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Abstract. Mixed-mode oscillations (MMOs) are trajectories of a dynamical system in which there
is an alternation between oscillations of distinct large and small amplitudes. MMOs have
been observed and studied for over thirty years in chemical, physical, and biological sys-
tems. Few attempts have been made thus far to classify different patterns of MMOs, in
contrast to the classification of the related phenomena of bursting oscillations. This pa-
per gives a survey of different types of MMOs, concentrating its analysis on MMOs whose
small-amplitude oscillations are produced by a local, multiple-time-scale “mechanism.” Re-
cent work gives substantially improved insight into the mathematical properties of these
mechanisms. In this survey, we unify diverse observations about MMOs and establish a
systematic framework for studying their properties. Numerical methods for computing
different types of invariant manifolds and their intersections are an important aspect of
the analysis described in this paper.
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混合模式振荡是产生于动力系统中一种轨迹，它是由一系列大振幅振荡和小振幅振荡共同组成，交替出现。混合模式振荡已经在化学、物理和生物系统中被观察和研究了30多年。到目前为止，相较于有关爆破振荡现象的分类，很少有人对MMOS的不同模式进行分类。本文对不同类型的MMOS进行研究，着重分析了MMOs由局部多时间尺度“机制”产生的的小振幅振荡。近期的研究大大提高（加深）了我对这些机制的数学属性的洞察力（思考）。在这项调查（研究）中，我们对MMOs的各种观察进行了统一（汇总）并建立了一个研究其属性的系统框架。本文中分析描述的一个重要方面就是用数值的方法来计算不同类型的不变流形及其交叉点。
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Fig. 1 Bromide ion electrode potential in the Belousov–Zhabotinsky reaction. Reprinted with per-
mission from Hudson, Hart, and Marinko, J. Chem. Phys., 71 (4), 1601–1606, (1979).
c©1979, American Institute of Physics.

1. Introduction. Oscillations with clearly separated amplitudes have been ob-
served in several application areas, notably in chemical reaction dynamics. Figure 1
reproduces Figure 12 in Hudson, Hart, and Marinko [106]. It shows a time series of
complex chemical oscillations of the Belousov–Zhabotinsky (BZ) reaction [18, 242] in
a stirred tank reactor. The series appears to be periodic, and there is evident struc-
ture of the oscillations within each period. In particular, pairs of small-amplitude
oscillations (SAOs) alternate with pairs of large-amplitude oscillations (LAOs). The
result is an example of a mixed-mode oscillation, or MMO, displaying cycles of (at
least) two distinct amplitudes. There is no accepted criterion for this distinction be-
tween amplitudes, but the separation between large and small is clear in the case of
Figure 1. The pattern of consecutive large and small oscillations in an MMO is an
aspect that draws immediate attention. Customarily, the notation Ls1

1 Ls2
2 · · · is used

to label series that begin with L1 LAOs, followed by s1 SAOs, L2 LAOs, s2 SAOs, and
so on. We will call Ls1

1 Ls2
2 · · · the MMO signature; it may be periodic or aperiodic.

Signatures of periodic orbits are abbreviated by giving the signature of one period.
Thus, the time series in Figure 1, which appears to be periodic, has signature 22. As
Hudson, Hart, and Marinko varied the flow rate through their reactor, MMOs with
varied signatures were observed, as well as simple oscillations with only large or only
small amplitudes. Similar results to those presented in their paper have been found
in other experimental and model chemical systems. Additionally, MMOs have been
observed in laser systems and in neurons. We present an overview with references to
experimental studies of MMOs in these and other areas in Table 4 of the last section
of this survey.

Dynamical systems theory studies qualitative properties of solutions of differential
equations. The theory investigates bifurcations of equilibria and periodic orbits, de-
scribing how these limit sets depend upon system parameters. MMOs may be periodic
orbits, but we then ask questions that go beyond those typically examined by stan-
dard/classical dynamical systems theory. Specifically, we seek to dissect the MMOs
into their epochs of SAOs and LAOs, identify each of these epochs with geomet-
ric objects in the state space of the system, and determine how transitions are made
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between them. When the transitions between epochs are much faster than the oscilla-
tions within the epochs, we are led to seek models for MMOs with multiple time scales.

Early studies of MMOs in model systems typically limited their investigations to
cataloging the patterns of MMO signatures found as a parameter is varied. Barkley [16]
is an exception: he assessed the capability of multiple-time-scale models for MMOs
to produce the behavior observed by Hudson, Hart, and Marinko in [106]. He com-
pared the MMOs from these experiments and from a seven-dimensional model for the
BZ reaction proposed by Showalter, Noyes, and Bar-Eli [207] with three-dimensional
multiple-time-scale models. Barkley was unable to produce a three-dimensional model
with the qualitative characteristics of the MMOs in the larger model, but such models
with many of the desired properties were subsequently found. This paper discusses two
of these models, emphasizing the one proposed and studied by Koper [123]. Koper’s
model is similar to a normal form for singular Hopf bifurcation [87], a codimension-
one bifurcation that arises in the context of systems with two slow variables and one
fast variable. Our central focus is upon MMOs whose SAOs are a byproduct of local
phenomena occurring in generic multiple-time-scale systems. Analogous to the role
of normal forms in bifurcation theory, understanding the multiple-time-scale dynam-
ics of MMOs in their simplest manifestations leads to insights into the properties of
MMOs in more complex systems. We also revisit the Showalter, Noyes, and Bar-Eli
model and highlight the role of multiple time scales in the MMOs of this example.

The geometry of multiple-time-scale dynamical systems is intricate. Section 2
provides a short review. Beginning with the work of the “Strasbourg” school [50] and
Takens’ work [216] on “constrained vector fields” in the 1970s, geometric methods
have been used to study generic multiple-time-scale systems with two slow variables
and one fast variable. Folded singularities are a prominent phenomenon in this work.
As described in section 2, they lie on a fold of the critical manifold , where an attract-
ing and a repelling sheet meet. Folded singularities yield equilibria of a desingularized
reduced vector field that is constructed in the singular limit of the time-scale param-
eter. More recently, Dumortier and Roussarie [57] and Krupa, Szmolyan, and Wech-
selberger [144, 214] introduced singular blow-up techniques for the analytical study of
the dynamics near folded singularities. These methods give information about canard
orbits that connect attracting and repelling slow manifolds .

Canard orbits organize the number of SAOs for MMOs associated with folded
nodes. The unfoldings of folded nodes [88, 237], folded saddle-nodes [86, 144], and
singular Hopf bifurcations [87] give insight into the characteristics of MMOs and how
they are formed as system parameters vary. Passage of trajectories through the region
of a folded node is one mechanism for generating MMOs that we discuss at length in
section 3.1 and illustrate with examples in sections 4 and 5. Singular Hopf bifurcation
and the closely related folded saddle-node bifurcation of type II together constitute
a second mechanism that produces SAOs and MMOs in a robust manner within
systems having two slow variables and one fast variable. These bifurcations occur
when a (true) equilibrium of the slow-fast system crosses a fold curve of a critical
manifold. Singular Hopf bifurcation is discussed in section 3.2 and also illustrated
in sections 4 and 5. We discuss a third mechanism for producing SAOs in slow-fast
systems that is organized by a Hopf bifurcation in the layer equations and requires two
fast variables. We call this mechanism a dynamic Hopf bifurcation and distinguish
trajectories that pass by a dynamic Hopf bifurcation with a delay and trajectories
with a tourbillon [235], whose SAOs have larger magnitude than those of a delayed
Hopf bifurcation. Dynamic Hopf bifurcation is discussed in section 3.4 and illustrated
in sections 6 and 7.
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Complementary to theoretical advances in the analysis of slow-fast systems, nu-
merical methods have been developed to compute and visualize geometric structures
that shape the dynamics of these systems. Slow manifolds and canard orbits can
now be computed in concrete systems; see Guckenheimer [87, 91] and Desroches,
Krauskopf, and Osinga [42, 43, 44, 45]. The combination of new theory and new nu-
merics has produced new understanding of MMOs in many examples that have been
studied previously. This paper reviews and synthesizes these advances. It is organized
as follows. Section 2 gives background about relevant parts of geometric singular per-
turbation theory. Multiple-time-scale mechanisms that produce SAOs in MMOs are
then discussed and illustrated in section 3. The four subsequent sections provide case
studies that illustrate and highlight recent theoretical advances and computational
techniques. More details on the computational methods used in this paper can be
found in section 8. The final section 9 includes a brief survey of the MMO literature
and discusses other mechanisms that are not associated with a split between slow and
fast variables.

2. Geometric Singular Perturbation Theory of Slow-Fast Systems. We con-
sider here a slow-fast vector field that takes the form

(2.1)

{
ε ẋ = ε dx

dτ = f(x, y, λ, ε),

ẏ = dy
dτ = g(x, y, λ, ε),

where (x, y) ∈ R
m ×R

n are state-space variables, λ ∈ R
p are system parameters, and

ε is a small parameter 0 < ε � 1 representing the ratio of time scales. The functions
f : Rm × R

n × R
p × R → R

m and g : Rm × R
n × R

p × R → R
n are assumed to be

sufficiently smooth, typically C∞. The variables x are fast and the variables y are
slow. System (2.1) can be rescaled to

(2.2)

{
x′ = dx

dt = f(x, y, λ, ε),

y′ = dy
dt = ε g(x, y, λ, ε)

by switching from the slow time scale τ to the fast time scale t = τ/ε.
Several viewpoints have been adopted to study slow-fast systems, starting with

asymptotic analysis [58, 165] using techniques such as matched asymptotic expan-
sions [119, 149]. Geometric singular perturbation theory (GSPT) takes a geomet-
ric point of view and focuses upon invariant manifolds, normal forms for singu-
larities, and analysis of their unfoldings [10, 71, 113, 114, 218]. Fenichel’s seminal
work [71] on invariant manifolds was an initial foundation of GSPT and is also called
Fenichel theory. A third viewpoint was adopted by a group of French mathematicians
in Strasbourg. Using nonstandard analysis, they made many important discover-
ies [19, 20, 22, 23, 49, 50] about slow-fast systems. This paper adopts the GSPT
viewpoint. We only focus on the results of GSPT that are necessary to study MMOs.
There are other important techniques that are part of GSPT, such as the exchange
lemma [113, 115], the blow-up method [57, 143, 237], and slow-fast normal form the-
ory [10], that are not described in this paper.

2.1. The Critical Manifold and the Slow Flow. Solutions of a slow-fast system
frequently exhibit slow and fast epochs characterized by the speed at which the so-
lution advances. As ε → 0, the trajectories of (2.1) converge during fast epochs to
solutions of the fast subsystem or layer equations

(2.3)

{
x′ = f(x, y, λ, 0),
y′ = 0.
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During slow epochs, on the other hand, trajectories of (2.2) converge to solutions of

(2.4)

{
0 = f(x, y, λ, 0),
ẏ = g(x, y, λ, 0),

which is a differential-algebraic equation (DAE) called the slow flow or reduced system.
One goal of GSPT is to use the fast and slow subsystems (2.3) and (2.4) to understand
the dynamics of the full system (2.1) or (2.2) for ε > 0. The algebraic equation in (2.4)
defines the critical manifold

S := {(x, y) ∈ R
m × R

n | f(x, y, λ, 0) = 0}.

We remark that S may have singularities [142], but we assume here that this does
not happen so that S is a smooth manifold. The points of S are equilibrium points
for the layer equations (2.3).

Fenichel theory [71] guarantees persistence of S (or a subset M ⊂ S) as a slow
manifold of (2.1) or (2.2) for ε > 0 small enough if S (or M) is normally hyperbolic.
The notion of normal hyperbolicity is defined for invariant manifolds more generally,
effectively stating that the attraction to and/or repulsion from the manifold is stronger
than the dynamics on the manifold itself; see [68, 69, 70, 97] for the exact definition.
Normal hyperbolicity is often difficult to verify when there is only a single time scale.
However, in our slow-fast setting, S consists entirely of equilibria and the requirement
of normal hyperbolicity of M ⊂ S is satisfied as soon as all p ∈ M are hyperbolic
equilibria of the layer equations, that is, the Jacobian (Dxf)(p, λ, 0) has no eigenvalues
with zero real part. We call a normally hyperbolic subset M ⊂ S attracting if all
eigenvalues of (Dxf)(p, λ, 0) have negative real parts for p ∈ M ; similarly, M is called
repelling if all eigenvalues have positive real parts. If M is normally hyperbolic and
neither attracting nor repelling, we say it is of saddle type.

Hyperbolicity of the layer equations fails at points on S where its projection
onto the space of slow variables is singular. Generically, such points are folds in
the sense of singularity theory [10]. At a fold point p∗, we have f(p∗, λ, 0) = 0 and
(Dxf)(p∗, λ, 0) has rank m − 1 with left and right null vectors w and v, such that
w · [(D2

xxf)(p∗, λ, 0) (v, v)] �= 0 and w · [(Dyf)(p∗, λ, 0)] �= 0. These inequalities state
that the tangencies of the critical manifold to the affine spaces of fast variables are
similar to a quadratic function. Singularity theory makes the stronger statement that
there are local coordinates in which the function f becomes y1 = x2

1 [10]. The set
of fold points forms a submanifold of codimension one in the n-dimensional critical
manifold S. In particular, when m = 1 and n = 2, the fold points form smooth curves
that separate attracting and repelling sheets of the two-dimensional critical manifold
S. In this paper we do not consider more degenerate singular points of the projection
of S onto the space of slow variables.

Away from fold points the implicit function theorem implies that S is locally the
graph of a function h(y) = x. Then the reduced system (2.4) can be expressed as

(2.5) ẏ = g(h(y), y, λ, 0).

We can also keep the DAE structure and write (2.4) as the restriction to S of the
vector field

(2.6)

{
ẋ = ± (Dxf)

−1
(Dyf) g,

ẏ = g,
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在文本上注释
Fenichel理论[71]保证了临界流形S（或S的子集M）作为系统（2.1）或(2.2)的慢流形的持续性，在(2.2)系统中，如果S（或M）是法向双曲线，正值参数ε会足够小。法向双曲率的概念更一般地定义为不变流形，（该定义）有效地说明（法向双曲）对流形的吸引或排斥比流形本身的动力学更强;具体的定义见参考文献[68,69,70,97]。当只有一个时间尺度时，法向双曲线通常很难去判定。然而，在我们的慢-快系统环境中，S完全由平衡点构成，并且当所有p∈M是边界层方程的双曲平衡点时，S的子集M的法向双曲的要求就会被满足，也就是说，雅可比矩阵 (Dxf)(p, λ, 0)没有实部为零的特征值。如果对p∈M， (Dxf)(p, λ, 0)的特征值实部小于零，我们称法向双曲S的子集M是吸引的;同样，如果对p∈M， (Dxf)(p, λ, 0)的特征值实部大于零，我们称法向双曲S的子集M是排斥的。如果M是法向双曲并且既不吸引也不排斥，我们称之为鞍型。
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在文本上注释
边界层方程的双曲性在S里的点处失效，S在慢变量空间上的投影是奇异的。一般来说，在奇点理论的意义上这些点是折叠的[10]。在折点p∗, 会有 f(p∗, λ, 0) = 0 并且矩阵(Dxf)(p∗, λ, 0)的秩为m−1，(Dxf)(p∗, λ, 0)与左、右零向量w和v，使得w·[(D2xxf) (p∗λ0)(v, v)) 不等于 0，w·[(Dyf)(p∗λ0)不等于 0。临界流形轨迹到快变量仿射空间的这些不平等状态类似于二次函数。奇点理论更有力地说明了存在局部坐标系使得函数f转换成y1 = x21。在n维临界流形S中，折点形成了一个余维1子流形的集合，特别是当m = 1和n = 2时，折叠点形成平滑曲线，该曲线分离了吸引分枝和排斥分枝的二维临界流形S。在本文中，我们不考虑S在慢变量空间上的投影的退化奇异点。
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on R
m × R

n by observing that f = 0 and ẏ = g imply ẋ = ± (Dxf)
−1

(Dyf) g. The
vector field (2.6) blows up when f is singular. It can be desingularized by scaling
time by ± det (Dxf), where we choose the sign so that the orientation of trajectories
remains unchanged on the attracting sheets of S. This desingularized system plays
a prominent role in much of our analysis. If S is normally hyperbolic, not only S,
but also the slow flow on S persists for ε > 0; this is made precise in the following
fundamental theorem.

Theorem 2.1 (Fenichel’s theorem [71]). Suppose M = M0 is a compact normally
hyperbolic submanifold (possibly with boundary) of the critical manifold S of (2.2) and
that f, g ∈ Cr, r < ∞. Then for ε > 0 sufficiently small the following hold:

(F1) There exists a locally invariant manifold Mε diffeomorphic to M0. Local
invariance means that Mε can have boundaries through which trajectories
enter or leave.

(F2) Mε has a Hausdorff distance of O(ε) from M0.
(F3) The flow on Mε converges to the slow flow as ε → 0.
(F4) Mε is Cr-smooth.
(F5) Mε is normally hyperbolic and has the same stability properties with respect

to the fast variables as M0 (attracting, repelling, or saddle type).
(F6) Mε is usually not unique. In regions that remain at a fixed distance from the

boundary of Mε, all manifolds satisfying (F1)–(F5) lie at a Hausdorff distance
O(e−K/ε) from each other for some K > 0 with K = O(1).

The normally hyperbolic manifold M0 has associated local stable and unstable mani-
folds

W s
loc(M0) =

⋃
p∈M0

W s
loc(p) and Wu

loc(M0) =
⋃

p∈M0

Wu
loc(p),

where W s
loc(p) and Wu

loc(p) are the local stable and unstable manifolds of p as a hy-
perbolic equilibrium of the layer equations, respectively. These manifolds also persist
for ε > 0 sufficiently small: there exist local stable and unstable manifolds W s

loc(Mε)
and Wu

loc(Mε), respectively, for which conclusions (F1)–(F6) hold if we replace Mε

and M0 by W s
loc(Mε) and W s

loc(M0) (or similarly by Wu
loc(Mε) and Wu

loc(M0)).
We call Mε a Fenichel manifold . Fenichel manifolds are a subclass of slow man-

ifolds, invariant manifolds on which the vector field has speed that tends to 0 on
the fast time scale as ε → 0. We use the convention that objects in the singular
limit have subscript 0, whereas the associated perturbed objects have subscripts ε.
Geometrically, the stable manifold W s

loc(Mε) of a Fenichel manifold Mε consists of
points whose trajectories approach Mε in forward time; similarly, Wu

loc(Mε) consists
of points whose trajectories approach Mε in backward time.

2.1.1. The Critical Manifold and the Slow Flow in the Van der Pol Equation.
Let us illustrate these general concepts of GSPT with an example. One of the simplest
systems in which the concepts are manifest, and historically perhaps also the first, is
the Van der Pol equation [225, 226, 227] with constant forcing λ ∈ R given by

(2.7)

{
ε ẋ = y − 1

3x
3 + x,

ẏ = λ− x.

This slow-fast system has only one fast and one slow variable, but it already exhibits
complicated dynamics that were truly surprising when they were first discovered [50].
By setting ε = 0 in (2.7), we obtain the reduced system with an algebraic equation
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在文本上注释
在Rm×Rn上通过观察f = 0和y˙=g，表明x˙=±(Dxf)−1(Dyf)g。当f是奇异的时，向量场(2.6)会爆破（blows up）。它可以通过用±det (Dxf)的方式来缩放时间，从而实现去奇异化，我们选择符号，使得轨迹的方向在S的吸引分枝上保持不变。这种去奇异化系统在我们的许多分析中起着重要作用。如果S法向双曲的，不仅仅是S，慢流形在ε> 0时也保持着这种特性；以下的基本定理是更为精确的。
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在文本上注释
Wsloc(p) 和 Wuloc(p)表示作为边界层方程的一个双曲函数平衡点P的局部稳定和不稳定流形。这些流形对足够小的ε> 0存在局部稳定和不稳定流形Wsloc(Mε)和Wuloc(p)，如果用Wsloc(Mε) 和 Wsloc(M0) 代替Mε和M0（或者用Wuloc(Mε) and Wuloc(M0)代替Mε和M0），结论(F1)-(F6)依然是成立的。
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在文本上注释
我们称Mε为Fenichel流形。Fenichel流形是慢流形的一个子类，在向量场中的不变流形，当 ε → 0时，快时间尺度会趋向于0。我们按习惯（惯例）把奇异极限中的对象标记下标0，而相关的摄动对象标记下标ε。几何上，一个Fenichel流形Mε的稳定流形Wsloc(Mε)组成点的轨迹会提前靠近Mε；类似的，Wuloc(Mε)组成点的轨迹会延后靠近Mε。
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在Van der Pol方程中的临界流形和慢流。让我们用一个例子来说明这些GSPT的一般概念。具有常数受迫项的Van der Pol方程是最简单的系统中的一个，在这个系统里面的相关概念都是很直白（显然）的，这些概念历史上可能也是第一给出，方程如下：
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在文本上注释
在这个慢-速系统中虽然只有快变量和慢变量各一个，但是当这个系统第一次被发现[50]时，它所展示出来了复杂的动力学确实令人惊讶。在（2.7）中，通过令ε= 0，我们得到了一个包含一个代数方程的约化系统的，该代数方程定义了（2.7）的临界流形（2.8），这个流形是三次曲线。
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Fig. 2 Phase portraits of the Van der Pol equation (2.7) for λ = 0 (a) and for λ = 1 (b). Shown are
the critical manifold S (gray solid curve) and the y-nullcline (dashed line); double arrows
indicate the direction of the fast flow and single arrows that of the slow flow. Panel (a)
shows a candidate for a relaxation oscillation (black) surrounding an unstable equilibrium.
Panel (b) is the moment of the singular Hopf bifurcation with a folded singularity at the local
minimum p+.

that defines the critical manifold of (2.7) as the cubic curve

(2.8) S = {(x, y) ∈ R
2 | y = 1

3x
3 − x =: c(x)}.

It is normally hyperbolic away from the local minimum and maximum p± = (±1,∓ 2
3 )

of the cubic, where S has a fold with respect to the fast variable x. At p± normal
hyperbolicity fails, since ∂

∂xf(x, y, λ, 0) = 1− x2 is zero at p±. Hence, p± are the fold
points and they naturally decompose the critical manifold into three branches,

S = Sa,− ∪ {p−} ∪ Sr ∪ {p+} ∪ Sa,+,

where Sa,− := S ∩ {x < −1}, Sa,+ := S ∩ {x > 1}, and Sr = S ∩ {−1 < x < 1}.
From the sign of ∂

∂xf(x, y, λ, 0) we conclude that the two branches Sa,− and Sa,+ are
attracting, and the branch Sr is repelling. The critical manifold S is shown as the
gray cubic curve in Figure 2; note that S and its attracting/repelling nature does not
depend on λ, so it is the same in both panel (a), where λ = 0, and panel (b), where
λ = 1. The dynamics of any point not on S is entirely controlled by the direction of
the fast variable x, which is indicated in Figure 2 by the horizontal double arrows;
observe that the middle branch of S is repelling and the two unbounded branches are
attracting.

To obtain the slow flow (2.5) on S in the Van der Pol equation (2.7) it is not
actually necessary to solve the cubic equation y = c(x) for x on Sa,−, Sr, and Sa,+.
It is more convenient to write the slow (reduced) flow in terms of the fast variable x.
To this end, we differentiate f(x, y, λ, 0) = y − c(x) = 0 with respect to τ and obtain

ẏ = ẋ x2 − ẋ = ẋ (x2 − 1).

Combining this result with the equation for ẏ we get

(2.9) (x2 − 1) ẋ = λ− x or ẋ =
λ− x

x2 − 1
.
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在文本上注释
除了三次曲线上的局部极值（极小值和极大值）点p±= (±1,∓2/3)外，该曲线是法向双曲，上述的临界流形S有一个服从于快变量x的折，在极值点p±法向双曲性是不满足的，因为∂xf (x, y,λ,0)= 1−x2在极值点p±等于0。因此，在极值点p±为折点而且在极值点p±处自然地将临界流形分解成如下三个分枝，
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在文本上注释
上述Sa,− := S ∩ {x < −1}, Sa,+ := S ∩ {x > 1}并且 Sr = S ∩ {−1 < x < 1}。从∂∂xf(x, y, λ, 0)中我们可知分枝Sa,− 和 Sa,+都是吸引分枝，Sr是排斥分枝。图2中的灰色三次曲线就是临界流形S,我们注意到临界流形S和它的吸引/排斥分枝不依赖λ，因此在框（a）中λ=0的情况和框（b）中λ=1的情况是一样的。任何不在S上的点的动力学完全受快变量x的方向的控制，这些点在图2中用水平双箭头表示出来；注意到临界流形S的中间部分是排斥分枝，两边无界的部分是吸引分枝。
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在Van der Pol方程(2.7)中，为了得到临界流形S上的慢流(2.5)，实际上不需要精确地解出Sa、、Sr和Sa、+上的三次方程y=c(x)中的x。使用快变量x来表述慢(约化)流更方便。为此，我们对f(x,y,λ,0)= y−c(x)= 0关于慢时间尺度τ求导，得到如下形式：
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以上有关y˙的等式结合（2.7）式中第二个等式，我们可以得到（2.9）式：
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The direction of the slow flow on S is indicated in Figure 2 by the arrows on the gray
curve. The slow flow does depend on λ, because the direction of the flow is partly
determined by the location of the equilibrium at x = λ on S. The slow flow is well
defined on Sa,−, Sr, and Sa,+, but not at x = ±1 (as long as λ �= ±1). We can
desingularize the slow flow near x = ±1 by rescaling time with the factor (x2 − 1).
This gives the equation ẋ = λ− x of the desingularized reduced flow . Note that this
time rescaling reverses the direction of time on the repelling branch Sr, so care must
be taken when relating the phase portrait of the desingularized system to the phase
portrait of the slow flow.

Let us now focus specifically on the case for λ = 0, shown in Figure 2(a), because
it is representative for the range |λ| < 1. The y-nullcline of (2.7), defined by ẏ = 0, is
shown as the dashed black vertical line (the x-nullcline is S) and the origin is the only
equilibrium, which is a source for this value of λ. The closed curve is a singular orbit
composed of two fast trajectories starting at the two fold points p± concatenated with
segments of S. Such continuous concatenations of trajectories of the layer equations
and the slow flow are called candidates [20]. The singular orbit follows the slow flow
on S to a fold point, then it jumps, that is, it makes a transition to a fast trajectory
segment that flows to another branch of S. The same mechanism returns the singular
orbit to the initial branch of S. It can be shown [143, 165] that the singular orbit
perturbs for ε > 0 to a periodic orbit of the Van der Pol equation that lies O(ε2/3)
close to this candidate. Van der Pol introduced the term relaxation oscillation to
describe periodic orbits that alternate between epochs of slow and fast motion.

2.2. Singular Hopf Bifurcation and Canard Explosion. The dynamics of slow-
fast systems in the vicinity of points on the critical manifold where normal hyper-
bolicity is lost can be surprisingly complicated and nothing like what we know from
systems with a single time scale. This section addresses the phenomenon known as
a canard explosion, which occurs in planar slow-fast systems after a singular Hopf
bifurcation. We discuss this first for the example of the Van der Pol equation (2.7).

2.2.1. Canard Explosion in the Van der Pol Equation. As mentioned above, the
phase portrait in Figure 2(a) is representative of a range of λ-values. However, the
phase portrait for λ = 1, shown in Figure 2(b), is degenerate. Linear stability analysis
shows that for ε > 0 the unique equilibrium point (x, y) = (λ, 1

3λ
3 − λ) is a source

for |λ| < 1, but a sink for |λ| > 1. A Hopf bifurcation occurs for λ = ±1. A Hopf
bifurcation of a dynamical system is characterized by a simple pair of purely imaginary
eigenvalues at an equilibrium point crossing the imaginary axis with nonzero speed as
a parameter is varied [148]. As a result, one finds a family of periodic orbits emerging
from the bifurcation point. One distinguishes two generic cases: the supercritical
Hopf bifurcation where the bifurcating periodic orbits are stable, and the subcritical
Hopf bifurcation where the bifurcating periodic orbits are unstable. The type of Hopf
bifurcation is determined by the sign of the Lyapunov coefficient (the coefficient of
the third-order term in the associated Hopf normal form), which is required to be
nonzero for the Hopf bifurcation to be generic. Near a generic Hopf bifurcation, the
amplitude of the periodic orbits is comparable to the square root of the distance of the
parameter to the bifurcation point. For the Van der Pol equations (2.7) a supercritical
Hopf bifurcation occurs at λH = ±1, and the bifurcating periodic orbits exist in the
parameter interval |λ| < 1.

The analysis of how the observed stable dynamics of the Van der Pol equation (2.7)
changes with λ from a stable focus to relaxation oscillations when ε > 0 is small was
a major development in the theory of slow-fast systems. Figure 3(a) shows the result
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在文本上注释
图2中灰色曲线的箭头表示出来的是临界流形S上的慢流方向。慢流依赖于λ,，因为流的方向也由临界流形S的x=λ时的局部平衡点决定。慢流是定义在Sa−、Sr和Sa +上的，但在x =±1时不成立(只要λ\=±1)。我们可以通过对因式(x2−1)收缩时间，达到对漫流的x =±1附近去奇异化的目的。这样就得到了去奇异化约化流的等式x˙ = λ − x。同时也注意到，这样的时间收缩会使排斥分枝Sr上的时间方向反转，因此，当将去奇异化系统的相图与慢流的相图相关时，必须注意。
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现在我们来关注一下图2(a)中λ= 0的情况，这种情况在 |λ| < 1的范围中是具有代表性的。(2.7)式的y-零值线，是用过令y˙= 0求（定义）出来的，图中黑色垂直虚线表示的就是y-零值线(x-零直线就是S)，并且原点是唯一的平衡点，在平衡点（原点）可以得出λ的值。图中的闭曲线是一条奇异轨线，这条轨线是由起始于两个折点p±处并连续到S的部分组成的。边界层方程轨线的连续相互关联的部分和慢流形被称为候选者（次流形）[20]。奇异轨线沿着S上的慢流到一个折点，然后它跳跃了，也就是说，它做了一个流向快轨线部分的转换，流向了S的另一个分枝。利用相同的机制，又把奇异轨线返回到S的初始分枝，当ε > 0时，奇异轨线摄动到一条Van der Pol系统中的周期轨线，该Van der Pol系统与该奇异轨线（次流形）（这个候选者）之间有个Hausdorff距离奇异轨线。Van der Pol将张弛振荡（relaxation oscillation）引入到描述在慢和快阶段运动交替的周期轨线。
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在文本上注释
奇异Hopf分支和鸭爆炸（Canard Explosion）。慢-快系统的动力学在临界流形上失去法向双曲性的点附近是十分复杂的，和我们所知道的拥有单时间尺度的系统完全不同。本节讨论一种被称为鸭爆炸的现象，这种现象发生在平面慢-快系统中，也是发生在一个奇异的Hopf分支之后。我们首先讨论(2.7)式Van der Pol系统这个例子。
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在Van der Pol系统中的鸭爆炸。正如上所述，在图2(a)中的相图在λ-值取值范围中是具有代表性的。然而，在图2(b)中的λ= 1时的相图是退化的。线性稳定性分析表明，当ε> 0时，(x, y) =(λ，13λ3−λ)是唯一的平衡点，在这个平衡点处可以求出|λ| < 1范围内的λ值，但水槽|λ| > 1。当λ=±1时，就会发生Hopf分支。一个动力学系统的Hopf分支的特征在于当参数改变时，在平衡点处有一对纯虚数特征值以非零速度穿过虚轴[148]。结果，我们发现了一族从分支点产生的周期轨道。我们把这两个一般情况区别如下：分支周期轨线稳定的超临界Hopf分支和分支周期轨线不稳定的亚临界Hopf分支。Hopf分支的类型由Lyapunov系数的符号决定（这个系数与Hopf规范型中三阶项有关），对于Hopf分支而言，Lyapunov系数要求为非零。在一般的Hopf分岔附近，周期轨道的振幅与参数到分岔点距离的平方根相（比）差不大。参数到分叉点。对于(2.7)式Van der Pol系统来说，超临界的Hopf分支在λH =±1时发生，并且分支周期轨线在参数区间|λ| < 1内是存在。
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当正值ε较小时，对如何观察(2.7)式Van der Pol系统的稳态动力学随λ的改变从稳定焦点到张弛振荡的分析是慢-快系统理论的一个重要发展。图3(a)展示了，当ε= 0.05时，以λ为参数且产生于Hopf分支的周期轨线的数值延拓结果。可以预料得到，在λH = 1.0处，靠近Hopf分支周期轨线(深灰色曲线)很小的。然而，当λ减小时，周期轨线又会非常迅速的增长，在增长过程中，周期轨线会沿着慢流形Sr ε一段时间。事实上，对于图3(a)中黑色轨线λ的值约为0.993491，也就是说，λ的值可以取到6位小数。注意，我们仅仅展示了一个特征中等大小的增长轨线：图3(a)中最大的周期轨线仅仅包含折点p-。当让λ继续减小时，这个周期轨线会继续快速增长，直到它达到张弛振荡的形状；就像图2(a)那样。
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Fig. 3 Numerical continuation of periodic orbits in the Van der Pol equation (2.7) for ε = 0.05.
Panel (a) shows a selection of periodic orbits: the dark gray orbit is a typical small limit
cycle near the Hopf bifurcation at λ = λH , whereas all the black orbits occur in a very small
parameter interval at λ ≈ 0.993491. Panels (b) and (c) are sketched bifurcation diagrams
corresponding to supercritical and subcritical singular Hopf bifurcations; here, A denotes the
amplitude of the limit cycle.

of a numerical continuation in the parameter λ of the periodic orbit for ε = 0.05
that emerges from the Hopf bifurcation. Close to the Hopf bifurcation at λH = 1.0
the periodic orbit (dark gray curve) is small, as is to be expected. However, as λ
decreases, the periodic orbit grows very rapidly, where it follows the repelling slow
manifold Sr

ε for a long time. In fact, the values of λ for all black orbits in Figure 3(a)
are λ ≈ 0.993491, that is, they agree to six decimal places. Note that we show the
growing orbits only up to a characteristic intermediate size: the largest periodic orbit
in Figure 3(a) just encompasses the fold point p−. Upon further continuation in λ
this periodic orbit continues to grow rapidly until it reaches the shape of a relaxation
oscillation; compare with Figure 2(a).

