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For a linearized version of the FitzHugh–Nagumo model, firing and resetting conditions are
defined by analogy with the Integrate and Fire model. The dynamical behavior of the model,
subject to periodic synaptic inputs, is investigated both theoretically and numerically, with
particular emphasis on the synchronization properties. The study is then extended to a network
of two synaptically coupled units.

1. Introduction

There is now evidence that, in many sensory and
motor areas of the cortex, the phase difference be-
tween action potentials fired from different neurons
can encode information beyond that carried by the
spike train of a single cell [Singer, 1999]. The visual
information coded by our eyes comes to the pri-
mary visual cortex and complex information-coding
processes occur in the neurons of this cortical area.
A striking characteristic of the visual cortex is its
columnar organization: the firing activity of each
cell, within a given functional column, increases
when the corresponding receptive field in the retina
is activated with the preferred stimulus orientation
[Gray & Singer, 1989; Gray et al., 1989]. Current
theories suggest that the brain processes the vi-
sual information by splitting it into its component
features (color, motion, depth, etc.). A relevant
question is how the brain rebinds these individual
characteristics. Recently it was proposed that this
aim could be achieved by synchronizing the firing
times of the neurons that encode the features of the
visual scene [Malsburg & Schneider, 1986]. More-
over, stimulus dependent synchronization between
spatially separate neurons in the visual cortex of
cats was also observed [Gray et al., 1989]. These

experimental results suggest that the synchroniza-
tion of the firing activity of different neurons could
be the key to link together different features of a
scene [Gray & Singer, 1989; Vershure & Köning,
1999]. How this task is obtained is not yet clear.
However, the tangential excitatory connections be-
tween neurons in the cortex seem to play a fun-
damental role for the synchronization phenomena,
the degree of synchronization being modulated by
the characteristics of synaptic coupling, especially
its strength; moreover, the phase locking between
neurons could serve as a mechanism to achieve syn-
chrony of neural activity [Singer, 1990]. All these
neurophysiological findings propose new challenges,
to be faced both experimentally and theoretically.

In a general setting, if ω1 and ω2 are the fre-
quencies of two coupled oscillators (or those of an
oscillator and its forcing signal), the synchroniza-
tion condition is that m/ω1 = n/ω2, with m, n
prime integers. A state for which the phase differ-
ence ∆φ (measured in units of 2π) between the two
interacting units is zero will be called, from now on-
wards, a completely synchronous state; while a state
where ∆φ = 0.5 will be termed antisynchronous.
All others are defined as states of intermediate
synchrony.
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Now, the realistic biophysical models of a
neuron, like the Hodgkin–Huxley (HH) one, are
quite complicated systems of nonlinear differential
equations. So there is a considerable advantage
(analytical and numerical) in using systems of equa-
tions that are simpler than the HH model, but re-
tain many of its qualitative features: an example
is represented by the FitzHugh–Nagumo equations
(FHN). Even simpler is the well known Integrate
and Fire (IF) neural model. In this paper we will
use a neural model intermediate between FHN and
IF. This model is obtained by linearizing the FHN
model in the neighborhood of its resting state and
introducing a firing mechanism similar to the IF
one. Mainly, there are two reasons that justify us-
ing this linearized FHN model (LFHN). The first
is the possibility of separating the dynamics of the
FHN model into subthreshold and suprathreshold
regimes. While the latter is associated to the gener-
ation of action potentials whose shape and duration
are little affected by the input signal, the response
of FHN to perturbations is mainly determined by
its subthreshold dynamics. The second reason is
related to the Hartman–Grobman theorem estab-
lishing that near a hyperbolic equilibrium a suit-
able change of coordinates linearizes the flow. Fur-
thermore, it is worth noting that LFHN has been
shown to reproduce many dynamical properties of
the FHN model [Capurro et al., 1998; Nozaki et al.,
1999; Di Garbo et al., 2000].

