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COMPLEX BIFURCATION STRUCTURES IN
THE HINDMARSH–ROSE NEURON MODEL

J. M. GONZÁLEZ-MIRANDA
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The results of a study of the bifurcation diagram of the Hindmarsh–Rose neuron model in a
two-dimensional parameter space are reported. This diagram shows the existence and extent of
complex bifurcation structures that might be useful to understand the mechanisms used by the
neurons to encode information and give rapid responses to stimulus. Moreover, the information
contained in this phase diagram provides a background to develop our understanding of the
dynamics of interacting neurons.
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1. Introduction

There are two main problems in neuroscience whose
solution is linked to the research in nonlinear
dynamics and chaos. One is the problem of inte-
grated behavior of the nervous system [Varela et al.,
2001], which deals with the understanding of the
mechanisms that allow the different parts and units
of the nervous system to work together, and appears
related to the synchronization of nonlinear dynami-
cal oscillators. The other is the neural coding prob-
lem [Sejnowski, 1995; Abeles, 2004], which is aimed
to know how the neurons encode the information
that they transmit and exchange in the working
of the nervous system, and is related to both, the
knowledge of the different types of dynamics avail-
able to nonlinear dynamical systems and to chaos
synchronization.

The theoretical study of such problems, in its
most basic aspects, partly relies on mathematical
models of the electrophysics of a single neuron,
most of them developed from the pioneering work
by Hodgkin and Huxley [1952]. Among them, the
model by Hindmarsh and Rose [1984], which is the
result of a mapping of the Hodgkin–Huxley model
to a relatively simple nonlinear oscillator [Fitzhugh,

1961] has proven to give a good qualitative descrip-
tion of the dynamics of the membrane potential of
a single neuron, which is the most relevant experi-
mental output of the neuron dynamics. Because of
the enormous development that the field of dynam-
ical systems and chaos has undergone in the last
thirty years [Hirsch et al., 2004; Ott, 2002], the
study of meaningful mathematical systems like the
Hindmarsh–Rose model have acquired new interest
[Holmes, 2005] because of the new information that
can now be obtained from them.

In particular, it has been found recently that
the dynamics of this system, when studied as a
function of significant control parameters, presents
two relevant features: (i) continuous interior cri-
sis [González-Miranda, 2003], which are abrupt
changes in the nature of the dynamics of the sys-
tem attractor, and (ii) block structured dynamics
[González-Miranda, 2005], which is a complex bifur-
cation structure where the dynamics available to the
system are grouped in blocks of alike periodicity.
The first of these items provides a potential mech-
anism for rapid responses in the nervous system
by switching between different dynamical behav-
iors. The second provides structures that appear as
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3072 J. M. González-Miranda

possible basic elements to encode messages in the
apparently random trains of action potentials that
run along the axon of an activated neuron.

These two phenomena have received detailed
study at particular restricted values of the
Hindmarsh–Rose model parameters. The aim of the
present paper is to report a comprehensive study of
the manifestation of these phenomena for a wide
range of system parameters; that is, to provide
a phase diagram of the Hindmarsh–Rose model,
which gives a global view of the availability of these
and other dynamical behaviors to this system.

This article is arranged as follows. After this
introduction, in Sec. 2, we give a basic description
of the complexities in the bifurcation diagrams of
the Hindmarsh–Rose neuron model. In Sec. 3, we
present the results of a linear stability analysis in a
wide and significant region of the parameter space.
In Sec. 4, we analyze stability from the nonlinear
point of view by means of the use of Lyapunov
exponents, and go further in the nonlinear analy-
sis giving a global view of the bifurcation diagrams.
In Sec. 5, we provide evidence for the structural sta-
bility of the above results, and finally, in Sec. 6 we
discuss and summarize the main conclusions of the
paper.

2. Complex Bifurcation Structures

The Hindmarsh–Rose model describes the dynam-
ics of the membrane potential in the axon of a neu-
ron, x(t), by means of a three-dimensional system
of nonlinear first-order differential equations, which
written in dimensionless form read:

ẋ = y + 3x2 − x3 − z + I, (1)

ẏ = 1 − 5x2 − y, (2)

ż = r

[
4
(

x +
8
5

)
− z

]
. (3)

The other two dynamical variables, y(t) and z(t),
describe the exchange of ions through the neuron
membrane by means of fast and slow ion channels,
respectively. The main parameters of the model are
the current that enters the neuron, I, and the effi-
ciency of the slow channels to exchange ions, r.

