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Abstract

This paper investigates travelling wave solutions of the FitzHugh-Nagumo equation from the view-
point of fast-slow dynamical systems. These solutions are homoclinic orbits of a three dimensional vector
field depending upon system parameters of the FitzHugh-Nagumo model and the wave speed. Champ-
neys et al. [A.R. Champneys, V. Kirk, E. Knobloch, B.E. Oldeman, and J. Sneyd, When Shilnikov meets
Hopf in excitable systems, SIAM Journal of Applied Dynamical Systems, 6(4), 2007] observed sharp turns
in the curves of homoclinic bifurcations in a two dimensional parameter space. This paper demonstrates
numerically that these turns are located close to the intersection of two curves in the parameter space
that locate non-transversal intersections of invariant manifolds of the three dimensional vector field.
The relevant invariant manifolds in phase space are visualized. A geometrical model inspired by the
numerical studies displays the sharp turns of the homoclinic bifurcations curves and yields quantitative
predictions about multi-pulse and homoclinic orbits and periodic orbits that have not been resolved
in the FitzHugh-Nagumo model. Further observations address the existence of canard explosions and
mixed-mode oscillations.

1 Introduction

This paper investigates the three dimensional FitzHugh-Nagumo vector field defined by:

εẋ1 = x2

εẋ2 =
1

∆
(sx2 − x1(x1 − 1)(α− x1) + y − p) =:

1

∆
(sx2 − f(x1) + y − p) (1)

ẏ =
1

s
(x1 − y)

where p, s, ∆, α and ε are parameters. Our analysis views equations (1) as a fast-slow system with two
fast variables and one slow variable. The dynamics of system (1) were studied extensively by Champneys et
al. [4] with an emphasis on homoclinic orbits that represent travelling wave profiles of a partial differential
equation [1]. Champneys et al. [4] used numerical continuation implemented in AUTO [7] to analyze the
bifurcations of (1) for ε = 0.01 with varying p and s. As in their studies, we choose ∆ = 5, α = 1/10 for
the numerical investigations in this paper. The main structure of the bifurcation diagram is shown in Figure 1.

Figure 1 shows a curve of Hopf bifurcations which is U-shaped and a curve of Shilnikov homoclinic bi-
furcations which is C-shaped. Champneys et al. [4] observed that the C-curve is a closed curve which folds
back onto itself before it reaches the U-curve, and they discussed bifurcations that can “terminate” a curve
of homoclinic bifurcations. Their analysis does not take into account the multiple-time scales of the vector
field (1). This paper demonstrates that fast-slow analysis of the homoclinic curve yields deeper insight into
the events that occur at the sharp turn of the homoclinic curve. We shall focus on the turning point at the
top end of the C-curve and denote this region by I.
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Figure 1: Bifurcation diagram for the FitzHugh-Nagumo equation (1). Shilnikov homoclinic bifurcations
(solid red) and Hopf bifurcations (solid blue) are shown for ε = 0.01. The dashed curves show the singular
limit (ε = 0) bifurcation curves for the homoclinic and Hopf bifurcations; see [15] and Section 2 for details
on the singular limit part of the diagram.

We regard ε in the FitzHugh-Nagumo equation (1) as a small parameter. In [15], we derived a singular
bifurcation diagram which represents several important bifurcation curves in (p, s)-parameter space in the
singular limit ε = 0. The singular limits of the Hopf and homoclinic curves are shown in Figure 1 as dotted
lines.1 In the singular limit, there is no gap between the Hopf and homoclinic curves. We demonstrate below
in Proposition 2.1 that a gap must appear for ε > 0. The main point of this paper is that the termination
point of the C-curve at the end of the gap is due to a fast-slow “bifurcation” where the two dimensional stable
manifold of an equilibrium is tangent to the two dimensional unstable manifold of a one dimensional slow
manifold.2 Since the analysis of [4] does not explicitly consider slow manifolds of the system, this tangency
does not appear in their list of possibilities for the termination of a C-curve. Note that the slow manifolds
of the system are unique only up to “exponentially small” quantities of the form exp(−c/ε), c > 0, so our
analysis only identifies the termination point up to exponentially small values of the parameters.

Fast-slow dynamical systems can be written in the form

εẋ = ε
dx

dτ
= f(x, y, ε) (2)

ẏ =
dy

dτ
= g(x, y, ε)

where (x, y) ∈ Rm × Rn and ε is a small parameter 0 < ε � 1. The functions f : Rm × Rn × R → Rm and
g : Rm × Rn × R → Rn are analytic in the systems studied in this paper. The variables x are fast and the

1In Section 2 we recall the precise meaning of the singular limit bifurcation from [15] and how they these bifurcations arise
when ε = 0.

