

in category 1 task in category 2
A
150y EFIX oty 1EFIX P
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(2007).

3.4. Associative task

Figure 9. Sample time course of the trained model in the &S@ctask. (A)
and (B) are the population firing rate offidirent layers in the associative task
for target (120) from category 1 and reversal associative task for tard#¥{3
from category 2. The gray area represents the cue period.blabk dashed

The associative task required the network to associate tafiie denotes the onset of visual targets.
gets based on context. Our model successfully learned the co
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Figure 10. Model behavior in the associative task. (A, B) Maton ratios under the green fixation for connections-##23L (A) and E4»123L (B). (C, D)
Modulation ratios under the red fixation for connections-E#R3R (C) and E4»123R (D). (E-H) In each of the 8 panels, the left panels arepiygulation firing
rates of E5R during the correct trial; right panels show geaof latency to half-max selectivity (LHMS). The two categs are: (60, 9¢°, 120°, 15C°, 180°, 210°)
for category 1 and (Q 30°, 24C°, 27C°, 30C°, 33C) for category 2.

ping activity, instead of the reflexive saccade, has becdme t nally reached a range of 400-600 ms. Similar variation in LHM
overwhelming activity. Meanwhile, the model suppresses th S can be observed in a number of works [Fig. 6 in Asaad et al.
wrong choice targets by enhancing the inhibitory basediplas (1998), Fig. 2 in Pasupathy and Miller (2005)]. Both of theca
synapses so that the corresponding modulation ratiosefjoat date nucleus and prefrontal cortex were reported to bevedol

ry 1 were relatively large (Fig. 10B). However, we found thatin the association task (Pasupathy and Miller, 2005). Coatba
the modulation ratios for connections that were relatechéo t with the caudate nucleus, our results were more comparable t
reversal trials exhibited ffierent remapping. The excitatory- activities in the prefrontal cortex. During the associatiask,
based plastic synapses in connections from E4 to E23R wetbe prefrontal cortex showed a gradual decrease of LHMS. In
strengthened by category 1 to rightward target, so thatdhe ¢ the early trials of the task, the LHMS of the prefrontal crrte
responding modulation ratios showed a higher level (Fig:)10 were around 900-1100 ms. Then it gradually decreased to a
while the leftward response was inhibited when stimulus wasange of 350-500 ms.

presented in directions of category 1 (Fig. 10D). Similée&ts Task switching by reversing the cue-saccade pairing, was
could also be observed for the directions in category 2,lut t also performed in the trained model. Similar to the taskawit
corresponding remappings were opposite. ing between pro- and anti-saccade, we first defined the reward

We also estimated target selectivity, which was defined asule for the trials between reversal onset and the first reia
the time when half of the maximal activity in ESR was reachedin a block. Based on the work of Asaad et al. (1998), we know a
The left panels in Fig. 10E-H depict the correct trials iffef-  priori that the speed of re-learning in the associative isisiot
ent conditions. It should be noted that these trials do radtide  as fast as switching between pro-saccades and anti-saccade
any of the trials that made a correct saccade but focusea atteThus, the learning rate for those trials was setjat 0.04,
tion on other directions before the targets onset. Tardetse while it otherwise followed the normal associative tasknirag
tivity tended to appear increasingly earlier as trials pesged protocol. The performance over successive trials is st
[Fig. 6 in Asaad et al. (1998), Fig. 3 in Cromer et al. (2011)].in Fig. 11. The model in two cue-saccade pairing reversals ex
This tendency was quantitatively indicated by the latendyetf  hibits similar performance (Fig. 11A and B). Again, the eityi
max selectivity (LHMS) (right panels in Fig. 10A-D). Earl-t  immediately decreases to 0% at task reversal; howeveresubs
als seemed to have the largest LHMS. The LHMS eftrials  quent performance ramped up gradually. It took about 11-12
in four conditions were distributed between 800 ms and 110@rials to reach 70% correct. Then, the performance proiyess
ms. Subsequently, the LHMS progressively decreased, and fiy improved to about 80% correct. The relatively slow change

10



/ 00 (2016) 1-15 11

A B 4.1. The mechanism underlying attention and decision-ngaki
e i in choice tasks

60; 60{ / Top-down control is typically reported to be a critical mech
s ol anism in visual selection (Ardid et al., 2007; Heinen et2014;
0 : of Lo et al., 2009). In the present model, two plastic modufatio
R W % & W s from layer 5B, based on a reward-dependent Hebbian learn-
Trial number Trial number . X _
ing rule, served as the bias to control saccadic eye moveament
0.9 1 - These modulations allowed the network to flexibly adjust the
0.8/ [ neuronal response and adapt tffetient visual tasks through
arl—" i e training over a number of trials, simulating the processooia
9 20 a0 80 80 mulating evidence. In this process, the excitatory andidriy
Trial number modulation acted as two subprocesses: the ability to patent
D 05 ; = a saccade in an instructed direction, and the ability to g
l— ! P = the reflexive saccade to the visual stimulus (Hutton, 2088; E
|
\