The dynamics that one can observe for the
action potential, x(t), are quite diverse as illus-
trated in Fig. 1. There are equilibrium solutions
where the action potential decays to a constant
value, as shown in Fig. 1(a), as well as a variety of
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Fig. 1. Time series for the action potential for the
Hindmarsh–Rose model for r = 0.003 and different values of
the current applied: (a) I = 1.26, (b) I = 1.28, (c) I = 1.67,
(d) I = 3.20, (e) I = 3.29, (f) I = 3.34, and (g) I = 3.50.

oscillatory solutions than can be simple periodic fir-
ings of a single spike [Figs. 1(b) and 1(g)], periodic
firings of well-defined bursts of spikes [Figs. 1(c)
and 1(d)], or chaotic firings of spikes and bursts of
spikes [Figs. 1(f) and 1(e)]. Most of these dynam-
ical behaviors being oscillatory, they can be char-
acterized by means of the time intervals between
consecutive peaks, Ti (i = 1, 2, . . . , N), for each
function x(t). In neurobiology, these time inter-
vals, Ti, are known as inter-spike intervals, and it is
believed that in the structure of inter-spike intervals
is where neurons encode the information [Sejnowski,
1995; Abeles, 2004]. Therefore, they are the relevant
observables for neuronal dynamics; because of this,
they will be our basic observables here.

We have used them to construct one-
dimensional bifurcation diagrams as those pre-
sented in Fig. 2. These have been obtained through
the numerical integration of the equations of
motion, Eqs. (1)–(3), by means of a fourth-order
Runge–Kutta algorithm with time step 0.005. The
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(a) (b)

Fig. 2. Two examples of bifurcation diagrams computed for different bifurcation parameters: (a) for I changing and r fixed
(r = 0.003), and (b) for r changing and I fixed (I = 3.25). A vertical dashed line signals the point where the continuous interior
crisis occurs, and vertical dotted lines separate the blocks, identified by its periodicity number, p. For (b) only a selected set
of blocks of low periodicity have been signaled to avoid having the figure cluttered up with dotted lines.

value of one of the system parameters, r or I, was
fixed, and time series solutions were obtained for a
set of different values of the other parameter, which
is considered a bifurcation parameter. Then, plot-
ting as dots the different values of Ti obtained for
each of the values given to the bifurcation param-
eter, the bifurcation diagrams were obtained. We
will note that the conclusions that follow would
had been the same if more conventional observables
to construct the bifurcation diagrams, such as the
maxima of x(t) or the times of crossing a surface in
phase space, had been used.

Representative results of what is obtained for
fixed r, and taking I as bifurcation parameter
appear in Fig. 2(a). In this case, the value of r is
taken as 0.003, which is the same used to obtain
the time series shown in Fig. 1. This bifurcation
diagram provides an illustration of two potentially
biologically significant bifurcation structures: con-
tinuous crises [González-Miranda, 2003], and block
structured dynamics [González-Miranda, 2005].

A continuous crises shows up as a sharp change
in the width of the bifurcation diagram at IC ≈
3.31. To the right of the crisis, we have the well-
known bifurcation structure of an inverted period
doubling cascade. A continuous interior crisis is a
chaos–chaos transition between two qualitatively
different dynamical behaviors in phase space. On
the side where the bifurcation diagram is nar-
row we have spiking dynamics, characterized by
an irregular firing of spikes like the one shown in
Fig. 1(f). In the wide part there is bursting dynam-
ics, which is a complex dynamical behavior where

bursts of spikes are separated by lapses of qui-
escence [Fig. 1(e)]. The dynamics in the spiking
regime is characterized by one time scale, that of
the spikes, while in the bursting regime there are
two time scales, one for the bursts and other for the
spikes. The transition between these two dynami-
cal regimes is what is called a continuous interior
crisis. For a detailed qualitative and quantitative
study of the these crisis the reader is referred to
[González-Miranda, 2003].

Block structured dynamics is observed to the
left of the bifurcation diagram, for 1.28 ≤ I ≤ 3.31.
In this case the dynamical behaviors available can
be classified in blocks accordingly to its period-
icity, p. Each block can be defined giving a seg-
ment of I where all motions have the same peri-
odicity, and whose limits are period-adding bifurca-
tions. For I < 1.28 the dynamics falls to a fixed
point, being the interval for p = 1 very small
I ∈ [1.28, 1.30]. It deserves to be noted that the
dynamics within a block can be purely periodic,
as observed here for the blocks of low periodic-
ity, or may have chaotic regions inside, as displayed
for the blocks of large periodicity. In these chaotic
regions, the average values of the periodicity, as well
as of other statistical measures of the distribution
of the inter-spike intervals are similar to those of
the periodic part of the block where they belong.
A detailed study of block structures dynamics can
be found in [González-Miranda, 2005]. Figures 1(a)–
1(g) further illustrate all this: in Fig. 1(a) we see the
decay to the equilibrium, in Figs. 1(b)–1(d) we have
examples of periodic motions in blocks p = 1, 3, 9,
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3074 J. M. González-Miranda

respectively. Figure 1(e) shows the chaotic dynam-
ics in the region of periodicity p = 9, and Figs. 1(f)
and 1(g) the chaotic and period-1 dynamics after
the continuous crisis, respectively.

A bifurcation diagram when r is taken as the
bifurcation parameter is shown in Fig. 2(b) which
corresponds to I = 3.25. In this case, a continu-
ous interior crisis, which is very sharp, occurs for
small values of the bifurcation parameter. Period
adding bifurcations develop as r decreases and a
large number of different blocks are observed, while
chaos occurs mainly within the blocks of low peri-
odicity here. Although the same type of dynamic
behaviors seen for fixed r also appear in this case,
they occur in a somewhat different way.