2An analogous tangency plays an important role in the formation of mixed mode oscillations associated with singular Hopf
bifurcations in fast-slow systems with one fast and two slow variables [12].
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variables y are slow. We can change (2) from the slow time scale τ to the fast time scale t = τ/ε, yielding

x′ =
dx

dt
= f(x, y, ε) (3)

y′ =
dy

dt
= εg(x, y, ε)

In the singular limit ε→ 0 the system (2) becomes a differential-algebraic equation. The algebraic constraint
defines the critical manifold:

C0 = {(x, y) ∈ Rm × Rn : f(x, y, 0) = 0}

For a point p ∈ C0 we say that C0 is normally hyperbolic at p if the all the eigenvalues of the m × m
matrix Dxf(p) have non-zero real parts. A normally hyperbolic subset of C0 is an actual manifold and
we can locally parametrize it by a function h(y) = x. This yields the slow subsystem (or reduced flow)
ẏ = g(h(y), y) defined on C0. Taking the singular limit ε → 0 in (3) gives the fast subsystem (or layer
equations) x′ = f(x, y) with the slow variables y acting as parameters. Fenichel’s Theorem [9] states that
normally hyperbolic critical manifolds perturb to invariant slow manifolds Cε. A slow manifold Cε is O(ε)
distance away from C0. The flow on the (locally) invariant manifold Cε converges to the slow subsystem on
the critical manifold as ε→ 0. Slow manifolds are usually not unique for a fixed value of ε = ε0 but lie at a
distance O(e−K/ε0) away from each other for some K > 0; nevertheless we shall refer to “the slow manifold”
for a fast-slow system with the possibility of an exponentially small error being understood.

Section 2 discusses the fast-slow decomposition of the homoclinic orbits of the FitzHugh-Nagumo equation
in the region I. This decomposition has been used to prove the existence of homoclinic orbits in the system
for ε sufficiently small [2, 17, 21, 20, 25], but previous work only applies to a situation where the equilibrium
point for the homoclinic orbit is not close to a fold point. At a fold point the critical manifold of a fast-slow
system is locally quadratic and not normally hyperbolic. This new aspect of the decomposition is key to
understanding the sharp turn of the homoclinic curve. Section 3 presents a numerical study that highlights
the geometric mechanism for the turning of the C-curve. We visualize relevant aspects of the phase portraits
near the turns of the C-curve. In Section 4 we show that exponential contraction of the Shilnikov return
map in the FitzHugh-Nagumo equation explains why n-homoclinic and n-periodic orbits are expected to
be found at parameter values very close to a primary 1-homoclinic orbit. Section 5 presents two further
observations. We identify where a canard explosion [26] occurs and we note the existence of two different
types of mixed-mode oscillations in the system.

2 Fast-Slow Decomposition of Homoclinic Orbits

We introduce notation used in our earlier work [15]. The critical manifold of (1) is given by:

C0 = {(x1, x2, y) ∈ R3 : x2 = 0 and y = f(x1) + p}

It is normally hyperbolic away from the two fold points x1,± with x1,− < x1,+ which are found by solving
f ′(x1) = 0 as the local minimum and maximum of the cubic f . Hence C0 splits into three parts:

Cl = {x1 < x1,−} ∩ C0, Cm = {x1,− ≤ x1 ≤ x1,+} ∩ C0, Cr = {x1,+} ∩ C0

We are mostly interested in the two branches Cl and Cr which are of saddle-type, i.e. points in Cl and Cr
are saddle equilibria of the fast subsystem. The middle branch Cm − {x1,±} consists of unstable foci for
the fast subsystem. The slow manifolds provided by Fenichel’s Theorem will be denoted by Cl,ε and Cr,ε.
The notation for the two-dimensional stable and unstable manifolds of Cl,ε is W s(Cl,ε) and Wu(Cr,ε) with
similar notation for Cr,ε; the notation for the associated linear eigenspaces is e.g. Es(Cl,ε). The full system
(1) has a unique equilibrium point which we denote by q. For (p, s) ∈ I and ε = 0.01 the dimensions of the
stable and unstable manifolds are dim(Wu(q)) = 1 and dim(W s(q)) = 2 with a complex conjugate pair of
eigenvalues for the linearization at q. The equilibrium q is completely unstable inside the U-curve and the
Hopf bifurcations we are interested in near I are all subcritical [15, 4].
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As ε→ 0 the Hopf bifurcation curve converges to a region in (p, s) parameter space bounded by two verti-
cal lines p = p± and the segment {s = 0, p− ≤ p ≤ p+}; see Figure 1. The parameter values p± are precisely
the values when the equilibrium point q coincides with the fold points x1,± [15]. This analysis gives one
part of the singular limit bifurcation diagram showing what happens to the Hopf bifurcation curves for ε = 0.