Synchronization phenomena occurring in net-
works of synaptically coupled IF models have been
studied by several authors [Van Vreeswijk, 1996;
Coombes & Lord, 1997; Chow, 1998; Bressloff &
Coombes, 1998; Coombes & Bressloff, 1999; Camp-
bell et al., 1999]. In particular, the first two pa-
pers show that a network of two coupled IF models
exhibits a stable antisynchronous state for excita-
tory coupling and slow synaptic currents. For faster
currents stable states of intermediate synchrony ap-
pear through a pitchfork bifurcation. For very fast
synaptic currents the system gets the stable state
of complete synchrony. More recently, Chow [1998]
and Coombes and Bressloff [1999], established the
conditions for stable phase locking of periodically
forced IF models, and then extended their analysis
to two or more synaptically coupled IF models.

In this paper we investigate the synchronization
phenomena both for a single LFHN model driven by
a periodic synaptic-like current and for a system of
two LFHN models “synaptically” coupled. Given
the importance that excitatory connections have in

the context of neurophysiology we limit our study to
this kind of synaptic coupling. Noteworthy, a single
LFHN unit can be considered to represent a neural
population corresponding to a given functional col-
umn of the visual cortex. We will investigate how
the features of the synaptic current, i.e. its duration
and strength, influence the synchronization proper-
ties of the system. The extension of these researches
to the general case (with excitatory and inhibitor
synapses) will be presented elsewhere.

2. Dynamics of the LFHN Model

Let us start with the FHN model, whose equations
can be derived, under certain hypotheses, from the
HH ones. In the presence of an external perturba-
tion P (t) they are

ε
dv

dt
= v(v − a)(1− v)− w + σP (t) (1a)

dw

dt
= v − w − b (1b)

where v(t) is the fast variable describing the mem-
brane voltage and w(t) is the slow recovery variable;
σ is the amplitude of the perturbation P (t). For
the parameters we shall set the values ε = 0.005,
a = 0.5. As parameter b increases, at the value
b1 ' 0.2623 the unperturbed system (i.e. with
σ = 0) undergoes a Hopf bifurcation from the rest-
ing state (v0, w0) to subthreshold periodic orbits.
Lastly, for b ≥ b2, the system generates full ac-
tion potentials. Linearizing the equations (1) in the
neighborhood of fixed point yields:

ε
dx

dt
= Rx− y + σP (t) (2a)

dy

dt
= x− y (2b)

with R = −3v2
0 + 2v0(1 + a) − a, v(t) = v0 + x(t)

and w(t) = w0 +y(t). But Eqs. (2) do not have any
mechanism to generate action potentials; thus, in
analogy with the IF model we assume that, when-
ever the fast variable x(t) crosses a threshold H > 0
with positive derivative, an action potential is gen-
erated and x(t), y(t) are reset to xr, yr, respectively.
In this way the linearized FHN model is completely
defined. Now, depending on the value of parame-
ter b, LFHN can be in two dynamical regimes: in
the first one the fixed point is stable whereas in the
other it is unstable. In this paper we suppose LFHN
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to be in the last regime (the other case may be han-
dled similarly as long as the forcing is sufficient to
produce repetitive firing).

If we denote by {tn : n = 1, 2, . . . N} the set of
firing times, the solution of Eqs. (2a) and (2b) for
tn ≤ t < tn+1 is given by(

x(t)

y(t)

)
= A(t− tn)

(
xr

yr

)

+
σ

ε

∫ t

tn

A(t− s)
(
P (s)

0

)
ds , (3)

where A(t) is the fundamental matrix. It easily
follows that

x(t) = eγ(t−tn)

{
xr cos β(t− tn) + sin β(t− tn)

× [(1 + γ)xr − β2yr − (1 + γ)2yr]

β

}

+
σ

ε
eγt

∫ t

tn

P (s)e−γs
[
cos β(t− s)

+
2 + γ

β
sinβ(t− s)