The Hopf bifurcation at λH = 1 occurs when the equilibrium moves over the
fold point p+. It is called a singular Hopf bifurcation. The eigenvalues at the Hopf
bifurcation have magnitude O(ε−1/2), so that the periodic orbit is born at the Hopf
bifurcation with an intermediate period between the fast O(ε−1) and slow O(1) time
scales. The size of this periodic orbit grows rapidly from diameter O(ε1/2) to diameter
O(1) in an interval of parameter values λ of length O(exp(−K/ε)) (for some K > 0
fixed) that is O(ε) close to λH . Figures 3(b) and (c) are sketches of possible bifurcation
diagrams in λ for the singular Hopf bifurcation in a supercritical case (which one finds
in the Van der Pol system) and in a subcritical case, respectively; the vertical axis
represents the maximal amplitude of the periodic orbits. The two bifurcation diagrams
are sketches that highlight the features described above. There is a very small interval
of λ where the amplitude of the oscillation grows in a square-root fashion, as is to be
expected near a Hopf bifurcation [148]. However, the amplitude then grows extremely
rapidly until it reaches a plateau that corresponds to relaxation oscillations.

The rapid growth in amplitude of the periodic orbit near the Hopf bifurcation
is called a canard explosion. The name canard derives originally from the fact that
some periodic orbits during the canard explosion look a bit like a duck [50]. In fact,
the largest periodic orbit in Figure 3(a) is an example of such a “duck-shaped” orbit.
More generally, and irrespective of its actual shape, one now refers to a trajectory as a
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在文本上注释
当平衡点移动越过折点p +时，在λH = 1处，会产生Hopf分支。此时的Hopf分支被称为奇异Hopf分支。在Hopf分支处的特征值具有O(ε_1/2)的量级，使得周期轨线在Hopf分岔处产生，其周期介于快O(ε_1)和慢O(1)时间尺度之间。这个周期轨线的大小在长度为O(exp(K/ε)(对于某个固定正值K)的参数值λ的区间内从直径O(ε1/2)迅速增长到直径O(1)，即O(ε）会接近λH。图3(b)和(c)分别是超临界情况(这种情况已经在Van der Pol系统中发现)和亚临界情况下奇异Hopf分岔的λ可能分支的草图;纵轴表示周期轨线的最大振幅。这两个分支草图强调了上述的特性。有一个非常小的λ区间，其中振荡的振幅以平方根方式增长，这在Hopf分支附近是可以预测的[148]。然而，振荡的振幅急剧增长，直到它达到对应的张弛振荡才会停下来。
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在Hopf分支附近的周期轨线的振幅的快速增长被称为鸭爆炸（canard explosion）。鸭爆炸的名字来源于鸭爆炸时的一些周期轨线看起来有点像鸭子[50]。事实上，在图3(a)中最大的周期轨线就是这种“鸭形”轨线的一个例子。更一般地说，不管它的实际形状如何，如果它在慢时尺度上沿一个排斥慢流形（延伸）运行一段O(1)的时间，就把它称为鸭轨线。如果它连接吸引和排斥慢流形，鸭轨线被称为最大鸭轨线（maximal canard）。由于慢流形不是唯一的，所以这个定义取决于特定的吸引和排斥慢流形的选择；这一点可以参照定理2.1的(F6)。其他的情况产生的轨线是以指数方式接近彼此的。在(2.7)式Van der Pol系统中，流形(Sa，+ε)和(Srε)在最大鸭轨线中相交的点附近的参数空间中发生O(e_K/ε)-封闭式鸭爆炸。它与参数值λ=1相关联，其中平衡点位于临界流形S的折叠点p+处，参见图2(b)。
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canard orbit if it follows a repelling slow manifold for a time of O(1) on the slow time
scale. A canard orbit is called a maximal canard if it joins attracting and repelling
slow manifolds. Since the slow manifolds are not unique, this definition depends
upon the selection of specific attracting and repelling slow manifolds; compare (F6)
of Theorem 2.1. Other choices yield trajectories that are exponentially close to one
another. In the Van der Pol equation (2.7) the canard explosion occurs O(e−K/ε)-
close in parameter space to the point where the manifolds Sa,+

ε and Sr
ε intersect

in a maximal canard. It is associated with the parameter value λ = 1, where the
equilibrium lies at the fold point p+ of the critical manifold S; see Figure 2(b).

2.3. Singular Hopf Bifurcation and Canard Explosion in Generic Planar Sys-
tems. In the Van der Pol equation (2.7) the singular Hopf bifurcation takes place
at λ = 1, where the equilibrium lies at a fold point. In a generic family of slow-fast
planar systems a singular Hopf bifurcation does not happen exactly at a fold point,
but at a distance O(ε) in both phase space and parameter space from the coincidence
of the equilibrium and the fold point. One can obtain a generic family by modifying
the slow equation of the Van der Pol equation (2.7) to

ẏ = λ− x+ a y.

In this modified system the equilibrium and the fold point still coincide at x = 1, but
the Hopf bifurcation occurs for x =

√
1 + ε a. A detailed dynamical analysis of canard

explosion and the associated singular Hopf bifurcation using geometric or asymptotic
methods exists for planar slow-fast systems [12, 13, 57, 58, 141, 143]; we summarize
these results as follows.

Theorem 2.2 (canard explosion in R
2 [143]). Suppose a planar slow-fast system

has a generic fold point p∗ = (xp, yp) ∈ S, that is,
(2.10)

f(p∗, λ, 0) = 0,
∂

∂x
f(p∗, λ, 0) = 0,

∂2

∂x2
f(p∗, λ, 0) �= 0,

∂

∂y
f(p∗, λ, 0) �= 0.

Assume the critical manifold is locally attracting for x < xp and repelling for x > xp

and there exists a folded singularity for λ = 0 at p∗, namely,

(2.11) g(p∗, 0, 0) = 0,
∂

∂x
g(p∗, 0, 0) �= 0,

∂

∂λ
g(p∗, 0, 0) �= 0.

Then a singular Hopf bifurcation and a canard explosion occur at

λH = H1 ε+O(ε3/2) and(2.12)

λc = (H1 +K1) ε+O(ε3/2).(2.13)

The coefficients H1 and K1 can be calculated explicitly from normal form transfor-
mations [143] or by considering the first Lyapunov coefficient of the Hopf bifurca-
tion [145].

In the singular limit we have λH = λc. For any ε > 0 sufficiently small, the
linearized system [90, 148] at the Hopf bifurcation point has a pair of singular eigen-
values [27]

σ(λ; ε) = α(λ; ε) + i β(λ; ε),

with α(λH ; ε) = 0, ∂
∂λα(λH ; ε) �= 0, and

lim
ε→0

β(λH ; ε) = ∞ on the slow time scale τ, and

lim
ε→0

β(λH ; ε) = 0 on the fast time scale t.
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一般平面系统中的奇异Hopf分支和鸭爆炸。在(2.7)式Van der Pol 系统中，奇异Hopf分支在λ= 1时产生，此时的平衡点就是折点。在一个一般慢-快平面系统集族中，奇异Hopf分支不会精准的发生在折点，而是发生在相空间和参数空间中，与平衡点与折叠点重合处距离O(ε)的地方。将(2.7)式Van der Pol系统的慢系统修正为下式，可得到一个一般系统集族。
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在这个修正后的系统中，平衡点和折点仍然在x = 1处重合，但在x =√1 +ε处会发生Hopf分支。对于平面慢-快系统，存在使用几何或渐近线的方法对鸭爆炸及其相关奇异Hopf分支的详细动力学分析；我们将这些结果总结如下。



MIXED-MODE OSCILLATIONS WITH MULTIPLE TIME SCALES 221

Fig. 4 The critical manifold S with attracting sheet Sa (red) and repelling sheet Sr (blue) that meet
at a fold curve F (gray). The fast flow transverse to S is indicated by double (large) arrows
and the slow flow on S near a folded node by single (small) arrows; see also Figure 5(b).
The darker shaded region of Sa is the funnel, consisting of all points that pass through the
folded node.

2.4. Folded Singularities in Systems with One Fast and Two Slow Variables.
A canard explosion for a planar system happens in an exponentially small parameter
interval. However, as soon as there is more than one slow variable, canard orbits
can exist for O(1) ranges of a parameter. To illustrate this, we consider (2.1) for the
special case m = 1 and n = 2 and write it as

(2.14)


ε ẋ = f(x, y, z, λ, ε),
ẏ = g1(x, y, z, λ, ε),
ż = g2(x, y, z, λ, ε).

We assume that the critical manifold S = {f = 0} of (2.14) has an attracting sheet
Sa and a repelling sheet Sr that meet at a fold curve F , as is shown in Figure 4. We
also assume that the fold points p∗ ∈ F on S are generic in the sense of singularity
theory, that is,

f(p∗, λ, 0) = 0,
∂f

∂x
(p∗, λ, 0) = 0,

∂2f

∂x2
(p∗, λ, 0) �= 0, D(y,z)f(p∗, λ, 0) has full rank one.

The slow flow is not defined on the fold curve before desingularization. At most fold
points, trajectories approach or depart from both the attracting and repelling sheets
of S. In generic systems, there may be isolated points, called folded singularities ,
where the trajectories of the slow flow switch from incoming to outgoing. Folded
singularities are equilibrium points of the desingularized slow flow. As described
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在有一个快变量和两个慢变量的系统中的折奇异点。平面系统的鸭爆发生在指数型小参数区间内。然而，只要存在一个以上的慢变量，鸭式轨线就可以再O(1)范围内存在。为了说明这一点，我们考虑(2.1)式当m = 1和n = 2的特殊情况，如下：
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我们假设(2.14)的临界流形S = {f = 0}有一个吸引分支Sa和一个排斥分支Sr，这两个分支在折曲线F处相交，如图4所示。我们还假设在临界流形S 上的折点p∗（p∗∈F）在奇异点理论的意义上都是一样的，也就是说它们满足下面的条件，
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慢流在去奇异化前，在折曲线上没有被定义。在大多数折点上，轨线会接近或远离临界流形S的吸引和排斥分枝。在一般系统中，可能存在孤立点，这样的点被称为折奇异点，在该点处慢流轨迹会穿过去。折奇异点是去奇异化的慢流的平衡点。如上所述，去奇异化的慢流可以表示成（2.15）式。
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above, the desingularized slow flow can be expressed as

(2.15)


ẋ =

(
∂
∂y f

)
g1 +

(
∂
∂z f

)
g2 ,

ẏ = − (
∂
∂xf

)
g1,

ż = − (
∂
∂xf

)
g2,

restricted to S. A fold point p∗ ∈ F is a folded singularity if

g1(p∗, λ, 0)
∂f

∂y
(p∗, λ, 0) + g2(p∗, λ, 0)

∂f

∂z
(p∗, λ, 0) = 0.

Figure 4 shows an example of the slow flow on S and the thick dot on F is the folded
singularity at which F changes from attracting to repelling (with respect to the slow
flow).

There are different possibilities for the stability of p∗ in (2.15). Let σ1 and σ2

denote the eigenvalues of the Jacobian matrix of (2.15) restricted to S and evaluated
at a folded singularity p∗. We call p∗ a

folded saddle if σ1 σ2 < 0, σ1,2 ∈ R,
folded node if σ1 σ2 > 0, σ1,2 ∈ R,
folded focus if σ1 σ2 > 0, Im(σ1,2) �= 0.

Figure 5 shows phase portraits of the (linearized) slow flow, in panels (a) and (b), and
the associated desingularized slow flow, in panels (c) and (d), respectively. Panels (a)
and (c) are for the case of a folded saddle and panels (b) and (d) of a folded node.
Note that the phase portraits for the slow flow in Figure 5(a) and (b) are obtained
by reversing the direction of the flow on Sr where ∂

∂xf > 0, that is, by reversing the
arrows in the phase portraits of the desingularized slow flow in panels (c) and (d) in
the half planes where x > 0. It is an important observation that the trajectories of the
slow flow that lie along the eigendirections of the folded saddle or node connect the
two sheets of the critical manifold through the folded singularity in finite (slow) time;
such a trajectory is called a singular canard . We remark that there are no singular
canards for the case of a folded focus, which is why it is not shown here. For the case
of a folded node one generically has an inequality of the form |σ1| > |σ2|, and we write
|σs| > |σw |, replacing the numeric labels with s and w to emphasize the strong and
weak eigendirections. Notice further for the case of the folded node in Figure 5(b)
that the strong singular canard γ̃s and the fold curve F bound a full (shaded) sector of
trajectories that cross from Sa to Sr by passing through the folded node. This sector
and the corresponding region for the full system (2.14) are called the funnel of the
folded node. The linearized system in Figure 5(b) should be compared with Figure 4,
which shows a nonlinear slow flow near a folded node and, hence, also has a funnel
consisting of a full sector of trajectories that pass through the folded singularity.

Singular canards act as candidates of maximal canards of the full system for ε > 0.
This is described in the next theorem [19, 23, 31, 214, 237].

Theorem 2.3 (canards in R
3
). For the slow-fast system (2.14) with ε > 0

sufficiently small the following hold:
(C1) There are no maximal canards generated by a folded focus.
(C2) For a folded saddle the two singular canards γ̃1,2 perturb to maximal canards

γ1,2.
(C3.1) For a folded node let µ := σw/σs < 1. The singular canard γ̃s (“the strong

canard”) always perturbs to a maximal canard γs. If µ−1 �∈ N, then the
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在(2.15)系统中的折点p∗的稳定性有不同的可能性。设σ1和σ2是临界流形S上(2.15)系统雅可比矩阵的特征值，讨论折奇异点p∗处的情况，如下：
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图5(a)和(b)中，分别展示了(线性)慢流的相图，和(c)和(d)中，去奇异化的慢流相位图。(a)和(c)中的是折鞍点相图，(b)和(d)中的是折结点相图。注意到，图5(a)和(b)的相图可以通过将Sr上流方向反转获得，其中_xf>0，即通过反转(c)和(d)中去奇异化的慢流相位图的上半边的方向箭头，其中x > 0。在慢流形上，沿着折鞍点或者折结点的特征方向连接着临界流形的吸引和排斥分枝，并在有限（缓慢）时间内穿过折异奇点的轨线，称之为奇异鸭解（singular canard）。我们注意到，对于折焦点的情况，没有奇异鸭解，这就是为什么这里没有展示折焦点的相图。对于折结节点的情况，一般具有|σ1|>|σ2|形式的不等式，我们写|σs|>|σw|，用s和w替换数字下标，以强调强（s）和弱（w）的特征方向。进一步注意到，在图5(b)中折结点的情况，强奇异鸭解γs和折曲线F围出了一整个扇形区域(阴影部分)，在该区域里的轨线从Sa区域穿到Sr区域，并穿过折结点。该扇形区域和整个(2.14)系统所对应的区域合起来称为折结点的漏斗（ funnel）。图5(b)中的线性系统应与图4进行比较，图4展示了折结点附近的非线性慢流形，因此，也有一个漏斗，由穿过折奇异点的整个扇形组成。当ε> 0时，奇异鸭解为整个系统的最大鸭解的次要鸭解。这将在下面这个定理[19,23,31,214,237]中具体描述。
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Fig. 5 Phase portraits of the locally linearized slow flow near a folded saddle (a) and a folded
node (b); the singular canards defined by the eigendirections are shown as thick lines. The
corresponding desingularized slow flow is shown in panels (c) and (d), respectively.

singular canard γ̃w (“the weak canard”) also perturbs to a maximal canard
γw. We call γs and γw primary canards.

(C3.2) For a folded node suppose k > 0 is an integer such that 2k+1 < µ−1 < 2k+3
and µ−1 �= 2(k + 1). Then, in addition to γs,w, there are k other maximal
canards, which we call secondary canards.

(C3.3) The primary weak canard of a folded node undergoes a transcritical bifurcation
for odd µ−1 ∈ N and a pitchfork bifurcation for even µ−1 ∈ N.

The proof of this theorem is based upon analysis of a canonical (normal) form of a
slow-fast system near a folded singularity. Recall that a maximal canard corresponds
to a (transverse) intersection of the slow manifolds Sa

ε and Sr
ε near a folded singu-

larity. After a rescaling of coordinates (a “blow-up”), the canonical system becomes
a regular perturbation problem and the variational equation along the “blown-up”
singular canards (ε = 0 problem) becomes a classical Weber equation that also arises
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定理2.3的证明是基于对折结奇异点附近慢-快系统的规范(标准)形式的分析。回想一下，最大鸭解对应于一个折结奇异点附近的慢流形的吸引分枝(Saε)和排斥分枝(Srε)的(横向)交叉。通过引入合适的坐标后，规范系统变成了一个正则摄动问题，变分方程沿着“blown-up”的奇异鸭解（ε=0的问题）成为经典的韦伯方程，韦伯方程在数学物理方法中经常用到。韦伯方程的性质意味着当μ−1 /∈N时，Saε和Srε会发生横向交叉，因此，(根据(C2)-(C3.1)可知)当摄动量ε足够小且0 <ε1时，存在最大鸭解。(C3.2)和(C3.3)的证明更加复杂，这个证明是基于一个扩展的Melnikov理论[236]，该理论说明了当μ−1∈N时，次要鸭解的分支来自于主要弱鸭解。
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in mathematical physics [176]. Properties of the Weber equation imply a transverse
intersection of Sa

ε and Sr
ε for µ−1 /∈ N and, hence, existence of maximal canards

(parts (C2)–(C3.1)) for sufficiently small perturbations 0 < ε � 1. The proof of parts
(C3.2)–(C3.3) is more involved and is based upon an extension of Melnikov theory
[236] to show the bifurcation of secondary canards from the primary weak canard for
µ−1 ∈ N.

3. Slow-Fast Mechanisms for MMOs. In this section we present key theoretical
results of how MMOs arise in slow-fast systems with SAOs occurring in a localized
region of the phase space. More specifically, we discuss four local mechanisms that
give rise to such SAOs:

• passage near a folded node, discussed in section 3.1;
• singular Hopf bifurcation, discussed in section 3.2;
• three-time-scale problems with a singular Hopf bifurcation, discussed in sec-
tion 3.3;

• the tourbillon mechanism of a dynamic Hopf bifurcation, discussed in sec-
tion 3.4.

In sections 3.1–3.4 our major focus is on how the local mechanism under consideration
gives rise to SAOs. To this end, we introduce relevant normal forms and model
systems and provide precise statements on the nature of the resulting SAOs. It is in
the nature of the subject that some of this material is quite technical. However, this
analysis allows us to estimate quantities that can be measured in examples of MMOs
produced from both numerical simulations and experimental data. Specifically, we
consider the number of SAOs and the changes in their amplitudes from cycle to cycle.
These characteristics of each local mechanism are illustrated and discussed in terms
of underlying geometric concepts, with pointers to the case studies in sections 4–7.
Furthermore, we show in sections 3.1–3.4 how the respective local mechanism results
in MMOs in the presence of a global return mechanism that takes the trajectory back
to the region with SAOs. Such global return mechanisms are found in models; see
section 3.2 and the case studies in sections 4–5 for examples with an S-shaped slow
manifold. We also consider the geometry of nearby slow manifolds that are associated
with the approach to and departure from the SAO regions.

3.1. MMOs Due to a Folded Node. Folded nodes are only defined for the sin-
gular limit (2.4) of system (2.1) on the slow time scale. However, they are directly
relevant to MMOs because, for ε > 0 small enough, trajectories of (2.1) that flow
through a region where the reduced system has a folded node undergo small oscilla-
tions. Benôıt [19, 20] first recognized these oscillations. Wechselberger and collabora-
tors [31, 214, 237] gave a detailed analysis of folded nodes, while Guckenheimer and
Haiduc [88] and Guckenheimer [86] computed intersections of slow manifolds near a
folded node and flow maps along trajectories passing through these regions. From
Theorem 2.3 we know that the eigenvalue ratio 0 < µ < 1 at the folded node is a
crucial quantity that determines the dynamics in a neighborhood of the folded node.
In particular, µ controls the maximal number of oscillations. The studies mentioned
above use normal forms to describe the dynamics of oscillations near a folded node.
Two equivalent versions of these normal forms are

(3.1)


ε ẋ = y − x2,
ẏ = z − x,
ż = −ν
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mmos的慢-快系统机制。在本节中，我们给出MMOs在慢-快系统是如何产生的关键理论结果，在这个产生的过程中在相位空间的局部区域会有SAOs发生。更具体地说，我们将讨论导致这种SAOs产生的四种局部机制:
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1、在第3.1节讨论折结点附近的通道；2、在第3.2节讨论奇异Hopf分支；3、在3.3节中讨论具有奇异Hopf分支的三时间尺度问题；4、在3.4节中讨论动力学Hopf分支的回旋机制。
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在3.1-3.4节中，我们主要关注的是产生SAOs的系统的局部机制是怎样的。为此，我们介绍了相关的规范形式和模型系统，并就产生的SAOs的性质（本质）提供了精确的说明。这门学科的性质（本质）决定了其中一些材料（分析）是技术性很强的。然而，这种分析使我们能够估算某些量，这些量是可以从数值模拟和实验数据产生的，并在MMOs例子中可以测量的。具体来说，我们考虑的是SAOs的数量以及每个周期的振幅变化。每个局部机制的这些特性都用基本的几何概念进行了说明和讨论，并在第4-7节中给出了研究案例。此外，在第3.1-3.4节中，我们将展示在存在将轨迹带回具有SAOs的区域的全局回归机制（global return mechanism）的情况下，各个局部机制如何导致（产生）MMOs的。这种全局回归机制（global return mechanism）是在模型中被发现的；参见第3.2节和第4-5节的研究案例，研究的是具有S形的慢流形。我们还考虑了与进出SAOs区域相关的邻近慢流形的（轨线的）几何结构。
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在折结点处的MMOs。折结点仅仅是针对在慢时间尺度上的系统（2.1）的奇异极限（2.4）而定义的。然而，他们直接与MMOs有关，因为当对足够小的ε> 0 ，系统(2.1)的轨线会穿过一个折结点处具有小振荡的区域。 Wechselberger 及其合作者 [31, 214, 237]对折结点进行了详细的分析。Wechselberger和合作者[31,214,237]对折叠节点进行了详细的分析，而Guckenheimer、Haiduc[88]和Guckenheimer[86]则计算在折结点附近的慢流形的交点并绘制了沿着穿过这些区域的轨迹的流形图。从定理2.3中，我们知道折结点处的特征值之比0<μ<1是决定折结点附近动力学的一个关键量。特别是，μ控制振动的最大数量。上述研究采用正规形式描述了折结点附近的振动动力学。这些正规形式的两个等价形式是（3.1）和（3.2）。
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and

(3.2)


ε ẋ = y − x2,
ẏ = −(µ+ 1)x− z,
ż = 1

2µ.

Note that µ is the eigenvalue ratio of system (3.2) and that ν �= 0 and µ �= 0 imply
that no equilibria exist in (3.1) and (3.2). If we replace (x, y, z) in system (3.1) by
(u, v, w) and call the time variable τ1, then we obtain system (3.2) via the coordinate
change

x = (1 + µ)1/2 u, y = (1 + µ) v, z = −(1 + µ)3/2 w

and the rescaling of time τ = τ1/
√
1 + µ, which gives

(3.3) ν =
µ

2(1 + µ)2
or µ =

−1 +
√
1− 8ν

−1−√
1− 8ν

.

Therefore, in system (3.1) the number of secondary canards changes with the param-
eter ν: when ν is small, µ ≈ 2ν. Applying the “standard” scaling [214] x = ε1/2 x̄,
y = ε ȳ, z = ε1/2 z̄, and t = ε1/2 t̄ to system (3.1), and dropping the bars for notational
convenience, yields

(3.4)


ẋ = y − x2,
ẏ = z − x,
ż = −ν .

Hence, the phase portraits of system (3.1) for different values of ε are topologically
equivalent via linear maps. The normal form (3.4) describes the dynamics in the
neighborhood of a folded node, which is at the origin here, with eigenvalue ratio µ as
given in (3.3). Trajectories that come from y = ∞ with x > 0 and pass through the
folded-node region make a number of oscillations in the process, before going off to
y = ∞ with x < 0. There are no returns to the folded-node region in this system.

Let us first focus on the number of small oscillations. If 2k + 1 < µ−1 < 2k + 3
for some k ∈ N and µ−1 �= 2(k + 1), then the primary strong canard γs twists
once and the ith secondary canard ξi, 1 ≤ i ≤ k, twists 2i + 1 times around the
primary weak canard γw in an O(1) neighborhood of the folded-node singularity in
system (3.4), which corresponds to an O(

√
ε) neighborhood in systems (3.1) and

(3.2) [214, 237]. (A twist corresponds to a half rotation.) We illustrate this in Figure 6
for system (3.4) with ν = 0.025. Note that ν = 0.025 corresponds to µ ≈ 0.0557.
Hence, 2k + 1 < µ−1 ≈ 17.953 < 2k + 3 for k = 8, so Theorem 2.3 states that there
exist eight secondary canards ξi, 1 ≤ i ≤ 8, along with the strong and weak canards
γs/w. Figure 6 shows the attracting slow manifold Sa

ε and the repelling slow manifold
Sr

ε of (3.4) in a three-dimensional region bounded by the planes {z = ±α}, denoted
Σα and Σ−α, with α = 0.14; see section 8 for details on how these computations
were done. Even though the rescaled normal form (3.4) no longer depends on ε, we
still indicate the ε-dependence of the slow manifolds to distinguish them from the
attracting and repelling sheets of the critical manifold; furthermore, Sa

ε and Sr
ε can

be thought of as the slow manifolds of (3.1) or (3.2). Both manifolds are extensions of
Fenichel manifolds and illustrate how the slow manifolds intersect near the fold curve
of the critical manifold; the fold curve is the z-axis. Due to the symmetry

(x, y, z, t) �→ (−x, y,−z,−t)
of the normal form (3.4), the two slow manifolds Sa

ε and Sr
ε are each other’s image

under rotation by π about the y-axis. The intersection curves in Figure 6(a) are the
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因此，对于不同的ε取值，系统（3.1）的相图通过线性映射在拓扑上等价。系统（3.4）的正规形式描述了折结点（这里是原点）附近的动力学，特征值之比μ和系统（3.3）所给的相同。从 x > 0区域的无穷远处过来的轨线穿过折结点区域的过程中会产生一些振荡，这些振荡是在向x < 0区域的无穷远处延伸之前产生的。在这个系统中没有返回到折结点区域的轨线。我们先关注小振荡的数量。如果对k∈N，使得2 k + 1 <μ−1 < 2 k + 3（μ−1 = 2 (k + 1)），则在系统(3.4)中折结奇异点的O(1)附近，主要强鸭解γs绕主要弱鸭解γw扭转1次，第i个次要强鸭解ξi，1≤i≤k，绕主要弱鸭解γw扭转2i+1次。系统（3.4）对应于一个在系统(3.1)和(3.2)(214、237)中的O(√ε)邻域。(扭转相当于半旋转。)在图6中描述了系统(3.4)当ν= 0.025时的这种扭转。注意到当ν= 0.025时对应的μ≈0.0557。因此，当k = 8时，满足2 k + 1 <μ−1≈17.953 < 2 k + 3，所以根据定理2.3，存在八个次要鸭解ξi，1≤i≤8，以及强鸭解和弱鸭解γs / w。图6展示了系统(3.4)的吸引分枝Saε和排斥分枝形Srε在一个三维的区域，z轴取在−α到α之间的相图，z=α和z=−α的两个平面记为Σα和Σ−α，其中α= 0.14；有关如何完成这些计算的详细信息，请参见第8节。尽管约化的正规形式的系统(3.4)不再依赖于ε，我们仍然要了解慢流形的ε-独立性，以便把它们从临界流形的吸引分枝和排斥分枝中区分开来；此外，吸引慢流形Saε和排斥慢流形Srε可以被看做是系统(3.1)或系统(3.2)的慢流形。这两个流形都是Fenichel流形的拓展形式，并且它们说明了慢流形如何在临界流形的折曲线附近相交；折曲线是z轴。由于正规形式系统（3.4）的对称性。这两个慢流形Saε和Srε关于y轴旋转90度，它们就是彼此的像。图6(a)中相交曲线为鸭轨线；被黑色标记的是主要强鸭解γs和前三个是次要鸭解ξ1(橙色线)，ξ2(红色线)和ξ3(青色线)。嵌在其中的(b)图展示的是Saε和Srε在平面Σfn:= { z = 0 }上相交的曲线，其中包含位于原点的折结点。在平面Σfn上鸭轨线被确定为交集点；只有主要强鸭解γs和三个是次要鸭解ξ1-ξ3被标记出来，但是请注意，在图的中心还有其他的互相非常接近的鸭解（包括弱鸭解γw）。
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Fig. 6 Invariant slow manifolds of (3.4) with ν = 0.025 in a neighborhood of the folded node.
Both the attracting slow manifold Sa

ε (red) and the repelling slow manifold Sr
ε (blue) are

extensions of Fenichel manifolds. The primary strong canard γs (black curve) and three
secondary canards ξ1 (orange), ξ2 (magenta), and ξ3 (cyan) are the first four intersection
curves of Sa

ε and Sr
ε ; the inset shows how these objects intersect a cross-section orthogonal

to the fold curve {x = 0, y = 0}.

canard orbits; labeled are the primary strong canard γs (black) and the first three
secondary canards ξ1 (orange), ξ2 (magenta), and ξ3 (cyan). The inset panel (b) shows
the intersection curves of Sa

ε and Sr
ε with the plane Σfn := {z = 0} that contains the

folded node at the origin. Canard orbits are identified in Σfn as intersection points;
only γs and ξ1–ξ3 are labeled, but notice that there are further canards (including the
weak canard γw) very close together in the center of the figure.

