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This paper aims to discuss our research into synchronized transitions in two reciprocally
gap-junction coupled bursting pancreatic b-cells. Numerical results revealed that propaga-
tions of synchronous states could be induced not only by changing the coupling strength,
but also by varying the slow time constant. Firstly, these asynchronous and synchronous
states such as out-of-phase, almost in-phase and in-phase synchronization were specifi-
cally demonstrated by phase portraits and time evolutions. By comparing interspike inter-
vals (ISI) bifurcation diagrams of two coupled neurons with an individual neuron, we found
that coupling strength played a critical role in tonic-to-bursting transitions. In particular,
with the phase difference and ISI-distance being introduced, regions of various synchro-
nous and asynchronous states were plotted in a two-dimensional parameter space. More
interestingly, it was found that the coupled neurons could always realize complete syn-
chronization as long as the coupling strength was appropriate.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

As we all know, neuronal synchronization plays a sig-
nificant role in pathophysiological processes occurring in
Parkinson’s disease [1] and during epileptic seizures [2].
The transitions of synchronization states are of vital
importance in neuronal networks. In the past decades,
many investigations into neural synchronization have
been conducted [3–8], and some important methods
were proposed to bring fundamental new insights into
the principles of synchronization [9–13]. Arenas et al.
[3] reported advances in the understanding of synchroni-
zation phenomena in a complex network topology. Vol-
man et al. [4] researched the role of electrical synapses
in the synchronization of neuronal ensembles and the
link between gap junctions and epilepsy. The depen-
dence of synchronization transitions over scale-free
neuronal networks with attractive and repulsive coupling
was investigated in Ref. [5]. The variable higher-order
coupling term, bursting oscillations and corresponding
bifurcation in the modified Morris–Lecar neuron and
the effect of time delay in the coupled FHN models were
studied in Refs. [6–8]. Postnova et al. [9] used the anal-
ysis of phase difference to investigate the classification
of synchronous states. Pikovsky et al. [10] illustrated
synchronization phenomena in combined oscillators and
in spatially distributed systems from both qualitative
and quantitative perspectives. Ermentrout [11] adopted
singular perturbation theory and the phase resetting
curve to research the property of Type 1 membrane
models. Chow et al. [12] showed that spike shape and
size were of importance in the existence and stability
of phase-locked modes of electrically coupled neurons.
Hansel et al. [13] studied synchronization properties of
all-to-all coupled identical neurons with purely excit-
atory interactions and showed that there were two dis-
tinct types of responses dependent on the time course
of synaptic interactions and the response of coupled
neurons to small depolarizations.
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In neuronal systems, the coupling between neurons can
be divided into two types: electrical coupling via gap junc-
tions and chemical coupling via chemical synapses. For
electrical coupling, the role of electrical synapses is
reflected in synchronizing neuronal activity by adjusting
its strength and physiological response [14,15]. While for
chemical coupling, the synchronization process is medi-
ated through regulating fast and slow synaptic transmis-
sion by the exchange of neurotransmitters [16,17].
Recently, research of the synchronization transitions in
small-world and scale-free neuronal networks with hybrid
electrical–chemical synapses have been performed by
Wang et al. [18,19]. Additionally, the hybrid synapses have
an advantage in signal detection and transmission in neu-
ronal systems [20]. Sun et al. found that electrical coupling
is more adept at transmitting signals, while chemical cou-
pling is more suited to detecting signals.

The purpose of this present work is to analyze (1) how
the coupling strength influences the discharge pattern of
the neurons and (2) how the synchronous states transit
from one to another. Here, we have chosen the model of
pancreatic b-cell which has been simplified to three dimen-
sions. In the previous studies of this model, Mosekilde et al.
[21] studied the period-doubling and period-adding struc-
ture through the analysis of one- and two-dimensional
bifurcation. Moreover, synchronization has been studied
both in gap junction coupled cells [22,23] and in a ring neu-
ronal network [24]. In this paper, we focus on extending the
analysis of two coupled bursting pancreatic b-cells. First, we
investigate several synchronous states while varying the
coupling strength. Then, we compare the bifurcation dia-
grams of the coupled neurons with an isolated one. Finally,
with the method of phase difference and ISI-distance, the
analysis of synchronization becomes more comprehensive.

The paper is constituted as follows. In Section 2, we
describe a simplified model of two electrically coupled
pancreatic b-cells. The corresponding numerical simula-
tion methods are introduced in Section 3. Section 4 shows
the synchronization propagations of two coupled neurons
with the variations of the coupling strength and the slow
time constant. Finally, conclusions are given in Section 5.