]
ds , (4)

where γ = (R − ε)/2ε and β =
√

2ε− (R+ ε)2/2ε.
If we define x(t) ≡ g(t, tn, σ), the firing condition is
g(tn+1, tn, σ) = H. Whenever locally ∂g/∂tn+1 6=
0 the implicit function theorem guarantees the ex-
istence of the explicit map tn+1 = ψ(tn). When
this theorem does not hold the map tn → tn+1 is
implicitly defined by the firing condition. In the
following we assume the perturbation in (2a) to be
periodic with period T . An important property of
the equation H = g(tn+1, tn, σ) is that for any so-
lution (tn+1, tn), also (tn+1 + T, tn + T ) is a so-
lution. This leads to the following conclusion: if
the explicit map exists and is invertible in some do-
main of the parameter space, then it is the lift of
a circle map. In this case chaotic dynamics is not
possible for LFHN, the rotation number is rational
for periodic orbits (phase locking) and irrational for
quasiperiodic ones. The loss of invertibility of the
map tn+1 = ψ(tn) means that the rotation num-
ber is not defined and chaotic dynamics is possible
[Guckenheimer & Holmes, 1983].

Let us assume now that the system itself fires
periodically with a period ∆ and condition ∆/T =

p/q holds, where p, q are prime integers. To test
the stability of this phase locked solution we per-
turb the firing time tn to tn + δn and study the
evolution of the perturbation δn. By expanding
g(tn+1 + δn+1, tn + δn, σ) and retaining only the
linear terms we get the map δn+1 = Q(tn, tn+1)δn
with Q(tn, tn+1) = −(∂g/∂tn)/(∂g/∂tn+1). If
|Q(tn, tn+1)| < 1 for n ∈ ℵ then limn→+∞ δn = 0
and the corresponding phase locked solution is sta-
ble. The borders of the regions where stable phase
locking occurs (Arnold tongues) are typically de-
fined by saddle-node and period doubling bifur-
cations. For such parameter values the Arnold
tongues overlap and complex dynamical regime
should occur.

In the following we present a simulative in-
vestigation of the forced LFHN model, with the
perturbation P (t) mimicking the current due to a
presynaptic neuron firing regularly with period T :
P (t) = (α2e−αt/(1−e−αT ))[t+(Te−αT /(1−e−αT ))]
for 0 ≤ t < T [Van Vreeswijk, 1996]. Parameter α
is the reciprocal of the synaptic current duration.
To characterize the phase locking states we use the
rotation number R = 〈In〉/T , In = tn+1 − tn being
the interspike interval (ISI). It is worth noting that
for a (p : q) phase locking state (q spikes in p forcing
periods) it is R = p/q.

All the results reported were obtained by nu-
merical integration of Eqs. (2a) and (2b) using a
fourth order Runge–Kutta method with integration
step ∆t = 0.001 and parameter value x(0) = xr =
1, y(0) = yr = 0.15, H = 0.3 and b = 0.265. For
each trial a transient interval of 10 t.u. was dis-
carded and the total integration time was 60 t.u.
For such parameter values the free running period
of LFHN is T0 = 0.2645.

In Fig. 1, R and the corresponding ISIs are
plotted against the forcing period for three cou-
ples of values of α and σ. In panels (a), (b) two
well defined phase locking states, the (1 : 1) and
(1 : 2) ones, clearly appear. We also found that
out of the corresponding stability regions of phase
locking the firing map is invertible and the orbits
are quasiperiodic (data not shown). As α is in-
creased the stability regions of these phase lock-
ing states widen [panels (c) and (d)]. Moreover,
according to the Farey tree law, other states with
narrower phase locking regions appear: those cor-
responding to (2 : 1), (3 : 2), (2 : 3), (2 : 5) and (1 : 3)
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Fig. 1. In the top (bottom) panels the values of the R parameter (the corresponding ISIs) are plotted versus the forcing
period T . (a and b) α = 8, σ = 0.02; (c and d) α = 14, σ = 0.02; (e and f) α = 14, σ = 0.04. The vertical bars on the T axis
of panel (e) correspond to T values representing integer multiplies of the free running period of LFHN. The inset of panel (e)
shows an enlarged view of the region T ∈ [0.20, 0.25] of panel (f).

modes. Increasing the coupling σ and keeping α
constant destroys some of these secondary phase
locking states (panels (e) and (f) of Fig. 1). An
example of period doubling bifurcation, starting at
T ≈ 0.24, is reported in the inset of panel (e) of
Fig. 1. In the region around the period doubling
bifurcation (0.22 . T . 0.24) the rotation number
remains constant. Moreover, regions where the fir-
ing map is not invertible were found (T . 0.21): in
these regions chaotic dynamics should be possible.