A trajectory entering the fold region becomes trapped in a region bounded by
strips of Sa

ε and Sr
ε and two of their intersection curves. The intersection curves

are maximal canards, and the trajectory is forced to follow the oscillations of these
two bounding canard orbits. In order to illustrate how many canards there are and
precisely how many oscillations they make, we show in Figure 7(a) the flow map
of (3.4) with ν = 0.025. Due to the strong contraction along Sa

ε , the flow map
through the fold region is strongly contracting in one direction for trajectories that
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进入折区域的轨线被限制在由Saε，Srε及其两条相交曲线围住的带状区域中。相交曲线是最大鸭解，并且这个轨线受到这两个有界鸭轨线的振荡影响。为了说明存在多少个鸭解，以及它们究竟产生多少振荡，我们在图7(a)中展示了系统(3.4)在ν=0.025时的流形图。由于流形沿着Saε强收缩，对于沿Srε不延伸的轨迹，穿过折区域的流形图沿一个方向强收缩。因此，流形图几乎是一维的，并且可以用一些始于临界流形且远离折曲线的轨线来近似。图7(a)所示的流形图是通过对线段{x=20，y=x2=400，3.25≤z≤0.75}上的500个等间隔的初始值分别到平面x=10进行积分而获得的；所绘制的是最终值相对于初始值的z坐标。在这个流形图中可以看到不连续性的十个片段。这些不连续的分段标记在线段{x=20，y=x2=400，3.25≤z≤0.75}上的扇区，这些扇区对应于不断增长的SAOs；实际上，每个分段对应于慢流形的吸引分枝Saε上的二维的扇区Ii，0≤i≤9。图7(a)中右侧的外部扇区I0在左侧由主要强鸭解γs界定；扇区I1由主要强鸭解γs和第一个最大次要鸭解ξ1共同界定；扇区Ii（i=2，.…8）由最大次要鸭轨线ξi_1和ξi界定，最后一个（左外部）扇区I9在右边由ξ8限定。在主要强鸭解γs和最大次要鸭解ξi的一侧，1≤i≤8，轨线沿着排斥慢流形Srε，然后随着x值的减小跳跃。在γs和ξi的另一侧，轨线跳回到吸引慢流形，并在流向y=∞之前，通过折结点区域再进行一次振荡。图7中的四个图(b1)–(b4)展示了四条轨线投射到(x,y)平面上的部分；它们的初始值是(x,y,z)=(20,400,z in)，z in是图(a)中所标记部分的z轴对应的坐标，即(b1)–(b4)分别对应z in=-1.25，z in=-1.5，z in=-1.75及z in=-2.25。面板(b1)中的轨线选自扇区I2，由ξ1和ξ2界定；该轨迹产生2次振荡。在图(b2)中的轨线来自扇区I5，并且实际上它产生5个振荡。图(b3)和(b4)中的另外两条轨线分别产生7次和9次振荡，但是在这些振荡中，有一些因为太小而不可见。
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Fig. 7 Numerical study of the number of rotational sectors for system (3.4) with ν = 0.025.
Panel (a) illustrates the flow map through the folded node by plotting the z-coordinates z out

of the first return to a cross-section x = −10 of 500 trajectories with equally spaced initial
values (x, y, z) = (20, 400, z in), where −3.25 ≤ z in ≤ −0.75. Panels (b1)–(b4) show four
trajectories projected onto the (x, y)-plane that correspond to the points labeled in panel (c),
where z in = −1.25 in panel (b1), z in = −1.5 in panel (b2), z in = −1.75 in panel (b3), and
z in = −2.25 in panel (b4).

do not extend along Sr
ε . Hence, the flow map will be almost one-dimensional and can

be approximated by following trajectories starting on the critical manifold far away
from the fold curve. The flow map shown in Figure 7(a) was obtained by integrating
500 equally spaced initial values on the line segment {x = 20, y = x2 = 400, −3.25 ≤
z ≤ −0.75} until they reach the plane x = −10; plotted are the z-coordinates of the
final values versus the initial values. One can see ten segments in this flow map that are
separated by discontinuities. These discontinuities mark sectors on the line segment
{x = 20, y = x2 = 400, −3.25 ≤ z ≤ −0.75} that correspond to an increasing
number of SAOs; in fact, each segment corresponds to a two-dimensional sector Ii,
0 ≤ i ≤ 9, on the attracting sheet Sa

ε of the slow manifold. The outer sector I0 on the
right in Figure 7(a) is bounded on the left by the primary strong canard γs; sector I1

is bounded by γs and the first maximal secondary canard ξ1; sectors Ii, i = 2, . . . , 8,
are bounded by maximal secondary canard orbits ξi−1 and ξi; and the last (left outer)
sector I9 is bounded on the right by ξ8. On one side of the primary strong canard γs

and each maximal secondary canard ξi, 1 ≤ i ≤ 8, trajectories follow the repelling slow
manifold Sr

ε and then jump with decreasing values of x. On the other side of γs and ξi,
trajectories jump back to the attracting slow manifold and make one more oscillation
through the folded-node region before flowing toward y = ∞. The four panels (b1)–
(b4) in Figure 7 show portions of four trajectories projected onto the (x, y)-plane;
their initial values are (x, y, z) = (20, 400, z in) with z in as marked in panel (a), that
is, z in = −1.25, z in = −1.5, z in = −1.75, and z in = −2.25 for (b1)–(b4), respectively.
The trajectory in panel (b1) was chosen from the sector I2, bounded by ξ1 and ξ2;
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this trajectory makes two oscillations. The trajectory in panel (b2) comes from I5

and, indeed, it makes five oscillations. The other two trajectories, in panels (b3) and
(b4), make seven and nine oscillations, respectively, but some of these oscillations are
too small to be visible.

The actual widths of the rotational sectors in Figure 7 are very similar due to the
ε-dependent rescaling used to obtain (3.4). When the equations depend on ε as in
(3.1) and (3.2), however, the widths of the sectors depend on ε. In fact, all sectors are
very small except for the sector corresponding to maximal rotation, which is bounded
by ξk and the primary weak canard. For an asymptotic analysis of the widths of
the rotational sectors that organize the oscillations, system (3.2) is more convenient,
because the eigenvalues of the desingularized slow flow are −µ and −1. Brøns, Krupa,
and Wechselberger [31] found the following result.

Theorem 3.1 (widths of rotational sectors). Consider system (2.14) and assume
it has a folded-node singularity. At an O(1) distance from the fold curve, all secondary
canards are in an O(ε(1−µ)/2) neighborhood of the primary strong canard. Hence, the
widths of the rotational sectors Ii, 1 ≤ i ≤ k, is O(ε(1−µ)/2) and the width of sector
Ik+1 is O(1).

Note that, as µ → 0 (the folded saddle-node limit), the number of rotational sec-
tors increases indefinitely and the upper bounds on their widths decrease to O(ε1/2).

3.1.1. Folded Node with a Global Return Mechanism. A global return mech-
anism may reinject trajectories to the folded-node funnel to create an MMO. In this
situation, we create a candidate trajectory as is illustrated in Figure 8. Starting from
the folded node we follow the fast flow until it returns to the funnel and then flows
back to the folded node. Let us denote by δ the distance from the singular strong ca-
nard γ̃s, measured on a cross-section at a distance O(1) away from the fold, at which
the candidate trajectory returns to the funnel. Provided that certain technical con-
ditions are satisfied, one can show that this candidate gives rise to an MMO periodic
orbit with signature 1s, where the number s of SAOs is as predicted by Theorem 3.1;
this theorem also implies that the candidate is most likely to pass through the sector
Ik+1 of maximal rotation, where k is determined by the eigenvalue ratio µ. Overall,
we have the following result.

Theorem 3.2 (generic 1k+1 MMOs [31]). Consider system (2.14) with the fol-
lowing assumptions:

(A0) Assume that 0 < ε � 1 is sufficiently small, ε1/2 � µ, and k ∈ N is such
that 2k + 1 < µ−1 < 2k + 3.

(A1) The critical manifold S is (locally) a folded surface.
(A2) The corresponding reduced problem possesses a folded-node singularity.
(A3) There exists a candidate periodic orbit (as constructed in Figure 8), which

consists of fast fibers of the layer problem, a global return segment, and a
segment on Sa within the funnel that starts at distance δ from γ̃s (as measured
at a distance O(1) away from the fold F ).

(A4) An appropriate transversality hypothesis is satisfied.
Then there exists a stable MMO with signature 1k+1.

The transversality hypothesis of (A4) is cumbersome to formulate in a general
setting. In the context of an S-shaped manifold, it concerns the projection of the two
fold curves onto the opposite sheets of the attracting slow manifold and the flow along
these sheets; see [31].

Theorem 3.2 requires not only sufficiently small 0 < ε � 1, but also µ � ε1/2

(while 0 < µ < 1). However, ε is usually of the order O(10−2) in applications, so that
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图7中的扭转扇区的实际宽度非常接近导致与ε相关的伸缩系统（3.1）的变量常获得系统(3.4)。当在系统(3.1)和系统(3.2)中的方程依赖于ε时，扇区的宽度也会依赖于ε。事实上，除了最大扭转对应的扇区外，所有扇区宽度都非常小，最大扭转对应的扇区被ξk和主要弱鸭解界定。对于产生振荡的旋转扇区宽度的渐近分析，系统（3.2）更方便，因为去奇异化的慢流的特征值是-μ和-1。Brøns、Krupa和Wechselberger[31]发现以下结果。定理3.1(旋转扇区的宽度)。考虑系统(2.14)，假设该系统有一个折结奇异点。在距离折曲线O(1)处，所有次要鸭解都位于主要强鸭解的O(ε(1−μ)/ 2)邻域内。因此旋转扇区的宽度Ii（1≤i≤k）为O(ε(1−μ)/ 2)且扇区Ik+1的宽度是O (1)。注意，当μ→0(折鞍点极限)时，旋转扇区的数目会无限增加，并且它们的宽度上限减小到O（ε1/2）。

Administrator
在文本上注释
具有全局回归机制的折结点。全局回归机制可以保证轨线再次回到到折结点漏斗，从而产生MMO。在这种情况下，我们产生一条候选轨线，如图8所示的那样。从折叠节点开始，我们随着快流形，直到它返回漏斗中，然后流形再回到折结点。我们把流形（全局回归点）到奇异强鸭解˜γs的距离记为δ，这个距离是在距离折曲线O(1)距离的横截面上测量的，在（折点处）候选轨线返回到漏斗。在满足一定的技术条件下，1s模式的MMO就形成了，其中SAOs的数目s可以根据定理3.1预测出来；这个定理也表明了候选轨线最有可能通过最大旋转的扇区Ik+1，这里的k是由特征值比μ所决定的。综上所述，我们得到了以下结果。
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定理3.2(泛型1k+1模式的 MMOs[31])。考虑系统(2.14)满足以下列假设: (A0)假设正值ε远小于（<<）1，并且充分小，ε1/2(<<)远小于μ，对于k∈N，有 2 k + 1 <μ−1 < 2 k + 3。 (A1)临界流形S是(局部)一个折曲面。 (A2)相应的约化问题具有折结奇异点。 (A3)存在一个候选周期轨线(如图8构建的那样)，它是由层界问题的快纤维组成，是一个全局回归段的一部分，他也是从距离奇异强鸭解（˜γs）δ处开始的漏斗内的吸引流行Sa的一部分。(在到折曲线（F）距离O(1)处测量的)。 (A4)假设存在一个适当的横截面。 则存在一个稳定的1k+1模式的 MMO。
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(A4)中所提到的横截面假设在一般情况下难以确切的表述。在一个s形流形的环境（背景）下，它涉及到两个折曲线在吸引慢流形相对分枝上的投影，并且这些流形沿这些分枝，关于这一点可以参考文献[31]。定理3.2不仅要求对足够小的ε满足0 <ε<<1，而且还要求με1/2(0 <μ< 1)。然而,ε通常是订单的O(10−2)应用程序,所以必须接近1μ为了定理应用。因此，这种最大MMO签名在实际应用中很少见到。此外，具有签名1k+1的MMO的SAOs往往太小，不容易看到。图7说明当轨线接近折结点时（靠近强鸭解的折结点），其中的SAOs的振幅是很大的，并且是位于Ii之间的，其中 i ≤ k。由定理3.1可知，i≤k的扇区Ii的最大宽度上界由O(ε(1_μ)/2（μ<1/3）所界定。当δ为O(ε(1_μ)/2时，实际上可以找到伴有i≤k的SAO的稳定的MMO，关于这一点有下面的定理3.3[31]。
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Fig. 8 Schematic diagram of the candidate periodic orbit Γc that gives rise to MMOs with SAOs
produced by a folded-node singularity. The candidate Γc approaches the folded node along
the attracting sheet Sa (red) of the critical manifold (red) in the sector of maximal rotation
associated with the weak singular canard γ̃w. The distance to the strong singular canard γ̃s
is labeled δ. When the trajectory reaches the folded node (black dot) it jumps along a layer
and proceeds to make a global return.

µ must be close to 1 in order for the theorem to apply. Therefore, such maximal MMO
signatures are seldom seen in applications. Furthermore, the SAOs for an MMO with
signature 1k+1 tend to be too small to be readily visible.

Figure 7 illustrates that the amplitudes of the SAOs are much larger for trajec-
tories that approach the folded node close to the strong canard and lie in one of the
sectors Ii with i ≤ k rather than Ik+1. We know from Theorem 3.1 that the maximal
width of a sector Ii with i ≤ k is bounded from above by O(ε(1−µ)/2) with µ < 1/3.
When δ is O(ε(1−µ)/2) one may actually find stable MMOs with i ≤ k SAOs, which
is the following result [31].

Theorem 3.3 (stable MMOs with signature 1i
). Suppose system (2.14) satisfies

assumptions (A0)–(A3) of Theorem 3.2 and, the following additional assumption:
(A5) For δ = 0, the global return point is on the singular strong canard γ̃s and as

δ passes through zero the return point crosses γ̃s with nonzero speed.
Suppose now that δ = O(ε(1−µ)/2) > 0. Then, for sufficiently small 0 < ε � 1 and
k ∈ N such that 2k + 1 < µ−1 < 2k + 3, the following holds. For each i, 1 ≤ i ≤ k,
there exist subsectors Ĩi ⊂ Ii with corresponding distance intervals (δ−i , δ

+
i ) of widths

O(ε(1−µ)/2), which have the property that if δ ∈ (δ−i , δ
+
i ), then there exists a stable

MMO with signature 1i.
Theorem 3.3 says that we should observe a succession of stable 1i MMOs with

increasingly more SAOs as δ increases (assuming that µ remains fixed in such a
parameter variation). In the transition from a 1i to a 1i+1 MMO signature, that
is, in the regions in between intervals (δ−i , δ

+
i ) and (δ−i+1, δ

+
i+1), we expect to find
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在文本上注释
定理3.3(具有1i型稳定的MMOs)。假设系统(2.14)满足定理3.2的假设条件(A0) - (A3)，并还满足假设条件（A5）: (A5)当δ= 0时，全局回归点在奇异强鸭解˜γs上，并且当δ≠0时，回归点会以一定的速度（非零）穿过奇异强鸭解˜γs。假设δ= O(ε(1−μ)/ 2)> 0。若ε是远小于1的足够小的正值，k∈N，使得2 k + 1 <μ−1 < 2 k + 3，则有，对于每一个i(1≤i≤k)，存在子扇区˜Ii⊂Ii，其宽度为O(ε(1_μ)/2，此宽度对应的距离区间为(δ_i，δ+i)，如果δ∈(δ−我,δ+ i)，则存在一个具有1i型稳定的MMOs 。定理3.3指出，当δ增加时（假设μ在这种参数变化中保持不变），我们应该会观察到一系列1i型稳定的MMO，相应的SAOs越多。在从1i型到1i+1型的MMO的转换中，即在区间(δ_i，δ+i)和区间(δ_i+1，δ+i+1)之间的区域中，我们期望发现更复杂的类型，它们通常是1i和1i+1的混合。从几何上讲，当将图7(a)的流形图向上或向下移动时，会（产生）筛选出不同的稳定MMOs；由于一般ε相关的系统的旋转扇区Ik+1的宽度比其他扇区大得多，因此当参数δ引起变化时，应该期望通过对扇区Ii（i≤k）的转换会非常快地。如果μ=O(ε1/2)，即假设条件(A0)不成立，那么只要全局回归点落在漏斗区域内，δ=O(1)时，我们仍然期望会有1k+1型的稳定的MMO产生；注意到，k=O(1/ε1/2)，并且这种MMO的SAOs的振幅将再次变小。如果μ=O(ε1/2)且δ=O(ε1/2)，则产生含有较大幅度SAO的混合MMO的可能性更大。例如，在第4部分中图20展示了在Koper模型中1213型的MMO。在这个MMO，全局回归非常接近次要最大鸭解ξ2，首先稍微向左（进入具有两个SAOs的旋转扇区I2），然后稍微向右（进入具有三个SAO的旋转扇区I3），就会这个MMO类型。迄今为止所有的理论没有涵盖折结点附近的所有可能的动力学。如果高阶项包含在正规形式（3.1）–（3.2）式中，则当μ=O（ε1/2）或更小时，在折结点的O（ε1/2）邻域中可能出现平衡。这一观察激发了我们对三维奇异Hopf分支的研究。
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more complicated signatures, which are usually a mix of 1i and 1i+1. Geometrically,
different stable MMOs are selected as one moves the flow map in Figure 7(a) up
or down; since the rotational sector Ik+1 for general ε-dependent systems has much
larger width than the other sectors, one should expect that the transitions through Ii
with i ≤ k happen rather quickly during a parameter-induced variation of δ.

If µ = O(ε1/2), that is, assumption (A0) does not hold, then we may still expect
stable MMO signatures of type 1k+1, as soon as the global returns falls inside the
funnel region and δ = O(1) [144]; note that k = O(1/ε1/2) and the amplitudes of the
SAOs for such an MMO will again be tiny. If µ = O(ε1/2) and δ = O(ε1/2) as well, the
mixed MMO signatures with larger-amplitude SAOs are more likely to occur. For ex-
ample, Figure 20 in section 4 displays an MMO of type 1213 in the Koper model. Here,
global returns come very close to the secondary maximal canard ξ2, first slightly to the
left (hence, into the rotational sector I2 with two SAOs) and then slightly to the right
(hence, into the rotational sector I3 with three SAOs), creating this MMO signature.

The theory described so far does not capture all of the possible dynamics near
a folded node. If higher-order terms are included in the normal forms (3.1)–(3.2),
then equilibria may appear in an O(ε1/2) neighborhood of the folded node as soon as
µ = O(ε1/2) or smaller. This observation motivates our study of the singular Hopf
bifurcation in three dimensions.

3.2. MMOs Due to a Singular Hopf Bifurcation. Equilibria of a slow-fast sys-
tem (2.1) always satisfy f(x, y, λ, ε) = 0; generically, they are located in regions where
the associated critical manifold S is normally hyperbolic. However, in generic one-
parameter families of slow-fast systems, the equilibrium may cross a fold of S. When
this happens the folded singularity at which the equilibrium crosses the fold curve is
an actual equilibrium of the slow-fast system. In generic vector fields with two slow
variables the folded singularity thus created is a folded saddle-node, which exists ex-
actly at the specific parameter value at which the equilibrium crosses the fold curve;
one speaks of a folded saddle-node of type II [162]. This is distinguished from the
folded saddle-node of type I [214, 144], which refers to a saddle-node bifurcation of
the reduced flow only, meaning that it does not involve a true equilibrium of the full
system. This distinction stems from the fact that—as we have seen with the exam-
ples of the folded saddle and the folded node—a singularity of the reduced system
need not be the projection of an equilibrium of the full slow-fast system. However, a
folded saddle-node of type II is an actual equilibrium of the full system. Importantly,
this implies that, when ε > 0, the system has a singular Hopf bifurcation which oc-
curs generically at a distance O(ε) in parameter space from the folded saddle-node
bifurcation of type II [87].

In order to obtain a normal form for the singular Hopf bifurcation, we follow [87]
and add higher-order terms to the normal form (3.1) of the folded node, to obtain

(3.5)


ε ẋ = y − x2,
ẏ = z − x,
ż = −ν − a x− b y − c z.

As with (3.1), we apply the standard scaling [214] x = ε1/2 x̄, y = ε ȳ, z = ε1/2 z̄, and
t = ε1/2 t̄; system (3.5) then becomes

(3.6)


x̄′ = ȳ − x̄2,
ȳ′ = z̄ − x̄,

z̄′ = −ν − ε1/2 a x̄− ε b ȳ − ε1/2 c z̄.
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奇异Hopf分支导致的MMOs。慢-快系统（2.1）的平衡点总是满足f（x，y，λ，ε）＝0；一般地，它们位于某个区域中，该区域与临界流形S相关，是正规双曲的区域。然而，慢-快系统的一般单参数族中，平衡可以跨越S的折。当这种情况发生时，在平衡点跨越折曲线处的折奇异点是慢-快系统的实际平衡点。在具有两个慢变量的广义向量场中，由此产生的折奇异点是折鞍点，该折鞍点正好存在于平衡点跨越折曲线处的特定参数值上，它被称为II型折鞍点。这与I型的折鞍点是有区别的，I型的仅仅是指约化流形的鞍点分枝，这就意味着它不涉及全系统的（真正）平衡点。这种区是因为我们在折鞍点和折结点的例子中观察到约化系统的奇异点不必是全慢-快系统的平衡点的投影。然而，II型折鞍点是整个系统的实际平衡点。重要的是，这意味着，当ε>0时，系统有一个奇异Hopf分支，它一般发生在参数空间中距II型折鞍点分支为O(ε)处。为了获得奇异Hopf分支的规范型，根据折结点的规范型（3.1）式，并加入高阶项，从而获得（3.5）
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This scaled vector field provides an O(ε1/2) zoom of the neighborhood of the folded
singularity where SAOs are expected to occur. The scaling removes ε from the first
equations, while the coefficients a, b, and c of the third equation become ε-dependent;
ν remains fixed. Note that the coefficient of ȳ tends to 0 faster than those of x̄, z̄ as
ε → 0. This feature makes the definition of normal forms for slow-fast systems some-
what problematic: scalings of the state-space variables and the singular perturbation
parameter ε interact with each other. These ε-dependent scalings play an important
role in “blow-up” analysis of fold points and folded singularities.

In contrast to the normal form (3.1) of a folded node, system (3.6) possesses equi-
libria for all values of ν. If ν = O(1), then these equilibria are far from the origin,
with coordinates that are O(ε−1/2) or larger. Since we want to study the dynamics
near a folded singularity, the ε-dependent terms in (3.6) play little role in this pa-
rameter regime and the system can be regarded as an inconsequential perturbation
of the folded-node normal form (3.4); hence, if ν = O(1), then Theorems 3.2 and 3.3
apply. On the other hand, if ν = O(ε1/2) or smaller, then one equilibrium lies within
an O(1)-size domain of the phase space. This equilibrium is determined by the coef-
ficients a and c (to leading order) and plays an important role in the local dynamics
near a folded singularity [87, 144]. In particular, the equilibrium undergoes a singular
Hopf bifurcation for ν = O(ε) [87]. Thus, for parameter values ν = O(ε1/2) or smaller,
the higher-order terms in the third equation of (3.6) are crucial.

So what is the most appropriate normal form of a system that undergoes a singular
Hopf bifurcation? Several groups have derived system (3.5), but drop the term by
because it has higher order in ε after the scaling. However, this term appears in the
formula for the lowest-order term in ε of the first Lyapunov coefficient of the Hopf
bifurcation of (3.5) and, hence, must be retained if we hope to determine a complete
unfolding of the singular Hopf bifurcation [87].

The MMOs that occur close to the singular Hopf bifurcation have a somewhat dif-
ferent character than those generated via the folded-node mechanism. Guckenheimer
and Willms [95] observed that a subcritical (ordinary) Hopf bifurcation may result in
large regions of the parameter space being funneled into a small neighborhood of a
saddle equilibrium with unstable complex eigenvalues. After trajectories come close
to the equilibrium, SAOs grow in magnitude as the trajectory spirals away from the
equilibrium. Similar MMOs may pass near a singular Hopf bifurcation. Then the
equilibrium is a saddle-focus and trajectories on the attracting Fenichel manifold are
funneled into a region close to the one-dimensional stable manifold of the equilibrium.
SAOs occur as the trajectory spirals away from the equilibrium. We review here our
(still incomplete) understanding of singular Hopf bifurcations and the MMOs passing
nearby.

The normal form (3.5) does not yield MMOs because there is no global return
mechanism; trajectories that leave the vicinity of the equilibrium point and the fold
curve flow to infinity in finite time. This property can be changed by adding a cubic
term to the normal form that makes the critical manifold S-shaped, similar to the
Van der Pol equation:

(3.7)


ε ẋ = y − x2 − x3,
ẏ = z − x,
ż = −ν − a x− b y − c z.

This modification of the normal form for the singular Hopf bifurcation was derived
previously as a “reduced” model for MMOs [123, 139]. System (3.7) introduces only
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这个缩放的向量场提供了一个折奇异点邻域的O(ε1/2)的缩放，在这个邻域里期望会有SAO发生。缩放从第一个方程中去除了ε，而第三个方程的系数a、b和c变得与ε相关；ν保持不变。注意到当ε → 0时，y的系数趋向于0的速度比x和z的系数趋0的速度要快。这个特性使得慢速系统的规范型的定义有些问题：状态空间变量和奇异摄动参数ε的缩放相互影响。这些与ε相关的尺度在折点和折奇异点的“blow-up”分析中起着重要作用。与折结点的规范型（3.1）式相反，系统（3.6）对于所有ν值都具有平衡点。如果ν=O(1)，则这些平衡点远离原点，其坐标为O(ε_1/2)量级或更大。由于要研究折奇异点附近的动力学，系统(3.6)中的ε相关项在这个参数域中几乎不起作用，该系统可以看成是折结点规范型(3.4)式的微摄动后得到的；因此，如果ν=O(1)，则定理3.2和3.3是适用的。另一方面，如果ν=O(ε1/2)或更小，则存在一个平衡点位于相空间的O(1)区域内。这个平衡点是由系数a和c（）所决定，并且在折奇异点附近的局部动力学中起着重要作用[87，144]。特别地，对于ν=O(ε)[87]，平衡点（经历）奇异Hopf分支。因此，对于参数值ε＝O（ε1/2）或更小，系统（3.6）中第三个方程的高阶项是至关重要的。因此，经历奇异Hopf分岔的系统的最合适的规范型是什么？（几个组）已经导出了系统（3.5），但是由于在缩放后ε具有较高的阶数，所以使（该项）下降。然而，该项出现在系统（3.5）Hopf分支的第一Lyapunov系数ε中的最低阶项的公式中，因此，如果我们希望确定奇异Hopf分支的完全展开〔87〕，则该项必须保留。发生在奇异Hopf分支附近的MMOs具有与通过折结点机制生成的MMOs稍微不同的特性。Guckenheimer和Willms[95]观察到亚临界(普通)Hopf分支可能导致参数空间的一大片区域汇集到具有不稳定的复特征值的鞍平衡点的小邻域中。在轨线接近平衡点后，SAOs的量级随着轨线螺旋离开平衡点而增加。类似的MMOS有可能穿过过奇异Hopf分支附近，此时平衡点是一个鞍焦点，吸引Fenichel流形上的轨线汇集进入靠近平衡点的一维稳定流形的区域，SAOs随着轨迹螺旋离开平衡点（鞍焦点）而发生。我们在此回顾我们对奇异Hopf分支和附近经过的MMOs的理解，这仍然是不完整。因为没有全局回归机制，规范型（3.5）式不能产生MMOs；在该系统中，轨线在有限时间内离开平衡点和折曲线流到无限大的区域。这种特性可以通过向使临界流形为S形的规范型中添加三次项来改变，类似于Van der Pol方程：
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对奇异Hopf分支的规范型的这种修改（在以前）作为MMO的“约化”模型导出。如图9所示，系统（3.7）在原点附近只引入一个小摄动，但是S形临界流形创建了离开原点附近的轨线可能返回的可能性。图9展示了在具有参数ν的系统(3.7)中MMOS总体结构的一个例子，也就是说，其中的参数( ν，a，b，c，ε)=(0.0072168，0.3872，0.3251，1.17，0.01)；注意到 ν=O(ε)。S形临界流形S是图9(a)中的灰色线；(b)中展示的是图9(a)的顶视图。流形S具有两条折曲线，一条在x=0处，一条在x=-2/3处，它们将S分解为一个排斥分枝和两个吸引片分枝。对于我们的参数选择，在排斥片分枝上存在靠近原点的鞍焦点平衡点p（该原点是折结奇异点）。平衡点P具有一对不稳定共轭复特征值。图9中的黑色曲线是一个稳定的MMO周期轨线，记为 Γ，它与平衡点p相互作用如下：从x=0处的折刚好经过，即在原点附近且x<0的区域，轨线Γ沿着其二维不稳定流形从平衡点p螺旋形离开，并反复与临界流形S的排斥分枝Sr相交。当轨线Γ与排斥慢流形(未示出)相交时，它便跳到x<-2/3的临界流形S的吸引分枝Sa上。然后，轨线Γ跟随这个分枝到达x=-2/3的折处，之后它跳到x>0的临界流形S的排斥分枝Sr处。然后，轨线Γ返回到平衡点P附近，并重复这个周期运动。图9所示的MMO周期轨线Γ只是系统（3.7）中的多种复杂动力学类型之一。对于系统（3.7）超临界Hopf分支产生的小振幅稳定周期轨道，存在（参数区）。这些周期轨线的后续分支可能是倍周期分支或环面分支[87]。倍周期(级联)会产生可能与混沌MMOs相关的小振幅混沌不变集。例如，图10显示了系统(3.7)在参数(ν，a，b，c，ε)=(0.004564，0.2317，0.2053，1.17，0.01)时的混沌MMO轨线，（该轨线）是由奇异Hopf分支产生的周期轨线的倍周期(级联)产生的。由于时间序列的非周期性，它看起来是混沌的，如图10(a)中的x坐标所示。在图（b）上显示了（x，y）平面上的二维投影。注意到这个轨线既不接近平衡点p也不接近原点的折奇异点。当ν从图10中使用的值(其中ν值已经是O(ε)量级)减小时，轨线的大振幅周期变得不那么频繁并且很快消失，导致小振幅混沌（吸引子）。在第4节讨论了系统(3.7)的一个重新缩放的子族，给出了复杂动力学的进一步例子以及与该系统相关的MMOs的组织方式的一些分析。
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Fig. 9 Phase portrait of an MMO periodic orbit Γ (black curve) for system (3.7) with (ν, a, b, c, ε) =
(0.0072168,−0.3872,−0.3251, 1.17, 0.01). The critical manifold S (gray) is the S-shaped sur-
face with folds at x = 0 and x = − 2

3
. The orbit Γ is composed of two slow segments near

the two attracting sheets of S and two fast segments, with SAOs in the region near the equi-
librium p on the repelling sheet Sr of S just past the fold at x = 0. Panel (a) shows a
three-dimensional view and panel (b) the projection onto the (x, y)-plane.

a small perturbation near the origin, but the S-shaped critical manifold creates the
possibility that trajectories leaving a neighborhood of the origin might return, as
illustrated in Figure 9. Figure 9 shows an example of the overall structure of MMOs
in system (3.7) with small ν, namely, for (ν, a, b, c, ε) = (0.0072168,−0.3872,−0.3251,
1.17, 0.01); note that ν = O(ε). The S-shaped critical manifold S is the gray surface in
Figure 9(a); a top view is shown in panel (b). The manifold S has two fold curves, one
at x = 0 and one at x = − 2

3 , that decompose S into one repelling and two attracting
sheets. For our choice of parameters there exists a saddle-focus equilibrium p on the
repelling sheet that is close to the origin (which is the folded-node singularity). The
equilibrium p has a pair of unstable complex conjugate eigenvalues. A stable MMO
periodic orbit Γ, shown as the black curve in Figure 9, interacts with p as follows.
Starting just past the fold at x = 0, that is, in the region near the origin with x < 0,
the orbit Γ spirals away from p along its two-dimensional unstable manifold and
repeatedly intersects the repelling sheet Sr of S. As soon as Γ intersects the repelling
slow manifold (not shown), it jumps to the attracting sheet of S with x < − 2

3 . The
orbit Γ then follows this sheet to the fold at x = − 2

3 , after which it jumps to the
attracting sheet of S with x > 0. Then Γ returns to the neighborhood of p and the
periodic motion repeats.