3. Linear Stability Analysis

The results in the above section reveal a variety of
dynamical behaviors in the Hindmarsh–Rose model:
there are equilibria and oscillations, the oscillations
can be of a variety of types depending on their peri-
odicity, and there is chaos. It is then interesting to
investigate how they are distributed along its two-
dimensional space of parameters, r − I. Most of
the research reported on this model has been done
giving numerical values to I ≈ 3, and to r ≈ 0.006
or r ≈ 0.001, as can be seen, for example, in the
papers by Dhamala et al. [2004], Huang [2004] and
Percha et al. [2005], to name a few of the most
recent references on research where the Hindmarsh–
Rose model plays a relevant role. This is a limited
set of parameter values, mainly if one takes into
account that Hindmarsh and Rose [1984] studied
the dynamics for four values for these parameters
(including the above) that were scattered within the
ranges −3.0 ≤ I ≤ 4.0 and 0.001 ≤ r ≤ 0.005.

In this paper, we report the results of a system-
atic study of the dynamical behaviors available to
the Hindmarsh–Rose model in a rectangle

R = {(r, I)|r ∈ [10−4, 0.05] and I ∈ [−8.0, 8.0]},
(4)

whose edges are the segments [10−4, 0.05] and
[−8.0, 8.0], for r and I, respectively. This is a region
of the parameter space that, regarding the two
parameters, is larger than the region where Hind-
marsh and Rose [1984] performed their study. We
note, however, that the upper limit that we con-
sider for r is still small enough so that Eq. (3) can
be a description of the dynamics of slow ion chan-
nels, and the values for I are still within realistic

ranges. To consider the change of these parame-
ters is meaningful. To change I in a certain inter-
val means to change the intensity of the current
injected in the neuron. The variation of r allows
two interpretations. On one side, different values of
r might refer to consider different neurons, having
each different densities of slow ion channels in their
axon membranes. To allow a relatively wide range
of variation for r is meaningful because neurons can
be of many different types, and to present a great
variability between individuals. A second reason for
changing r is to take into account the existence of
ionic channels that can be chemically activated or
deactivated, so that the permeability of the axon
membrane of a given neuron can be modified by
means of the presence or absence of the appropriate
activating–deactivating chemical. The variations of
r would then take into account this possibility.

We start our study of the two-dimensional
bifurcation diagram with a linear stability analy-
sis of Eqs. (1)–(3). They have a single fixed point
(i.e. equilibrium) which is determined by the only
real root of the polynomial

p(x) = x3 + 2x + 4x +
(

27
5

− I

)
, (5)

which depends on I but not on r. The real root,
xF (I), determines the other coordinates of the fixed
point by means of

yF (I) = 1 − 5x2
F (I),

zF (I) = 4xF (I) +
32
5

.
(6)

The stability of this equilibrium is given by the
eigenvalues of the Jacobian matrix

J =




6x − 3x2 1 −1
−10x −1 0

4r 0 −r


 (7)

of the flow [Eqs. (1)–(3)], which are the roots of its
characteristic polynomial:

P (Λ) = Λ3 + a(r, I)Λ2 + b(r, I)Λ + c(r, I), (8)

being the coefficient functions of r and I:

a(r, I) = 1 + r − 6xF (I) + 3x2
F (I), (9)

b(r, I) = [5 − 6xF (I) + 3x2
F (I)]r

+ 4xF (I) + 3x2
F (I), (10)

c(r, I) = [4 + 4xF (I) + 3x2
F (I)]r. (11)
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We have determined xF (I) ∈ R and Λ(r, I) ∈ C

as the roots of p(x) = 0 and P (Λ) = 0, respec-
tively. These have been computed exactly as the
solutions of these cubic equations obtained by radi-
cals, using the Cardano–Vieta formulas [Birkhoff &
Mac Lane, 1996]. The results for xF (I), presented in
Fig. 3 show a monotonous increase of xF (I) within a
narrow range of values; while, zF (I), also increases,
although in wider range, and yF (I) is the variable
which suffers a larger variation, this increases for
I � 5.0 and decreases slightly for I � 5.0.

-8.0 -4.0 0.0 4.0 8.0
I

-27.0

-18.0

-9.0

0.0

9.0

x
F

y
F

z
F

Fig. 3. The only real root, xF (I), of x3+2x+4x+[(27/5)−
I ] = 0 (red line), and the other coordinates of the fixed
point, XF = (xF , yF , zF ), of Eqs. (1)–(3), determined from
it: yF (I) (green line), and (c) zF (I) (blue line).

(a) (b)

Fig. 4. (a) The real, Re[Λ2(r, I)] and, (b) imaginary, Im[Λ2(r, I)], parts of the second root of Λ3 + a(r, I)Λ2 + b(r, I)Λ +
c(r, I) = 0, as functions of r and I . The color code is: orange-red for positive, green for zero, and blue-violet for negative values.