2. Model description

Based on the minimal model proposed by Sherman
et al. [25], we coupled two pancreatic b-cells via a gap
junction. Each neuron contains three channels, namely cal-
cium channels, potassium channels, and slow variable
channels. The schematic diagram of the coupled neurons
is shown in Fig. 1.

The synthetic dynamics of two coupled pancreatic
b-cells are depicted by the following differential equations:
Fig. 1. Schematic diagram of two coupled pancreatic b-cells.
sdV1;2=dt ¼ �ICaðV1;2Þ � IKðV1;2;n1;2Þ � IsðV1;2; s1;2Þ
� gcðV1;2 � V2;1Þ ð1Þ

sdn1;2=dt ¼ kðn1ðV1;2Þ � n1;2Þ ð2Þ
ssds1;2=dt ¼ s1ðV1;2Þ � s1;2 ð3Þ

where variables Vi; ni, and si (i ¼ 1;2) represent the mem-
brane potential, the opening probability of potassium
channels, and a slow variable in this system, respectively,
and the subscript 1 (or 2) indicates the first (or second)
neuron. The parameter s denotes the fast time constant
for V and n; ss denotes the slow time constant for s. Each
ionic current is defined by

ICaðV1;2Þ ¼ gCam1ðV1;2ÞðV1;2 � VCaÞ ð4Þ
IKðV1;2;n1;2Þ ¼ gK n1ðV1;2ÞðV1;2 � VKÞ ð5Þ
IsðV1;2; s1;2Þ ¼ gss1ðV1;2ÞðV1;2 � VKÞ ð6Þ
x1ðV1;2Þ ¼ 1=ð1þ expð�ðV1;2 � VxÞ=hxÞÞ; x ¼ m;n; s ð7Þ

where gCa; gK and gs represent the maximum conductance
of ICa; IK , and Is, respectively; VCa and VK stand for the
reversal potentials of Ca2þ and Kþ ions, respectively; gc is
the coupling strength between two neurons.

The values of all parameters used in the above model are
listed as follows: s ¼ 0:02 s; ss ¼ 16 s; gCa ¼ 3:6, gK ¼
10; gs ¼ 4; k ¼ 0:85, VCa ¼ 25 mV; VK ¼ �75 mV; Vm

¼ �20 mV, Vn ¼ �16 mV; Vs ¼ �38:34 mV; hm ¼ 12 mV,
hn ¼ 5:6 mV; hs ¼ 10 mV.

3. Methods

3.1. Phase difference

In order to better understand the synchronization tran-
sitions between two coupled pancreatic b-cells, the phase
difference is introduced to distinguish different synchro-
nous states, and it is calculated by:

Du ¼ 2pðts � t1Þ=ðt2 � t1Þ; t1 < ts 6 t2 ð8Þ

where t1 and t2 denote the times of adjacent spikes of the
first neuron and ts is the spiking time of the second neuron
[9].

3.2. ISI-distance

The ISI-distance proposed by Kreuz et al. [26–28] can be
used to measure the synchronization degree of two cou-
pled neurons, and it is measured using the following proce-
dures. Firstly, we need to extract the spiking times by use
of a spike detection algorithm. The spiking times are cho-
sen when the membrane potential is greater than
�35 mV threshold and is not less than the voltage of the
surroundings. Secondly, the instantaneous interspike
interval at each time is detected by:

xisiðtÞ ¼ min tx
i jtx

i > t
� �

�max tx
i jtx

i < t
� �

; tx
1 < t < tx

M ð9Þ

where tx
i denotes the spiking times of the spike train xisiðtÞ.

Similarly we can get the second spike train ty
i . Next, an

appropriate normalization is adopted to compute the ratio
between xisi and yisi as:

IðtÞ ¼ ðxisiðtÞ � yisiðtÞÞ=maxðxisiðtÞ; yisiðtÞÞ: ð10Þ
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Finally, the time-weighted distance DI is integrated as:

DI ¼
Z Time

t¼0
dtjIðtÞj: ð11Þ

The model is programed in Python using a fourth-order
Runge–Kutta algorithm increasing in steps of 0.1 ms. All
diagrams are drawn using matplotlib which is an open
source library in Python.

4. Simulation results

4.1. The variation of coupling strength

Several synchronization states can be observed with the
variation of the coupling strength. At ss ¼ 16 s, the follow-
ing dynamical phenomena can be detected as shown in
Fig. 2. Phase diagrams of V1 versus V2 in mV (left column) and action potential
strength. (a) Asynchronous state (gc ¼ 0:0027 nS), (b) out-of-phase synchrono
(gc ¼ 0:0243 nS), (d) almost in-phase chaotic synchronous state (gc ¼ 0:0792 nS
Fig. 2: asynchronous state, out-of-phase synchronous state,
almost in-phase chaotic synchronous state and in-phase
synchronous state. The left column represents the phase
portraits on (V1; V2) plane. In the right column, the blue
solid and red dashed lines represent the action potentials
of neuron 1 and neuron 2, respectively.