(F1)

(S1)

(F2)

(S2)

C0

q

Figure 2: Sketch of a homoclinic orbit to the unique equilibrium q. Fast (red) and slow (green) segments
decompose the orbit into segments.

When ε is small, the homoclinic orbit in Wu(q) ∩W s(q) can be partitioned into fast and slow segments.
The singular limit of this fast-slow decomposition has four segments: a fast subsystem heteroclinic connection
from q to Cr, a slow segment on Cr, a heteroclinic connection from Cr to Cl and a slow segment back to
q on Cl; see Figure 2. Existence proofs for the homoclinic orbits [20, 17, 2] are based upon analysis of the
transitions between these segments. Trajectories that remain close to a normally hyperbolic slow manifold
must be “exponentially close” to the manifold except for short segments where the trajectory approaches the
slow manifold along its stable manifold and departs along its unstable manifold. Existence of the homoclinic
orbit depends upon how the four segments of its fast-slow decomposition fit together:

(F1) The one dimensional Wu(q) approaches Cr along its two dimensional stable manifold W s(Cr,ε). Inter-
section of these manifolds cannot be transverse and occurs only for parameter values that lie along a
curve in the (p, s) parameter plane.

(S1) The Exchange Lemma [19] was developed to analyze the flow map for trajectories that approach Cr,ε
along its stable manifold and depart Cr,ε along its unstable manifold.

(F2) The fast jump from a neighborhood of Cr,ε to a neighborhood of Cl,ε occurs along a transversal
intersection of the two dimensional W s(Cl,ε) and two dimensional Wu(Cr,ε).

(S2) The connection from Cl,ε to q lies close to an intersection of the two dimensional Wu(Cl,ε) and the
two dimensional W s(q). Previous analysis has dealt with parameter regions where the connection (S2)
exists and is transversal, but it cannot persist up to the Hopf curve in the (p, s)-plane.

Proposition 2.1. There exists a region in (p, s)-parameter space near the Hopf U-curve where no trajectories
close to Cl,ε lie in W s(q).

Proof. (Sketch) The Lyapunov coefficients of the Hopf bifurcations near I are positive [15], so the periodic
orbits emanating from these bifurcations occur in the parameter region to the left of the Hopf curve. The
periodic orbits are completely unstable. By calculating the eigenvalues of the linearization at the equilibrium
we find that there is no Fold-Hopf bifurcation on the Hopf curve near I. Hence center manifold reduction
implies that there will be a region of parameters near the Hopf curve where W s(q) is a topological disk
whose boundary is the periodic orbit. Close enough to the Hopf curve, W s(q) and the periodic orbit lie at
a finite distance from Cl,ε and there is no connection from Cl,ε to q.
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This proposition implies that the parameter region in which there is a connection from Cl,ε to q is bounded
away from the Hopf curve. The next section shows that the boundary of this parameter region is very close
to a curve along which there are tangential intersections of Wu(Cl,ε) and W s(q).

Remark : As ε→ 0, the C-curve converges to two lines (dashed red in Figure 1) defined by homoclinic and
heteroclinic orbits of the fast subsystem [15]. The horizontal segment of the C-curve to homoclinic orbits of
the equilibrium point, and the sloped segment to heteroclinic orbits from the equilibrium point to the right
branch of the critical manifold. Note that the C-curve terminates on the Hopf curve in the singular limit.
The singular limit analysis does not explain the sharp turning of the C-curve for ε > 0 which is the focus of
the next section.