Regarding Λ(r, I), we have obtained a first
eigenvalue Λ1(r, I) which is real and negative for
all (r, I) ∈ R, and two complex conjugate eigenval-
ues, Λ2(r, I) and Λ3(r, I), whose real and imaginary
parts contain the essential information to classify
the equilibrium. All eigenvalues found have no zero
real parts, so we conclude that the system is hyper-
bolic in R; therefore, the nonlinear dynamics near
the equilibrium point resemble the linearized sys-
tem [Hirsch et al., 2004]. The results for the eigen-
values are summarized in Fig. 4 where the real and
imaginary parts of Λ2(r, I) are displayed as 3D-color
plots. The plot [Fig. 4(a)] of the real part of the
second eigenvalue, Re[Λ2(r, I)], which is identical
to that of Re[Λ3(r, I)] (not displayed), shows that
R is separated in four regions which have approxi-
mately the shape of horizontal strips which we will
name from bottom to top as regions A, B, C and
D. In this figure, regions A and C appear colored
violet-blue, and regions B and D orange-red.

For increasing values of I, they are as follows
(see Fig. 5). For negative and small positive values
of I, we have region A, which is characterized by
Re[Λ2,3(r, I)] < 0. This region occurs for values of
I below a certain curve I = φA(r) that increases
monotonously within the interval I ∈ [1.2, 2.0].
This line is visualized as the edge between the
lower blue and orange regions. In region B, it is
Re[Λ2,3(r, I)] > 0 for a range of values of I that are
above φA(r) and below and almost a horizontal line,
I = φB(r), that occurs around I ≈ 5.2 (again as the
edge between orange and blue regions). Region C,
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r

-8.0

-4.0

0.0

4.0

8.0

I

C

B

sSc: Spiral Source
sSn: Spiral Sink
Sd:   Saddle
Sn:  Sink

A

D
sSn(+)

sSc(-)

sSc(-)

Sd

sSn(-)

Sn

sSn(-)

Fig. 5. Two parameter (r− I) bifurcation diagram showing
the different stability regimes (labeled A, B, C, D), separated
by continuous lines, which represent the functions I = φi(r),
i = A, B, C. The functions ψA(I) and ψB(I) appear as dotted
lines. The dynamics observed in each region, are identified by
means of abbreviations as mentioned in the figure legend, and
for the case of spirals the sign of Im[Λ2] is given in parenthe-
sis. The dashed line is the boundary of the enclosure, E , where
complex nonlinear bifurcation structures develop (Sec. 4).

where again Re[Λ2,3(r, I)] < 0, is above φB(r) and
below a third line, I = φC(r), that occurs around
I ≈ 6.0. Finally, for I above φC(r) we have region
D, where Re[Λ2,3(r, I)] > 0. Since Λ1(r, I) < 0
within all the rectangle R, we have that in regions A
and C the fixed point is a stable equilibrium, while
in regions B and D this equilibrium is unstable.

More details on the nature of the dynamics
around the fixed point are inferred from the imag-
inary part of the second eigenvalue, Im[Λ2(r, I)] =
−Im[Λ3(r, I)]. This is presented in Fig. 4(b), which
shows that, regarding the imaginary part of Λ2(r, I)
and Λ3(r, I), the above regions, A, B and C, are
separated in a left and a right zone by curves,
r = ψa(I), defined for I ∈ (−4.8, 5.4), and r =
ψb(I), defined for I ∈ (5.4, 6.1). The first of these
curves, which has the shape of an oscillation, sepa-
rates regions where Im[Λ2(r, I)] = 0 (green) from
regions where Im[Λ2(r, I)] < 0 (blue); whereas,
ψb(I), which is defined for larger values of I, sep-
arates regions where Im[Λ2(r, I)] > 0 (red) from
regions where Im[Λ2(r, I)] < 0 (blue). From the
shape of ψa(I) and ψb(I) we see that in the sta-
ble region, A, it is Im[Λ2(r, I)] = 0 to the left, and

Im[Λ2(r, I)] < 0 to the right; so to the left the equi-
librium is a sink and to the right it is a spiral sink.
For the unstable region B it is also Im[Λ2(r, I)] = 0
to the left, and Im[Λ2(r, I)] < 0 to the right; so to
the left there is a saddle and to the right a spiral
source. For the stable region C it is Im[Λ2(r, I)] > 0
to the left, and Im[Λ2(r, I)] < 0 to the right; so in
the two cases we have spiral sinks. Finally, the whole
region D is characterized by Im[Λ2(r, I)] < 0, so the
dynamics there is that of a spiral source.

4. Nonlinear Analysis

More insight on the nature and stability of the
dynamical behaviors available to the Hindmarsh–
Rose model has been obtained, going beyond linear
stability, by means of the calculation of the spec-
tra of Lyapunov exponents, λi(r, I) with i = 1, 2, 3.
These have been obtained numerically using stan-
dard techniques for systems of differential equations
[Wolf et al., 1985]. The initial condition for such
calculations were far from the equilibrium point, so
that they describe the nonlinear dynamics of the
system.