04] / S i —r erling and Fischer, 1998). In the anti-saccade task, eousme

o
(=1

Percentage correct (%)
Percentage correct (%)

(@]

=
Flnsdic
\

g

inh
giﬁlﬂ!‘.l‘x:

i : T~ Lo R saccades were often attributed to failures of inhibitingmg
0 20 . _4|0 5 80 80 choices in neurological studies, which was fully embodied i
SRR the early phase of the present training (Crawford et al. 2200
Hutton et al., 1998). Thus, the plastic modulation was more
likely to answer the question of how FEF controls the saecadi
Figure 11. The performance of cue-saccade learning whesaemade pairing  behaviors based on past experiences and reward expectation
reverses. (A) and (B) are the changes of correct trial péagenfrom cue-left Layer 23, which served as the attention allocator, was en-
trial to cue-right trial and from cue-right learning tria tue-left trial, respec- d d with . take-all hani Thi hani l
tively. The cue here is 12Qpreferred stimulus. (C) and (D) are the variations owed with a winner-lake-all mechanism. IS mechanisr im
of the excitatory- and inhibitory-based plastic synapséghts in two blocks.  ited the network to attend to only one target. However, recen
These synapses connect the cue to the left (blue) and rigdik. (The dashed  studies imply that it is possible for people to attend to mul-
line denotes the onset of reversal. tiple distinct spatial locations simultaneously, but sachplit
of spatial attention can only be maintained for 20050 ms

in excitatory- and inhibitory-based plastic synaptic vieigwvas ~ (Zirnsak et al., 2011; Julien et al., 2012). These reportaten
able to account for the ramping activity (Fig. 11C and D). Thetention allocation dynamics may seem to be inconsistert wit
model needed about 16 trials after reversal to make the hgs li OUr simulation results. However, our trained model can show
intersect for excitatory-based plastic synapses, whtteoik 23 the split of spatial attention (Fig. 4A). Between 0 ms and 110
trials for inhibitory-based synapses, indicating thatphecess ™S, the responses of two stimulated targets in E23R were ac-
of suppressing the erroneous choice is relatively slow. i-Sim tivated at the same time, indicating the attention wastsmit

lar ramping activity has been reported in a number of paperAfter about 110 ms, the pro-saccade won the competition and
(Asaad et al., 1998; Brasted et al., 2005; Pasupathy andnyill the network gradually focused its attention on the winner. |
2005; Histed et al., 2009; Cromer et al., 2011). Their finding Seems that these attention splitting activities are naispkas

are Compatib|e with our simulation results. these activities exhibit in Flg gB, but not in Flg 9A.

4.2. Latency of the anti-saccade

In our trained model, we observed the latency of response

In this study, we presented an extended learning-based milme of the anti-saccade, which was consistent with some ex-
crocircuit model of the frontal eye field. This model suceess Perimental data. Early studies attributed the latency ehti-
fully simulated the cognitive processes of three tasksatite ~ Saccade to the application of top-down inhibitory processe
saccade task, no-go task and associative task. These tasks wThey argued that the inhibitory processes induced antisstes
achieved based on three aspects. First, neurons in the nketwd© consume more time than pro-saccades so as to shift the re-
were assumed to prefer some spatial directions. The neuro§§onse time distribution, making them show a latency (Forbe
that preferred the same direction formed the directioffiepred ~ and Klein, 1996; Machado and Rafal, 2000; Olk and Kingstone,
population. Second, two functional units that were cotecbl 2003). Recently, this view was extended to the competitsh r
by rule neurons were divided in L23 and allowed the model to?lution mechanism which exerted its role by suppressing-an e
show task selectivity. Third, four reward-based plasticags- ~ Foneous pre-active pro-saccade and potentiating a camdiet
es projected modulation to the winner-take-all competiio ~ Saccade by attention competition (Engle and Kane, 2004¢Kan
L23, potentiating the correct choices and depressing tiee er and Engle, 2003; Unsworth et al., 2011). Our current result-
neous choices. Synaptic modulations were based on the firingiMply that the latency shown in the trained model was also
rate of the L5B population, which represented the final sgicca triggered by mechanisms in accordance with the competition
decision. Such a learning process may account for the obderyesolution process. This mechanism was formed by combin-
animal’s adaptive behaviors over multiple task paradigms.  ing the plastic modulations and the winner-take-all me&ran

11
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in layer 23. As shown in Fig. 4B, the inhibitory-based plastic the simulation results could match the experimental datata
modulation depressed the pre-active activities of thexile ural question arose: What is the relationship between task c
pro-saccade. This modulation made the anti-saccade win th@exity and learning speed. Can it be quantitatively désct?
competition of attention and the network reallocated iterat  These questions need to be resolved by further experiments.
tion to the anti-saccade.