3 Interaction of Invariant Manifolds

The slow manifold Cl,ε is normally hyperbolic away from the fold point x1,−, with one attracting direction
and one repelling direction. We recently introduced a method [14] for computing slow manifolds of saddle
type. This algorithm is used here to help determine whether there are connecting orbits from a neighborhood
of Cl,ε to the equilibrium point q. Our numerical strategy for finding connecting orbits has three steps:

1. Choose the cross section
Σ0.09 = {(x1, x2, y) ∈ R3 : y = 0.09}

transverse to Cl,ε,

2. Compute intersections of trajectories in W s(q) with Σ0.09. These points are found either by backward
integration from initial conditions that lie in a small disk D containing q in W s(q) or by solving a
boundary value problem for trajectories that have one end in Σ0.09 and one end on the boundary of D.

3. Compute the intersection pl ∈ Cl,ε ∩ Σ0.09 with the algorithm described in Guckenheimer and Kuehn
[14] and determine the directions of the positive and negative eigenvectors of the Jacobian of the fast
subsystem at pl.

Figure 3 shows the result of these computations for ε = 0.01, s = 1.37 and three values of p.3 The
intersections of W s(q) with Σ0.09 lies close to W s(Cl,ε).

ε D=d(tangency,Hopf)
10−2 ≈ 1.07ε
10−3 ≈ 1.00ε
10−4 ≈ 0.98ε

Table 1: Euclidean distance in (p,s)-parameter space between the Hopf curve and the location of the tangency
point between W s(q) and Wu(Cl,ε).

Backward trajectories flowing along Cl,ε converge to its stable manifold at a fast exponential rate. This
fact also explains the observation that W s(q)∩Σ0.09 makes a sharp turn. In Figure 3(a), it is apparent that
the turn lies to the left of Wu(Cl,ε) ∩ Σ0.09 and that W s(q) ∩Wu(Cl,ε) is non-empty. In Figure 3(c), the
turn lies to the right of Wu(Cl,ε) ∩ Σ0.09. We have also computed the distance from the Hopf curve of the
parameters at which W s(q) and Wu(Cl,ε) appear to have a tangential intersection for several different values
of ε; see Table 1 from which we observe that the distance is O(ε).

3The second step above was carried out with two different initial value solvers, ode15s in Matlab [31] and dop853 [16], and
with AUTO [7] used as a boundary value solver. All three methods produced similar results.
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(a) p = 0.059, s = 1.37
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(b) p = 0.0595, s = 1.37
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(c) p = 0.06, s = 1.37
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(d) Parameter space, region I.

Figure 3: Figures (a)-(c) show the movement of the stable manifold W s(q) (cyan) with respect to Eu(Cl,ε)
(red) and Es(Cl,ε) (green) in phase space on the section y = 0.09 for ε = 0.01. The parameter space
diagram (d) shows the homoclinic C-curve (solid red), an extension of the C-curve of parameters where
Wu(q) ∩W s(Cr,ε) is nonempty, a curve that marks the tangency of W s(q) to Eu(Cl,ε) (blue) and a curve
that marks a distance between Cl,ε and W s(q) (dashed blue) of 0.01 where the arrows indicate the direction
in which the distance is bigger than 0.01. The solid black squares in (d) show the parameter values for
(a)-(c).
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In Figure 3(d) the C-curve of homoclinic bifurcations (solid red) has been computed using continuation
in AUTO [7] as carried out by Champneys et al. [4]. Despite the fact that no homoclinic orbit exists in part
of the region I it is possible to check whether the unstable manifold Wu(q) reaches a small neighborhood of
W s(Cr,ε). This idea has been used in a splitting algorithm [15] to calculate where homoclinic orbits would
occur if W s(q) would not move away from Cl,ε as shown in Figures 3(a)-3(d). This yields the dashed red
curve in Figure 3(d). On this curve we verified that W s(Cl,ε) and Wu(Cr,ε) still intersect transversally by
computing those manifolds; see [15, 14] for details.

The blue curves in Figure 3(d) have been obtained by measuring the Euclidean distances between W s(q)
and Cl,ε in the section Σ0.09. Along the dashed blue curve the distance between Cl,ε and W s(q) is 0.01.
The arrows indicate the direction in which this distance increases. The solid blue curve marks a tangency
of W s(q) with Eu(Cl,ε). These calculations demonstrate that the sharp turn in the C-curve of homoclinic
bifurcations occurs very close to the curve where there is a tangential intersection of W s(q) and Wu(Cl,ε).
Therefore, we state the following conjecture.

Conjecture 3.1. The C-curve of homoclinic bifurcations of the FitzHugh-Nagumo system turns exponentially
close to the boundary of the region where Wu(Cl,ε) ∩W s(q) is nonempty.