To elucidate the behavior of R in the transition
region from (1 : 1) to (1 : 2) phase locking modes, we
performed other simulations. In Fig. 2, R is plotted
against T for T ∈ [0.42, 0.482]. The transition from
mode (1 : 1) to (1 : 2) shown in panel (e) of Fig. 1
appears so sharp due to the large range of values

used for T . As shown in panel (b) of Fig. 2, in
the transition region the dynamics of LFHN looks
irregular with an apparent superposition of states
with R = 1 and R = 1/2. The small fluctuations of
the ISI values in the transition region suggest that
the dynamical behavior of LFHN can be chaotic
on some segments of this range. In fact, the firing
map evaluated numerically for T = 0.452 is not in-
vertible, while the Poincaré map of the interspike
intervals exhibits four distinct and well separated
attractors (data not shown).

In Fig. 3, R is plotted against T and σ for the
case α = 14. Two main Arnold tongues dominate
the dynamical behavior of the periodically forced
LFHN, corresponding to phase locking modes (1 : 1)
and (1 : 2). Other very narrow tongues are those
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Fig. 2. Enlarged view of a narrow band of panels (e) and (f) in Fig. 1 containing the transition region between the phase
locking states (1 : 1) and (1 : 2).

Fig. 3. Phase locking domains of the forced LFHN: the values of R are plotted against the period T and strength σ of the
synaptic input.
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corresponding to (3 : 2) and (2 : 1) modes. The
borders of the tongues are clearly defined only for
low values of σ. At high values of σ these bor-
ders overlap and consequently the dynamics become
more complex. The characterization of the system
dynamics in the critical regions where a complex
behavior occurs, will be addressed in a future work.

3. Two Coupled LFHN Models

Let us begin with the equations describing two
LFHNs synaptically coupled

ε
dxi
dt

= Rxi − yi + σiPi(t) , (5a)

dyi
dt

= xi − yi , (5b)

where Pi(t) =
∑
n≥1 Γ(t− tjn), i, j = 1, 2 and i 6= j.

The α-function Γ(t), vanishing for t ≤ 0 while hold-
ing α2te−αt for t > 0, describes the synaptic current
following the generation of an action potential in a
presynaptic neuron. Let {tjn : n ≥ 1} (j = 1, 2) be
the firing times of each LFHN model. In what fol-
lows, we assume the parameter values to be such to
generate, for both LFHNs, periodic firing activity
with the same period T . To evaluate the synaptic
input to the second LFHN model we suppose that
the last spike of the first model occurred at t1L < t,
whence P2(t) = P (t − t1L), with P (t) as written in
the previous section. Similarly, to get the synaptic
input to the first LFHN we assume that t2L = t1L−θT
with 0 ≤ θ < 1, where θ is the phase difference be-
tween the two oscillators, then P1(t) = P (t− t2L).

Now, to determine the unknowns θ and T we
could perform a numerical integration of Eqs. (5)
and search for stationary states where both firing
activities are periodic with period T . However,
we follow a different approach based on the knowl-
edge of the explicit solution of Eqs. (5): x1(t) =
g(t, t1L, σ1) (for t1L ≤ t ≤ t1L + T ) and x2(t) =
g(t, t2L, σ2) (for t2L ≤ t ≤ t2L + T ), the function g

being defined as in the previous section. For sim-
plicity, the same reset values, xr, yr, have been
assumed for both LFHNs. The firing conditions
for both LFHNs are expressed by x1(t1L + T ) = H

and x2(t2L + T ) = H. So, to determine θ and T

we search for the roots of the equation E(T, θ) =
x1(t1L + T ) − x2(t2L + T ) = 0 (t2L = t1L − θT ),

being

E(T, θ) = expγt
∫ T

0
exp−γs

[
cos β(T − s)