The results for the largest Lyapunov exponent
presented in Fig. 6 allow us to distinguish the differ-
ent dynamical attractors available: an equilibrium
when λ1(r, I) < 0, a cycle when λ1(r, I) = 0, and
chaos when λ1(r, I) > 0. A check of the sign of the
second Lyapunov exponent, λ2(r, I), allowed us to
exclude the possibility of quasiperiodic motion for
the λ1(r, I) = 0 cases. Because the Lyapunov expo-
nents are computed numerically, we never obtain an
exponent that is zero with infinite precision; there-
fore an exponent, λ, is considered to be zero when
0− < λ < 0+, with 0− and 0+ constant numbers
with small absolute values given by the statistical
errors involved in the calculation which are of the
order of 10−3. As shown in Fig. 6(a), for I below
the critical line I = φA(r) the dynamics falls to
an stable fixed point, in agreement with the results
of linear stability analyses. For I above φA(r), we
obtain cycles and chaotic dynamics interwoven in
complex structures, that occur mainly for small val-
ues of r and I > 0, as shown in detail in Fig. 6(b).
Chaotic dynamics, which occurs in region B, mainly
appears in areas having the shape of vertical strips
that merge on a line with small slope that goes from
(r, I) ≈ (10−4, 3.1) to (r, I) ≈ (6 · 10−3, 3.4) in the
r − I plane.

The long-term linear and nonlinear dynamics
do not match in region C, where there is bistability
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(a)

(b)

Fig. 6. The largest Lyapunov exponent, λ1(r, I), for Eqs.
(1)–(3), as functions of r and I : (a) in the rectangle R, and
(b) in a smaller region, R1, where the dynamical behavior
is more complex. The following color code is used: orange-
red for chaotic dynamics, green-yellow for limit cycles, and
violet-blue for fixed points. The interval where an expo-
nent is considered to be zero is given by 0− = −10−3 and
0+ = 10−3.

associated to the initial conditions that can lead the
system to an equilibrium state or to periodic oscil-
lations. This is illustrated by means of two exam-
ples in Fig. 7. The bistable behavior is shown by
means of the plots of two trajectories, computed
for r = 0.03 and I = 5.8, that were started at
very close initial conditions, X0 = (x0, y0, z0). For
X0 = (0.3, 0.6, 6.7), the projection of the phase
space trajectories onto the y − z plane [Fig. 7(a)],
and the time series for x(t) [Fig. 7(c)] show an
oscillatory decay towards the fixed point located

0.6 0.7 0.8 0.9 1.0
y

6.72

6.75

6.78

z

-6.0 -4.0 -2.0 0.0
y

5.0

5.5

6.0

6.5

7.0

0.0
0.1
0.2
0.3

x

0 60 120 180
t

-1.2
0.0
1.2
2.4

x

-8.8 -8.7 -8.6
y

0.80

0.81

0.82

0.83

z

-90.0 -60.0 -30.0
y

0.0

2.0

4.0

6.0

8.0

Fig. 7. (a, b) Projections of trajectories onto the y−z plane
of the phase space, and (c, d) time series in the bistable
region C, for r = 0.03, I = 5.8 and initial conditions
(a, c) (0.3, 0.6, 6.7) and (b, d) (0.3, 0.6, 7.0). Projections of
trajectories onto the y − z plane for r = 0.03, I = 1.0 and
initial conditions (e) (−1.4,−8.7, 0.8) and (f) (14.0, 87.0, 8.0).
The position of the fixed point is indicated by a filled circle
in the phase space projections of trajectories, and by a dot-
ted line in the time series plots. Filled triangles indicate the
initial condition of each trajectory in phase space projections.

at XF = (0.095, 0.955, 6.781). Whereas for X0 =
(0.3, 0.6, 7.0), the system is attracted to a limit
cycle in phase space [Fig. 7(b)], regarding the action
potential this means a time series made from a peri-
odic firing of a pulse [Fig. 7(d)].

This is contrary to what happens in the other
linearly stable region (region A), where no mat-
ter if the initial conditions are close or far from
the fixed point the dynamics tends asymptotically
to the equilibria. This is illustrated in Figs. 7(e)
and 7(f) by means of projections of phase space
trajectories computed for r = 0.03 and I = 1.0
and initiated at X0 = (−1.4,−8.7, 0.8) and at
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3078 J. M. González-Miranda

X0 = (−14.0,−87.0, 8.0), respectively. Since the
fixed point at XF = (−1.394,−8.721, 0.822) the two
trajectories share the same fate.

The dynamics in region D is quite simple: we
have a stable limit cycle and an unstable equilib-
rium point; trajectories escaping from this drop into
the cycle.