The MMO periodic orbit Γ displayed in Figure 9 is only one of many types of
complex dynamics present in system (3.7). One aspect of the complex dynamics
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Fig. 10 A chaotic MMO trajectory of system (3.7) with (ν, a, b, c, ε) = (0.004564,−0.2317, 0.2053,
1.17, 0.01). Panel (a) shows the time series of the x-coordinate of the trajectory from t = 100
to t = 200, and panel (b) the projection of the trajectory onto the (x, y)-plane.

in system (3.7) is the fate of the periodic orbits created in the Hopf bifurcation.
There are parameter regimes for (3.7) with stable periodic orbits of small amplitude
created by a supercritical Hopf bifurcation. Subsequent bifurcations of these periodic
orbits may be period-doubling or torus bifurcations [87]. Period-doubling cascades
can give rise to small-amplitude chaotic invariant sets that may be associated with
chaotic MMOs. For example, Figure 10 plots a chaotic MMO trajectory for (3.7) with
(ν, a, b, c, ε) = (0.004564,−0.2317, 0.2053, 1.17, 0.01) that arises from such a period-
doubling cascade of the periodic orbit emerging from the singular Hopf bifurcation.
It appears that it is chaotic because of the nonperiodicity of its time series, shown
for the x-coordinate in Figure 10(a). A two-dimensional projection onto the (x, y)-
plane is shown in panel (b). Note that this trajectory does not come close to either
the equilibrium point p or the folded singularity at the origin. As ν decreases from
the value used in Figure 10 (where ν is already of order O(ε)), the large-amplitude
epochs of the trajectories become less frequent and soon disappear, resulting in a
small-amplitude chaotic attractor. Section 4 discusses a rescaled subfamily of (3.7),
giving further examples of complex dynamics and some analysis of the organization
of MMOs associated with this system.

We would like to characterize the parameter regimes with MMOs for which the
SAOs are solely or partially due to spiraling along the unstable manifold Wu(p) of a
saddle-focus p. Analysis of this issue appears to be significantly more complicated than
that for folded nodes and has barely begun. We offer a few insights into locating these
parameter regimes. First, we think of ν in the normal form (3.7) of the singular Hopf
bifurcation as the “primary” bifurcation parameter and seek ranges of ν where MMOs
are found. If the Hopf bifurcation at ν = νH is supercritical, then, for parameters
close enough to the Hopf bifurcation, the limit set of Wu(p) is just the bifurcating
stable periodic orbit. The onset of MMOs is observed to occur at a distance ν = O(ε)
from the Hopf bifurcation due to a new type of bifurcation [87]. This bifurcation
occurs at parameters where p is a saddle-focus and Wu(p) is tangent to the two-
dimensional repelling Fenichel manifold Sr

ε . At first glance one might think that two
unstable objects in a dynamical system cannot intersect. However, recall that Wu(p)
consists of trajectories that approach p as t → −∞, while Sr

ε consists of forward
trajectories that remain slow for an O(1) time on the slow time scale. Consequently,
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在文本上注释
我们想描述一个MMOs的参数机制，这个MMOs的SAOs由于沿着鞍焦点p的不稳定流形Wu(p)螺旋运动而产生，并且是唯一的或者是其中的一部分。对这个问题的分析似乎比折结点的分析要复杂得多，而且是刚刚开始。我们提供了一些定位这些参数机制的见解。首先，我们将奇异Hopf分支的规范型（3.7）式中的ν作为主要的分支参数，并寻找ν的取值范围，在这个范围里可以找到MMOs。如果ν=νH处的Hopf分支是超临界的，那么对于足够接近Hopf分支的参数，Wu(p)的极限集就是分支稳定的周期轨线。由于一种新型的分支，观察到MMOs的起始点在距离Hopf分支ν=O(ε)处发生[87]。这种新型的分支发生在某个参数机制中，在该机制中p为鞍焦点且Wu(p)与二维排斥Fenichel流形Srε相切。如果不仔细观察，人们可能认为动态系统中的两个不稳定对象不能相交。然而，回想一下，Wu(p)由当t→−∞时接近p的轨线组成，而Srε由在慢时间尺度上保持O(1)量级时间慢速的前向轨线组成。因此，单轨线可能满足以上（两个情况）。图11展示了系统（3.7）在参数（ν，a，b，c，ε）=（0.007057，0.008870，-0.5045，1.17，0.01）时，Wu（p）和Srε之间的切线的一个例子（注意到，ν=O（ε），因此，νH非常接近-8.587×10_5）。其中展示了在Wu(p)(红色线)上从靠近p处开始并在截面Σ:={y=0.3}处结束的轨线集合，以及在临界流形的排斥分支上开始并在Σ上结束的Srε上的轨迹的集合；有关计算这些流形所使用的方法的细节，请参阅第8.1节。图11(b)展示了Wu(p)和Srε与Σ相交的两条曲线的的切线。
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Fig. 11 Tangency between the unstable manifold Wu(p) of the equilibrium and the repelling slow
manifold Sr

ε of (3.7) with (ν, a, b, c, ε) = (0.007057, 0.008870,−0.5045, 1.17, 0.01). Panel (a)
shows trajectories of Wu(p) (red) and Sr

ε (blue) that are terminated on the green cross-
section Σ defined by y = 0.3. The intersections Wu(p) ∩ Σ (with points on computed
trajectories marked “o”) and Sr

ε ∩Σ (with points on computed trajectories marked “x”) are
shown in panel (b).

it is possible for a single trajectory to satisfy the criteria to belong to both of these
objects. Figure 11 illustrates an example of a tangency betweenWu(p) and Sr

ε for (3.7)
with (ν, a, b, c, ε) = (0.007057, 0.008870,−0.5045, 1.17, 0.01) (note that ν = O(ε) and,
hence, is very close to νH ≈ −8.587 × 10−5). Shown are a collection of trajectories
on Wu(p) (red) that start close to p and end in the cross-section Σ := {y = 0.3},
together with a collection of trajectories on Sr

ε that start on the repelling sheet of
the critical manifold and also end in Σ; see section 8.1 for details of the method used
to compute these manifolds. Figure 11(b) shows the tangency of the two intersection
curves of Wu(p) and Sr

ε with Σ.
The number of SAOs that an MMO periodic orbit Γ makes along Wu(p) is de-

termined by how close Γ comes to p and by the ratio of real to imaginary parts of the
complex eigenvalues of p. The only way to approach p is along its stable manifold
W s(p), so an MMO like that displayed in Figure 9 must come very close to W s(p).
The minimum distance d between an MMO and W s(p) is analogous to the distance δ
of a trajectory from the primary strong canard in the case of folded nodes. Unlike for
the case of a folded node, the maximal amplitude of the SAOs observed near Wu(p)
is largely independent of d. What does change as d → 0 is that the epoch of SAOs
increases in length and begins with oscillations that are too small to be detectable.
There has been little investigation of how the parameters of the normal form (3.7)
influence d, but Figure 8 in Guckenheimer [87] illustrates that d depends upon the
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一个MMO的周期轨线Γ沿着Wu(p)形成的SAO的数目取决于Γ与p的距离有多近，以及p的复特征值的实部与虚部的比率。接近p的唯一方法是沿着其稳定流形Ws(p)，所以如图9所示的MMO必须非常接近Ws(p)。MMO和Ws(p)之间的最小距离d类似于在折结点的情况下轨线距主要强鸭解的距离δ。与折结点的情况不同，在Wu(p)附近观测到的SAO的最大振幅与d基本无关。当d → 0改变时，SAOs的周期长度增加，并且该周期从小到不能够检测到的振荡时就开始了。关于规范型（3.7）式的参数是如何影响d的相关研究很少，但是在Guckenheimer的论文[87]中的图8说明了d以复杂的方式依赖于参数c。已知存在一个参数区域，在这个区域内MMO轨线的全局回归接近Ws(p)。然而，由于在超临界Hopf分支附近没有立即发现MMOs，所以在MMO轨线上，复特征值的实部与虚部的比值仍然（被限制）远离0。这就防止出现极其长的瞬时的振荡，这些振荡像在次临界Hopf分支附近发现的振荡一样任意缓慢地增长；参见第5节以及[89，图5]。
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parameter c in a complex manner. It is known that there are parameter regions where
the global returns of MMO trajectories are close to W s(p). Nevertheless, since MMOs
are not found immediately adjacent to a supercritical Hopf bifurcation, the ratio of
real to imaginary parts of the complex eigenvalues remains bounded away from 0 on
MMO trajectories. This prevents the appearance of extraordinarily long transients
with oscillations that grow arbitrarily slowly like those found near a subcritical Hopf
bifurcation; see section 5 and also [89, Figure 5].

The singular Hopf and folded-node mechanisms for creating SAOs are not mu-
tually exclusive and can be present in a single MMO in the transition regime with
ν = O(ε1/2). The specific behavior that one finds depends in part on whether the
equilibrium p near the singular Hopf bifurcation is a saddle-focus with a pair of com-
plex eigenvalues or a saddle with two real eigenvalues. The MMO displayed in Fig-
ure 21 contains some SAOs that lie inside the rotational sectors between the attracting
and repelling slow manifolds and some SAOs that follow the unstable manifold of the
saddle-focus equilibrium. On the other hand, we note that SAOs cannot be associated
with a saddle equilibrium that has only real eigenvalues; this occurs in a parameter
region with ν > (a + c)ε1/2 (to leading order), but ν = O(ε1/2) here. Hence, in this
situation SAOs are solely associated with the folded-node-type mechanism described
for ν = O(1) (that is, µ = O(1)). Krupa and Wechselberger [144] analyzed the tran-
sition regime ν = O(ε1/2) and showed that the folded-node theory can be extended
into this parameter regime provided the global return mechanism projects into the
funnel region.

Slow-fast systems with a single fast variable, like the ones we have used to study
folded nodes and singular Hopf bifurcations, do not have fast oscillations. Their fast
subsystems are one-dimensional, and the trajectories of vector fields on the line are
constrained to be monotone. This means that LAOs in these systems are always
relaxation oscillations whose trajectories cross a critical manifold in order to change
their orientation along the fast direction. Models of MMOs with LAOs that do not
appear to be relaxation oscillations must, therefore, have at least two fast variables;
the oscillations of the BZ reaction displayed in Figure 1 are such an example. The
next section discusses systems with three time scales. Such systems can be viewed
as intermediate between the cases of one and two fast variables, and they do feature
“simple” MMOs with L > 1.

3.3. MMOs in Three-Time-Scale Systems. When the coefficients ν, a, b, and
c in the normal forms (3.5) and (3.7) of the singular Hopf bifurcation are of order
O(ε) or smaller, then z evolves slowly relative to y and the system actually has three
time scales: fast, slow, and superslow. Krupa, Popović, and Kopell [139] studied this
regime with geometric methods and asymptotic expansions for the case a = c = 0.
They observed MMOs for which the amplitudes of the SAOs remain relatively large.
Their analysis is based upon rescaling the system such that it has two fast variables
and one slow variable. To make the three-time-scale structure explicit, we set ν = εν̂,
a = εâ, b = εb̂, and c = εĉ. Rescaling the singular Hopf normal form (3.7) of
section 3.2 by x = ε1/2 x̄, y = ε ȳ, z = ε1/2 z̄, and t = ε1/2 t̄ yields

(3.8)


ẋ = y − x2 − ε1/2x3,
ẏ = z − x,

ż = ε(−ν̂ − ε1/2 â x− ε b̂ y − ε1/2 ĉ z),

which is still a singularly perturbed system, but now has two fast variables, x and
y, and a slow variable z. An equilibrium lies within an O(1)-size domain around the
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用于产生SAOs的奇异Hopf和折结点机制不是互斥的，并且这两种机制可以存在于具有ν =O(ε1/2)的过渡区域中的单个MMO中。所发现的具体行为部分取决于奇异Hopf分支附近的平衡点p是具有一对复特征值的鞍焦点还是具有两个实特征值的鞍点。图21中展示的MMO包含一些SAOs，它们位于吸引和排斥慢流形之间的旋转扇区内，并且一些SAOs位于鞍焦平衡点的不稳定流形上。另一方面，我们注意到，SAOs不能与只有实特征值的鞍平衡点相关联；这种情况发生在参数区域ν>（a+c）ε1/2里（按照前导顺序），此时ν =O（ε1/2）。因此，在这种情况下，SAOs仅与ν =O(1)(即，μ=O(1))的折结点类型机制相关联。Krupa和Wechselberger[144]对过渡区ν=O(ε1/2)进行了分析，并指出如果全局回归机制投影到漏斗区，则折结点理论可以推广到该参数区。具有单个快变量的慢-快系统，就像我们过去研究折结点和奇异Hopf分支那样，没有快速振荡。它们的快速子系统是一维的，直线上向量场的轨线被约束为单调的。这就意味着这些系统中的LAOs总是张弛振荡，这种振荡的轨线为了不沿着快速变量方向，而通过临界流形。因此，具有看起来不是张弛振荡的LAOs的MMOs的模型必须至少具有两个快速变量；图1中展示的BZ反应的振荡就是这样的例子。下一节讨论具有三个时间尺度的系统。这样的系统可以看作一个或两个快速变量之间的中间变量，并且它们确实具有L>1的“简单”MMO的特征。
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在三个时间尺度系统中的MMOs当奇异Hopf分支的规范型(3.5)式和(3.7)式的系数ν、a、b和c为O(ε)量级或更小时，则z相对于y变化缓慢，且系统实际上有三个时间尺度：快、慢和超慢。Krupa、Popovi_c和Kopell[139]用几何方法和当a=c=0情形的渐近展开的方法来研究了这个系统。他们观察到了SAOs的振幅相对较大的MMOs。他们的分析是基于伸缩系统，该具有两个快变量和一个慢变量。为了使三时间尺度结构显式化，我们设置ν=ε，a=εa，b=εb且c=εc。将3.2节中的奇异Hopf规范型（3.7）式重新用x=ε1/2 x，y=εy，z=ε1/2 z，t=ε1/2 t缩放，得到（3.8）式：
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系统（3.8）仍然是一个奇摄动系统，但是现在有两个快变量x和y和一个慢变量z。如果 ˆν=O(ε1/2)或更小，即 ν=O(ε3/2)或更小，则平衡点位于原点附近的O(1)邻域内。如果该平衡点是鞍焦点类型的，那么它在动力学中起着重要作用；尤其是，它经历 ˆν=O(ε)的Hopf分支，即 ν=O(ε2)。我们首先考虑z作为参数的系统(3.8)的二维层问题。它通过系统(3.9)而出的，该系统与对平面鸭解问题分析中所得到的系统完全相同，只是参数λ被z代替，与系统(2.7)相比较。系统（3.9）对于每个z值都具有唯一的平衡点p，且由（x，y）＝（z，z 2）所确定。在图12中的(a)、(b)和(c)中分别展示了系统(3.9)在(x,y)-平面中取三个不同z值的时的相图，即z=2、z=0.25和z=0。对于z>0，平衡点p是(x，y)-平面上的吸引不动点；在z>1时，它是结点，在0<z<1时，它是焦点；注意到，这个信息（z的取值范围）还决定了ˆν=O(ε1/2)到（前导阶）的系统(3.8)的平衡点类型，同样的参数也可以用来确定确定3.2节中鞍-焦平衡点的流域边界。平衡点p的流域边界是一条无界轨线，该轨线在图（a）和（b）中是以灰色表示。当z=0时，向量场（3.9）具有时间反转对称性，这导致存在周期轨线族。的确，函数是一个整体，水平曲线H=0是一条抛物线，它把围绕p（原点）的周期轨线与位于抛物线之下的无界轨线分开，并且在有限时间内，当x→±∞时，变成无界轨线。
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Fig. 12 Phase portraits of system (3.9) for three different values of z. Shown are several trajectories
(black) and one trajectory (gray) that approximates a separatrix. For each z, there is a
single equilibrium point p at (x, y) = (z, z2). Panels (a)–(c) are for z = 2, z = 0.25, and
z = 0, for which p is a stable node, a stable focus, and a center surrounded by a continuous
family of periodic orbits, respectively. The boundary of this family is the maximal canard.

origin if ν̂ = O(ε1/2) or smaller, i.e., ν = O(ε3/2) or smaller. This equilibrium plays an
important role in the dynamics if it is of saddle-focus type; in particular, it undergoes
a Hopf bifurcation for ν̂ = O(ε), i.e., ν = O(ε2).

We start the analysis by considering the two-dimensional layer problem of (3.8),
in which z acts as a parameter. It is given by

(3.9)


ẋ = y − x2,
ẏ = z − x,
ż = 0

and is exactly the same as the system obtained in the analysis of the planar canard
problem, where the parameter λ is replaced by z; compare with system (2.7). Sys-
tem (3.9) has a unique equilibrium p for each value of z, given by (x, y) = (z, z2).
Figure 12 shows phase portraits of (3.9) in the (x, y)-plane for three different values
of z, namely, z = 2, z = 0.25, and z = 0 in panels (a), (b), and (c), respectively.
For z > 0, the equilibrium p is an attracting fixed point in the (x, y)-plane; it is a
node for z > 1 and a focus for 0 < z < 1; note that this information also determines
the type of equilibrium of (3.8) obtained for ν̂ = O(ε1/2) to leading order—the same
argument can also be used to determine the basin boundary of the saddle-focus equi-
librium in section 3.2. The basin boundary of p is an unbounded trajectory that is
shown in gray in panels (a) and (b). When z = 0, the vector field (3.9) has a time-
reversing symmetry that induces the existence of a family of periodic orbits. Indeed,
the function

H(x, y) = exp(−2y) (y − x2 + 1/2)

is an integral of the motion and the level curve H = 0 is a parabola that separates
periodic orbits surrounding p (the origin) from unbounded orbits that lie below the
parabola and become unbounded with x → ±∞ in finite time.

When z remains small and is slowly varying compared to x and y, system (3.8)
can be viewed as a perturbation of (3.9). In this situation, changes in H can be used
to monitor the SAOs of trajectories. We demonstrate this with a numerical study
of MMOs in the (unscaled) singular Hopf normal form (3.7), where we focus on the
case a = c = 0 studied in [139]. We further fix b = −0.005 and ε = 0.01 and vary
the parameter ν. Then ż = −ν − by, which implies that z increases when y is large
but decreases when the system has SAOs and y is small. More precisely, we want
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当z保持较小的值且与x和y相比变化缓慢，系统（3.8）可以看作系统（3.9）的摄动。在这种情况下，H的变化可以用来监测轨线的SAOS。我们在（未缩放的）奇异Hopf规范型（3.7）中，用MMOs的研究数值来证明这一点，其中我们主要关注于在参考文献[139]中研究的a=c=0的情况。而且我们固定b＝0.005和ε＝0，并改变参数ν的值。然后我们得到 ˙z = −ν − by，这个式子表明当y变大时，z会增加，但是当系统产生SAO且y变小时，z会减小。的更准确地说，我们希望在产生SAOs时，z的平均值会增加，而在产生LAOs时，z的平均值会减少。z的变化应该足够大，以驱动轨线穿过慢流形并引起SAOs和LAOs之间的转换。图13(a)展示了一个周期性的伴有14模式的MMO，该振荡是在ν=0.00015时被发现的(它是O(ε2)量级的)。注意，对于该参数的选择，在平面y＝0.03上z＝0。在子图（a2）上，轨线在(z，y)平面上的投影表明，z大约是从-0.003713下降到-0.004143，而轨线产生了四个个SAOs，并且z在单个LAO期间增加了。注意到系统（3.7）还具有两个平衡点，它们的z坐标为±_/（bε），在这种情况下它们的z坐标等于±_3。然而，子图(a2)中所示的MMO模式只局限于原点附近(在z方向上)，所以这两个平衡点对动力学没有影响。当ν增加时，在z=0时的y值增加了，并且轨线倾向于更快地通过SAOs区域。图13（b）展示出了一个当V= 0.00032时而获得的周期性的91模式的MMO。这里的ν值接近于一个MMOs的范围的上端，在这个MMOs中，（a，b，c，ε）=（0，0.005，0，0.01）且z=0（当y=0.064时）。正如子(b2)中所展示的投影那样，z的平均值在每个LAO期间增加(|z|减少)，但是在它越过阈值进入SAOs区域之前会产生9个LAOs。另一方面，单个SAO会将轨线带回LAOs的区域。
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Fig. 13 Stable periodic MMOs of system (3.7) with (a, b, c, ε) = (0,−0.005, 0, 0.01). Row (a) shows
the periodic MMO with signature 14 for ν = 0.00015 as a time series of x in panel (a1) and
in projection onto the (z, y)-plane in panel (a2); similar projections are shown in row (b)
for ν = 0.00032, where the periodic MMO has signature 91.

the average value of z to increase during epochs of SAOs and decrease during epochs
of LAOs. The changes in z should be of sufficient magnitude to drive the trajectory
across the slow manifolds and trigger a transition between these epochs.

Figure 13(a) displays a periodic MMO with signature 14 found at ν = 0.00015
(which is of order O(ε2)). Note that, for this choice of parameters, ż = 0 on the
plane y = 0.03. The projection in panel (a2) of the orbit onto the (z, y)-plane shows
that z decreases approximately from −0.003713 to −0.004143, while the trajectory
makes four SAOs, and z increases during a single LAO. Note that system (3.7) also
possesses two equilibria with z-coordinates given by ±√−ν/(b ε), which equals ±√

3
in this case. However, the MMO signature shown in panel (a2) is confined to the area
near the origin (in the z-direction), so these two equilibria have no influence on the
dynamics.

As ν increases, the value of y for which ż = 0 increases, and trajectories have a
propensity to pass more quickly through the region of SAOs. Figure 13(b) shows a
periodic MMO with signature 91 obtained for ν = 0.00032. This value of ν lies close
to the upper end of the range in which MMOs seem to exist for the chosen values
of (a, b, c, ε) = (0,−0.005, 0, 0.01), and ż = 0 when y = 0.064. As the projection
in panel (b2) illustrates, the average value of z increases (|z| decreases) during each
LAO, but it takes nine LAOs before it crosses the threshold into the region of SAOs.
On the other hand, a single SAO takes the trajectory back to the region of LAOs.
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Fig. 14 Return map of system (3.7) with (ν, a, b, c, ε) = (0.0003, 0,−0.005, 0, 0.01) to the section
x = 0. Panel (a) shows that the return is almost one dimensional along a line that is
approximately given by y = 0.1153 z−0.004626. The z-coordinates of the returns for initial
conditions along this line with z ∈ [−0.0043,−0.004] are plotted versus their initial z-values
in panel (b).

For intermediate values of ν ∈ (0.00015, 0.00032), the system displays aperiodic
MMOs as well as periodic MMOs with a variety of signatures. These signatures can
be analyzed via an approximately one-dimensional return map to a cross-section at
x = 0. Returns to this cross-section with x decreasing appear to lie along a thin strip;
this is illustrated in Figure 14(a) for ν = 0.0003, for which the system appears to have
aperiodic MMOs. The thin strip in Figure 14(a) is approximately given by the line
y = 0.1153 z−0.004626 (and x = 0). If we take 600 initial conditions on this line with
z ∈ [−0.0043,−0.004], then their next returns to the cross-section fall onto two seg-
ments that are close to the initial line and within the segment z ∈ [−0.0043,−0.004].
Figure 14(b) graphs these returns, showing the z-coordinates z out of returns of the
600 initial conditions versus their initial z-coordinates z in; the diagonal z out = z in is
also pictured. This figure suggests that the return map near the line segment can be
approximated by a rank-one map with two segments of slopes close to one, separated
by a steep segment for initial values z in ≈ −0.004055. The return map increases z
on the left “branch” of this map and decreases z on the right branch. This is the
behavior described above, since larger values of z correspond to SAOs and smaller
values to LAOs. Trajectories that do not hit the steep section of the map go back and
forth repeatedly between the two branches. As ν varies, the “shape” of the return
map remains qualitatively the same: the two branches still have slopes close to one,
but their offset from the diagonal varies. Approximately for ν < 0.00013, the image of
the right branch, representing SAOs, maps to itself, while for ν > 0.00034, the image
of the left branch maps to itself, and the system only has a large periodic relaxation
oscillation with no SAOs. In the range of ν where MMOs do exist, kneading theory for
one-dimensional maps [41] can be applied to the numerically generated return maps
to predict the signatures of the MMOs.

Further insight into the steep segment of the return map at z = z in ≈ −0.004055
comes from computing intersections of the attracting and repelling slow manifolds.
We computed forward trajectories from initial conditions on the attracting sheet (with
x < − 2

3 ) and backward trajectories from initial conditions on the repelling sheet of
the critical manifold to their intersection with the cross-section {x = 0}. Since the
trajectories quickly converge to the attracting and repelling slow manifolds, their
intersections with {x = 0} give a good approximation of the intersection curves of
the slow manifolds with {x = 0}. These two intersection curves have one point in
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在文本上注释
对于 ν∈（0.00015，0.00032）的中间值，系统显示具有各种模式的非周期MMOs以及周期MMOs。这些模式可以通过到x＝0的截面的近似一维（回归图）来分析。返回到这个截面，随着x的减小，它会与一条薄带重合；这种情况如图14(a)所示，此时ν=0.0003，系统应该会产生非周期性的MMOs。图14(a)中的薄带近似可由y=0.1153z-0.004626(此时x=0)拟合。如果我们在z∈[0.0043，0.004]时，在这条线上取600个初始条件，则它们返回横截面的下一个值落到两个段上，这两个段接近于初始线并且z∈〔0.0043，0.004〕。图14(b)描绘了这些返回，显示了600个初始条件的回归中的z坐标zout与其初始z坐标zin；还显示了对角线zout=zin。图14(b)表明，线段附近的回归图可以通过（秩一图）来近似，在这个秩一图中具有两个斜率接近于一的线段，且被初始值zin≈-0.004055的陡峭段分开。回归图在该图的左“分支”上z值会随之增加，而在右分支上z值会随之减少。这在上述的情况中，因为较大的z值对应于SAOs，而较小的值对应于LAOs。没有碰到图陡峭部分的轨线会在两个分支之间来回重复。当ν变化时，回归图的“形状”在性质上保持相同：两个分支仍然具有接近于一的斜率，但是它们与对角线的偏移不同。大约当ν<0.00013时，代表SAOs的右分支图像映射到自己，而当ν>0.00034时，左分支图像映射到自己，且系统只有大周期的且无SAOS的张弛振荡。在存在MMOs的ν取值范围内，一维映射[41]的捏合（kneading）理论可以应用于由数值生成的回归映射，以预测MMOs的模式。进一步深入了解z=zin-0.004055处的回归图的陡峭段来自于对吸引和排斥慢流形的交点处的计算。我们从在吸引分支上的初始条件(x<23)计算正向轨线，从临界流形的排斥分支上的初始条件计算反向轨线，直到它们与截面{x=0}相交。因为轨线快速收敛到吸引慢流形和排斥慢流形，它们与{x=0}的交点给出了慢流形曲线与{x=0}的交点的良好近似。这两条相交曲线的交点大约是(y，z)=(0.0050941，0.0040564)。因此，这一点位于产生图14（b）所示的陡峭段的区域内。根据定义，吸引和排斥慢流形的交集是最大的鸭解。在排斥流形一侧的截面{x=0}的初始条件产生了SAOs，而另一侧的轨线产生快速跳转到吸引慢流形的另一侧(x>0)。因此，我们已经从数值上证实了鸭轨线将图14(b)所示的回归图的两个分支分开；与图7(a)进行了比较，图7(a)说明了在折结点附近计算的一维回归图有几个陡峭部分，这些部分对应着主要强鸭解和问题的最大次要鸭解。
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common, which is approximately (y, z) = (−0.0050941,−0.0040564). Hence, this
point lies in the region that gives rise to the steep segment shown in Figure 14(b).
By definition, the intersection of the attracting and repelling slow manifolds is a
maximal canard. Initial conditions on the cross-section {x = 0} to one side of the
repelling manifold result in SAOs, while trajectories on the other side result in fast
jumps to the other sheet of the attracting slow manifold (with x > 0). Thus, we have
confirmed numerically that canard orbits separate the two branches of the return map
displayed in Figure 14(b); compare also with Figure 7(a), which illustrates that the
one-dimensional return map calculated near a folded node has several steep sections
that correspond to the primary strong canard and the maximal secondary canards of
the problem.

3.4. MMOs Due to the Tourbillon Mechanism of a Dynamic Hopf Bifurca-
tion. Recall from section 3.3 that the abrupt transitions between SAOs and LAOs
in system (3.8) are a consequence of the three-time-scale structure, which allows us
to view the system as having two fast variables and only one slow variable. Such
a system with two or more fast variables may have a Hopf bifurcation in the layer
equations. We now consider this situation, and assume that a pair of complex eigen-
values of the layer equations cross the imaginary axis as one follows a trajectory of the
reduced system. Due to the complex eigenvalues in the fast directions, trajectories
spiral around the slow manifold, which gives rise to oscillations. The amplitude of
such an oscillation initially decreases (while the real part of the complex eigenvalues is
negative) and then increase again (after the real part becomes positive). We refer to
this situation as a dynamic Hopf bifurcation. Our primary goal is to determine when
MMOs have SAOs that are associated with a dynamic Hopf bifurcation. Note that,
unlike in systems with a single fast variable, this type of SAO is associated neither
with a folded singularity of the critical manifold nor with a (singular) Hopf bifurcation
of the system for ε > 0.

A well-known example of a dynamic Hopf bifurcation is the phenomenon of de-
layed Hopf bifurcation. For simplicity, we discuss it here for a system with one slow
and two fast variables, the lowest dimensions possible. Consider a segment L on the
one-dimensional critical manifold S along which the layer equations undergo a Hopf
bifurcation. That means that the linearization of the layer equations along L has a
pair of complex eigenvalues α± iβ that cross the imaginary axis transversally. In the
case of a supercritical Hopf bifurcation, a one-parameter family of attracting periodic
orbits of the layer equations, parameterized by the slow variable, emanates from the
point L0 ∈ L where α = 0. If a trajectory u(t) of the full system comes close to L
near a point Lu ∈ L that lies at a distance δ = |Lu − L0| = O(1) from L0, then u(t)
will come exponentially close to L on the slow time scale. The layer equations un-
dergo a Hopf bifurcation, but, in analytic systems, u(t) remains close to L for an O(1)
distance after the Hopf bifurcation has occurred [169]. This delay happens because it
takes an O(1) time for u(t) to be repelled away from L. In particular, u(t) does not
immediately follow the periodic orbits of the layer equations emanating from L0. The
slow-fast analysis identifies a definite “jump” point (called a buffer point) at which
u(t) leaves L and approaches the periodic orbits, if it has not done so earlier. There
are SAOs along L in a delayed Hopf bifurcation, but they are exponentially small
near L0 and the jump from L to the periodic orbits may occur within a single period
of the SAOs. Thus, SAOs near a delayed Hopf bifurcation are typically so small that
they are unobservable in practical examples. This situation is reminiscent of MMOs
associated with folded nodes with δ = O(1). More specifically, Theorem 3.2 predicts
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在文本上注释
动力学Hopf分支的回旋机制产生的MMOs。回顾3.3节，系统（3.8）中的SAOs与LAOs之间的突然（不连贯）过渡是三时间尺度结构作用的结果，这样的结构允许我们把系统看成具有两个快变量和仅有一个慢变量，这种具有两个或更多个快变量的系统可能在边界层方程中具有Hopf分支。现在我们考虑这种情况，并假设边界层方程的一对复特征值沿着约化系统的轨线穿过虚轴。由于在快变量方向上的复特征值，在慢流形周围的轨线会产生振荡。这种振荡的幅度最初会减小(次是复特征值的实部是负的)，然后再次增加(在实部变为正之后)。我们把情况称为动力学Hopf分支。我们的主要目标是确定MMOs何时具有与动力学Hopf分支相关联的SAOs。注意到与具有单个快变量的系统不同，这种类型的SAO既不与临界流形的折奇异性相关，也不与ε>0的系统的（奇异）Hopf分支相关。一个著名的动力学Hopf分支的例子是时滞Hopf分支现象。为了简单起见，我们在这里讨论一个具有一个慢变量和两个快变量的系统，这可能是最低维数的情况了。考虑一维临界流形S上边界层方程发生Hopf分支的L段。这意味着边界层方程沿L的线性化具有一对横跨虚轴的复特征值α±iβ。在超临界Hopf分支的情形下，由慢变量参数化的边界层方程吸引周期轨线的单参数族从点L0∈L开始产生，其中α=0。如果整个系统的轨迹线u(t)接近L，该L段靠近距离L0的距离为δ=|.L0|=O(1)的点Lu∈L，则u(t)将在慢时间尺度上以指数方式接近L。边界层方程经历Hopf分支，但在分析系统中，在Hopf分支发生后，u(t)在O(1)距离上保持接近L[169]。发生这种延迟是因为u(t)从L被排斥需要O(1)时间，特别是u(t)不会立即跟随从L0开始产生的边界层方程的周期轨线。慢速分析确定了一个确定的“跳跃”点（称为缓冲点），在该点u（t）离开L并接近周期性轨线，如果u（t）没有更早地离开L并接近周期轨道。在时滞Hopf分支中沿L有SAOs，但在L0附近它们以指数方式变小，且从L到周期轨线的跳跃可能在SAOs的单个周期内发生。因此，时滞Hopf分支附近的SAOs通常非常小，以至于在实例中无法观察到。这种情况让我们联想到与δ＝O（1）折结点相关的MMOS。更具体地说，定理3.2预测了最大1k+1模式MMO特，但是由于在Sa，ε上（**）向主要弱鸭解γw强收缩，实际上只观察到最后的旋转，可以参见图7(b4)。
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maximal 1k+1 MMO signatures but, due to strong contraction toward the primary
weak canard γw on Sa,ε, only the final rotation is actually observed; see Figure 7(b4).