When gc ¼ 0:0027 nS, the coupled neurons present an
asynchronous state with irregular firing patterns and the
corresponding phase portraits are chaotic (Fig. 2(a)). An
out-of-phase synchronous state emerges when gc ¼
0:018 nS (Fig. 2(b)). Under these circumstances, the neu-
rons produce bursting patterns and the time series of the
membrane potential are the same in shape, but the phase
differences between them constantly range from 0 to 2p.
With further increase of gc , an almost in-phase chaotic syn-
chronous state appears (Fig. 2(c) and (d)). In this case, the
traces for both neurons (right column) for different values of the coupling
us state (gc ¼ 0:018 nS), (c) almost in-phase chaotic synchronous state
), (e) in-phase synchronous state (gc ¼ 0:09 nS).
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phase differences are rather close to 0 or 2p. As gc

increases to 0.09 nS, the neurons present an in-phase syn-
chronous state (Fig. 2(e)). In this case, the impulse patterns
appear identical at the same time (Du ¼ 0 or 2p), and this
implies that the neurons are fully synchronized.
4.2. Role of the slow time constant with constant coupling
strength

Fixing the coupling strength gc ¼ 0:0036 nS, we
research the effect of the slow time constant ss on phase
differences (Du) and interspike intervals (ISI) as shown
in Fig. 3. Fig. 3 consists of the following three parts: the
phase differences (top section), interspike interval distri-
bution for the coupled neurons (middle section) and
interspike intervals of uncoupled or in-phase synchronous
neurons (bottom section) for comparison.

Variations in the firing patterns are closely associated
with variations in the phase differences. More specifically,
the phase differences are distributed in lines when this is
Fig. 3. Bifurcation diagrams of phase differences (Du) and interspike
intervals (ISI) on the slow time constant scaling. (a) Plots of phase
differences at constant coupling strength (gc ¼ 0:0036 nS) with variation
of the parameter ss; (b) the corresponding variations of the interspike
intervals (ISI); (c) the interspike intervals of uncoupled or in-phase
synchronous neurons.
the same in the plots of the interspike intervals and the
phase differences are irregularly distributed when the
interspike intervals present chaotic dynamics.

Firstly, with increase of ss in low values, such as
ss 2 ½2000;6500�, firing patterns present spiking switching
to period-2 pattern with an in-phase synchronous state.
When the neurons present in-phase synchronization, the
distribution of coupled neurons interspike intervals are
the same as that of uncoupled neurons. Then, the coupled
neurons exhibit irregular distribution of both phase differ-
ences and interspike intervals, for example ss 2 ½6500;11;
560�. In contrast, the uncoupled neurons still exhibit burst-
ing patterns from period-2 to period-4 activity. With further
increase of ss, such asss 2 ½11;560;14;640�, an out-of-phase
synchronous state appears which alternates with asynchro-
nous behavior, while the uncoupled neuron produces cha-
otic activity. With further increasing ss, for instance
ss 2 ½14;640;19; 000�, both the distribution of phase differ-
ences and interspike intervals become irregular again. In
this regime, the individual neuron’s firing pattern is chaotic
passing through a period-doubling bifurcation area (from
period-3 activity turning into period-6 activity).
4.3. Diagram of synchronous areas and spike-counting on the
(gc; ss) plane

For the synchronization research, we use the coupling
strength (gc) and the slow time constant (ss) as control
Fig. 4. The map of synchronous states for two coupled neurons on the
plane: coupling strength (gc) and the slow time constant (ss). The light
green area represents the region of in-phase synchronization. The blue
area stands for the region of out-of-phase synchronization. The violet area
denotes the region of asynchronization. (For interpretation of the
references to color in this figure legend, the reader is referred to the
web version of this article.)



Fig. 5. Spike-counting (SC) diagram of the coupled neurons. The color-coded bar in the right column denotes the number of spikes per burst. The number 1
presents tonic-spiking; regular bursting is expressed by number 2–9, while the number 10 indicates chaotic bursting. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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parameters. The synchronized states can be determined by
the phase differences between the adjacent spiking times
of the two coupled neurons. By this method we can distin-
guish different synchronized states combining the cou-
pling strength and the slow time constant as indicated in
Fig. 4.