Note that trajectory segments of types (F1), (S1) and (F2) are still present along the dashed red curve
in Figure 3(d). Only the last slow connection (S2) no longer exists. Existence proofs for homoclinic orbits
that use Fenichel’s Theorem for Cl to conclude that trajectories entering a small neighborhood of Cl,ε must
intersect W s(q) break down in this region. The equilibrium q has already moved past the fold point x1,− in
I as seen from the singular bifurcation diagram in Figure 1 where the blue dashed vertical lines mark the
parameter values where q passes through x1,±. Therefore Fenichel’s Theorem does not provide the required
perturbation of Cl,ε. Previous proofs [20, 17, 2] assumed p = 0 and the connecting orbits of type (S2) do
exist in this case.

Shilnikov proved that there are chaotic invariant sets in the neighborhood of homoclinic orbits to a
saddle-focus in three dimensional vector fields when the magnitude of the real eigenvalue is larger than the
magnitude of the real part of the complex pair of eigenvalues [32]. The homoclinic orbits of the FitzHugh-
Nagumo vector field satisfy this condition in the parameter region I. Therefore, we expect to find many
periodic orbits close to the homoclinic orbits and parameters in I with “multi-pulse” homoclinic orbits that
have several jumps connecting the left and right branches of the slow manifold [8]. Without making use
of concepts from fast-slow systems, Champneys et al. [4] described interactions of homoclinic and periodic
orbits that can serve to terminate curves of homoclinic bifurcations. This provides an alternate perspective
on identifying phenomena that occur near the sharp turn of the C-curve in I. AUTO can be used to locate
families of periodic orbits that come close to a homoclinic orbit as their periods grow.

Figure 4 shows several significant objects in phase space for parameters lying on the C-curve. The homo-
clinic orbit and the two periodic orbits were calculated using AUTO. The periodic orbits were continued in
p starting from a Hopf bifurcation for fixed s ≈ 1.3254. Note that the periodic orbit undergoes several fold
bifurcations [4]. We show two of the periodic orbits arising at p = 0.05; see [4]. The trajectories in W s(Cl,ε)
have been calculated using a mesh on Cl,ε and using backward integration at each mesh point and initial
conditions in the linear approximation Es(Cl,ε).

We observe from Figure 4 that part of W s(q) lies near Cl,ε as expected for (S2) to be satisfied. This is
in contrast to the situation beyond the turning of the C-curve shown in Figure 5 for p = 0.06 and s = 1.38.
We observe that W s(q) is bounded. Figure 5(a) shows two periodic orbits P1 and P2 obtained from a Hopf
bifurcation continuation starting for s = 1.38 fixed. P2 is of large amplitude and is obtained after the first
fold bifurcation occurred. P1 is of small amplitude and is completely unstable. A zoom near P1 in Figure
5(b) and a time series comparison of a trajectory in W s(q) and P1 in Figure 5(c) show that

lim
α
{p : p ∈W s(q) and p 6= q} = P1 (4)
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C0

x1

x2

y

Cr,ǫ

W s(Cl,ǫ)

Cl,ǫ

W s(q)

Figure 4: Phase space along the C-curve near its sharp turn: the parameter values ε = 0.01, p = 0.05 and
s ≈ 1.3254 lie on the C-curve. The homoclinic orbit (red), two periodic orbits born in the subcritical Hopf
(blue), C0 (thin black), Cl,ε and Cr,ε (thick black) are shown. The manifold W s(q) (cyan) has been truncated
at a fixed coordinate of y. Furthermore W s(Cl,ε) (green) is separated by Cl,ε into two components shown
here by dark green trajectories interacting with Cm,ε and by light green trajectories that flow left from Cl,ε.

where limα U denotes the α-limit set of some set U ⊂ Rm × Rn. From (4) we can also conclude that there
is no heteroclinic connection from q to P1 and only a connection from P1 to q in a large part of the region I
beyond the turning of the C-curve. Since P1 is completely unstable, there can be no heteroclinic connections
from q to P1. Therefore, double heteroclinic connections between a periodic orbit and q are restricted to
periodic orbits that lie closer to the homoclinic orbit than P1. These can be expected to exist for parameter
values near the end of the C-curve in accord with the conjecture of Champneys et al. [4] and the “Shilnikov”-
model presented in the next section.