In a number of examples, such as those in sections 6 and 7, one actually ob-
serves MMOs with SAOs near a dynamic Hopf bifurcation whose amplitudes remain
observably large. We adopt the term tourbillon from Wallet [235] to describe the
trajectories passing through a dynamic Hopf bifurcation with oscillations whose am-
plitude remains above an observable threshold. We discuss the tourbillon and how it
gives rise to MMOs also in systems with one slow and two fast variables. Consider
the model system

(3.10)


ẋ = −y + z x,
ẏ = x+ z y,
ż = ε

that is obtained by linearization of the layer equations for a dynamic Hopf bifurcation.
This equation is separable in polar coordinates, yielding ṙ = ε t r for trajectories
that have initial conditions in the plane {z = 0}. Hence, the general solution is
r(t) = r(0) exp(ε t2/2), which means that the amplitude of a solution decreases for

z < 0 and then increases for z > 0. We conclude that r(1/
√

ε)
r(0) = exp(1

2 ) and that

the oscillations have almost constant amplitude over a time interval of 1/
√
ε. If the

r-coordinate of a trajectory decreases to r = 1 at a value of z that is O(
√
ε), then the

minimum amplitude of the oscillations associated with the dynamic Hopf bifurcation
will still be observable. The amplitudes of these oscillations and the coupling of ε with
the distance of approach to the dynamic Hopf point characterize the tourbillon regime
and distinguish it from a delayed Hopf bifurcation. When ε is fixed in a system, the
distinction between a delayed Hopf point and a tourbillon becomes blurred, but it is
clear in many examples.

System (3.10) describes SAOs with distinctly nonzero amplitudes locally near the
point where the dynamic Hopf bifurcation occurs in the layer equations. However,
it does not account for characteristic abrupt transitions at the beginning and end
of an SAO epoch within an MMO, such as those in sections 6 and 7, because these
transitions depend upon mechanisms that are not part of the local analysis of system
(3.10). There is as yet no comprehensive study of possible geometric mechanisms
that determine the sudden start and the end of a section of SAOs arising from a
tourbillon. This paper largely avoids this issue and concentrates on local mechanisms
for generating the SAOs of MMOs. Nevertheless, the following example illustrates
one mechanism for an abrupt jump away from SAOs of a tourbillon. Consider a
“dynamic” section through the unfolding of the codimension-two Bogdanov–Takens
bifurcation [90], defined as

(3.11)


ẋ = y,
ẏ = λ+ z y − x2 − x y,
ż = ε.

As before, we regard z as a slowly varying parameter. For λ > 0 and ε = 0, the system
has two straight lines of equilibria defined by x = ±√

λ and y = 0. A supercritical Hopf
bifurcation occurs along the line of equilibria with x > 0. The family of periodic orbits
born at this bifurcation terminates at a homoclinic orbit. Moreover, there is always a
bounded region of the (x, y)-plane in which oscillations around the equilibrium occur;
this is the tourbillon region. The line of (saddle) equilibria with x < 0 of the layer
equations perturbs to a Fenichel manifold of saddle type and its stable and unstable
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在文本上注释
在许多示例中，例如在第6和7节中的那些示例中，实际上可以在动力学Hopf分支附近观察具有SAOs的MMOs，该动力学Hopf分支的振幅比较大，易于被观察到。我们采用沃利特（Wallet）在参考文献[235]中使用的术语“回旋”来描述通过具有振荡的动力学Hopf分支的轨线，振荡的幅度保持在可观测阈值。我们讨论了在一个慢变量和两个快变量的系统中，回旋以及它是如何产生MMOs的。考虑动力学Hopf分支的边界层方程线性化得到的模型系统(3.10)，该方程在极坐标下是可分的，对于平面{z=0}中具有初始条件的轨线满足r=εtr。因此，一般解是r(t)=r(0)exp(εt 2/2)，这意味着解的振幅在z<0时减小，而在z>0时增大。我们得出结论，r(1/ε)r(0)=exp(12)，并且振荡在1/ε的时间间隔内几乎具有恒定的振幅。如果轨线的r坐标在z值为O(ε)时减小到r=1，则与动力学Hopf分支相关的振荡的最小振幅仍可被观测到。这些振荡的振幅和ε与接近动力学Hopf点的距离的耦合表征了回旋状态并将其与时滞Hopf分支区分开来。当ε在系统中固定时，时滞Hopf点和回旋之间的区别变得模糊，但是在许多例子中还是很清晰的。
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系统（3.10）描述了SAOs，在边界层方程中发生动力学Hopf分支的点附近具有非常明显的非零振幅。然而，它不能解释MMOs中在产生SAO期间开端时和结束时的特征性突变，例如第6和7节中的突变，因为这些突变依赖于不属于系统(3.10)局部分析的机制。目前还没有全面研究确定由回旋产生的SAOs的突然开始和结束可能的几何机制。本文没有讨论这个问题，而是重点研究了生成MMOs的SAOs的局部机制。尽管如此，下面的示例说明了一种突然跳离回旋的SAOs的机制。考虑通过展开余维2的Bogdanov–Takens分支[90]的“动力学”部分，定义系统(3.11)。如前面一样，我们把z看作是一个缓慢变化的参数。当λ>0且ε=0时，系统有两条平衡直线，由x=±λ和y=0所定义。一个超临界Hopf分支沿平衡线X＞0的部分出现。在该分支中产生的周期轨线族终止于同宿轨线。而且(x，y)平面上总是存在一个有界区域，在该区域内围绕平衡点发生振荡，这就是回旋区域。边界层方程在x<0时的(鞍)平衡线扰动到鞍型费尼切尔（Feniche）流形，在这个例子中它的稳定流形和不稳定流形引导入口和出口到回旋处。正如我们所见到的那样，振荡的数目及其最小振幅由初始条件和ε的大小决定。这在图15中用λ=0.1的系统(3.11)的轨线和ε的不同值加以说明了，所有这些都从位于回旋区域之外的初始条件(x，y，z)=(1，0.8，0.12)开始。注意到x和y是O(1)量级的，所以一个回旋产生的条件是|z|是_ε阶的。在图15(a)中，当ε=0.006时，我们没有发现回旋的产生，但是观察到衰减很快、在一段时间内非常小的振荡，然后在轨线跳离之前再次快速增长。另一方面，在子图(b)中，当ε=0.012时，振荡先衰减然后逐渐增大，并且它们始终保持可观测的大小。我们得出结论，ε刚好足够大，足以描述一个回旋区域，在跳跃发生之前通过它可产生七个SAOs。对于更大的ε值，相同的初始条件会产生几乎保持恒定振幅的振荡；这种情况可以参见图15(c)中，其中ε=0.02。注意到由于在边界层系统中通过Hopf分支附近区域的较快的移动，所以我们现在在轨线跳开之前只发现三个SAOs。有趣的是，把与回旋相关的SAOs与那些发生在折结点附近或奇异Hopf分支附近的SAOs相比较。这两种SAOs的第一个区别是，对于回旋来说，振荡周期是O(ε)(慢时间)，而对于其他两种情况，振荡周期是O(ε)。其次，一个回旋的最小振幅和SAOs的数目是由奇异摄动参数和到时滞Hopf分支点的全局回归距离决定。对于折结点，特征值的比值μ和全局回归到强鸭解的距离δ决定了SAOs的最小振幅和最小数目，而对于奇异Hopf分支，SAO的这些性质仅由全局回归到鞍焦平衡点的稳定流形的距离决定。最后，对于一个回旋来说，SAOs的终止取决于全局机制或SAOs的振幅的某些（给定）定义的阈值。没有区分与折结点相关联的终止机制，但平衡点的不稳定流形与排斥慢流形的交点通常限制了奇异Hopf分支附近的SAOs的振幅。
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Fig. 15 Time series of the x-coordinate of a trajectory of (3.11) with initial point (x, y, z) =
(−1, 0.8,−0.12). Panels (a)–(c) are for λ = 0.1 and for ε = 0.006, ε = 0.012, and ε = 0.02,
respectively.

manifolds guide the entrance and exit to the tourbillon in this example. As we have
seen, the number of oscillations and their minimum amplitude is determined by the
magnitude both of the initial condition and of ε. This is illustrated in Figure 15 with
trajectories of system (3.11) for λ = 0.1 and different values of ε, all starting from
the initial condition (x, y, z) = (−1, 0.8,−0.12) that lies outside the tourbillon region.
Note that x and y are O(1) quantities, and so the condition for a tourbillon is that |z|
is of order

√
ε. In Figure 15(a) for ε = 0.006 we do not find a tourbillon but observe

oscillations that decay rapidly, are very small for a while, and then grow rapidly again
before the trajectory jumps away. In panel (b) for ε = 0.012, on the other hand, the
oscillations decay and then grow more gradually and they remain of observable size
throughout. We conclude that ε is now just about large enough to speak of a tourbillon
region, passage through which results in seven SAOs before the jump occurs. For even
larger values of ε the same initial condition results in oscillations that maintain an
almost constant amplitude; see Figure 15(c) for ε = 0.02. Observe that, owing to the
faster drift through the region near the Hopf bifurcation in the layer system, we now
find only three SAOs before the trajectory jumps away.

It is interesting to compare the SAOs associated with a tourbillon with those
occurring near a folded node or near a singular Hopf bifurcation. The first difference
between these types of SAOs is that the period of the oscillations is O(ε) (slow time)
for the tourbillon, while it is O(

√
ε) for the other two cases. Second, the minimum

amplitude and the number of SAOs for a tourbillon are governed by the singular
perturbation parameter and the distance of the global return to the delayed Hopf
bifurcation point. For the folded node, the eigenvalue ratio µ and the distance δ of
the global return to the strong canard determine the minimum amplitude and num-
ber of the SAOs, while for the singular Hopf bifurcation these properties of the SAO
are determined only by the distance of the global return to the stable manifold of
the saddle-focus equilibrium. Finally, the termination of the SAOs for a tourbillon
depends upon either a global mechanism or some defined threshold for the ampli-
tude of SAOs. There is no distinguished termination mechanism associated with a
folded node, but the intersections of the unstable manifold of the equilibrium and the
repelling slow manifold typically limit the amplitude of SAOs near a singular Hopf
bifurcation.

3.5. Summary of Local Mechanisms for SAOs. We now summarize the main
results of this review section on the local mechanisms that give rise to MMOs. For
systems with a single fast variable, the local mechanisms responsible for SAOs must

Administrator
在文本上注释
SAOS局部机制概述现在，我们总结一下本节关于产生MMOs的局部机制的主要结果。对于具有单个快变量的系统，支持产生SAOs的局部机制必须涉及两个时间尺度的混合。我们对在折结点和折鞍点附近产生MMOs的区域进行划分:1、折结点：如果参数满足适当的量级条件（ν=O（1）），使得整个系统的平衡点不在折结点附近，那么应用3.1节的理论，SAOs是由于慢流形的扭曲而产生的。2、奇异Hopf：正如3.2节所介绍的那样，在奇异Hopf分支(ν=O(ε))附近的动力学趋向于相当复杂状态。当轨线遵循鞍焦点的不稳定流形时，就会SAOS。3、过渡区：折结点区和奇异Hopf区被中间值为ν=O(ε)的过渡区分开。参考文献[144]对折结点理论进行了推广，可以发现在参考文献[144]中的参数μ不仅表示特征值之比，而且还可以用于描述爆破（blown-up）系统中平衡点到折结点的距离。在这种过渡区域中，SAOs可以穿过折结点的旋转扇区，也可以沿着鞍焦平衡点的不稳定流形螺旋离开。在具有至少两个快变量的系统中，回旋提供了生成SAOs的不同的局部机制。这里，边界层方程具有复特征值，且SAOs与系统的快速方向一致。目前，把回旋作为MMOs生成机制的相关系统性研究较少，理论上研究也不够完善。最后，具有三个时间尺度的三维系统可以展示本节所讨论的所有机制。换言之，一个三时间尺度系统可以被认为是具有两个慢变量，在这种情况下，可以找到折结点和奇异Hopf机制，或者，作为备选方案，可以认为具有两个快变量，这允许发生回旋。下面的四个部分是说明的在不同的局部机制产生MMOs的案例研究：•在第4节中，Koper模型是一个三维慢系统，其中具有折结点和超临界奇异Hopf分支。•在第5节中，三维约化Hodgkin-Huxley模型也具有折结点，但还具有亚临界奇异Hopf分支。●在第6节中，peroxidase-oxidase反应（PO反应）的四维Olsen模型显示与回旋有关的MMOs。•在第7节中，Showalter-Noyes-Bar-Eli模型是一个展示MMOs的七维系统。组织产生这些MMOs的全局机制是未知的，但我们在这里可以明确的是，MMOs中的SAOs是由于一个回旋。
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involve a mixture of the two time scales. We distinguish three regions near folded
nodes and folded saddle-nodes that yield MMOs:

1. Folded Nodes: If the parameters satisfy suitable order conditions (ν = O(1))
so that no equilibrium of the full system is near the folded node, then the
theory of section 3.1 applies and SAOs are due to the twisting of slow mani-
folds.

2. Singular Hopf: As is shown in the section 3.2, the dynamics near a singular
Hopf bifurcation (ν = O(ε)) tends to be quite complicated. SAOs occur when
the trajectory follows the unstable manifold of a saddle-focus .

3. Transition Regime: The folded-node and singular Hopf regimes are separated
by a transition regime with intermediate values of ν = O(

√
ε). Extensions of

the folded-node theory have been developed in [144]; note that the parameter
µ in [144] not only represents the eigenvalue ratio, but also describes the
distance of the equilibrium to the folded node in a blown-up system. In this
transition regime, it is possible for the SAOs to pass through the rotational
sectors of the folded node as well as spiral along the unstable manifold of the
saddle-focus equilibrium.

In systems with at least two fast variables the tourbillon provides a different local
mechanism that generates SAOs. Here, the layer equations have complex eigenvalues
and the SAOs are aligned with the fast directions of the system. Little systematic
study of the tourbillon as a mechanism that generates MMOs has been carried out,
and the theory remains fragmentary.

Finally, three-dimensional systems with three time scales can exhibit all of the
mechanisms discussed in this section. In other words, a three-time-scale system may
be considered as having two slow variables, in which case the folded-node and singular
Hopf mechanisms may be found, or, alternatively, as having two fast variables, which
allows for the possibility of a tourbillon.

The following sections are case studies that illustrate these different local mech-
anisms for MMOs:

• The Koper model in section 4 is a three-dimensional slow-fast system with a
folded node and a supercritical singular Hopf bifurcation.

• The three-dimensional reduced Hodgkin–Huxley model in section 5 also fea-
tures a folded node, but has a subcritical singular Hopf bifurcation.

• The four-dimensional Olsen model of the peroxidase-oxidase reaction in sec-
tion 6 displays MMOs associated with a tourbillon.

• The Showalter–Noyes–Bar-Eli model in section 7 is a seven-dimensional sys-
tem that exhibits MMOs. The global mechanism that organizes these MMOs
is unknown, but we show here that their SAOs are due to a tourbillon.

4. MMOs in the Koper Model of Chemical Reactors. Our first case study is a
system introduced by Koper [123]. We use it to illustrate how MMOs arise near a
folded node and near a (supercritical) singular Hopf bifurcation in a specific model
equation. The equations of the Koper model are

(4.1)


ε1 ẋ = k y − x3 + 3 x− λ,

ẏ = x− 2 y + z,
ż = ε2 (y − z),

where λ and k are parameters. Koper studied this three-dimensional idealized model
of chemical reactions with MMOs. While this example is well known, we revisit its
analysis and enhance it by using the recently developed theory outlined in the pre-
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vious sections. When ε1 and ε2 are both small, system (4.1) has three time scales;
when only ε1 is small, it is a slow-fast system with two slow variables y and z and
one fast variable x. We note that a two-dimensional variant of (4.1) was first studied
by Boissonade and De Kepper [26] in their efforts to understand bistability and os-
cillations of chemical systems. The first analysis of MMOs in the three-dimensional
extended model was carried out by Koper, who explained the MMOs by invoking the
presence of a Shil′nikov homoclinic bifurcation.

As mentioned in section 3.2, the Koper model (4.1) is a rescaled subfamily of the
cubic normal form (3.7) for the singular Hopf bifurcation. To see this, replace (x, y, z)
in system (4.1) by (u, v, w) and consider the affine coordinate change

x =
u− 1

3
, y =

k v − λ+ 2

27
, z =

2 v − w − 1

3
.

Now also scale time by the factor −k
9 , where we assume that k < 0. Then (4.1)

becomes (3.7) with ε = −k ε1/81, a = 18/k, b = 81 ε2/k
2, c = −9 (ε2 + 2)/k, and

ν = (3 ε2 λ− 6 ε2 − 3 k ε2)/k
2. Note that the coefficients of the normal form satisfy

2 b− a c+ a2 = 0,

which means that the Koper model (4.1) is only equivalent to a subfamily of the
singular Hopf normal form (3.7). However, (4.1) still has a folded node and a singular
Hopf bifurcation in certain parameter regimes.

Let us first analyze the parameter regimes where SAOs are organized by a folded
node. To this end, we work with both system (4.1) and the equivalent system

(4.2)


ε1 ẋ = y − x3 + 3 x,

ẏ = k x− 2 (y + λ) + z,
ż = ε2 (λ+ y − z),

which we refer to as the symmetric Koper model, because it has the symmetry

(4.3) (x, y, z, λ, k, τ) → (−x,−y,−z,−λ, k, τ).
System (4.2) is obtained by replacing (x, y, z) in system (4.1) by (u, v, w) and applying
the coordinate change x = u, y = k v − λ, and z = k w. We focus our analysis on the
case ε2 = 1 and consider (4.2) as a system with two slow variables. Observe that the
critical manifold of (4.2),

S = {(x, y, z) ∈ R
3 | y = x3 − 3 x =: c(x)},

does not depend on k and λ. This cubic-shaped critical manifold S has two fold curves
F± = {(x, y, z) ∈ R

3 | x = ±1, y = ∓2}, which gives the decomposition

S = Sa,− ∪ F− ∪ Sr ∪ F+ ∪ Sa,+,

where Sa,− = S ∩ {x < −1}, Sr = S ∩ {−1 < x < 1}, and Sa,+ = S ∩ {1 < x} are
normally hyperbolic. Note that Sa,± are attracting and Sr is repelling. To derive
the desingularized slow flow on S we consider the algebraic equation 0 = y − c(x),
obtained by setting ε1 = 0 in (4.2), and differentiate implicitly with respect to τ .
Then the time rescaling τ �→ τ(3 x2 − 3) gives

(4.4)

{
ẋ = k x− 2 (c(x) + λ) + z,
ż = (3 x2 − 3) (λ+ c(x) − z).
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Fig. 16 The “singular” bifurcation diagram in the (k, λ)-plane of the desingularized slow flow (4.4).
Shown are the folded saddle-node of type II (straight lines), the transition from a folded node
to a folded focus (parabolas), and the curve indicating where the candidate trajectory from
the folded node returns with δ = 0 (gray curve, obtained numerically), which is not shown
in panel (b). Panel (a) gives a global view and panel (b) is an enlargement of the region
near the right intersection point of the two parabolic curves. The types of folded equilibria
in each parameter region are indicated as follows: f = folded focus, n = folded node, and
s = folded saddle. The subscripts indicate whether the equilibrium lies on F+ or F−. The
superscripts a, r, and sa stand for attractor, repeller, and saddle, respectively.

The desingularization reverses the direction of time on the repelling part Sr of S. We
find folded singularities as equilibria of (4.4) that lie on the fold lines F±. The only
equilibrium on F+ is (x, z) = (1, 2λ − 4 − k), with y = −2, and the only one on F−
is (x, z) = (−1, 2λ+ 4 + k), with y = 2. The associated Jacobian matrices are

(4.5) A± =

(
k 1

6 (2 + k ∓ λ) 0

)
.

By classifying the folded singularities according to their type and stability, we
obtain a “singular” bifurcation diagram; we then use results from section 3 to identify
possible MMO regions. Figure 16 shows this singular bifurcation diagram in (k, λ)-
space, where we use the notation eh

± to indicate the type e and stability h of the
folded singularities; e is f , n, or s for focus, node, or saddle, and h is a, r, or
sa for attractor, repeller, or saddle, respectively. The different parameter regions
are divided by three types of curves. Folded saddle-nodes of type II occur when
det(A±) = 0 ⇔ λ = ±(k+2). The eigenvalues change from real to complex conjugate
along the parabolic curves tr(A±)

2 − 4 det(A±) = k2 + 24 (k ∓ λ) + 48 = 0. The
vertical line tr(A±) = k = 0 is the locus where the real part of a complex eigenvalue
changes sign. The enlargement in panel (b) resolves the region near (k, λ) = (−2, 0).

MMOs are likely to exist in the regions where system (4.2) has a folded node,
provided the global return mechanism brings orbits back into the associated funnel
region. Recall from section 3.1 the construction of a candidate periodic orbit Γc

that consists of a segment on Sa ending at the folded node, followed by a fast fiber
of the layer problem and a global return mechanism. Figure 17(a1) illustrates this
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Fig. 17 The candidate periodic orbit Γc of the folded node na+ of (4.2) with (ε1, ε2, λ, k) =
(0, 1,−7,−10) returns at a distance δ from the strong singular canard γ̃s. Panel (a1)
shows all of Γc and panel (a2) an enlargement near na+ to illustrate the definition of δ.
Panel (b) shows δ as a function of λ, with all other parameters fixed. The distance δ only
has meaning for δ > 0 and for values of λ larger than its value at the folded saddle-node of
type II at λ = −8.

construction for a candidate periodic orbit passing through na
+, where we used k =

−10 and λ = −7; this is a computational example of the sketch shown in Figure 8.
Starting at na

+, the candidate Γc jumps to Sa,−, which is followed by a slow segment
until Γc reaches F−. After another jump Γc returns inside the singular funnel, as
shown in Figure 17(a2), and we measure the distance δ to the strong singular canard
γ̃s. This distance δ depends on the parameters; for example, δ varies as a function
of λ with k = −10 fixed in Figure 17(b). Note that δ < 0 means that Γc no longer
returns to the singular funnel; as long as δ > 0 the candidate Γc gives rise to periodic
MMOs as ε1 > 0. Hence, the curve in the (k, λ)-plane along which δ = 0 marks
the start of the MMO regime. Figure 16(a) shows the locus of δ = 0 as a gray
curve; its symmetrical image corresponds to candidate periodic orbits for na

−. The
two (symmetric) parameter regions bounded by the lines of folded saddle-nodes of
type II, where ssa

± changes to na
±, and the curves where δ = 0 are the regimes where

MMOs are predicted to exist; note that the curves δ = 0 run all the way up to the
folded saddle-nodes of type II, which is not shown in Figure 16(b).

Koper identified a parameter region of “complex and mixed-mode oscillations”
for ε > 0 by using continuation methods; see Figure 1 on page 75 of [123]. We can
interpret his results as perturbations of the MMO regimes we identified in the singular
bifurcation diagram in Figure 16(a). To this end we consider bifurcations of equilibria
of (4.2) for ε > 0; this analysis was already carried out by Koper [123] for (4.1). The
bifurcation diagram in the (k, λ)-plane is shown in Figure 18 for ε1 = 0.01, with the
saddle-node curves (green) labeled SN and the Hopf curves (blue) labeled H. Included
are the curves of folded saddle-nodes of type II (dashed red) labeled FSN II; the curves
FSN II already predict the “cross-shaped” bifurcation diagram for the full system for
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Fig. 18 Bifurcation diagram for equilibria of the full system (4.2) with ε1 = 0.01. Shown are
saddle-node bifurcations (green, labeled SN) and Hopf bifurcations (blue, labeled H). The
saddle-node bifurcation curve has a cusp point (labeled C) and meets the Hopf bifurcation
curve in two Bogdanov–Takens points (labeled BT). The dashed curves are folded saddle-
nodes of type II (red, labeled FSN II) that occur in the singular limit (4.4).

ε1 > 0 sufficiently small [26]. In fact, this bifurcation structure persists over a wide
range of ε1. We find the saddle-node and Hopf bifurcation curves as follows. The
Jacobian matrix A of (4.2) on the fast time scale has the characteristic polynomial
σ3 + c2 σ

2 + c1 σ + c0 with coefficients

c2 = 3 (ε1 + x2 − 1), c1 = ε1 (ε1 + 9 x2 − k − 9), c0 = ε2
1 (3 x

2 − 3− k),

where x corresponds to an equilibrium, that is, x3 − (k + 3)x + λ = 0. Hence, a
saddle-node bifurcation occurs along a curve given by

c0 = − det(A) = 0 ⇔ λ = ±2

(
1 +

k

3

)3/2

,

which has a cusp point at k = −3 and does not depend on ε1; the cusp point is labeled
C in Figure 18. The Hopf bifurcation is found for c0 − c1 c2 = 0, provided c1 > 0. To
first order in ε1, we find

λ = ±
(
2 + k − 1

3
k ε1 +O(ε2

1)

)
,

which implies that the Hopf bifurcation curve H lies O(ε1) close to the curves of
folded saddle-nodes of type II, as expected. The saddle-node and Hopf bifurcation
curves coincide at two Bogdanov–Takens points (labeled BT) for k = − 1

2 ε1. The
MMO regime for ε1 > 0 lies in the region with k < 0 and it has a lower bound with
respect to λ along a curve that is close to H. We discuss this in more detail for fixed
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当k=12ε1，鞍结点和Hopf分支曲线在两个Bogdanov–Takens点（标记为BT）处重合。当ε1>0时的MMO区域位于k<0的区域，并且沿着一条接近H的曲线对λ有一个下界。对固定k=10，我们对此进行更详细的讨论。注意，从现在起，我们使用原始方程（4.1），但是这并不改变图16和18中的（k，λ）-平面的分支图。Koper[123]计算了以λ>0为自由参数的，并固定k=10、ε1=0.1的数值分支图，得到了MMO周期轨线的孤立闭曲线。我们使用与Koper相同的系统（4.1）计算更详细的分支图，其中我们集中在（对称相关）λ<0区域，并令ε1=0.01和ε1=0.1。结果如图19所示，其中（a）行为ε1＝0.1时的情况，（b）行为ε1＝0.01时的情况。子图(a1)和(b1)中的垂直轴是周期轨线的周期T，而子图(a2)和(b2)中的垂直轴是x坐标的最大绝对值。Hopf分支H产生稳定的周期轨线族，但在倍周期分支PD中会很快失去稳定性。我们引入符号并标记这个族为10；倍周期族被标记为20，并且注意，它在(λ，T)投影中显示为断开（不连续）的曲线，因为它在点PD具有两倍的周期。在第二个倍周期分岔中，10轨线再次变得稳定，紧接着是使其不稳定的折（未标记），直到第二个折叠SL，此后。张弛振荡持续。MMOs驻留在等值线上，该等值线大致存在于两个倍周期分支之间的λ范围内。我们用交替的浅蓝色和深蓝色用于突出显示这些线族；我们发现具有1s模式的MMOS，其中s从2到14，如图19所示。
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Fig. 19 Bifurcation diagram in λ for the Koper model (4.1) with (ε2, k) = (1,−10). Panels (a1)
and (a2) are for ε1 = 0.01 and panels (b1) and (b2) are for ε1 = 0.1 as used by Koper.
Panels (a1) and (b1) plot the period T and panels (a2) and (b2) the maxima of |x| versus
λ. A branch of periodic orbits (an “MMO” with signature 10) emanates from the Hopf
bifurcation H and coexists with isolas of MMOs with different signatures.

k = −10. Note that from now on we use the original equations (4.1), but this does
not alter the bifurcation diagrams of the (k, λ)-plane in Figures 16 and 18.

Koper [123] computed a numerical bifurcation diagram for fixed k = −10 and ε1 =
0.1 with λ > 0 as the free parameter; he found isolated closed curves of MMO periodic
orbits. We computed more detailed bifurcation diagrams, using the same system (4.1)
as Koper, where we concentrated on the (symmetrically related) region λ < 0 and
used ε1 = 0.01 as well as ε1 = 0.1. The result is shown in Figure 19, where row (a)
is for ε1 = 0.1 and row (b) for ε1 = 0.01. The vertical axis in panels (a1) and (b1) is
the period T of the periodic orbits, while in panels (a2) and (b2) it is the maximum
absolute value of the x-coordinate. A family of stable periodic orbits emanates from
the Hopf bifurcation H, but it quickly loses stability in a period-doubling bifurcation
PD. We abuse notation and label this family 10; the period-doubled family is labeled
20, and note that it appears as a disconnected curve in the (λ, T )-projection because
it has twice the period at the point PD. The 10 orbit becomes stable again in a
second period-doubling bifurcation, which is quickly followed by a fold (not labeled)
that renders it unstable, until a second fold SL, after which relaxation oscillations
are persistent. The MMOs reside on isolas that exist for the range of λ roughly in
between the two period-doubling bifurcations. We used alternatingly light- and dark-
blue colors to highlight these families; we found MMOs with signatures 1s with s
ranging from 2 to 14 as indicated in Figure 19.
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Fig. 20 An MMO periodic orbit with signature 1213 (black) generated by a folded-node singular-
ity of (4.1) for (ε1, ε2, λ, k) = (0.1, 1,−7,−10). Panel (a) shows a time series of the
x-coordinate. Panel (b) depicts the projection of the periodic orbit onto the (z, y)-plane to-
gether with nearby canard orbits ξ2, ξ3, and ξ4, and panel (c) shows these objects in phase
space together with the attracting and repelling slow manifolds Sa

ε1
(red) and Sr

ε1
(blue),

respectively.