From these results, we see that it is region B, in
the parameter plane, where the dynamical behavior
of the Hindmarsh–Rose model is more complex, and
then more interesting. More precisely, the rectangle

R1 = {(r, I)|r ∈ [10−4, 0.04] and I ∈ [1.1, 3.7]},
(12)

contains the values of the parameters that lead
to complex periodic oscillations (i.e. bursts and
spikes) and chaos. Then, we will concentrate now on
this rectangle. The main feature of this complexity
is block structured dynamics [González-Miranda,
2005], which can be characterized by the period-
icity of the oscillations of x(t), and is suggested
by the strip-like appearance of the areas of chaotic
motion. To explore this behavior, we have computed
a large number of one-dimensional bifurcation dia-
grams like those in Fig. 2. To have a global view of
all of them we define the width of the bifurcation
diagram at point (r, I) as

W (r, I) = TM (r, I) − Tm(r, I), (13)

with TM (r, I) and Tm(r, I) the maximum and mini-
mum inter-spike interval observed for (r, I), respec-
tively. This is a measure of the dispersion of the

inter-spike intervals for each point of the parameter
space.

We display the results obtained in Fig. 8(a) by
means of a 3D-color plot of a grid of 240×240 points
in R1. For both, period-1 orbits and fixed points,
the width of the bifurcation diagram is constant and
equal to zero. This appears in Fig. 8(a) as an outer
region, displayed as a flat violet color, which sur-
rounds an enclosure, we will call it E , where colors
range from blue to red. The area E is the region
of parameter space (Fig. 5) where the dynamics is
more complex because the periodicity of the orbits
is 2 or greater, or there is chaos. The limit of this
area is made by a line that is composed by a seg-
ment of φA(r), in its lower part, and the curve where
period-1 cycles bifurcate to period-2 cycles. This
line is clearly seen as the set of points where the
violet color of the outer region abruptly becomes
blue or green for the period doubling bifurcation
curve, or yellow-red for the curve φA(r).

Inside E , the width of the bifurcation dia-
grams increases, steadily between three and four
orders of magnitude when r decreases. When I
is increased, it suffers comparatively smaller vari-
ations, except in the lower and upper limits of
E . In the lower limit, we have an abrupt change
along φA(r) which corresponds to a Hopf bifurca-
tion where an equilibrium point exchanges stability
with a limit cycle. In the upper limit we have
the continuous interior crises previously described
[González-Miranda, 2003]. These are seen as a well-
defined line inside R, where a blue region suddenly

(a) (b)

Fig. 8. (a) The width, W (r, I), of the bifurcation diagram and (b) the modulus of its gradient S(r, I) in the rectangle R1.
The intensity of the color scales provides us with measures of the corresponding magnitudes.
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becomes orange or light green. All this is in accor-
dance with the particular one-dimensional bifurca-
tion diagrams shown in Fig. 2.

More insight on the system dynamics within E
can be obtained from the modulus of the gradient
of W (r, I),

S(r, I) =

√(
∂W

∂r

)2

I

+
(

∂W

∂I

)2

r

. (14)

This is suggested by one-dimensional bifurcation
diagrams, like those in Fig. 2, which show what has
been called block-structured dynamics. The main
feature of these structures is that within a block
the dynamics has a well-defined periodicity. The
limits between blocks are characterized by what we
might call a fine structure in W (r, I): there are some
abrupt tiny changes in the width of the bifurca-
tion diagram around each period-adding bifurca-
tion. This is a feature, only suggested in the plot
of W (r, I), that can be better seen from a glance
at S(r, I), which is displayed in Fig. 8(b). W (r, I)
being constant outside E , the limits of the enclo-
sure are also clearly seen in this plot; but, what
is more important, is that we can appreciate the
presence and extent of block structured dynamics.
The limits of the blocks are seen as yellow lines,
with slopes around 65◦. Therefore, the interior of
E can be divided in regions characterized by a
given periodicity, p ≥ 2, of the dynamics. These

regions have the shape of narrow strips inclined
at about 65◦, where the periodicity increases, from
right to left, by means of period-adding bifurcations
which change p in a unit when the line is crossed.
The width of the strip decreases as the periodic-
ity increases, and they accumulate to the left of
the figure. For intensities above I = 3.1 the cas-
cade of period-adding bifurcations ends abruptly in
an interior crises. Below this intensity our study,
which was done for r ≥ 10−4, shows no end to
this cascade.

This is further illustrated in Fig. 9 by means
of additional plots devised to enhance the visual-
ization of these issues. In Fig. 9(a) it appears the
derivative (∂W/∂I)r, as a function of (r, I) ∈ R1.
This quantity has been chosen because plots of one-
dimensional bifurcation diagrams, such as those in
Fig. 2(a), where I is chosen as bifurcation param-
eter suggest that the maxima that separate blocks
are sharper. This is presented as a 3D-color plot
in Fig. 9(a), where the scale of the z-axis has been
adjusted to better tune this fine structure by giv-
ing a black color to points where (∂W/∂I)r < 1.
This results in a series of blue-violet colored lines
within E that signal the limits between blocks.
These are clearly seen up to p = 16. Because the
width of the block decreases with p, the blocks
start to be indistinguishable for p > 16 when its
width becomes commensurable with the resolution
of the picture. This picture has been modified so

(a) (b)

Fig. 9. (a) Derivative of the width of the bifurcation diagram with respect to I and r fixed (colored points) with the color
adjusted to better display block structured dynamics. On top of this plot, as white dots, we have signaled the points where
the first Lyapunov exponent is greater than zero. (b) The width, W (r, I), of the bifurcation diagram around the continuous
interior crisis.
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that the points, (r, I), where the neuron dynam-
ics is chaotic have been painted white to show that
the strip-shaped chaotic regions match the limits
between blocks. Moreover, Fig. 9(a) also shows very
clearly, as a red-orange line near the bottom of the
graph where Hopf bifurcations turn the equilibria
to cycles.