Remark : The recent manuscript [3] extends the results of [4] that motivated this paper. A partial
unfolding of a heteroclinic cycle between a hyperbolic equilibrium point and a hyperbolic periodic orbit is
developed in [3] . Champneys et al. call this codimension two bifurcation an EP1t-cycle and the point
where it occurs in a two dimensional parameter space an EP1t-point. The manuscript [3] does not conclude
whether the EP1t-scenario occurs in the FitzHugh-Nagumo equation. The relationship between the results
of this paper and those of [3] have not yet been clarified.

4 Homoclinic Bifurcations in Fast-Slow Systems

It is evident from Figure 3 that the homoclinic orbits in the FitzHugh-Nagumo equation exist in a very thin
region in (p, s)-parameter space along the C-curve. We develop a geometric model for homoclinic orbits that
resemble those in the FitzHugh-Nagumo equation containing segments of types (S1), (F1), (S2) and (F2).
The model will be seen to be an exponentially distorted version of the Shilnikov model for a homoclinic orbit
to a saddle-focus [13]. Throughout this section we assume that the parameters lie in a region I the region
of the (p, s)-plane close to the upper turn of the C-curve.

The return map of the Shilnikov model is constructed from two components: the flow map past an
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x2

y

Cr,ǫCl,ǫ

W s(Cl,ǫ)

(a) Sample phase space plot between the end of the C-curve and the U-curve.

P1

P2

γ

(b) Zoom for (a) near q.

−2000 −1000

0.06

0.08

y

P1

γ

T

(c) Time series.

Figure 5: The parameter values are ε = 0.01, p = 0.06 and s = 1.38. For (a) we display two periodic orbits
(blue), one with a single large excursion P2 and one consisting of a small loop P1. We also show q (red dot),
trajectories in W s(Cl,ε) (green) and W s(q) (cyan). In (b) a zoom near q is shown and we made plotted a
single trajectory γ ∈ W s(q) (cyan). The plot (c) gives a time series of this trajectory γ in comparison to
the periodic orbit P1. Note that the trajectories are computed backward in time, so the final points of the
trajectories are on the left of the figure. A phase shift of time along the periodic orbit would bring the two
time series closer.
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equilibrium point, approximated by the flow map of a linear vector field, composed with a regular map that
gives a “global return” of the unstable manifold of the equilibrium to its stable manifold [13]. Place two
cross-sections Σ1 and Σ2 moderately close to the equilibrium point and model the flow map from Σ1 to Σ2

via the linearization of the vector field at the equilibrium.

C0

x1

x2

y

u

v

w0

F12

F21

R

Σ1

Σ2

ψ

Figure 6: Sketch of the geometric model for the homoclinic bifurcations. Only parts of the sections Σi for
i = 1, 2 are shown.

The degree one coefficient of the characteristic polynomial at the equilibrium has order O(ε), so the imag-
inary eigenvalues at the Hopf bifurcation point have magnitude O(ε1/2). The real part of these eigenvalues
scales linearly with the distance from the Hopf curve. Furthermore we note that the real eigenvalue of the
equilibrium point remains bounded away from 0 as ε→ 0.

Let ψ(x1, x2, y) = (u, v, w) be a coordinate change near q so that ψ(q) = 0 and the vector field is in
Jordan normal form up to higher order terms. We denote the sections obtained from the coordinate change
into Jordan form coordinates by Σ1 = ψ(Σ1) and Σ2 = ψ(Σ2); see Figure 6. Then the vector field is

u′ = −βu− αv
v′ = αu− βv + h.o.t. (5)

w′ = γ

with α, β, γ positive. We can choose ψ so that the cross-sections are Σ1 = {u = 0, w > 0} and Σ2 = {w = 1}.
The flow map F12 : Σ1 → Σ2 of the (linear) vector field (5) without higher-order terms is given by

F12(v, w) = vwβ/γ
(

cos

(
−α
γ

ln(w)

)
, sin

(
−α
γ

ln(w)

))
(6)

Here β and α tend to 0 as ε → 0. The domain for F12 is restricted to the interval v ∈ [exp(−2πβ/α), 1]
bounded by two successive intersections of a trajectory in W s(0) with the cross-section u = 0.