The diagram is divided into different regions according to
the three major synchronous states. From the figure, we can
find two in-phase synchronization regions characterized by
light green color scattered on the (gc; ss) plane. Both at low
and high coupling strength, two neurons can accomplish in-
phase synchronized state. Furthermore, when the neurons
are at the highest coupling strength regime they could
Fig. 6. Dependence of ISI-distance on the coupling strength gc for two values
interpretation of the references to color in this figure legend, the reader is refer
promptly go into in-phase synchronization with
ss 2 ½4000;19; 000�. All these states can be observed by
increasing coupling strength and the slow time constant.
It’s worth noting that a particular region of asynchronous
and out-of phase synchronous behavior emerges. In this
region, asynchronous and out-of-phase synchronous states
appear alternately and form several similar band-type areas.

Fig. 5 presents the (gc; ss)-parameter diagram of
spike-counting (SC) of the coupled neurons. The color-
coded bar on the right gives the range of spike-numbers.
By combining Figs. 4 and 5, we can find that: (1) In-phase
synchronization can be achieved not only in regular
bursting regions, but also in chaotic bursting regions. (2)
of the slow time constant ss (in ms): 14,000 (red), 16,000 (blue). (For
red to the web version of this article.)



Fig. 7. Plots of ISI-distance in dependence on the coupling strength gc and the slow time constant ss . The scale in the right column indicates that different
ISI-distance values are denoted by different color intensities. The in-phase synchronous state is denoted by the black area and the out-of-phase synchronous
state is denoted by the blue area. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The coupled neurons are more inclined to enter an out-
of-phase synchronization state in tonic-spiking regions.
(3) Asynchronization is always accompanied by chaotic
bursting.

4.4. Research of synchronization and transitions by the
ISI-distance

The above analyses show several synchronous phenom-
ena. But, how can we estimate the degree of synchrony
between two coupled neurons? Here, we adopt the ISI-dis-
tance, which is a complementary method of extracting the
timing of spikes and computing the ratio of transient firing
rates. Complete synchronization takes place if DI ¼ 0.

In Fig. 6, we give the specific variations on the ISI-dis-
tance, which is calculated as defined by Eq. (11), as a con-
tinuous function of the coupling strength for two values of
the slow time constant. In order to generalize the above
acquired results, we scatter the values of DI in a two-
dimensional parameter space. As shown in Fig. 7, the
dependence of DI on the coupling strength gc and the slow
time constant ss is exhibited. The color intensity describes
the synchronized degree of the coupled neurons. Specifi-
cally, deeper color representing smaller a DI value which
indicates a higher degree of synchronization between the
coupled neurons. It is obvious that there exist two black
regions of DI, where the in-phase synchronization can be
realized. The blue regions representing the out-of-phase
synchronization are surrounding the black areas, which
coincide with Fig. 4. Yellow and red regions alternately
appear in the remaining area, which indicate that DI some-
times increases, and sometimes decreases (compare curves
for ss ¼ 14;000 and for ss ¼ 16; 000 in Fig. 6). From Fig. 7,
we can see that both for smaller and larger gc , complete
synchronization can be obtained. When gc is large enough,
for example gc ¼ 0:09, the coupled neurons immediately
go into in-phase synchronization for any finite ss.
5. Conclusions

In conclusion, we have used two computational
approaches to examine how the different synchronous
and asynchronous states propagate and modify neuronal
firing patterns. In the present research, we have systemat-
ically analyzed the propagations between different syn-
chronous states as functions of the coupling strength and
the slow time constant. From these results, we have sev-
eral conclusions as follows:

(1) The analysis of bifurcation and phase plane obvi-
ously show that synchronization transmission goes
along with the transition of impulse patterns. Specif-
ically, the impulse patterns of coupled neurons are
quite different from that of the single neuron as long
as the coupled neurons are not in-phase
synchronized.

(2) An appropriately adjusted coupling strength can sig-
nificantly destroy or promote synchronous states.
Indeed, both for smaller and larger coupling
strengths, in-phase synchronization can be realized.

(3) Compared with the phase differences method, the
approach of ISI-distance can not only distinguish
three distinct synchronization states, but also char-
acterize the degree of the same synchronization
states.



J. Wang et al. / Chaos, Solitons & Fractals 68 (2014) 65–71 71
Both of the methods mentioned above are based on the
time intervals between continuous spikes rather than the
measurement of the independent elements of two spike
trains. These methods are parameter-free, timescale-inde-
pendent and can naturally characterize the neuronal spike
trains. Because of the self-adaptation of these methods,
they serve as a time-resolved manner to depict the degree
of synchrony between two spike trains. Furthermore, they
yield good results even on a limited range of time scales.
Thus, we only need to choose a length of stable firing pat-
terns to compute the synchronous indexes, which saves a
great deal of time. We believe that these methods are pro-
found and instructive for further research on synchroniza-
tion states of different types of coupled neurons or
multiple coupled neurons.
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