4.4. Comparison with other models

4.3. The mechanism of task switching A number of computational models have been proposed
Accumulating evidence has demonstrated that switching b&y, simulate the three choice tasks in this study. For the anti
tween tasks takes time other than instant switching (Chein ang;ccade task and the no-go task, Carpenter (1981) propused t
Wise, 1995a; Matsumoto et al., 2003; Cromer et al., 2011). A ATER model that could simulate the neural decision and ex-
gradual switch pattern of reversal, awaking and relearh&® pjain the reaction time distribution. This model assumes th
been observed in a number of experimental studies (Everling particular action will be produced when a decision signal i
and DeSouza, 2005; Johnston et al., 2007). Our simulation rgreases and reaches the threshold. This mechanism carealso b
sults also reveal a similar switch pattern. When reversal 0cgphserved in the L5 of our model. When neurons in L5R receive
curred without an explicit instruction, a monkey still reped 1o ongoing attention signals from L23, their activitiegjine
the behavior learned in the preceding block of trials. Hasvev ¢ gradually increase. Once the responses reach the thagsho
missing rewards for the trials that should be rewarded tedea neyrons in L5B immediately make a fast response, indicating
that the task has been switched, and made the monkey relearyecision has been made. Recently, an increasing number of
the new task. There are a wide variety of factors that inflaenc yngdels are based on the realistic architecture of multipénb
the performance of task switching. regions, in order to attain a more accurate simulation (Hamk
Lee et al. (2007) performed a similar experiment and founthgs: | g et al., 2009: Meeter et al., 2010: Silver et al., 2012
that systemic blockade of DZB3R dopamine receptors, which Although some of these models involve FEF dynamics, they
are related to reward-based learning impaired the reveasal-  jace more emphasis on the role of other brain areas suck as th
ing. Similar éfects were seen by overstimulating D2R. In addi-pa54] ganglia and superior colliculus, while keeping thecfu
tion, several studies have reported that neural activilweged  tjon of the FEF relatively simple (Gancarz and Grossberg919
a direction signal progressively earlier during learninthsuc- \jjtchell and Zipser, 2003; Cutsuridis et al., 2014). Forrexa
cessive trials (Asaad et al., 1998; Pasupathy and Milled520  ple, Brown et al. (2004) proposed a functional model connect
This evidence emphasizes the role of reward-based leaoming ing the frontal cortex to the basal ganglia circuits, andusits
switching tasks. The learning rule is also a key component t@q several oculomotor tasks. This network made a saccage onl
completion of the tasks in the present study. It assumes thfnen cortical inputs indirectly inhibited GABAergic neus
the information of past experiences or reward expectatién a i, the substantia Nigra pars reticularis. The FEF block just
stored in the synaptic strength, which can also be alterséba served as a component of planning. In addition, to our knowl-
on upcoming events. This “synaptic strength” hypothesis isdge, the number of corresponding models for the assoeiativ
supported by the responses of the frontal lobe and basal gagysk is far fewer than that for the anti-saccade task or thgmo
glia (Jackson et al., 2006). How the synaptic strength cB8Ng task. Fusi et al. (2007) described a learning rule comgisie
and what the corresponding learning rate is within the Bce fast and slow components and used it to simulate a quickforge
of storing information, are still open questions. Besidesre-  ang-learn pattern for the conditional associative leayinin-
lationship between reward and outcome response, the €M corporating a two layer network. They found that the relearn
rate also depends on the firing rates of the postsynaptisidaci ing process after task switching is caused by instantlychivity
neurons, which has been considered in some computational gatween sets of sensorimotor associations. FurthermbegsC
tudies (Soltani and Wang, 2006; Barraclough et al., 20085 T ¢t g1, (2013) developed a cortico-basal ganglia circuitbyle-
effect is the base mechanism for settinfefent learning rates  menting a delayed associative learning rule that used therde
of excitatory-based and inhibitory-based plastic synapséhe  sjgnal to update the sensorimotor connections at the erfeeof t
present model. trial. Besides the learning rule, they also emphasizeddhee r
Task type is another important factor in the performancef the prefrontal cortex control. Without the signal froneth
of task switching. Switching betweenfilirent tasks shows prefrontal cortex, the model could not adapt to the new cue-
distinct quantitative fects of reversal learning. The monkey response association in the early trials, but had to reltan
showed fast learning in switching tasks between pro-sa&ccadsk siowly. Compared to the models cited above, our model
and anti-saccade: only 3-5 trials were needed after reersa captyres features about the direction preference, legraten-
perform better than 70% correct (Everling and DeSouza, 200%ion and motor preparation in the FEF in great detail, altifou
Johnston et al., 2007). In associative tasks, howeverptiis it goes not include the other brain areas. The extensioms fro

cess did usually take more than 10 trials (Asaad et al., 1888; the original model have highlighted the important aspeéts o
supathy and Miller, 2005; Histed et al., 2009). Based onehesye\ard-based learning and its role in decision-making.

findings, the variance of relearning speed is likely attiiou
to the task complexity. Our extended model assumed that the
learning rate of task switching between pro-saccade arid ant
saccade was twice as large as that in associative task.uitho

12
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