The MMOs on the isolas in Figure 19 are generated by the folded-node mechanism;
we refer to section 5 for a more detailed discussion of MMOs on such isolas. Here,
we focus on the fact that MMOs with more complicated signatures can be found as
soon as the candidate periodic orbit returns close to a maximal canard. Figure 20
shows the stable MMO periodic orbit that exists for λ = −7; here, we used ε1 = 0.1.
Panel (a) shows a time series of the x-coordinate, which identifies the signature of this
MMO as 1213; a projection onto the (z, y)-plane is shown in panel (b). We computed
the attracting and repelling slow manifolds Sa

ε1 and Sr
ε1 , respectively. They are shown

Administrator
在文本上注释
图19中等值线上的MMOs是由折结点机制生成的；关于这种等值线上的MMOs的更详细讨论，请参阅第5节。这里，我们关注这样一个事实，即一旦候选（辅助）的周期轨线返回到接近最大鸭解，就可以找到具有更复杂模式的MMOs。图20显示了当λ=-7时存在稳定的MMO周期轨线，这里我们令ε1=0.1。子图(a)显示了x坐标的时间序列，在该图中把其中的MMO的模式标记为1213；在子图(b)中显示了对(z，y)-平面的投影。我们分别计算了吸引和排斥慢流形SAε1和SRε1。图20(c)显示了它们以及三个最大的次要鸭轨线ξ2、ξ3和ξ4，它们也绘制在子图(b)中。该图显示了两个LAOs是如何漏斗到折结点区域，实际上是在Saε1上，并且非常接近ξ2。图20(b)说明它们实际上在ξ2的“两侧”被Srε1分开，这意味着其中一个LAOs后面的SAOs数量是2，而另一个是3，如ξ3所指示的。参见图7(a)，回归图的一维近似将具有与轨线相对应的分支，当SAOs通过折结点时，这些分支使SAOs的数量不断增加，并且图20（c）中所示的轨线返回了相应于两个和三个SAOs的分支之间的交替。我们观察到，三个SAOs中的最后一个具有明显的更大的振幅，图20表明这是由于该振荡是在鸭解之后，然后跳回到Saε1。然而，在附近也有一个平衡点q。当k＝-10奇异Hopf分支在α=αH 7.67时产生。我们发现在图20中的折结点为(x，y，z)=(1，[λ_2]/k，[2λ_4_k]/k)=(1，0.9，0.8)且在其附近的平衡点q 为(x，y，z)=(x q，x q，x q，x q，x q，x q，其中x q_0.897是x3(k+3)x+λ的根。我们发现，如果我们将λ减小到接近λH的值，则奇异Hopf分支产生明显的SAOs；注意，我们必须保持λ值大于能使q的不稳定流形Wu(q)和排斥慢流形Srε1之间存在切线时对应的λ值；另见第3.2节。图21显示了当λ＝-7.52的系统（4.1）的MMO周期轨线。x坐标的时间序列显示了与图20(a)中的SAOs完全不同的SAOs。图21(b)显示了(k，λ)-平面中的放大的分支图，图20和 21的两个MMOs的参数位置由k=10的两个黑点表示。Hopf曲线（实心蓝色）和II型折鞍结曲线（虚线，红色）分别标记为H和FSN II。MMO区域由曲线δ=0(虚黑)和Wu(q)和Srε1(虚青)之间的切线界定；在Hopf分支和这个切线分支之间，周期轨线具有较小的振幅，并且向MMOs的转变发生在远离Hopf曲线的O(2)处。图21(b)中有两个点：标记的点位于MMO区域内部，并且与图20中所示的情况相对应；第二个(未标记的)点非常接近切线曲线，并且与图21的其他子图中所示的情况相对应。图21（C）从几何角度地显示了SAOS是如何组织产生的。红色线和蓝色线分别是吸引和排斥慢流形Saε1和Srε1。在产生SAOs时期，MMO的周期轨线几乎位于Saε1上，它不能通过Srε1，Srε1扭曲得很紧，并且迫使SAOs的振幅减小；SAOs的第一部分仍然让人想起通过位于(1，[λ_2]/k，（2，4，k/k）＝（1，0.952，0.904）的折结点的过程，且它们的振幅随ε1而减小。由于Srε1绕q的一维稳定流形螺旋，MMO周期轨线非常接近q=(xq，xq，xq)，其中xq_0.951。接下来的SAOs是由Wu(q)组织产生的，其振幅在LAO产生之前增加到相对较大的值。



MIXED-MODE OSCILLATIONS WITH MULTIPLE TIME SCALES 249

in Figure 20(c) along with three maximal secondary canard orbits ξ2, ξ3, and ξ4 that
are also drawn in panel (b). The figure shows how both LAOs are funneled into the
folded-node region, practically on Sa

ε1 and very close to ξ2. Figure 20(b) illustrates
that they are actually separated by Sr

ε1 on either “side” of ξ2, which means that the
number of SAOs that follow for one of the LAOs is two, while for the other it is three,
as dictated by ξ3. Referring to Figure 7(a), a one-dimensional approximation of the
return map will have branches corresponding to trajectories that make increasingly
larger numbers of SAOs as they pass through the folded node, and the trajectory
shown in Figure 20(c) has returns that alternate between the branches corresponding
to two and three SAOs.

We observe that the last of the three SAOs has a distinctly larger amplitude, which
Figure 20 suggests is due to this oscillation following a canard and then executing a
jump back to Sa

ε1 . However, there is also an equilibrium q nearby. For k = −10 a
singular Hopf bifurcation occurs for λ = λH ≈ −7.67. We found that the folded node
in Figure 20 is at (x, y, z) = (1, [λ−2]/k, [2λ−4−k]/k) = (1, 0.9, 0.8) and the nearby
equilibrium q at (x, y, z) = (xq , xq, xq), where xq ≈ 0.897 is a root of x3−(k+3)x+λ.

We find pronounced SAOs generated by a singular Hopf bifurcation if we decrease
λ closer to the value λH ; note that we have to stay above the value of λ for which
there is a tangency between the unstable manifold Wu(q) of q and the repelling slow
manifold Sr

ε1 ; see also section 3.2. Figure 21 shows the MMO periodic orbit of (4.1)
for λ = −7.52. The time series of the x-coordinate shows SAOs that are quite different
from the SAOs in Figure 20(a). Figure 21(b) shows an enlarged bifurcation diagram
in the (k, λ)-plane with the parameter location of the two MMOs for Figures 20 and 21
indicated by two black dots at k = −10. The Hopf curve (solid blue) and the curve of
folded saddle-nodes of type II (dashed red) are labeled H and FSN II, respectively. The
MMO region is bounded by the curve δ = 0 (dashed black) and the tangency between
Wu(q) and Sr

ε1 (dashed cyan); in between the Hopf bifurcation and this tangency bi-
furcation the periodic orbits have small amplitudes and the transition to MMOs occurs
O(ε) away from the Hopf curve. There are two dots in Figure 21(b): the labeled one
lies well inside the MMO region and corresponds to the situation shown in Figure 20;
the second (unlabeled) dot lies very close to the tangency curve and corresponds to the
situation shown in the other panels of Figure 21. Figure 21(c) shows geometrically how
the SAOs are organized. The red and blue surfaces are the attracting and repelling
slow manifolds Sa

ε1 and Sr
ε1 , respectively. During the epoch of SAOs, the MMO peri-

odic orbit lies almost on Sa
ε1 and it cannot pass through Sr

ε1 , which twists very tightly
and forces a decrease in the amplitudes of the SAOs; this first part of the SAOs is still
reminiscent of the passage through a folded node, which lies at (1, [λ − 2]/k, [2λ −
4− k]/k) = (1, 0.952, 0.904), and their amplitudes decrease with ε1. Since S

r
ε1 spirals

around the one-dimensional stable manifold of q, the MMO periodic orbit comes very
close to q = (xq , xq, xq), with xq ≈ 0.951. The SAOs that follow are organized by
Wu(q) and their amplitudes increase to relatively large values before the LAO.

In summary, if we fix k in Figure 21(b) and increase λ, we observe the following
typical sequence of events near a singular Hopf bifurcation of an equilibrium q. For
small enough λ there are no MMOs and the attractor is an equilibrium. This equilib-
rium crosses a fold of the critical manifold at FSN II, but it remains stable until a su-
percritical (singular) Hopf bifurcation at distance O(ε1) away gives rise to small oscil-
lations. The transition to MMOs occurs after a tangency between Wu(q) and Sr

ε1 ; for
λ-values just past this tangency the MMOs have many SAOs that all lie near Wu(q).
As λ increases further, the MMOs exhibit SAOs organized by the folded node. Finally,
a crossing of the curve δ = 0 corresponds to a transition to relaxation oscillations.

Administrator
在文本上注释
总而言之，如果我们固定图21(b)中的k，并使λ增加，我们观察到在平衡点q的奇异Hopf分支附近的下列典型事件序列。对于足够小的λ，没有MMOs产生，并且吸引子是平衡点。这个平衡点在FSNⅡ处穿过临界流形的折，但是它保持稳定，直到在距离O(ε1)处的超临界(奇异)Hopf分支引起小振荡。向MMOs的过渡发生在Wu(q)和Srε1之间的切线之后；对于刚刚超过这个切线的λ值，MMOs有许多SAOs，它们都位于Wu(q)附近。随着λ的进一步增加，MMOs显示出由折结点组织产生的SAOs。最后，曲线δ=0的交叉对应于向张弛振荡的过渡。为了结束这个案例研究，我们报告了Koper未发现的不同类型的MMO的存在；如图22所示。MMO在LAO的最大值和最小值附近都有SAOs。因此，该MMO经过在两个折曲线上靠近折结点na±附近。发生这种情况的参数区域非常小，因此很难使用模拟来定位这样的MMO；图16中靠近k=-2的区域只能在放大的子图(b)中看到。我们在图22中当选择参数k=-2.1、λ=0.063、ε1=0.01（相当小）时，发现了MMO的周期轨线；对于存在具有两个SAO时期的MMO的参数范围，更详细的研究还有待于进一步的工作。
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Fig. 21 An MMO periodic orbit near a singular Hopf bifurcation for (4.1) with (ε1, ε2, λ, k) =
(0.1, 1,−7.52,−10). Panel (a) shows the time series of the x-coordinate. The bifurcation di-
agram in panel (b) illustrates how close the parameters are to a tangency bifurcation between
Wu(q) and Sr

ε (dashed cyan); the Hopf H (solid blue), folded saddle-node of type II FSN II
(dashed red), and δ = 0 (dashed black) curves are shown as well; see also Figure 16. The
slow manifolds Sa

ε and Sr
ε shown in panel (c) guide the MMO toward the equilibrium q ≈

(0.951, 0.951, 0.951), after which Wu(q) organizes the SAOs. The high compression and
twisting of Sr

ε near Wu(q) is highlighted in panel (d).
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Fig. 22 An MMO periodic orbit of (4.1) for (ε1, ε2, λ, k) = (0.01, 1,−0.063,−2.1) that exhibits
SAOs near the maximum as well as the minimum of the LAO.

To end this case study, we report the existence of a different type of MMO not
found by Koper; it is shown in Figure 22. The MMO has SAOs near both the max-
imum and the minimum of the LAO. Hence, this MMO passes near folded nodes na

±
on both fold curves. The parameter region where this occurs is quite small, so that it
is difficult to locate such an MMO using simulation; it is the region in Figure 16 near
k = −2 that can only be seen in the enlargement in panel (b). We found the MMO
periodic orbit in Figure 22 by selecting parameters k = −2.1 and λ = −0.063 in this
region and choosing ε1 = 0.01 rather small; a more detailed study of the range of pa-
rameters for which there exist such MMOs with two SAO epochs remains future work.

5. MMOs in a Reduced Hodgkin–Huxley System. As the next case study we
consider a three-dimensional reduced version of the famous Hodgkin–Huxley equa-
tions [105] that describe the generation of action potentials in the squid giant axon;
see [118, 198] for the derivation and also [45], where the same example was used. The
reduced model only describes the dynamics for voltage (V ), the activation of the potas-
sium channels (n), and the inactivation of the sodium channels (h); the activation of
the sodium channels (m) is very fast and it reaches its equilibrium state m = m∞(V )
(almost) instantaneously, which can be justified mathematically by a center-manifold
reduction [198]. The evolution of the gates n and h is considered slow, while the
evolution of the voltage V is considered fast. To justify this time-scale separation,
we nondimensionalize the Hodgkin–Huxley equations by introducing a dimensionless
voltage variable v = V/kv and a dimensionless time τ = t/kt, where kv = 100 mV is
a reference voltage scale and kt = 1 ms is a fast reference time scale; this gives

(5.1)



εv̇ = f(v, h, n) := Ī −m3
∞(v)h (v − ĒNa)

− ḡk n
4 (v − ĒK)− ḡl (v − ĒL),

ḣ = g1(v, h) :=
kt

τh

(h∞(v)− h)

th(v)
,

ṅ = g2(v, n) :=
kt

τn

(n∞(v)− n)

tn(v)
,

Administrator
在文本上注释
约化 Hodgkin–Huxley系统中的MMOs作为下一个案例研究，我们考虑著名的 Hodgkin–Huxley方程的三维约化形式，该方程描述了鱿鱼巨轴突中动作电位的产生；参见[118，198]和[45]中的推导，在这这参考文献中使用了相同的示例。该约化模型仅描述电压(V)、钾通道(n)的激活和钠通道(h)的失活，钠通道(m)的激活非常迅速，并且几乎瞬间达到平衡状态m=m∞(V)，这可以通过约化的中心流形[198]进行数学证明。钾通道(n)和钠通道(h)门的演化被认为是缓慢的，而电压V的演化被认为是快速的。为了证明这种时间尺度分离，我们通过引入无量纲电压变量v=V/kv和无量纲时间=t/kt来无量纲化Hodgkin–Huxley方程，其中kv=10mV是参考电压尺度，kt=1ms是快参考时间尺度；这就给出了系统(5.1)



252 DESROCHES ET AL.

Table 1 Original parameter values of the Hodgkin–Huxley equations (5.1).

gNa gk gl ENa EK EL τh τn C

120.0 36.0 0.3 50.0 −77.0 −54.4 1.0 1.0 1.0

with dimensionless parameters Ēx = Ex/kv, ḡx = gx/gNa, with x ∈ {m, n, h},
Ī = I/(kvgNa), and ε = C/(ktgNa) =: τv/kt. The original Hodgkin–Huxley parameter
values are given in Table 1. Thus, ε = 1

120 ≈ 0.01 � 1 and system (5.1) represents a
singularly perturbed system with v as a fast variable and (n, h) as slow variables. The
functions x∞(v) and tx(v), with x ∈ {m, n, h}, describe the (dimensionless) steady-
state values and time constants of the gating variables, respectively; they are given by

x∞(v) =
αx(v)

αx(v) + βx(v)
and tx(v) =

1

αx(v) + βx(v)
,

with

αm(v) = (kvv+40)/10
1−exp(−(kvv+40)/10) , βm(v) = 4 exp(−(kvv + 65)/18),

αh(v) = 0.07 exp(−(kvv + 65)/20), βh(v) =
1

1+exp(−(kvv+35)/10) ,

αn(v) =
(kvv+55)/100

1−exp(−(kvv+55)/10) , βn(v) = 0.125 exp(−(kvv + 65)/80).

The original Hodgkin–Huxley equations with scaling parameters τh = τn = τm =
1 show no MMOs [105], but if τh > τh,e > 1 or τn > τn,e > 1 are beyond certain
threshold values, then MMOs are observed [45, 198, 199]. Here, we focus on a specific
case with τh = 6.0, τn = 1.0, and C = 1.2 (so that ε = 0.01). We use the applied

current I (in units of µA/cm
2
) of the original Hodgkin–Huxley equations, that is,

the rescaled Ī in (5.1), as the only free parameter. Furthermore, in order to facilitate
comparison with other studies, we represent output in terms of the nonrescaled voltage
V = 100 v, which is in units of mV.

From a mathematical point of view, the MMOs are generated due to the presence
of a (subcritical) singular Hopf bifurcation at I = IH ≈ 8.359 and a folded node in
the singular limit ε = 0. The critical manifold of (5.1) is defined by

n4(v, h) =
Ī −m∞(v)3 h (v − ĒNa)− ḡL (v − Ēl)

ḡk (v − Ēk)
,

which is a cubic-shaped surface S = Sa,− ∪ F− ∪ Sr ∪ F+ ∪ Sa,+ for physiologically
relevant values of I. The outer sheets Sa,± are stable, the middle sheet Sr is unstable,
and F± denote fold curves [198]. The desingularized reduced system on this manifold
is given by {

v̇ =
(

∂
∂hf

)
g1 +

(
∂
∂nf

)
g2,

ḣ = − ( ∂
∂vf

)
g1.

A phase-plane analysis of the desingularized reduced flow in the physiologically rele-
vant range shows that there exists a folded-node singularity on F− for I > IFSN ≈
4.83. Furthermore, it can be shown that the global return mechanism projects into the
funnel region for I < Ir ≈ 15.6; see [198, 199]. Hence, the folded-node theory predicts
the existence of stable MMOs for a range of I-values that converges to IFSN < I < Ir
in the singular limit as ε → 0.
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Fig. 23 Maximal secondary canard orbits ξ5 and ξ6 of the three-dimensional reduced Hodgkin–
Huxley equations (5.1) with τh = 6.0, τn = 1.0, C = 1.2, and I = 12. Panel (a) shows
the two canard orbits in projection onto the (n, V )-plane; also shown are the strong sin-
gular canard γ̃s and the weak primary canard γw. The projection of ξ5 and ξ6 onto the
(h, V )-plane in panel (b) shows that they make five and six oscillations, respectively.

Figure 23(a) shows the folded-node singularity for I = 12, where it lies approxi-
mately at (v, h, n) = (−0.593, 0.298, 0.407), in projection onto the (n, V )-plane. The
two black curves are the strong singular canard γ̃s and the primary weak canard γw

that pass through the folded node. The other two curves are maximal secondary
canards ξ5 and ξ6 that were found as intersections of extended slow manifolds com-
puted near the folded node; see also section 8 and [45, Figure 6]. Their projections
onto the (h, V )-plane, which illustrate the oscillating nature of ξ5 and ξ6, are shown
in Figure 23(b). Notice that the final oscillations of the primary weak canard γw

in Figure 23(a) show the distinct characteristics of saddle-focus-induced SAOs. In-
deed, a saddle-focus equilibrium q ≈ (−0.589, 0.379, 0.414) exists relatively close to
the folded node, due to the singular Hopf bifurcation at IH ≈ 8.359. Decreasing I
from I = 12 toward I = IH causes q to move closer to the folded node and the mix of
folded-node-induced SAOs and saddle-focus-induced SAOs will be more pronounced;
compare with Figure 21(c).

The equilibrium q for I = 12 persists when I is varied. A partial bifurcation
diagram is shown in Figure 24(a), where we plot the maximum of V versus I. Similar
to the analysis in [45], a unique equilibrium exists for all I and it is stable for I < IH
and, approximately, I > 270.772. The (singular) Hopf bifurcation (labeled H) at IH
gives rise to a family of saddle-type periodic orbits. This family of periodic orbits
undergoes three fold bifurcations (SL) at I ≈ 6.839, I ≈ 27.417, and I = ISL ≈
14.860, after which both nontrivial Floquet multipliers are less than 1 in modulus
and the associated stable periodic orbits correspond to what is known in the field as
tonic spiking. Figure 24(a) shows that the first SL is quickly followed by a period-
doubling bifurcation (PD) at I ≈ 7.651, where one of the Floquet multipliers, which
are both unstable after this first SL, passes through −1. Hence, the periodic orbits
after PD are nonorientable and of saddle type. Note that a second PD (not shown
in Figure 24(a)) must take place before the second SL.

MMOs exist as isolated families of periodic orbits for a range of I; Figure 24(a)
shows eleven of these isolas colored in alternating light and dark blue. All periodic
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图23(a)显示了I=12的折结点的奇异性，该折结点大致位于(v，h，n)=(0.593，0.298，0.407)处，然后投影到(n，V)平面上。两条黑曲线穿过折结点的强奇异鸭解_γs和主弱鸭解γw。另外两条曲线是在折结点附近计算的扩展慢流形的交点时发现的最大次要鸭形ξ5和ξ6；另见第8节和[45，图6]。它们在(h，V)平面上的投影，显示了ξ5和ξ6的振荡性质，如图23(b)所示。注意，图23(a)中的主弱鸭解γw的最终振荡显示了鞍焦点诱导的SAO的明显特征。实际上，由于在IH_8.359处的奇异Hopf分支，相对靠近折结点存在鞍焦平衡点q(0.589、0.379、0.414)。从I=12向I=IH递减，导致q向折结点移动，并且与图21(c)相比折结点诱导的SAOs和鞍焦点诱导的SAOs的混合将更加明显。当I变化时，I=12的平衡点q保持不变。图24(a)显示了部分分支图，在这里我们绘制了V对I的最大值。类似于[45]中的分析，对于所有I都存在唯一的平衡点，这些平衡点当I<IH且I>270.772（约数）时是稳定的。IH上的（奇异）Hopf分支（标记为H）产生了一系列鞍型周期轨线。这一族周期轨线在I_6.839，I_27.417和I=ISL_14.860处经历三次分叉（SL），此后两个非平凡的Floquet乘子的模小于1，并且相关的稳定周期轨线对应于该领域中已知的（放电）。图24(a)显示了第一个SL之后很快在I_7.651处出现倍周期分支(PD)，I_7.651是Floquet乘子中的一个，这两个乘数在第一个SL之后都不稳定。因此，PD后的周期轨线是不可定向的，并且是鞍形的。注意，第二个PD（图24(a)中未显示）必须在第二个SL之前产生。MMOs以一系列I对应的周期轨线的孤立族存在；图24(a)显示了这些等值线中的11个等值线呈交替的浅蓝色和深蓝色。单个等值线上的所有周期轨线具有相同数量的振荡。每个等值线包含一个较短的停滞期（平稳期），在该停滞期（平稳期）内V=40mV附近有最大V，V=40mV附近相关的MMOs是稳定的，且是1s模式。对于我们选择特定的ε=0.01，我们发现稳定的MMO间期在左侧为IH，右侧为ISL，即8.359<I<14.860。回想一下，基于当ε_0的奇异极限的理论，对于4.83_IFSN<I<Ir_15.6，预测1s模式的稳定MMO周期轨线的存在；即使ε相对较大，匹配结果也是出奇的好。当I（下降到）IH时，稳定1s型 MMO中的数s趋于无穷大，因为由于Hopf奇异性形成了同宿轨线；参见[45]。此外，存在具有更复杂模式的稳定MMO模式1s11s2···；参见[199]。比较图19中第4节中的Koper模型；MMO周期轨线沿着等值线经过几个分支（主要是极限环分支的倍周期和/或鞍结点）。最大V值表示各个MMO周期轨线的最大振荡幅度。注意V=VF+20mV的等值线的折结构，它近似于动作电位的复极阈值。该值还对应于上折曲线F+的V值，在该V值处，轨线跳回。对于停滞期（平稳期）上的MMO，LAOs对应于一个完整的动作电位，而随后的s个SAOs是亚阈值振荡。
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Fig. 24 MMO periodic orbits of the three-dimensional reduced Hodgkin–Huxley equations (5.1) with
τh = 6.0, τn = 1.0, and C = 1.2. Panel (a) shows a bifurcation diagram where the maximal
V -value is plotted versus the applied current I. Isolas of MMO periodic orbits exist over
a range of I bounded by a period-doubling bifurcation PD and a saddle-node of limit cycle
bifurcation SL. The isolas are colored in alternating light and dark blue. Panel (b) shows
an enlargement near the Hopf bifurcation. All isolas shown have a fold bifurcation for
ISL ≈ 8.087. The periodic orbit Γ shown in panel (c) is the stable MMO for I = 12;
panel (d) shows Γ when it has a maximal V -value of −20 mV.

orbits on a single isola have the same number of oscillations. Each isola contains a
short plateau with large maximal V near V = 40 mV where the associated MMOs
are stable and have signatures 1s. For our specific choice ε = 0.01, we found that
the stable MMO interval appears to be bounded by IH on the left and by ISL on
the right, that is, 8.359 < I < 14.860. Recall that the theory based on the singular
limit as ε → 0 predicts the existence of stable MMO periodic orbits with signatures
1s for 4.83 ≈ IFSN < I < Ir ≈ 15.6; the match is surprisingly good, even though ε is
relatively large. As I ↓ IH , the number s in the stable 1s MMO signatures approaches
infinity, since a homoclinic orbit through the Hopf singularity is formed; see also [45].
Furthermore, there exist stable MMO signatures with more complicated signatures
1s11s2 · · · ; see [199]. The MMO periodic orbits go through several bifurcations along
the isolas (mostly period-doubling and/or saddle-node of limit cycle bifurcations);
compare also Figure 19 for the Koper model in section 4. The maximal V -value indi-
cates the amplitude of the largest of the oscillations of the respective MMO periodic
orbit. Note the folded structure of the isolas for V = VF+ ≈ −20 mV, which is ap-
proximately the repolarization threshold value for action potentials. This value also
corresponds to the V -value of the upper fold curve F+, at which a trajectory jumps
back. For MMOs on a plateau, the LAOs correspond to a full action potential, while
the s SAOs that follow are subthreshold oscillations.
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Figure 24(b) shows an enlargement of how the isolas of MMO periodic orbits
accumulate near the Hopf bifurcation, which is the region where theory predicts a
signature 1s, that is, an MMO with one large excursion and s SAOs. This is organized
by how the global return mechanism projects onto the critical manifold S as I varies.
If the return projects onto a secondary canard, then part of the periodic orbit follows
the secondary canards onto the unstable branch Sr,ε of the slow manifold. However,
only canard periodic orbits that reach the region of the upper fold curve F+ are
maximal secondary canards. Hence, the corresponding family of secondary canards
can be split into two groups: we call the secondary canards with maximum V < VF+

jump-back canards and those with maximum V > VF+ jump-away canards. This is
an important distinction in this application, because while the jump-away canards
will create action potentials, the jump-back canards will not.

We illustrate the canards along one of the isolas shown in Figures 24(a) and (b).
The stable MMO periodic orbit Γ that exists on the plateau for I = 12 is shown in
Figure 24(c); its signature is 16 and it lies on the isola that corresponds to periodic
orbits with a total of seven oscillations. Note that the large excursion of Γ is above
threshold. The six SAOs of Γ are due to the fact that the global return lands on the
rotational sector bounded by the maximal secondary canards ξ5 and ξ6 for I = 12
(not shown); compare Figure 23(b). When the periodic orbit Γ is continued in the
direction of increasing I, the maximal V -value decreases and the LAO changes from
an action potential to a subthreshold oscillation. Figure 24(d) shows Γ (which is now
unstable) when its maximal V -value is approximately −20 mV. Observe that Γ still
has a total of seven oscillations, but now two of them have a fast segment. These fast
segments are jump-back canards. More precisely, the periodic orbit Γ consists of a
segment of a jump-back canard of the ξ6 canard family that connects to a segment of
a jump-back canard of the strong canard family, which in turn connects to the former
segment, hence, closing the loop. One could classify Γ in Figure 24(d) as an MMO
with signature 25, because only five of its oscillations have really small amplitude
due to the passage near the folded node, while there are two clearly distinguishable
larger oscillations with fast segments due to jump-back canards. However, none of
these larger canard oscillations of Γ results in a full action potential, meaning that all
oscillations are classified as SAOs in this application context.

Figure 25 illustrates the characteristics of the periodic orbits along the lower
parts of the isolas in Figure 24(a), where they are very close to the branch of saddle
periodic orbits bifurcating from the Hopf bifurcation. More specifically, Figure 25(a)
shows a “waterfall diagram” representation of the time series of 90 periodic orbits
along the lower part, for I ≤ 12, of the isola along which one finds a total of ten
oscillations. This part of the branch is shown in Figure 25(b). The fold point for this
isola is at I = ISL ≈ 8.087, and the associated periodic orbit is drawn in boldface in
Figure 25(a). The periodic orbits on the part of the branch for ISL ≤ I ≤ IH are
highlighted in blue. The periodic orbits along this part of the isola are quite different
from the MMOs one finds near the plateaux of the isolas; namely, they consist of a
mix of SAOs and jump-back canards, ten in total. Figure 25(c) shows the projection
of the periodic orbit at the fold onto the (n, V )-plane; also shown is the coexisting
small periodic orbit that lies on the branch emanating from the Hopf bifurcation.
This figure suggests that the periodic orbit at the fold is approaching a homoclinic
cycle of the small periodic orbit.

6. MMOs in Olsen’s Four-Dimensional Model of the PO Reaction. Many ap-
plications do not lead to models that have a clear split into slow and fast time scales.
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图24(b)显示了在Hopf分支附近MMO周期轨线的等值线如何累积扩展，该Hopf分支是理论预测1s模式的区域，即MMO具有一个大（位移）的和s个SAOs。这是通过全局回归机制随着I的变化而投影到临界流形S上来组织产生的。如果回归投射到一个次要流形上，那么周期轨线的一部分跟随次要流形到慢流形的不稳定分支Sr，ε上。然而，只有到达上折曲线F+区域的鸭周期轨线才是最大次鸭结。因此，相应的次要鸭解族可以分成两组：一组是具有最大V<VF+回跳鸭解的次要鸭解，另一组是具有最大V>VF+跳离鸭解的次要鸭解。这是在此应用中的一个重要区别，因为虽然跳离鸭解将创建动作电位，但是跳回鸭解将不创建动作电位。我们沿着图24(a)和(b)所示的等值线之一来阐述鸭解。如图24(c)所示，在I=12时的停滞期（平稳期）上存在稳定的MMO周期轨线；它的模式是16，它位于等值线上，该等值线对应于总共有七个振荡的周期轨线。注意，Γ的大（位移）高于阈值。与图23（b）比较，Γ的六个SAOs是由于全局回归在旋转扇区上起作用了，该旋转扇区由当I=12时的最大次要鸭解ξ5和ξ6界定（未在图中示出）。当周期轨线Γ继续沿I增加的方向延伸，最大V值就会减小，LAO从动作电位变为亚阈值振荡。图24(d)显示了当最大V值大约为_20mV时的Γ(此时是不稳定的)。观察到Γ仍然总共有七个振荡，但是此时其中两个具有快速段。这些快速的片段是跳回的鸭解。更准确地说，周期轨线Γ由ξ6鸭解族的回跳鸭解的一段组成，该段连接到强鸭解族的回跳鸭解的一段，该段又返回连接到初始形成段，从而形成闭循环。可以把图24(d)中的Γ归类为具有模式25的MMO，因为只有五个振荡是由于靠近折结点的（通道）而具有非常小的振幅，而由于回跳鸭解，存在两个明显可区分的更大的具有快速段的振荡。然而，Γ的这些较大的鸭振荡都不能产生完整的动作电位，这意味着下文中有关这个应用的所有振荡都被归类为SAOs。图25显示了沿着图24(a)中等值线的下部的周期轨线的特征，它们非常接近从Hopf分支分支出来的鞍形周期轨线的分枝。更具体地说，图25(a)显示了沿着等值线的下部的90个周期轨线的时间序列的“瀑布图”，当I≤12时沿着该等值线一共发现10个振荡。分支的这个部分如图25(b)所示。这个等值线的折点在I=ISL_8.087，相关的周期轨线用粗体绘制在图25(a)中。当ISL≤I≤IH分支部分的周期轨线用亮蓝色显示。沿着等值线这一部分的周期轨线与在等值线高峰附近发现的MMOs截然不同，也就是说，它们由SAOs和跳回鸭解组成，总共有10个。图25(c)显示了折处的周期轨线在(n，V)平面上的投影，还显示了产生于Hopf分支的分枝上的共存的小周期轨线。该图表明折处的周期轨线正在接近小周期轨线的同宿循环。

Administrator
在文本上注释
在Olsen的PO反应的四维模型中的MMOs许多应用并不会导致模型被清晰地分为慢和快的时间尺度。通常可以做出某种程度的假设，但是大多数变量在相空间的某些区域是慢的，而在其他区域是快的。下面的案例研究说明了慢快系统中的几何概念如何在本文中使用的。我们研究了Olsen及其合作者[37,173]提出的peroxidase-oxidase(PO)生化反应的四维模型；参见[44]，其中使用了相同的例子。Olsen模型描述了两个底物（O2和NADH）和两个自由基，分别记为A、B、X和Y；该模型满足微分方程（6.1）注意，α是一个人为引入的时间尺度参数，我们引入这个参数是更加方便地研究这个案例研究的目；在[37，173]中α=1。其他参数是反应速率，我们给它们一系列的值，如表2所示，这样，满足这些参数值的周期轨线符合Olsen模型(6.1)。我们研究的是稳定的MMO周期轨线，记为Γ；它的变量A的时间序列如图26(b)所示。我们观察到Γ具有1s模式，我们估计s约为15。下面，我们证明了这个例子的SAOs发生在通过动力学Hopf分支的过程中，并且我们分析这个轨迹的全局回归机制。
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Fig. 25 Continuation of a family of periodic orbits that consist of ten oscillations. The continuation
starts and ends at I = 12 with a fold at I ≈ 8.087. Panel (a) shows a three-dimensional
“waterfall diagram” visualization of the time series of V for 90 computed periodic orbits
along this part of the isola; the boldface periodic orbit lies at the fold point. The orbits in
blue correspond to the part of isola in between the fold point and the I-value that corresponds
to the Hopf bifurcation, that is, IH ≈ 8.359. Panel (b) shows the maximal V -value along
the branch in the (I, V )-plane, where the arrows indicate the direction of the continuation.
Panel (c) shows the periodic orbit at the fold together with a coexisting small periodic orbit
in projection onto the (n, v)-plane.