The global return map R : Σ2 → Σ1 of the FitzHugh-Nagumo system is obtained by following trajectories
that have successive segments that are near W s(Cr,ε) (fast), Cr,ε (slow), Wu(Cr,ε) ∩W s(Cl,ε) (fast), Cl,ε
(slow) and Wu(Cl,ε) (fast). The Exchange Lemma [19] implies that the size of the domain of R in Σ2 is a
strip whose width is exponentially small. As the parameter p is varied, we found numerically that the image
of R has a point of quadratic tangency with W s(q) at a particular value of p. We also noted that Wu(q)
crosses W s(Cr,ε) as the parameter s varies [15]. Thus, we choose to model R by the map

(w, v) = F21(u, v) = (σv + λ2 − ρ2(u− λ1)2, ρ(u− λ1) + λ3) (7)

for F21 where λ1 represents the distance of Wu(q) ∩ Σ2 from the domain of F21, λ2 represents how far the
image of F21 extends in the direction normal to W s(q), λ3 is the v coordinate of F21(λ1, 0) and ρ−1, σ are
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O(e−K/ε) for suitable K > 0. We assume further that the domain of F21 is [λ1, λ1 + ρ−1]× [−1, 1]. Figure
7 depicts F21. With these choices, we observe two properties of the C-curve of homoclinic orbits in the
geometric model:

1. If σv + λ2 − ρ2(u − λ1)2 is negative on the domain of F21, then the image of F21 is disjoint from the
domain of F12 and there are no recurrent orbits passing near the saddle point. Thus, recurrence implies
that λ2 > −σ.

2. If λ2 > 0, then there are two values of λ1 for which the saddle-point has a single pulse homoclinic orbit.
These points occur for values of λ1 for which the w-component of F21(0, 0) vanishes: λ1 = ±ρ−1|λ2|1/2.
The magnitude of these values of λ2 is exponentially small.

u

v

v

w

F21

Σ2 Σ1

W s(q)

Wu(q)
λ1

(λ2, λ3)

Figure 7: Sketch of the map F21 : Σ2 → Σ1. The (u, v) coordinates are centered at Wu(q) and the domain
of F21 is in the thin rectangle at distance λ1 from the origin. The image of this rectangle is the parabolic
strip in Σ1.

When a vector field has a single pulse homoclinic orbit to a saddle-focus whose real eigenvalue has larger
magnitude than the real part of the complex eigenvalues, Shilnikov [32] proved that a neighborhood of this
homoclinic orbit contains chaotic invariant sets. This conclusion applies to our geometric model when it
has a single pulse homoclinic orbit. Consequently, there will be a plethora of bifurcations that occur in the
parameter interval λ2 ∈ [0, σ], creating the invariant sets as λ2 decreases from σ to 0.

The numerical results in the previous section suggest that in the FitzHugh-Nagumo system, some of the
periodic orbits in the invariant sets near the homoclinic orbit can be continued to the Hopf bifurcation of the
equilibrium point. Note that saddle-node bifurcations that create periodic orbits in the invariant sets of the
geometric model lie exponentially close to the curve λ2 = 0 that models tangency of W s(q) and Wu(Cl,ε)
in the FitzHugh-Nagumo model. This observation explains why the right most curve of saddle-node bifur-
cations in Figure 7 of Champneys et al. [4] lies close to the sharp turn of the C-curve.

There will also be curves of heteroclinic orbits between the equilibrium point and periodic orbits close to
the C-curve. At least some of these form codimension two EP1t bifurcations near the turn of the C-curve
as discussed by Champneys et al. [4]. Thus, the tangency between W s(q) and Wu(Cl,ε) implies that there
are several types of bifurcation curves that pass exponentially close to the sharp turn of the C-curve in the
FitzHugh-Nagumo model. Numerically, any of these can be used to approximately locate the sharp turn of
the C-curve.

5 Canards and Mixed Mode Oscillations

This section reports two additional observations about the FitzHugh-Nagumo model resulting from our
numerical investigations and analysis of the turning of the C-curve.
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5.1 Canard Explosion

The previous sections draw attention to the intersections of W s(q) and Wu(Cl,ε) as a necessary component
for the existence of homoclinic orbits in the FitzHugh-Nagumo system. Canards for the backward flow of
this system occur along intersections of Wu(Cl,ε) and Cm,ε. These intersections form where trajectories that
track Cl,ε have continuations that lie along Cm,ε which has two unstable fast directions. We observed from
Figures 4 and 5 that a completely unstable periodic orbit born in the Hopf bifurcation on the U-curve under-
goes a canard explosion, increasing its amplitude to the size of a relaxation oscillation orbit upon decreasing
p. This canard explosion happens very close to the intersections of Wu(Cl,ε) and Cm,ε.