The line where the crisis occurs, near the top of
E , is better seen in Fig. 9(b), which shows a detail
of Fig. 8(a) around the crisis region. The abrupt
change in the size of the attractor (between one
to four orders of magnitude) is seen as a sharp
line, with a slope of around 40◦, that separates
blue-green from red-yellow regions. The upper blue-
green region corresponds to the inverted period dou-
bling cascade that leads to period-1 cycles that
lie in the violet region. The lower orange-yellow-
green regions is where block structured dynamics
occurs. The crises are the transition points between
these two qualitatively different nonlinear dynam-
ics. The abruptness of the crises decreases steadily
as r increases, and for r ≈ 3 · 10−3 we can hardly
speak of such crises.

5. Structural Stability

Despite I and, sometimes, r are the control param-
eters that are allowed to change in most of the
published research involving the Hindmarsh–Rose
model; there are two other parameters that can be

taken into consideration. As originally written by
Hindmarsh and Rose [1984], Eq. (3) reads

ż = r[s(x − δ) − z], (15)

where s and δ are additional parameters that
describe details of the ion transfer through slow
channels. Usually, these are held fixed at the values
s = 4 and δ = −8/5 given by Hindmarsh and Rose
[1984], just as we have done here. Some authors (e.g.
[He et al., 2001; Rosenblum & Pikovsky, 2004]),
however, have considered δ = −1.56, and Hind-
marsh and Rose [1984] have also given some limited
attention to s = 1. Therefore, to study the struc-
tural stability of the results reported in this arti-
cle, we have performed some additional calculations
of eigenvalues, Lyapunov exponent and bifurcation
diagrams in the plane r − I for several values of δ
and s.

Regarding linear stability analysis, fixed points
are now determined from the roots of p(x) =
x3 + 2x + sx + α, with α = −(1 + sδ + I) and
being, in this case, zF (I) = sxF (I) − sδ. The
coefficients b and c of Eq. (8) are now b(r, I) =
[1 + s − 6xF (I) + 3x2

F (I)]r + 4xF (I) + 3x2
F (I), and

c(r, I) = [s+4xF (I)+3x2
F (I)]r. The corresponding

polynomial equations have been solved as in Sec. 3.
To test structural stability under changes of δ

we have computed the eigenvalues, Λ1,2,3(r, I), for
δ = −1.4 and δ = −1.8. In Fig. 10(a) we summa-
rize in a single plot the results for Λ2(r, I) when

(a) (b)

Fig. 10. The imaginary part of the second root of Λ3 + a(r, I)Λ2 + b(r, I)Λ + c(r, I) = 0, Im[Λ2(r, I)], plotted using the
color code: red for Im[Λ] > 0, green for Im[Λ] = 0, and blue for Im[Λ] < 0. The white lines are the functions I = φi(r),
i ∈ {A, B, C} from bottom to top, which separate stable (A, C) and unstable (B, D) regions. The parameter values modified
are (a) δ = −1.4, and (b) s = 1.0.
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(a) (b)

Fig. 11. Plots of S(r, I), the modulus of the gradient of the width of the bifurcation diagram, for Eqs. (1)–(3), in the regions
where complex bifurcation structures develop for the parameter values: (a) δ = −1.4, and (b) s = 1.0. As done in Fig. 9(a),
the points where the first Lyapunov exponent, λ1, is greater than zero are superimposed as white dots.

δ = −1.4, which are very much similar to those for
δ = −8/5 = −1.6, presented in Fig. 4. As in that
case, Λ1(r, I) has been found real and negative, and
Λ2(r, I) and Λ3(r, I) are complex conjugate eigen-
values, which behave in essentially the same fashion.
Therefore, here we have also four alternated regions,
A–D, whose stability is given by the real part of Λ2,
which have the form of horizontal strips, separated
by curves I = φi(r), i ∈ {A,B,C}, with A and C as
stable regions. As before, the nature of the dynam-
ics in each region changes, depending on whether
the left or right part of the strip is considered. In
fact, we see nearly the same results as in Fig. 4,
shifted and amount to ∆I ≈ 0.9 down along the
I axis. The results for δ = −1.8, not represented,
would have looked practically the same but for a dis-
placement of the same amount, this time up along
the I axis.