Often some assumptions to that extent can be made, but most variables will be slow in
certain regions of phase space and fast in others. The following case study illustrates
how the geometrical ideas from slow-fast systems can be used in such a context. We
study a four-dimensional model of the peroxidase-oxidase (PO) biochemical reaction
that was introduced by Olsen and collaborators [37, 173]; see also [44], where this
same example was used. The Olsen model describes dynamics of the concentrations
of two substrates (O2 and NADH) and two free radicals, denoted A, B, X , and Y ,
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Table 2 Parameter values used in the four-dimensional Olsen model (6.1).

k1 k2 k3 k4 k5 k6 k7 k−7 k8 α
0.28 250 0.035 20 5.35 0 0.8 0.1 0.825 1
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Fig. 26 The stable MMO periodic orbit Γ of the Olsen model (6.1) with parameters as in Table 2.
Panel (a) shows Γ (blue) projected onto the (A,B)-plane and superimposed on the bifurca-
tion diagram of (6.1) with α = 0; solid (dashed) black and gray curves are stable (unstable)
equilibria, where the gray color indicates that X or Y are negative, and SN , H, and T
are saddle-node, Hopf, and transcritical bifurcations, respectively. The family Γ̂ of periodic
orbits that emanates from H is represented by its maxima and minima in A (green curve);
the line Σ⊥ (cyan) indicates where the (A,B)-plane changes from attracting to repelling.
Panel (b) shows the time series of the variable A along Γ. The inset panel shows a blow-up
of the region where SAOs undergo a slow decay.

respectively; it is given by the differential equations

(6.1)


A′ = −k3ABY + k7 − k−7A,

B′ = α(−k3ABY − k1BX + k8),

X ′ = k1BX − 2k2X
2 + 3k3ABY − k4X + k6,

Y ′ = −k3ABY + 2k2X
2 − k5Y.

Note that α is an artificial time-scale parameter that we introduced for the purpose
of this case study; α = 1 in [37, 173]. The other parameters are reaction rates and
we chose their values as given in Table 2, such that the periodic orbits that exist for
these parameter values are representative for the Olsen model (6.1). We focus our
study on a stable MMO periodic orbit, denoted Γ; its time series of the variable A
is shown in Figure 26(b). We observe that Γ has signature 1s, and we estimate that
s is about 15. Below, we show that the SAOs of this example occur during passage
through a dynamic Hopf bifurcation, and we analyze the global return mechanism of
this trajectory.

6.1. Bifurcations of the Fast Subsystem. There is no clear split between the
different time scales in the Olsen model (6.1), but it is known that B evolves on a
slower time scale than the other variables [154]. Hence, it makes sense to consider the
fast subsystem obtained by setting α = 0, that is, B′ = 0 and B acts as a parameter
in (6.1). The bifurcation diagram is shown in projection onto the (A,B)-plane in
Figure 26(a), which is invariant because k6 = 0; see Table 2. There are two branches
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快速子系统的分岔在Olsen模型（6.1）中，不同时间尺度之间没有明确的划分，但是众所周知，B在比其他变量更慢的时间尺度上演化[154]。因此，考虑通过设置α=0而获得的快速子系统是有意义的，即B=0，并且B作为(6.1)中的参数。如图26(a)中分支图展示了在(A,B)-平面上的投影，因为k6=0，所以投影是不变的；参见表2。当B=k4/k1_71.426时，平衡点有两个分支在跨临界分支T处相交，实线表示稳定的平衡点，虚线表示不稳定的平衡点。图26(a)中被标记为黑色的平衡点具有非负的X和Y，所以它们是（物理）相关的；另一方面，对于被标记为灰色的平衡点，X或Y是负的。一个分支是A=8处的黑色水平线；它位于(A,B)-平面(其中X=Y=0)，因为k6=0所以该分支是不变的。沿该分支的平衡点当B<k4/k1时是稳定的。第二个分支与水平分支相交于(A,B)-平面点T处，只有具有非负的X和Y的第二分支的黑色部分是物理相关的，它由位于点T附近且带有一个不稳定和两个稳定实特征值的鞍点组成。沿着这个物理相关分支的两个进一步的分支改变了平衡点的稳定性；在B=BSN_35.144处有一个鞍结点分支SN，在B=BH_57.949处有一个亚临界Hopf分支H。从鞍形周期轨线（绿色）产生的分支被标记为Γ，对于它仅显示A的最小值和最大值。超平面={(A,B,X,Y)|B=k4/k1}标记着垂直于(A,B)-平面的线性收缩为零的地方；注意T∈_。在这个分支图上展示的是系统(6.1)(当α=1时)的MMO周期轨线Γ，现在我们可以看到是轨线Γ如何由一段SAOs组成的，它是通过动力学Hopf分支产生的，并且是一个全局回归：从轨线Γ的最小值开始，由于快子系统平衡族的存在，轨道螺旋在涡旋结构中进出涡旋，该快速子系统具有一对穿过虚轴的复共轭特征值。快子系统中Hopf分支的存在解释了观察到的全系统吸引子的SAOs的慢衰减和振幅的增加的原因。再回到吸引分支的邻域被A的增加而影响，这触发了B的缓慢增加，因为轨线紧跟着(A，B)平面上朝向A=8的稳定平衡曲线。当B>k4/k1时，即轨线越过超平面@，则(A,B)-平面变得不稳定，轨线开始偏离。最后，A中的急剧衰减似乎是将轨线带到回动力学Hopf分支入口的快速段；与沿图26（b）中轨线Γ的A变量时间序列相比较。SAOs的振幅迅速减小表明轨线Γ处于旋转和延迟Hopf分支之间的中间状态，但是我们将其标记为旋转；参见3.4节的讨论。
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of equilibria that intersect at a transcritical bifurcation T for B = k4/k1 ≈ 71.426;
solid lines indicate stable and dashed lines unstable equilibria. The equilibria that are
colored black in Figure 26(a) are physically relevant because they have nonnegative
values of X and Y ; for gray equilibria, on the other hand, X or Y is negative. One
branch is the black horizontal line at A = 8; it lies in the (A,B)-plane (where X =
Y = 0), which is invariant since k6 = 0. Equilibria along this branch are stable for
B < k4/k1. A second branch intersects the horizontal branch and the (A,B)-plane
at the point T ; only the black part of this second branch with positive X and Y is
physically relevant; it consists near T of saddles with one unstable and two stable real
eigenvalues. Two further bifurcations along this physically relevant branch change the
stability of the equilibria; there is a saddle-node bifurcation SN at B = BSN ≈ 35.144
and a subcritical Hopf bifurcation H at B = BH ≈ 57.949. The emanating branch
of saddle periodic orbits (green) is labeled Γ̂, for which only minimal and maximal
values of A are shown. The hyperplane Σ⊥ = {(A,B,X, Y ) |B = k4/k1} marks where
the linear contraction normal to the (A,B)-plane is zero; note that T ∈ Σ⊥. Overlaid
on this bifurcation diagram is the MMO periodic orbit Γ of (6.1) (with α = 1), and
we can now see how Γ is composed of a segment of SAOs, generated by passage
through a dynamic Hopf bifurcation, and a global return: starting from the minimum
of Γ, the trajectory spirals in and out of a vortex structure due to the presence
of the family of equilibria of the fast subsystem with a pair of complex conjugate
eigenvalues that cross the imaginary axis. The presence of the Hopf bifurcation in
the fast subsystem explains the observed slow decay and increase in amplitude of the
SAOs of the attractor Γ of the full system. The reinjection back to a neighborhood of
the attracting branch is mediated by an increase in A, which triggers a slow increase
in B, as the trajectory closely follows the invariant (A,B)-plane toward the curve of
stable equilibria with A = 8. As soon as B > k4/k1, that is, the trajectory crosses
Σ⊥, the (A,B)-plane is unstable and the trajectory begins to move away from it.
Finally, the sharp decay in A appears to be a fast segment that brings the trajectory
back to the entrance of the dynamic Hopf bifurcation; compare also with the time
series of the A-variable along Γ in Figure 26(b). The rapid decrease in amplitude of
the SAOs is an indication that Γ is in an intermediate regime between the tourbillon
and delayed Hopf bifurcations, but we label it as a tourbillon; see the discussion in
section 3.4.

6.2. Slow Manifolds of the Olsen Model. The SAOs of Γ in Figure 26 terminate
abruptly via a mechanism that can be visualized by computing slow manifolds. The
shape of these manifolds and the geometry of their interactions in the fast subsystem
allow us to unravel the organization of MMOs in the Olsen model (6.1). Consider
the curve of saddle equilibria for B < k4/k1 in Figure 26(a) between the points
SN and T . Each equilibrium has one positive and two negative eigenvalues and
the family of associated two-dimensional stable manifolds acts as a limiting (three-
dimensional) repelling slow manifold that organizes the termination of the SAOs.
Since this termination still takes place extremely close to the invariant (A,B)-plane,
we may assume that X is a fast variable in this region. Therefore, we may reduce the
dimension by way of a quasi-steady-state assumption (QSSA) [74], where we assume
that X has reached its steady-state value

(6.2) X =
k1B − k4 +

√
(k1B − k4)2 + 8k2(3k3ABY + k6)

4k2
.

Administrator
在文本上注释
Olsen模型的慢流形在图26中的轨线Γ的SAOs通过一个机制突然终止，该机制可以通过计算慢流形来可视化。在快子系统中的这些流形的形状和他们的相互作用的几何形，使得我们能够阐明Olsen模型（6.1）中的MMOs的组织方式。考虑在图26中当B=K1K4时鞍平衡点的曲线介于点SN和点T之间。每一个平衡点都有一个正的和两个负的特征值，且相关的行为的二维稳定流形族限制（三维的）排斥慢流形，该排斥慢流形使得SAOs终止。由于这种终止仍然发生在非常接近不变的(A,B)平面处，因此我们可以假设X是这个区域中的快速变量。因此，我们可以通过准稳态假设（QSSA）[74]来减小维数，其中我们假设X已经达到其稳态值：利用QSSA，我们将α=0的快速子系统（6.1）近似为（A，Y）平面上的二维向量场的B依赖族，并且排斥慢流形现在被近似为一维稳定流形的SrB族。注意，QSSA(6.2)式保持了快速子系统的平衡，并且它们的稳定性仅在移除了一个基本收缩方向(当B<k4/k1时)的情况下变化。如果B介于BSN与BH之间，在点SN另一边的分支上的平衡点在平面系统中是排斥的且吸引BH。我们用AUTO软件[52]通过定义合适的两点边值问题（BVP）来计算SrB；参见8.2节。图27显示了SrB如何围绕BSN≤B≤BH的下平衡分支和围绕B≥BH的不稳定周期轨线族向上（向后时间）卷积，直到B_66.480<k4/k1的同宿分支，以强调B依赖性质，我们在子图（b）中显示了固定值B=60的平面动力学。排斥慢流形SrB只是一个近似值，它不是整个系统（6.1）的一个不变对象。然而，它提供了MMO轨线如何被实际排斥慢流形捕获的指示，当排斥慢流形SrB通过旋转时，它指示轨线向鞍平衡曲线流动的方式。通过将排斥慢流形的近似值与吸引慢流形的近似值SaB结合在一起，引导轨线返回到旋转入口，我们可以可视化组织SAO的机制。为了找到SaB，我们考虑当A=8且B>k4/k1（经过T）时的鞍平衡曲线L；参见图26（a）。在（A，X，Y）-空间这些平衡点具有一个一维不稳定流形，就是说，在没有QSSA（6.2）式的完整的快子系统中。非稳定流形的B依赖族Wu(L)是一个二维曲面，它在螺旋运动之前向位于不变的(A，B)-平面上方的吸引平衡分支作大偏移。我们在此情况下当B变化时，把吸引慢流形SaB定义为等价于Wu(L)。特别地，根据这个定义，SaB进入H的邻域并与只存在B<k4/k1的排斥慢流形SrB相交。我们用AUTO软件[52]使用BVP来计算二维流形SaB，如第8节所示；具体地说，我们需要计算的轨线段的一个端点沿着非常接近平衡曲线L的线L a，并且以线性近似于Wu(L)；有关如何执行此计算的更多细节，请参阅[44]。图28说明了SaB如何通过大偏移从La附近产生全局回归机制，然后引导轨线通过旋转。图29说明了SaB和SrB的相交是如何决定旋转机制中的行为。在子图（a）中的两个旋转面是在（B，A，Y）-空间中显示的。回想一下，SaB是(B，A，X，Y)-空间中的一个二维曲面，并且显示了它的投影。另一方面，由于附加的强吸引方向，需要通过假设QSSA(6.2)式来计算流形SrB。因此，SaB和SrB与平面53={B=53}的交点是孤立点，如图29(b)所示；注意，SrB_53=Ws53，而SaB_53的计算更复杂。这两条曲线的交点定义了类似于折结点附近的鸭轨线的轨线，因为它们在旋转区域内螺旋，产生越来越多的圈数。在图29(b)中前三个交点被标明，它们相应的轨线η1、η2和η3如图29(a)所示。这些轨迹η1、η2和η3包含在SaB中，但是它们与53的交点仅位于SrB上。事实上，SrB不是系统(6.1)的实际不变流形，而只是作为排斥慢流形的近似。然而，SaB和SrB定性地说明了缓慢通过旋转区域所产生的SAOs的性质。特别地，SaB和SrB与53的相交曲线提供了振荡扇区在相空间中的近似位置。
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Fig. 27 The repelling slow manifold Sr
B (blue) of the fast subsystem of the Olsen model (6.1) (α = 0),

where X was eliminated via the QSSA (6.2). The manifold Sr
B was computed as the family

of one-dimensional stable manifolds W s
B (one side only) of saddle equilibria (dashed black

curve) for 53 ≤ B ≤ 63. The branch of equilibria (dashed/solid black curve) in the vicinity
of the Hopf bifurcation point (dot) is also shown, along with several unstable periodic orbits
(green curves) born at this Hopf bifurcation; the periodic orbits are almost the same as
those in Figure 26 for the fast subsystem. Panel (b) shows W s

60 and the corresponding

unstable periodic orbit Γ̂60 for B = 60 in the (A,Y )-plane. Note that the viewpoint in both
panels was chosen such that A increases toward the left; this is also the case in subsequent
three-dimensional figures.

Using the QSSA, we approximate the fast subsystem (6.1) with α = 0 as a B-
dependent family of two-dimensional vector fields in the (A, Y )-plane, and the re-
pelling slow manifold is now approximated by a family Sr

B of one-dimensional stable
manifolds. Note that the QSSA (6.2) preserves the equilibria of the fast subsystem,
and their stability properties change only in the sense that essentially one contracting
direction (for B < k4/k1) is removed. The equilibria on the branch bounded by SN
and T are still saddles, but now with only one stable eigenvalue. The equilibria on
the branch on the other side of SN are repelling for the planar system if B lies in
between BSN and BH , and attracting past BH . We computed Sr

B with AUTO [52]
by defining a suitable two-point boundary value problem (BVP); see section 8.2. Fig-
ure 27 illustrates how Sr

B rolls up (in backward time) around the lower equilibrium
branch for BSN ≤ B ≤ BH and around the family of unstable periodic orbits for
B ≥ BH until the homoclinic bifurcation for B ≈ 66.480 < k4/k1; to emphasize the
B-dependent nature, we show this planar dynamics for the fixed value B = 60 in
panel (b).

The repelling slow manifold Sr
B is only an approximation and it is not an invariant

object for the full system (6.1). However, it provides an indication of how an MMO
trajectory is trapped by an actual repelling slow manifold as it passes through the
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Fig. 28 The attracting slow manifold Sa
B (red) of the full Olsen model (6.1) (α = 1), computed from

near the equilibria for A = 8 and B > k4/k1 up to the section Σ53 = {B = 53}. The black
solid/dashed curves are the physically relevant equilibria of the fast subsystem (α = 0).

tourbillon and indicates how the trajectory flows toward the curve of saddle equilibria.
By combining this approximation of a repelling slow manifold with an approximation
Sa
B of the attracting slow manifold that guides trajectories back to the entrance of the
tourbillon, we can visualize the mechanism that organizes the SAOs.

To find Sa
B, we consider the curve L of saddle equilibria with A = 8 and B > k4/k1

(past T ); see Figure 26(a). These equilibria have one-dimensional unstable manifolds
in (A,X, Y )-space, that is, in the full fast subsystem without the QSSA (6.2). The
B-dependent family Wu(L) of unstable manifolds is a two-dimensional surface that
makes a large excursion before spiraling toward the attracting equilibrium branch that
lies just above the invariant (A,B)-plane. We define the attracting slow manifold Sa

B

in this setting as the equivalent of Wu(L) when B is not fixed but allowed to vary.
In particular, with this definition Sa

B enters a neighborhood of H and interacts with
the repelling slow manifold Sr

B that only exists for B < k4/k1. We compute the
two-dimensional manifold Sa

B with AUTO [52] by using a BVP setup as in section 8;
specifically, we require that one endpoint of the computed orbit segments lies along
a line La very close to the curve L of equilibria and in the linear approximation
to Wu(L); see [44] for more details on how this computation can be performed.
Figure 28 illustrates how Sa

B provides a global return mechanism from near La via a
large excursion and then guides trajectories through the tourbillon.

Figure 29 illustrates how the interaction of Sa
B and Sr

B determines the behavior
in the tourbillon regime. The two surfaces are shown in (B,A, Y )-space in panel (a).
Recall that Sa

B is a two-dimensional surface in (B,A,X, Y )-space, and shown is its
projection. The manifold Sr

B, on the other hand, was computed by assuming the
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Fig. 29 Approximations of the attracting and repelling slow manifolds of the Olsen model (6.1).
Panel (a) shows the surfaces Sa

B (blue) and Sr
B (red) projected into (A,B, Y )-space between

the sections Σ53 and Σ63 (green planes). Also shown are three orbits η1 in orange, η2 in
magenta, and η3 in cyan; they lie in the intersection of Sa

B and Sr
B . Intersections of Sa

B
and Sr

B with Σ53 are shown in panel (b); the intersections of η1, η2, and η3 with Σ53 are
labeled.

QSSA (6.2), which is due to an additional strongly attracting direction. Hence, Sr
B is

a two-dimensional surface in (B,A, Y )-space that corresponds to a three-dimensional
surface in (B,A,X, Y )-space. Therefore, the intersections of Sa

B and Sr
B with the

plane Σ53 = {B = 53} are isolated points, and they are shown in Figure 29(b); note
that Sr

B ∩ Σ53 = W s
53, while the computation of Sa

B ∩ Σ53 is more involved. The
intersection points of these two curves define trajectories that resemble canard orbits
near a folded node, because they spiral in the tourbillon region, making an increasing
number of turns. The first three intersection points are labeled in Figure 29(b) and
their corresponding trajectories η1, η2, and η3 are shown in Figure 29(a). These
trajectories η1, η2, and η3 are contained in Sa

B, but only their intersection points with
Σ53 lie on Sr

B. Indeed, S
r
B is not an actual invariant manifold of (6.1) and only serves

as an approximation of the repelling slow manifold. Nevertheless, Sa
B and Sr

B give a
qualitative illustration of the nature of SAOs generated by slow passage through the
tourbillon. In particular, the intersection curves of Sa

B and Sr
B with Σ53 provide an

approximate location of the sectors of oscillations in this region of phase space.

7. The Showalter–Noyes–Bar-Eli Model of MMOs in the BZ Reaction. The
Showalter–Noyes–Bar-Eli model [207] is one of many kinetic models that have been
proposed for the Belousov-Zhabotinsky (BZ) reaction. It is a seven-dimensional vector

Administrator
在文本上注释
BZ反应中MMOs的showalternoye - bar - eli模型showaltero - noye - bar - eli模型[207]是针对Belousov-Zhabotinsky (BZ)反应提出的众多动力学模型之一。它是一个由满足质量作用定律的反应系统导出的七维向量场，该系统如下由它得到(7.1)式：其中我们使用相同的字母来定义化学物质及其浓度。注意,C + Z = k0(C0 C−−Z),因此,超平面C + Z = C0是不变且吸引的。我们通过设置C = C0−Z把系统(7.1)约化到该超平面上的六维向量场中并消除C方程。这个模型是“现实的”，因为它的每个变量都与一个特定的化学物种有关。反应速率基于实验测量。正如典型的化学反应，中间物种的浓度相差许多数量级。然而，一些低浓度的中间物种在动力学上仍然很重要。变量Y表示溴化物浓度，在实验中经常测量它的浓度以监测系统的状态。模型中的变量A表示溴酸盐浓度。这种化学物质的浓度比其他物种大得多，但化学上相关的量作为它的变量，其量级可与其他浓度的变量相比较。有关化学的更多细节，请参见Showalter、Noyes和Bar-Eli论文[207]。在以往对这个模型的研究中，Barkley[16]不能清楚地定义它所展示的MMO的动力学解释。我们针对Showalter、Noyes和Bar-Eli观测MMO的单个参数集来研究这个系统，具体而言如下系统(7.2)
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field derived from a system of reactions

A+ Y � X + P,

X + Y � 2P,

A+X � 2W,

C +W � X + Z,

2X � A+ P,

Z → gY + C,

that satisfy the law of mass action, resulting in the equations

(7.1)



A′ = k0(A0 −A)− k1AY + k−1PX − k3AX + k−3W
2 + k5X

2 − k−5AP,

C′ = k0(C0 − C)− k4CW + k−4XZ + k6Z,

P ′ = −k0P + k1AY + 2k2XY − 2k−2P
2 + k5X

2 − k−5AP − k−1PX,

W ′ = −k0W + 2k3AX − 2k−3W
2 − k4CW + k−4XZ,

X ′ = −k0X + k1AY − k−1PX − k2XY + k−2P
2 − k3AX + k−3W

2

+ k4CW − k−4XZ − 2k5X
2 + 2k−5AP,

Y ′ = k0(Y0 − Y )− k1AY + k−1PX − k2XY + k−2P
2 + gk6Z,

Z ′ = −k0Z + k4CW − k−4XZ − k6Z,

where we use the same letter to identify a chemical species and its concentration.
Note that C′ +Z ′ = k0(C0 −C − Z), so the hyperplane C + Z = C0 is invariant and
attracting. We reduce (7.1) to a six-dimensional vector field on this hyperplane by
setting C = C0 − Z and eliminating the equation for C′. The model is “realistic” in
the sense that each variable is associated with a definite chemical species. The reac-
tion rates are based upon experimental measurements. As is typical with chemical
reactions, the concentrations of intermediate species differ from each other by many
orders of magnitude. Nevertheless, some intermediate species that have very low con-
centrations are still dynamically important. The variable Y represents concentration
of bromide, which is often measured in experiments to monitor the state of the sys-
tem. The variable A in the model represents the concentration of bromate. This
chemical has much larger concentrations than the other species, but the chemically
relevant quantity is its variation, which is of order comparable to the variations of
other concentrations. See Showalter, Noyes, and Bar-Eli [207] for more details about
the chemistry. In previous studies of this model, Barkley [16] was unable to clearly
identify a dynamical explanation of the MMOs it exhibits.

We study this system for a single set of parameters where Showalter, Noyes, and
Bar-Eli observed an MMO, specifically,

(7.2)

k1 = 0.084 (Ms)
−1

, k−1 = 1× 104 (Ms)
−1

,

k2 = 4× 108 (Ms)−1, k−2 = 5× 10−5 (Ms)−1,

k3 = 2× 103 (Ms)
−1

, k−3 = 2× 107 (Ms)
−1

,

k4 = 1.3× 105 (Ms)
−1

, k−4 = 2.4× 107 (Ms)
−1

,

k5 = 4.0× 107 (Ms)−1, k−5 = 4.0× 10−11 (Ms)−1,

k6 = 0.65 (Ms)
−1

, k0 = 7.97× 10−3 s−1,

A0 = 0.14 M, C0 = 1.25× 10−4 M,

Y0 = 1.51× 10−6 M, g = 0.462.
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Fig. 30 Time series of an MMO periodic orbit for (7.1), with parameters given in (7.2). The time
series of each variable is scaled to the interval [0, 1] and the trajectory is plotted over one
period. Panel (a) shows the slow variables A (black) and P (gray), and panel (b) the fast
variables W (black), X (gray), Y (black), and Z (gray).

Table 3 Minimum and maximum ranges of variation of each coordinate in Figure 30.

A P W X Y Z

1.39856 × 10−1 1.83× 10−4 1.45× 10−9 4.2× 10−11 2.39× 10−8 3.89× 10−8

1.39907 × 10−1 2.80× 10−4 1.38× 10−6 1.5× 10−7 2.28× 10−6 6.41× 10−6

Note that the system (7.1) and the parameters in (7.2) have dimensional units;
throughout, concentrations are measured in molar (M) and time in seconds (s).

Figure 30 shows time series of the MMO periodic orbit of (7.1) with parameters
given by (7.2), plotted over one period T ≈ 209 s. In the time series, each variable
is scaled by an affine transformation so that it varies on the interval [0, 1]. To relate
back to the dynamics of (7.2) the minimum and maximum values of each variable
prior to rescaling are listed in Table 3. Figure 30 displays the characteristics of an
MMO. There are small oscillations that occur while the relative concentration of Y
is small and the relative concentration of Z is large. Note from Table 3 that these
concentrations are varying by over two orders of magnitude. The periodic orbit makes
two circuits and has signature 1415.

There is no explicit slow-fast structure in (7.1). We infer that (A,P ) vary slowly
relative to (W,X, Y, Z) in an ad-hoc manner from Figure 30 by making two observa-
tions. First, the variables (A,P ) show a monotone decrease and increase during the
times that the variables (W,X, Y, Z) undergo small oscillations. Second, (A,P ) do not
undergo rapid changes at the beginning or end of the small oscillations as (W,X, Y, Z)
do. Therefore, to investigate the mechanisms producing the SAOs in this MMO, we
identify the system as a slow-fast system with slow variables (A,P ) and fast variables
(W,X, Y, Z) as far as the MMO dynamics is concerned. Figure 31(a) projects the
MMO periodic orbit Γ onto the (P, Y, Z)-space. Notice the region of SAOs, which is

Administrator
在文本上注释
注意，系统（7.1）和（7.2）中的参数具有单位量纲；在整个过程中，浓度以摩尔（M）和时间以秒（s）测量。图30sh给展示出了系统（7.1）中的MMO周期轨线的时间序列，其参数由系统（7.2）给出，以T_209s为周期绘制而出。在此时间序列中，每个变量通过伸缩变换进行缩放，使得它在区间[0，1]上变化。为了回到系统（7.2）的动力学，表3中列出了重新缩放之前每个变量的最小值和最大值。图30显示了MMO的特征。当Y的相对浓度较小，Z的相对浓度较大时，振荡较小。注意表3中这些浓度变化超过两个数量级。周期轨线构成两个回路，并具有特征码1415。在系统(7.1)中没有明确的慢-快结构。从图30中通过两次观测，我们推断（A，P）相对于（W，X，Y，Z）以特殊的方式中缓慢变化。首先，变量（A，P）在变量（W，X，Y，Z）经历小振荡的时间内显示出单调的减少和增加。第二，(A，P)在小振荡开始或结束时不像(W，X，Y，Z)那样经历快速变化。因此，为了研究这种MMO中SAOs的产生机制，我们从MMO动力学的角度将系统定义为具有慢变量（A，P）和快变量（W，X，Y，Z）的慢-快系统。图31(a)是将MMO周期轨线投影到(P,Y,Z)-空间上的投影图。请注意SAOs区域，它有两条轨线经过。子图（b）显示Γ投影到慢变量的（A，P）平面上。从这个投影中我们观察Γ位于超平面2A+P=2A0（灰色线）附近，这意味着A和P沿着MMO周期轨道线的变化是同一阶的数量级的。图31（a）表明MMO周期轨线的SAOs是由于一个旋转引起的。为了确定这一点，我们使用MatCont[46]程序用连续方法计算SAOs附近的临界流形。图32（a）显示了慢变量（A，P）-平面中快子系统的Hopf分支曲线以及曲线2A+P=2A0。图32(a)中绘制的Hopf曲线的一小部分，它几乎是水平的，因此两条曲线横向交叉。MatCont还计算了沿着Hopf分支的这个部分的Hopf分支的第一个李雅普诺夫系数，表明它们都是次临界的。为了进一步证明与Hopf分支岔相关的旋转确实是产生SAOs的基础，我们将Γ投影到由快变量空间中Hopf分支的二维中心流形所张成的三维空间中且把投影方向定义2A+P=2A0的方向。中心流形的投影被绘制成灰色曲线，边界层方程的Hopf点是黑点。Γ中与SAOs相对应的两个部分围绕着中心流形，并且具有接近Hopf点的最小振幅。这清楚地证明了在系统(7.1)中发现的MMO的特征SAOs是由动力学Hopf分支的旋转机制生成的，类似于第6节中Olsen模型观察到的SAOs。此示例说明了如何将本文描述的方法有效地应用于维度高于3或4的系统。
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Fig. 31 Panel (a) shows the trajectory projected onto the space spanned by the coordinates (P, Y, Z).
A curve along the critical manifold is plotted as a gray line, and the black dot marks the
location of a Hopf bifurcation in the fast subsystem. In panel (b) the MMO is projected
onto the (A,P )-plane. The gray line is defined by 2A+ P = 2A0 and the ranges of A and
P are [0.13985, 0.13991] and [0.00018, 0.0003].
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Fig. 32 Panel (a) shows the curve of Hopf bifurcations (black line) and the line defined by 2A +
P = 2A0 (gray) in the (A, P )-plane. Panel (b) shows the SAOs projected onto the three-
dimensional space spanned by the center manifold of the Hopf bifurcation and the direction
of the line {2A+P = 2A0} in the (A,P )-plane. The MMO periodic orbit Γ visits this region
twice and each time spirals around the center manifold of the Hopf bifurcation (gray); the
Hopf bifurcation point of the layer system itself is the black dot.

visited twice. Panel (b) shows Γ projected onto the (A,P )-plane of slow variables.
We observe from this projection that Γ lies close to the hyperplane 2A + P = 2A0

(gray line), which means that the change of A and P along the MMO periodic orbit
is of the same order.

Figure 31(a) suggests that the SAOs of the MMO periodic orbit Γ are due to a
tourbillon. To ascertain this, we compute the critical manifold near the vicinity of
the SAOs with continuation methods using the program MatCont [46]. Figure 32(a)
shows the curve of Hopf bifurcations in the fast subsystem in the (A,P )-plane of the
slow variables together with the curve 2A+ P = 2A0. The small portion of the Hopf
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curve plotted in Figure 32(a) is almost horizontal, so the two curves cross transversally.
MatCont also calculates the first Lyapunov coefficient of the Hopf bifurcations along
this part of the branch, showing that they are all subcritical. To demonstrate further
that the tourbillon associated with the Hopf bifurcation is indeed the basis for SAOs,
we project Γ onto the three-dimensional space spanned by the two-dimensional center
manifold of the Hopf bifurcation in the space of fast variables and the direction defined
by 2A + P = 2A0. The projection of the center manifold is plotted as a gray curve
and the Hopf point of the layer equation is the black dot. The two parts of Γ that
correspond to SAOs surround the center manifold and have minimal amplitudes close
to the Hopf point. This is clear evidence that the MMO found in (7.1) features SAOs
that are generated by the tourbillon mechanism of a dynamic Hopf bifurcation, similar
to the one observed for the Olsen model in section 6. This example illustrates how the
methods described in this paper can be applied effectively to a system of dimension
higher than just three or four.

8. Numerical Methods for Slow-Fast Systems. This section discusses numeri-
cal methods that we used to compute the two-dimensional slow manifolds shown in
many of the figures, as well as stable and unstable manifolds of equilibrium points.
The slow manifold computations use numerical integration and boundary value meth-
ods to compute orbit segments that lie along the slow manifolds. An orbit segment is
simply a finite piece of a trajectory of the vector field; as such, it has two endpoints
and an associated integration time. In the context of computing slow manifolds, each
such orbit segment is chosen to have one endpoint on the critical manifold away from
its folds, where the critical manifold is a good approximation of the slow manifold
one wishes to compute. Indeed, Fenichel’s theorem implies that the distance between
the critical manifold and the slow manifold is O(ε), and that trajectories flow from
the critical manifold to an attracting or repelling slow manifold at an exponential
rate in the appropriate time direction; see Theorem 2.1. Consequently, the computed
orbit segments are expected to be as close to the slow manifold as the order of the
numerical method allows, except for short O(ε) segments at one end where there is
a fast transition from the critical manifold to the slow manifold in question. For sta-
ble or unstable manifolds of equilibria, orbit segments are chosen to lie in the linear
eigenspace associated with the stable or unstable eigenvalues, respectively. The com-
putational error associated with this approximation also decays quickly as one moves
away from the endpoint; see [43, 131] for analysis of these approximation errors.