+
2 + γ

β
sinβ(T − s)

][
σ1

ε
P1(s+ t1L)

− σ2

ε
P2(s+ t1L − θT )

]
ds . (6)

For the rest of the paper we assume that the cou-
pling between the two LFHNs is symmetric, that
is: σ1 = σ2 = σ. By evaluating P1(t + t1L) and
P2(t+t2L) and using their periodicity it follows that,
for each T , θ = 0 and θ = 0.5 are always solu-
tions of the equation E(θ, T ) = 0. The existence
of the solution θ = 0.5 follows from the identities
P1(t + T 1

L) = P (t + θT ), P2(t + T 2
L) = P (t − θT )

and the periodicity of P (t). Moreover, for any so-
lution (T ∗, θ∗), (T ∗, 1 − θ∗) is another solution.
It can be seen that by suitably choosing the val-
ues of H and σ, any solution (T, θ) of equation
E(θ, T ) = 0 can be mapped to a solution of both
equations x1(t1L + T ) = H and x2(t2L + T ) = H. So
we can simplify our investigation by limiting our-
selves to this equation. As shown for the case of
two coupled IFs [Coombes & Lord, 1997], the sta-
bility of any solution (T, θ) of the same equation is
guaranteed by the condition (∂E(T, θ)/∂θ) > 0.

Let us come to the results obtained by solv-
ing the equation E(θ, T ) = 0 numerically — to
this aim we used the programs dqag.f and root.f
of the NETLIB library (see http://www.netlib.no/
netlib/) allowing for the integration and the com-
putation of the roots of a nonlinear equation, re-
spectively and firstly look to the dependence of the
phase difference θ between the two oscillators on the
duration of the synaptic current for a fixed value of
the period T .

Figure 4 shows the bifurcation diagrams of θ
versus α for three values of the firing period of the
two oscillators. A pitchfork bifurcation is exhibited
in all the cases. Below the bifurcation point the an-
tisynchronous states are stable, while those of com-
plete synchrony are unstable. Above the bifurca-
tion point stable states of intermediate synchrony
appear, while the antisynchronous states become
unstable. The states of complete synchrony become
stable when the branches of intermediate synchrony
cross the horizontal axis θ = 0 (or θ = 1). These
results are in keeping with those reported for the
case of two α-coupled IF models [Van Vreeswijk,
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Fig. 4. Bifurcation plots of the phase difference θ between the two LFHN units versus α. Panels: (a) T = 0.35; (b) T = 0.33;
(c) T = 0.31. Open squares: unstable states; crosses: stable states.

Fig. 5. As for Fig. 4. Panels: (a) T = 0.2; (b) T = 0.7; (c) T = 0.9.
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Fig. 6. Plots of the solutions of equation E(θ, T ) = 0 for some fixed values of α. Panels: (a) α = 2; (b) α = 8; (c) α = 14.
Open squares: unstable states; crosses: stable states.

1996; Coombes & Lord, 1997]. However, our sys-
tem seems to be more sensitive to changes of α or
T than the corresponding network of IF models.

Another interesting feature shown in Fig. 4 is
the shift of the bifurcation point for small variations
of T . Moreover, as T decreases the branches of the
states of intermediate synchrony become smoother
and of the bifurcation point moves to higher val-
ues of α. These effects, produced by changes of T ,
are similar to those occurring in the network of IF
models by changing the delay time of the synap-
tic current [Coombes & Lord, 1997]. As shown
in Fig. 5, larger variations of T lead to dramatic
changes in the system dynamics: from the sim-
plest case of panel (a) (stable antisynchronous and
unstable synchronous states) to the more complex
ones of panels (b) and (c). In this latter case, in
the range of α values explored, stable states corre-
sponding to synchrony and antisynchrony, together
with unstable states of intermediate synchrony,
appear.