The effect of s was studied by giving values
to s = 3, 2, 1. For changes not too large, the pic-
ture given is Fig. 4, does not suffer modifications
much larger than those discussed in the previous
paragraph for the effect of changing δ. In partic-
ular, plots for s = 3 would not differ from the
plots in Fig. 4 more than in Fig. 10(a). For large
changes there are quantitative, but not essentially
qualitative changes as illustrated by the results for
s = 1 given in Fig. 10(b). Regarding stability we
still have the two stable regions (A,C) that alter-
nate with the unstable regions (B,D) separated by
curves I = φi(r), i ∈ {A,B,C}, although the width

and position of these curves have largely modified.
The imaginary part of Λ2, also presents a similar
structure, except for the zone where it is zero which:
(i) has been notably diminished in favor of the nega-
tive zone, to the point that it disappears in A and is
much smaller in B, and (ii) has entered the lower left
corner of C (we note that this last effect is also seen
in Fig. 10(a), although in a much smaller scale).

The study of the Lyapunov spectrum and the
two-dimensional bifurcation diagrams leads to the
same kind of conclusions for the nonlinear dynam-
ics. The results for δ = −1.4, shown in Fig. 11(a)
are also very much similar to those in Figs. 8 and 9.
With the only exception of a small displacement of
the entire figure down along the I axis, we see the
same features that we founded for δ = −8/5, and in
particular, the complex bifurcation structures that
are the signal of block structured dynamics and con-
tinuous interior crisis. For s = 1, Fig. 11(b) shows
the same qualitative behavior seen in Figs. 8 and 9,
although now they occur in a region of parameter
values that is quite different.

6. Discussion and Conclusions

We have provided in this article a descriptive view
of the different dynamical behaviors available to
the Hindmarsh–Rose neuron model in a wide and
meaningful region of its parameter space. We have
determined subregions where the dynamics falls to
an equilibrium point, where there are simple limit
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cycles, and where there is bistability. Moreover,
more importantly, we have delimited the area where
the dynamics is very complex, displaying burst-
ing periodic and chaotic firings of spikes. We have
shown that there is some systematics in this region,
which we describe as block structured dynamics,
as well as the existence of sharp transitions from
simple equilibria or periodic dynamics to this com-
plexity. It deserves to be noted that these complex
bifurcation structures most neatly develop for val-
ues of r (around 10−3–10−2) and I (around 1.0–4.0),
which are in the vicinity of the values where the
Hindmarsh–Rose model was originally fitted; thus,
possibly, the most realistic.

Moreover, in our study of structural stabil-
ity, we have observed that these complex bifurca-
tion structures are also displayed by this model
for other sets of parameter values. This is an indi-
cation that such structures are intrinsic funda-
mental properties of the Hindmarsh–Rose model.
Furthermore, it has been observed [González-
Miranda, 2005] that one-dimensional bifurcation
diagrams like those plotted in Fig. 2, displaying
block structured dynamics and continuous inte-
rior crisis, have also been observed in other mod-
els of neurons such as the Chay [1985] model
and the modified Hodgkin–Huxley model of ther-
mally sensitive neurons [Brown et al., 1998].
Although, no systematic studies like the one pre-
sented here have been performed in these cases,
those restricted observations suggest that com-
plex bifurcation structures like the ones studied
here might be an essential property of neuronal
dynamics.

The results presented in this article provide
information that is potentially useful for both
improving our understanding of how neuronal sys-
tems work and to further develop the knowledge on
the dynamics of nonlinear systems.

For example, abrupt changes of the dynamics
such as the interior crisis and the Hopf bifurcations
provide possible mechanisms to understand how a
nervous system can give rapid responses to stim-
ulus [González-Miranda, 2003] because qualitative
changes of the dynamics occur in response to a
small system parameter or stimulus modification.
An alternative, or may be additional, mechanism
for such quick responses is given by bistability, as
suggested by Foss and Milton [2000], which is a phe-
nomenon that we have also observed here. Other-
wise, the neuronal coding of information needed to
perform complex tasks can be performed by neurons

working in the enclosure where block structured
dynamics occurs as suggested by González-Miranda
[2005] who proposed several coding mechanisms
based on the fact that each block could be asso-
ciated to a unit of meaning, and messages could be
constructed by switching between these units.

Moreover, background information is provided
to deal with many significant problems of nonlinear
dynamics and chaos. These range from the study
of the synchronization dynamics of nonlinear oscil-
lators when the coupled oscillators are different
[González-Miranda, 2004], to expand the range of
applications of bifurcation theory of vector fields
by using it for a deeper understanding of the vari-
ety of bifurcation scenarios described in this article
[Guckenheimer and Holmes, 2002].

In conclusion, the phase diagram of the
Hindmarsh–Rose model, studied in a significant and
realistic domain of its space of parameters, displays
a complex structure. The outer regions correspond
to simple behaviors such as equilibria or limit cycles,
which might be interpreted as states where the neu-
ron is at rest or standing by. Moreover, core regions
exist where different oscillatory dynamical behav-
iors can be classified according to their periodicity
in blocks, which might be the dynamical elements
implied in neuronal coding; therefore, these are the
working regions of neuronal activity. The transi-
tion between core regions and outer regions can be
very sharp, allowing rapid responses to stimulus. We
think that these results provide useful background
information to help the progress of the research on
synchronization phenomena between coupled neu-
rons as well as in the search for the neuronal coding
mechanisms.
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