0.058 0.0585 0.059 0.0595 0.06
1.365

1.37

1.375

1.38

1.385

1.39

p

s

Hom

(a) (p, s)-space: Black circles correspond to two portraits in (b). (b) (x1, y)-projection.

Figure 8: The dashed green curve indicates where canard orbits start to occur along Cm,ε. For values of
p to the left of the dashed green curve we observe that orbits near the middle branch escape in backward
time (upper panel in (b)). For values of p to the right of the dotted green curve trajectories near Cm,ε stay
bounded in backward time.

To understand where this transition starts and ends we computed the middle branch Cm,ε of the slow
manifold by integrating backwards from points between the fold points x1,− and x1,+ starting close to Cm,0
and determined which side of Wu(Cl,ε) these trajectories came from. The results are shown in Figure 8.
The dashed green curve divides the (p, s) plane into regions where the trajectory that flows into Cm,ε lies to
the left of Wu(Cl,ε) and is unbounded from the region where the trajectory that flows into Cm,ε lies to the
right of Wu(Cl,ε) and comes from the periodic orbit or another bounded invariant set. This boundary was
found by computing trajectories starting on Cm,0 backward in time. In backward time the middle branch of
the slow manifold is attracting, so the trajectory first approaches Cm,ε and then continues beyond its end
when x1 decreases below x1,−. Figure 8 illustrates the difference in the behavior of these trajectories on the
two sides of the dashed green curve. It shows that the parameters with canard orbits for the backward flow
have smaller values of p than those for which W s(q) and Wu(Cl,ε) have a tangential intersection. The turns
of the C-curve do not occur at parameters where the backward flow has canards.

5.2 Mixed-Mode Oscillations

Mixed-mode oscillations (MMOs) have been observed in many fast-slow systems; see e.g. [28, 29, 30, 12].
MMOs are periodic orbits which consist of sequences of small and large amplitude oscillations. The notation
Ls is used to indicate an MMO with L large and s small oscillations.

The FitzHugh-Nagumo equation (1) exhibits MMOs: the periodic orbits close to the homoclinic orbit
make small oscillations near the equilibrium point in addition to large amplitude relaxation oscillations. A
11 MMO is shown in Figure 9(a)-(b). It was obtained by switching from the homoclinic C-curve to a nearby
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Figure 9: Some examples of mixed-mode oscillations in the FitzHugh-Nagumo equation. Fixed parameter
values are ε = 0.01 and s = 1. Note that the period of the orbits has been rescaled to 1 in (b) and (d).
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curve of periodic orbits in a continuation framework. Note that the existence of multi-pulse homoclinic orbits
near a Shilnikov homoclinic orbit [10, 8] implies that much more complicated patterns of MMOs also exist
near the homoclinic C-curve. Ls MMOs with very large L and s near the homoclinic C-curve are theoreti-
cally possible although observing them will be very difficult due to the exponential contraction described in
Section 4.

In addition to the MMOs induced by the Shilnikov bifurcation we also find MMOs which exist due to
orbits containing canard segments near the completely unstable slow manifold Cm,ε. An example of a 41

MMO is shown in Figure 9(c)-(d) obtained by continuation. In this case the small oscillations arise due
to small excursions reminiscent to MMOs in three-time scale systems [18, 24]. MMOs of type L1 with
L = 1, 2, 3, . . . , O(102) can easily be observed from continuation and we expect that L1 MMOs exist for any
L ∈ N. It is likely that these MMOs can be analyzed using a version of the FitzHugh-Nagumo equation
containing O(1), O(ε) and O(ε2) terms similar to the one introduced in [15] but we leave this analysis for
future work.

Figure 9 was obtained by varying p for fixed values of ε = 0.01 and s = 1. Thus, varying a single parameter
suffices to switch between MMOs whose small amplitude oscillations have a different character. In the first
case, the small amplitude oscillations occur when the orbit comes close to a saddle focus rotating around
its stable manifold, while in the second case, the trajectory never approaches the equilibrium and its small
amplitude oscillations occur when the trajectory flows along the completely unstable slow manifold Cm,ε.
Different types of MMOs seem to occur very frequently in single- and multi-parameter bifurcation problems;
see [6] for a recent example. This contrasts with most work on the analysis of MMOs [22, 29] that focuses
on identifying the mechanism for generating MMOs in an example. The MMOs in the FitzHugh-Nagumo
equation show that a fast-slow system with three or more variables can exhibit MMOs of different types and
that one should not expect a priori that a single mechanism suffices to explain all the MMO dynamics.
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