Figure 6 shows the bifurcation diagrams of θ
versus T for different α values. For each α a critical

value Tc,1 exists such that only states of complete
synchrony (unstable) or antisynchrony (stable) oc-
cur for T < Tc,1 . Moreover, as α increases, Tc,1 de-
creases. As T increases over the critical value Tc,1
new solutions, of intermediate synchrony, branch
out (pitchfork bifurcation). For α = 2 these states
are unstable, while for α = 8 and α = 14 they be-
come stable. Above Tc,1 there is, for each α, another
critical point Tc,2. For Tc,1 < T < Tc,2 stable and
unstable states of any kind of synchrony are present.
As for the case of Tc,1, the critical point Tc,2 moves
to the left as α increases. For T > Tc,2 the solutions
(θ, T ) exhibit more complex geometry, with many
branches originating from the different bifurcation
points.

4. Summary and Discussion

A lot of experimental studies revealed that many
biological oscillators (like neurons) may become en-
trained or phase locked to periodic perturbations
[Glass & Mackey, 1988]. In addition, in some
experimental conditions, irregular or aperiodic
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dynamics was also observed. Likewise, many exper-
imental results show that coherent or synchronized
activity can be found between groups of neurons
[Gray et al., 1989]. In particular, it should be of
great relevance to identify the conditions underlying
the coherent activity of single neurons or groups of
them; surely, the synaptic interaction between neu-
rons and its features (strength and duration) play
a key role in these phenomena.

In this paper we firstly investigated the syn-
chronization properties of the LFHN model sub-
ject to a periodic synaptic current. We showed
that both the strength and the duration of synaptic
inputs are relevant parameters to change the syn-
chronization properties of LFHN. Two main phase
locking modes, (1 : 1) and (1 : 2), occur in a wide
region of the forcing parameter space. Moreover,
domains where the forced LFHN exhibits complex
phase locking states or aperiodic dynamical be-
havior were found, the latter being located in the
overlapping regions of the Arnold tongues. These
results are similar to those obtained with the IF
or FHN models subject to periodic perturbation
[Coombes & Bressloff, 1999; Yoshino et al., 1999].
In experiments where periodic current pulses were
injected into the giant axon of the North Atlantic
squid Loligo pealei, phase locking states of differ-
ent order were found (depending on the period and
amplitude of the injected current) and, for some
parameter values, aperiodic-like rhythms were also
observed [Clay & Shlesinger, 1983]. These exper-
imental results seem to be in qualitative agree-
ment with those found with the forced LFHN
neural model.

We also studied a network of two synaptically
coupled LFHNs to investigate its synchronization
properties. By changing either the duration of the
synaptic current or the firing period of the LFHN
units, we found a wide range of synchronization
regimes of all kinds of synchrony and with differ-
ent stability properties. Part of our results repro-
duce those obtained for a network of two synapti-
cally coupled IFs [Van Vreeswijk, 1996; Coombes
& Lord, 1997]. Nevertheless, the network of two
LFHNs seems to be more sensitive to variations in
the duration of the synaptic current and firing pe-
riod than that of two IF models. For a fixed value
of α, the plots of the phase difference between the
two LFHNs against the firing period, show complex
patterns characterized by several bifurcations and
by states of different stability.

Neurophysiological experiments demonstrate
that cells in the visual cortex exhibit synchronous
firing when their responses refer to a single object,
for instance a moving light bar [Singer, 1999]. How-
ever, the same cells could desynchronize when they
are responding to different objects (for instance two
bars with different orientation). It was suggested
in [Singer, 1990] that the switching between syn-
chronous and asynchronous firing activity could be
explained by a change in the synaptic coupling. Our
theoretical results on two coupled LFHNs show that
changing the duration of the synaptic current yields
different synchronization states, so confirming that
hypothesis. These theoretical findings suggest, as
hypothesized elsewhere [Singer, 1990], that the fea-
tures of synapses play a key role in the synchroniza-
tion of a neural population.
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