A simple and effective method for computing invariant manifolds as families of or-
bit segments is to use initial value solvers as the basic algorithm with initial conditions
chosen on a mesh of points transverse to the flow in the invariant manifold; we call this
the “sweeping” method. Despite its simplicity, this sweeping method fails to produce
satisfactory results in some cases. In particular, strong convergence or divergence
of trajectories toward one another makes the choice of the initial mesh problematic
and can produce very nonuniform “coverage” of the desired manifold; see [61, 62].
In multiple-time-scale systems, the fast exponential instability of Fenichel manifolds
that are not attracting makes initial value solvers incapable of tracking these mani-
folds by forward integration. These issues prompt the use of boundary value methods
combined with continuation as an alternate strategy for computing invariant mani-
folds [132, 133]. We have used both strategies in this paper. This section presents
more details of the techniques used to compute attracting and repelling slow mani-
folds of systems with one fast and two slow variables, as well as the continuation of
canard orbits when a parameter is varied.
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在文本上注释
慢-快系统的数值方法本节讨论用于计算许多图中所示的二维慢流形以及平衡点的稳定和不稳定流形的数值方法。慢流形计算是使用数值积分和边界值方法来计算沿着慢流形的轨线段，轨道段只是向量场轨线的有限部分；因此，它有两个端点和一个相关的积分时间。在计算慢流形的上下文中，每个这样的轨线段被选择为在临界流形上远离其折的一个端点，其中我们希望临界流形是慢流形的良好近似。实际上，Fenichel定理暗示临界流形和慢流形之间的距离是O(ε)，并且轨线以指数速率在适当的时间方向上从临界流形流动到吸引或排斥慢流形；参见定理2.1。因此，除了一端存在从临界流形到慢流形的快速过渡的短O(ε)段之外，预计计算的轨线段将尽可能接近慢流形。对于平衡点的稳定流形和不稳定流形，选择轨线段分别位于与稳定或不稳定特征值相关的线性特征空间中。与这种近似相关的计算误差在远离终点时也迅速变弱；参见[43,131]分析了这些近似误差。计算作为轨线段族的不变流形的一种简单有效的方法是使用初始值解算器作为具有初始条件的基本算法，初始条件选择在不变流形中横向流的点网格上；我们称之为“扫描”法。尽管该方法简单，但在某些情况下不能产生令人满意的结果。特别地，轨线相互之间的强收敛或发散使得初始网格的选择有问题，并且可能产生期望的流形的非常不均匀的“覆盖”；参见[61，62]。在多时间尺度系统中，没有吸引力的Fenichel流形的快速指数不稳定性使得初值解算器无法通过正向积分来跟踪这些流形。这些问题促使使用结合了连续性边界值方法作为计算不变流形的备选策略[132，133]。在本文中，我们使用了两种策略。本节详细介绍用于计算具有一个快变量和两个慢变量的系统的吸引和排斥慢流形的方法，以及当参数变化时鸭轨线的延续。
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8.1. Sweeping Invariant Manifolds. The Fenichel manifolds of systems with a
single fast variable are either attracting or repelling. As a result, forward trajectories
with initial conditions on the critical manifold will converge quickly to an attract-
ing Fenichel manifold and backward trajectories with initial conditions on the criti-
cal manifold will converge quickly to a repelling Fenichel manifold. Thus, one way
to compute two-dimensional attracting and repelling Fenichel manifolds of a three-
dimensional flow is to apply an initial value solver in the appropriate time direction to
a mesh of initial conditions along a curve of the critical manifold transverse to the slow
flow. We used this sweeping method to compute Sr

ε in Figure 11; see also [163] for an
early use of this method to compute two-dimensional invariant manifolds and Wechsel-
berger [237] and Guckenheimer and Haiduc [88] for an example involving folded nodes.

When incorporated into a continuation framework, the sweeping method can also
be used if the critical manifold is not known in closed form and the mesh of ini-
tial conditions cannot be selected beforehand. Continuation methods [51] provide
well-established algorithms that augment equation solvers like Newton’s method with
strategies for choosing new starting points when solving underdetermined systems of
equations. More precisely, suppose F : Rm+n → R

m is a smooth function given by
m equations of m+ n variables. The implicit function theorem states that the zeros
of F form a smooth n-dimensional manifold M near points where the matrix DF of
partial derivatives has full rank m. Moreover, the theorem gives a formula for the
tangent space of M . Most continuation methods treat the case n = 1, where the
set of solutions is a curve; see [104] for the case n > 1. In general, the methods are
based on a predictor-corrector procedure: given a point on M , tangent (or higher-
order) information is used to choose a new seed for the solver to find a new point on
M . The sweeping method described above selects the continuation step size based
on equal increments of a specific coordinate or direction, but more sophisticated step
size adaptations can be used as well.

We also used a sweeping method to compute the global unstable manifold Wu(p)
in Figure 11. The mesh of initial conditions was taken to lie along a ray in the tangent
space of Wu(p), with endpoints of the mesh at successive intersections of a trajectory
of the linearized system with this ray. The sweeping method works well here, because
the selected orbit segments provide adequate “coverage” of Wu(p).

8.2. Continuation of Orbit Segments with Boundary Value Solvers. The core
algorithms of AUTO [52] are a BVP solver and the numerical continuation of solutions
of implicitly defined equations. The BVP solver of AUTO uses a collocation scheme,
where solution segments are represented by piecewise polynomials (of a user-specified
degree, usually between 3 and 5) that are defined on the mesh intervals of a user-
specified mesh. Solving the ODEs at the collocation points gives a large system of
equations for the coefficients of the polynomials that is solved by Newton’s method.
AUTO uses what is known as pseudo-arclength continuation to follow or continue solu-
tions of such equations in a chosen parameter, where the step size is adapted automati-
cally; see [51] for details. The combination of a BVP solver and numerical continuation
allows us to find and then continue one-parameter families of orbit segments that form
(parts of) invariant manifolds of interest. The sweeping method described in the pre-
vious section can also be implemented in AUTO [52], so that the initial value problems
are solved by collocation. The techniques described in this section impose boundary
conditions on both endpoints of the orbit segments, which makes the method more ver-
satile and suitable in a wider context; see also [132]. We describe here how to formulate
two-point BVPs in order to compute slow manifolds and associated canard orbits.
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有边界值解算器的轨道段的延拓AUTO软件[52]的核心算法是BVP解算器和隐式方程解的数值延拓。AUTO软件的BVP解算器使用配置方案，其中解段由在用户指定的网格的网格间隔上定义的分段多项式（用户指定的程度，通常在3到5之间）表示。在配置点求解ODE给出了一个由牛顿法求解的多项式系数的大方程组。AUTO软件使用所谓的伪弧长延拓来跟踪或延续所选参数中此类方程的解，其中步长是自动调整的，具体细节参考[51]；BVP解算器和数值延拓的结合允许我们找到并继续形成相关的（部分）不变流形的轨线段的单参数族。前面部分描述的扫描方法也可以在AUTO软件[52]中实现，从而通过配置来解决初始值问题。本节中描述的方法对轨线段的两个端点施加边界条件，这使得该方法在更广泛的上下文中更通用和适用；参见[132]。本文描述如何建立两点BVPs来计算慢流形和相关的鸭轨线。我们考虑缩放形式（8.1）式的两点BVPs，其中g：Rn×Rp_Rn是足够光滑的，T∈R，λ∈Rp是参数，L和@是Rn的子流形。参数T重新缩放时间变量，使得轨线段始终对应于时间间隔[0，1]中的轨线。因此，两个端点的边界条件总是适用于u(0)和u(1)，并且T是相关联的(未缩放的)总积分时间。为了得到一个具有孤立解的适定问题，边界条件的数目应该等于方程的数目(n，因为u∈Rn)加上自由参数的数目(对于参数λ和总积分时间T，最多p+1)。我们对（8.1）式的单参数解族感兴趣，这意味着我们允许一个更少的边界条件（或者一个额外的自由参数）。注意，总积分时间T通常是未知的，并且可以被视为额外的自由参数。我们首先考虑二维吸引和排斥慢流形Saε和Srε的计算。为了简化解释，我们假设我们有一个具有两个慢变量和一个折结点的三维慢系统。在此背景下，参数λ保持不变，并且通过施加总共三个边界条件，我们得到了轨线段的一个参数族（具有未知的总积分时间T）。这意味着，(8.1)式中的L和@的维数总计为n=3。我们的方法是选择L作为临界流形上的曲线（例如，一条直线），这需要两个边界条件，而@作为面（例如，平面），这需要一个边界条件，使得相关的轨线段的单参数族覆盖慢流形的所需部分。例如，为了进入折结点区域，我们设L是横截于慢流的临界流形吸引分支的曲线，@是在折结点处正交于折曲线F的面。同样的方法也适用于Srε，其中我们在临界流形的排斥分支上选择L，注意，对于当T<0时的这样一组轨线段。我们注意到，这些选择也可以与扫描方法或者检测由函数的水平集定义的“停止条件”的初值解算器一起使用。慢流形可以通过选择横截面@来扩展，横截面在位于折结点之外的点上与F正交。图6、20和29给出了这种可视化的示例；还可以参见[42、43、45]。与所有延拓部分一样，找到初值解是一个重要的问题。当延拓BVP的解时，显式解可能可以从其中被构造初值解中获得；参见[43]中的例子。然而，一般来说，没有显式解是已知的，并且必须以不同的方式找到初值解。我们使用同伦方法产生一个初始轨线段；主要思想是通过两个辅助BVPs来延续中间轨线段，第一个BVP从折曲线F上的点到该段获得轨道段，第二个BVP将F上的端点沿着临界流形移动到离F适当的距离；详见[42]。现在我们用Koper模型（4.1）来阐明这种方法，它也在第4节中用于案例研究。我们设参数（ε1，ε2，λ，k）=（0.1，1，7，10），注意到在[123]中λ>0，这与第4节中考虑的λ=7的对称情况相关。如第4节所描述的那样，在这个模型中有一个折结点，它在一些被观测到的MMOs中导致SAOs产生；在原始坐标中，它的坐标如下：我们计算Sεa1和Sεr1作为由系统(8.1)给出的BVPs的解，其中g由系统(4.1)的右侧所定义。作为边界条件，我们对Saε1和Sεr1使用相同的截面Σ，分别用线L=La和L=Lr表示，定义如下：(8.3)、(8.4)、(8.5)图33展示了计算结果。我们分两个同伦步骤在Sεa1上找到第一个轨线段，如图33(a)所示。从平凡解u={pfn|0≤t≤1}出发，利用总积分时间T=0，我们延拓从（4.1）中求解出的并满足u(1)∈fn和u(0)∈F的轨线段族。我们停止计算，在AUTO软件中由自定义的函数检测，而且**图33(a)中的F上具有它自身端点的轨线段是这个轨线段族的最后一个计算结果。同伦的第二步使u（0）∈S远离F且（近似）平行于Σ，即我们接着延拓从（4.1）中求解出的且满足u（1）∈fn和u（0）∈La=S_a的轨线段族。当到达La时，延拓停止，这在AUTO软件中由自定义的函数再次检测到。该族中的轨线段如图33(a)(红色曲线)所示；只有最后一个轨线段ua(最低部的，暗红色的)位于Sεa1上，以便于很好地近似；这个轨线段是开始流形计算的那个。为了在Sεr1上获得第一轨线段，我们进行了类似的计算，其中使用中间段r:={z=0.87}；这在图33(b)中已示出，其中轨线段ur(青色)作为Sεr1上的初始解。一旦发现第一轨道段ua和ur，我们开始对吸引慢流形Sεa1进行(8.1)和(83)，(8.4)的延拓，对排斥慢流形Sεr1进行(83)和(8.5)的延拓。结果如图33(c)所示，Saε1和Sεr1与fn的交曲线如图33(d)所示。在子图(d)中的Sεa1_fn和Sεr1_fn的横向交点对应于次要鸭轨线；子图(c)中的三维视图显示了其中三个，标记为ξ1、ξ2和ξ3
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We consider two-point BVPs of the scaled form

(8.1)


u̇ = Tg(u, λ),

u(0) ∈ L,
u(1) ∈ Σ,

where g : Rn × R
p → R

n is sufficiently smooth, T ∈ R, λ ∈ R
p are parameters,

and L and Σ are submanifolds of Rn. The parameter T rescales time so that the
orbit segments always correspond to trajectories in the time interval [0, 1]. Hence,
the boundary conditions at the two endpoints always apply to u(0) and u(1), and
T is the associated (unscaled) total integration time. In order to have a well-posed
problem with isolated solutions, the number of boundary conditions should equal the
number of equations (n, because u̇ ∈ R

n) plus the number of free parameters (at
most p+ 1 for the parameter λ and the total integration time T ). We are interested
in one-parameter families of solutions of (8.1), which means that we allow one fewer
boundary condition (or one additional free parameter). Note that the total integration
time T is typically unknown and may be viewed as the extra free parameter.

Let us first consider the computation of two-dimensional attracting and repelling
slow manifolds Sa

ε and Sr
ε . To simplify the explanation, we assume that we have a

three-dimensional slow-fast system with two slow variables and a folded node. In
this context, the parameter λ remains fixed, and we obtain a one-parameter family
of orbit segments (with unknown total integration times T ) by imposing a total of
three boundary conditions. This means that the dimensions of L and Σ in (8.1)
sum up to n = 3. Our approach is to choose L as a curve (e.g., a straight line) on
the critical manifold, which requires two boundary conditions, and Σ as a surface
(e.g., a plane), which requires one boundary condition, such that the associated one-
parameter family of orbit segments covers the desired portion of the slow manifold.
For example, in order for Sa

ε to come into the folded-node region, we let L be a curve
on the attracting sheet of the critical manifold transverse to the slow flow and Σ be a
surface orthogonal to the fold curve F at the folded node. The same approach works
for Sr

ε , where we choose L on the repelling sheet of the critical manifold; note that
T < 0 for such a family of orbit segments. We remark that these choices can also be
used with the sweeping method and an initial value solver that detects a “stopping
condition” defined by the level set of a function. The slow manifolds can be extended
by choosing cross-sections Σ orthogonal to F at points that lie beyond the folded
node. Figures 6, 20, and 29 give examples of such visualizations; see also [42, 43, 45].

As with all continuation, an important issue is to find a first solution. When
continuing solutions of a BVP, explicit solutions may be known from which such a
first solution may be constructed; see [43] for an example. However, in general no
explicit solution is known and a first solution must be found in a different way. We
use a homotopy method to generate an initial orbit segment; the main idea is to
continue intermediate orbit segments via two auxiliary BVPs—the first to obtain an
orbit segment from a point on the fold curve F to the section, and the second to move
the endpoint on F along the critical manifold to a suitable distance from F ; see [42]
for details.

We now illustrate this method with the Koper model (4.1), which was also used
for the case study in section 4. We use the parameters (ε1, ε2, λ, k) = (0.1, 1, 7,−10);
note that λ > 0 as in [123], which is symmetrically related to the case with λ = −7
considered in section 4. As shown in section 4, there is a folded node in this model,
which organizes the SAOs in some of the observed MMOs; in original coordinates it
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is at

(8.2) pfn =

(
−1,

2 + λ

k
,
2λ+ 4 + k

k

)
= (−1,−0.9,−0.8).

We compute Sa
ε1 and Sr

ε1 as solutions to the BVPs given by (8.1), where g is defined
by the right-hand side of (4.1). As boundary conditions, we use the same section Σ
for both Sa

ε1 and Sr
ε1 with respective lines L = La and L = Lr as follows:

Σfn := {(x, y, z) ∈ R
3 | z = −0.8},(8.3)

La := S ∩ {x = −1.5},(8.4)

Lr := S ∩ {x = −0.2}.(8.5)

Figure 33 shows the result of the computations. We find a first orbit segment on Sa
ε1

using two homotopy steps; this is illustrated in Figure 33(a). Starting from the trivial
solution u = {pfn | 0 ≤ t ≤ 1}, with total integration time T = 0, we continue the
family of orbit segments that solves (4.1) subject to u(1) ∈ Σfn and u(0) ∈ F . We
stop the computation, detected by a user-defined function in AUTO, as soon as

u(0) ∈ Σ̃a := {(x, y, z) ∈ R
3 | z = −0.76}.

The orbit segment with its endpoint on F in Figure 33(a) is this last computed
solution of the family. The second step of the homotopy moves u(0) ∈ S away from F
(approximately) parallel to Σ, that is, we next continue the family of orbit segments

that solves (4.1) subject to u(1) ∈ Σfn and u(0) ∈ L̃a = S ∩ Σ̃a. The continuation
stops when La is reached, which is again detected by a user-defined function in AUTO.
A selection of orbit segments in this family are shown in Figure 33(a) (red curves);
only the last orbit segment ua (lowest, dark red) lies on Sa

ε1 to good approximation;
this is the one from which the manifold computation is started. A similar computation
was done to obtain a first orbit segment on Sr

ε1 , where we use the intermediate section

Σ̃r := {z = −0.87}; this is illustrated in Figure 33(b), where the orbit segment ur

(cyan) serves as a first solution on Sr
ε1 .

Once the first orbit segments ua and ur have been found we start the continuation
of (8.1) with (8.3) and (8.4) for the attracting slow manifold Sa

ε1 and with (8.3)
and (8.5) for the repelling slow manifold Sr

ε1 . The result is presented in Figure 33(c),
and the intersection curves of Sa

ε1 and Sr
ε1 with Σfn are shown in Figure 33(d). The

transverse intersection points of Sa
ε1 ∩ Σfn and Sr

ε1 ∩ Σfn in panel (d) correspond to
secondary canard orbits; the three-dimensional view in panel (c) shows three of these,
labeled ξ1, ξ2, and ξ3.

8.3. Finding and Following Canard Orbits. Maximal canards near a folded node
are transverse intersection curves of the two-dimensional attracting and repelling slow
manifolds Sa

ε and Sr
ε . We briefly discuss here how to detect the canard orbits and

subsequently continue them in a system parameter; see also [42, 43, 45]. To represent
a maximal canard we must compute Sa

ε and Sr
ε using a common cross-section Σ

of the fold curve at or near the folded node. The common cross-section allows us
to obtain a representation of the canard orbit as the concatenation uc of an orbit
segment ua ⊂ Sa

ε (with associated total integration time T a) with an orbit segment
ur ⊂ Sr

ε (with associated total integration time T r), where ua and ur are chosen such
that ua ∩ Σ = ur ∩ Σ. The concatenated orbit uc located with this method can be
continued in a system parameter without the need to recompute the slow manifolds
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8.3。找出并追踪鸭轨线折结点附近的最大鸭解是二维吸引和排斥慢流形S aε和Sεr的横向交叉曲线。我们这里简要地讨论如何检测鸭形轨线，并随后在系统参数中延拓它们；参见[42，43，45]。为了表示出最大鸭解，我们必须使用折结点处或在其附近的折曲线的公共截面来计算Sεa和Sεr。公共截面使得我们获得鸭轨线的表达式，即为与轨线段ua_Sεa(具有相关的总积分时间T a)与轨线段ur_Srε(具有相关的总积分时间Tr)都相关的部分uc，其中ua和ur满足ua_=ur_。用这种方法定位的相互关联的轨线uc可以在系统参数中延拓，且而无需在每一步重新计算慢流形。回想一下，AUTO软件总是将BVP缩放到时间间隔[0,1]内，所以我们适当地重新缩放uc上的时间，并在系统(8.1)中令T=T a+T r。然后我们可以在满足边界条件(8.6)、(8.7)的情况下开始延拓(在系统参数中)，边界条件决定了uc为孤立解。事实上，只要ua__ur_这种延拓通常就会开始，Σ中的任何小间隙在首次牛顿步长迭代后被迫靠近。(8.6)和(8.7)这两个边界条件迫使轨线段uc保持非常接近临界流形S的吸引分枝的状态，直到接近折曲线F，然后接近于S的排斥分枝直至Lr。图34显示了Koper模型（4.1）的鸭式延拓，其中我们记ε1为第二个自由参数（连同T），并且保持（ε2，λ，k）=（1，7，10）固定。图34(a)显示了在面Σ=fn部分中具有(几乎)相等端点的两个轨线段ua和ur；它们已经被检测为最大次要鸭轨线ξ4的良好近似，然后由连接轨线uc表示。为了增加或减少ε1，我们延拓ξ4，以及其他六个最大次要鸭解，参见图33。图34(b)显示了这七个分支，标记为ξ1-ξ7；在图中垂直轴表示总积分时间T，它清楚地区分了分支。当ξ1-ξ7沿着ε1增加的方向延拓时，每个分支都检测到了ε1中的折；我们已经在第5节中弄清楚了这一点，在其他系统中[45]也观察到了。图34(c)是一个“瀑布图”，显示了当ε1变化时，最大次要鸭轨线ξ4如何沿分支发展；具体地说，用适当的偏移宽度δi绘制了沿分支ξ4连续计算的轨线段的快速变量x的时间分布图。对应于ξ4的折的轨线段用粗黑突出显示。观察折左侧的轨线段产生了四个SAOs，而经过折的只产生了三个SAOs跟着一个快速段。因此，经过折的鸭轨线不再是最大鸭轨线；参见第5节。
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Fig. 33 Computation of the slow manifolds Sa
ε1

and Sr
ε1

of the Koper model (4.1) with (ε1, ε2, λ, k) =
(0.1, 1, 7,−10). Panel (a) shows a homotopy family of red orbit segments that connect the
section Σfn with the critical manifold S (gray). The first (uppermost) curve in the family
was computed by a separate homotopy that found an orbit segment ending along F at some
suitable distance from pfn. The second homotopy step swept out the family of red curves,
terminating with the last (lowest, darker red) orbit segment whose endpoint lies on the curve
La. Panel (b) shows a similar homotopy family of orbit segments (blue) connecting Σfn

with the repelling sheet of the critical manifold. The final (rightmost, cyan) orbit segment
starts at Lr. Panel (c) shows Sa

ε1
and Sr

ε1
together with three secondary canards ξ1, ξ2, and

ξ3. Panel (d) shows the intersection curves of Sa
ε1

and Sr
ε in Σfn that are used to detect

canard orbits.

at each step. Recall that AUTO always scales BVPs to the time interval [0, 1], so we
rescale time on uc appropriately and set T = T a +T r in (8.1). We can then start the
continuation (in a system parameter) subject to the boundary conditions

uc(0) ∈ La,(8.6)

uc(1) ∈ Lr,(8.7)
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Fig. 34 Continuation of secondary canards of the Koper model (4.1) with (ε2, λ, k) = (1, 7,−10)
starting from ε1 = 0.1. Panel (a) shows the canard orbit ξ4 represented by the concatenation
uc of two orbit segments ua and ur that match up in Σfn. Panel (b) shows the continuation
of the canard orbits ξ1–ξ7 in ε1, plotted as total integration time T versus ε1. Panel (c)
shows a two-dimensional “waterfall diagram” of the time profiles of the fast variable x
(subject to an offset δi) of computed orbit segments along the branch ξ4. The bold black
curve in panel (c) is the canard orbit ξ4 at the fold point of the (boldfaced) branch in
panel (b).

which determine uc as an isolated solution. In fact, such a continuation typically
starts already provided that ua ∩Σ ≈ ur ∩Σ; any small gap in Σ is forced to close by
the first Newton step. These two boundary conditions (8.6) and (8.7) force the orbit
segment uc to stay very close to the attracting sheet of the critical manifold S until
near the fold curve F , and then stay close to the repelling sheet of S up to Lr.

Figure 34 illustrates canard continuation with the Koper model (4.1), where we
used ε1 as the second free parameter (together with T ) and kept (ε2, λ, k) = (1, 7,−10)
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fixed. Figure 34(a) shows the two orbit segments ua and ur with (almost) equal end-
points in the section Σ = Σfn; they have been detected as a good approximation of
the maximal secondary canard orbit ξ4, which is then represented by the concate-
nated orbit uc. We continued ξ4, along with six other maximal secondary canards,
for increasing and decreasing ε1; see also Figure 33. Figure 34(b) shows these seven
branches, labeled ξ1–ξ7; here, the vertical axis shows the total integration time T be-
cause it clearly distinguishes the branches. When ξ1–ξ7 are continued in the direction
of increasing ε1, a fold in ε1 is detected for each branch; we have already seen this
in section 5 and it has also been observed in other systems [45]. Figure 34(c) is a
“waterfall diagram” that shows how the maximal secondary canard orbit ξ4 evolves
along the branch as ε1 is varied; specifically, the time profiles of the fast variable
x of consecutively computed orbit segments along the branch ξ4 are plotted with a
suitable offset δi. The orbit segment that corresponds to the fold of ξ4 is highlighted
in bold black. Observe that the orbit segments to the left of the fold have four SAOs,
whereas past the fold there are only three SAOs followed by a fast segment. Hence
the canard orbits past the fold are no longer maximal canards; see also section 5.

9. Discussion. We have described several mechanisms in slow-fast systems that
produce MMOs, namely, the twisting of slow invariant manifolds near a folded node,
oscillations that follow the two-dimensional unstable manifold of a saddle-focus equi-
librium near a singular Hopf bifurcation, and the tourbillon mechanism of a dynamic
Hopf bifurcation. Geometric singular perturbation theory (GSPT) provides tools to
identify the geometry associated with each mechanism, to quantify the MMO signa-
tures, and to describe associated bifurcations. Analysis of the folded-node case is more
complete than that of the other cases. Recent work on singular Hopf bifurcation [87]
and the transition from singular Hopf to folded nodes [144] provides substantial de-
tail on the second case, but much remains to be discovered about the unfolding of a
singular Hopf bifurcation that is relevant to MMOs. Historically, the dynamic Hopf
bifurcation was discovered first, and detailed analysis exists for the case of a delayed
Hopf bifurcation of the layer equations [169]. Together, these mechanisms constitute
a partial framework for classifying MMOs in multiple-time-scale systems that can be
further extended. Perhaps the most surprising aspect of the theory we have described
is that oscillations can appear from the interaction of fast and slow time scales even
when neither of these time scales individually displays oscillations.

We have used four case studies to illustrate theoretical concepts, and they serve as
a testbed for the development of numerical methods. The MMOs in the Koper model
and the three-dimensional reduction of the Hodgkin–Huxley equations have SAOs that
occur on intermediate time scales due to folded nodes and singular Hopf bifurcations.
In the folded-node mechanism, three parameters play key roles in determining the
geometry of the small oscillations: the ratio ε of time scales, the eigenvalue ratio
µ of the folded node in the desingularized reduced system, and the distance δ of
global return trajectories from certain invariant manifolds. Intersections of invariant
manifolds are prerequisite to global returns that produce MMOs in these examples,
and tangencies between these manifolds constitute a new type of bifurcation that
is found on the boundaries of parameter regions yielding MMOs. We found fast
oscillations of the layer equations in the Olsen and Showalter–Noyes–Bar-Eli models
of chemical reactions. Both models exhibit MMOs due to a tourbillon mechanism of
a dynamic Hopf bifurcation. These two case studies also illustrate how the theory
applies in higher dimensions and how numerical tools can be extended to investigate
and identify the mechanisms for generating MMOs in higher-dimensional systems.
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总结我们已经描述了在慢速系统中产生MMOs的几种机制，即在折结点附近的慢不变流形的扭转，在奇异Hopf分支附近的鞍焦平衡点的二维不稳定流形之后的振荡，以及动力学Hopf分支的旋转机制。几何奇异摄动理论（GSPT）提供了方法来识别与每个机制相关的几何结构，且量化MMO特征以及描述相关的分支。折结点情况的分析比其他几种情况的分析更完整。最近关于奇异Hopf分支[87]和从奇异Hopf到折结点的过渡[144]的研究提供了关于第二种情况的大量细节，但是关于与MMOs相关的奇异Hopf分支的展开还有许多问题有待发现和解决。历史上，动力学Hopf分支被首先发现后，对边界层方程的迟滞Hopf分支的情况进行了详细的分析[169]。这些机制共同构成了在多时间尺度系统中对MMOs进行分类的部分框架，该框架还可以进一步扩展。也许我们所描述的理论的最令人惊讶的方面是即使这两个时间尺度都不单独显示振荡，振荡也可以从快时间尺度和慢时间尺度之间的相互作用中出现。我们通过四个研究案例来说明相关的理论概念，并且通过这四个案例来进行数值方法的模拟计算实验。Koper模型中的MMOs和Hodgkin-Huxley方程的三维约化形式在中间时间尺度上由于折结点和奇异Hopf分支而产生SAOs。在折结点机制中，以下三个参数对确定小振荡的几何形状起着关键作用：时间缩放比率，去奇异化约化系统中折结点的特征值比μ，以及全局回归轨线与某些不变流形的距离δ。在这些例子中，不变流形的交叉是产生MMOs的全局回归的先决条件，并且这些流形之间的切线构成了在产生MMOs的参数区域的边界上发现的一种新型分支。在化学反应的Olsen和Showalter-Noyes-Bar-Eli模型中，我们发现了边界层方程的快速振荡。由于动力学Hopf分支的旋转机制，两个模型都显示出MMOs。这两个研究案例还说明了如何把该理论应用于高维情况，以及如何扩展数值工具以研究和判别在高维系统中生成MMOs的机制。本文的目的之一是促进动力学模型与数据的拟合。对于MMOs来说，这个目标任务没有像其他许多非线性动力学现象那么成功。一方面，MMOs是一个复杂的现象，另一方面，模型的数值研究过程中产生了令人困惑和有时自相矛盾的结果。迄今为止发展起来的理论最适用于处理下面的这种情况，即SAOs的振幅太小，甚至在数值模拟中也无法观察到，但是模型研究经常显示出具有SAOs的MMOs是容易看到的。因此，判别该理论所强调的几何对象的数值方法是将理论、模型和经验数据结合在一起，而这也是必需的。我们回顾一下在三维模型中特别重要的二维不变流形及其交的计算方面的最新进展。这个学科进一步发展的挑战之一是将这些方法扩展到更高维度是。在下一节中，我们将简要回顾MMO的相关参考文献，其中包括许多实验研究的参考文献，然后简要讨论在ODE和其他领域中产生MMOs的其他机制。最后，我们讨论一些需要进一步研究的突出问题。
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One of our goals for this paper is to facilitate fitting dynamical models to data. In
the case of MMOs, this task has been less successful than with many other nonlinear
dynamical phenomena. On the one hand, MMOs are a complex phenomenon, and
on the other hand, numerical studies of models have yielded puzzling and sometimes
paradoxical results. The theory that has been developed thus far deals best with
circumstances where the SAOs have amplitudes that are far too small to be observed
even in numerical simulations, but model studies frequently show MMOs with SAOs
that are readily visible. Thus, numerical methods that identify the geometric objects
highlighted by the theory are essential for bringing theory, models, and empirical data
together. We have reviewed recent advances in computing two-dimensional invariant
manifolds and their intersections that are especially important in three-dimensional
models. Extension of these methods to higher dimensions is one of the challenges for
further advances in this subject.

In the next section we provide a brief review of the MMO literature that includes
many references to experimental studies, followed by a short discussion of other mech-
anisms for MMOs in ODEs and beyond. We conclude this survey with a discussion
of some outstanding issues that demand further research.

9.1. MMO Literature Review. This section provides an overview, in the form of
three tables, of references where examples of MMOs have been studied experimentally
or in model systems. We do not claim that this overview is complete; rather, these
tables are intended as an entry point into the extensive literature on the subject. Ta-
ble 4 lists experimental work on MMOs. The majority of these experiments have been
carried out for chemical reactions. As suggested in [8], we have subdivided the large

Table 4 References for experimental investigations of MMOs.

System / Reaction References

Belousov–Zhabotinsky (BZ) reaction

- Virginia [85, 106, 107, 108, 204]

- Texas [157, 158, 159, 196, 197]

- Bordeaux [8, 9, 185, 195, 231]

- Other groups [110, 156, 186, 187, 208]

Briggs–Rauscher (BR) reaction [28, 75, 172, 234]

peroxidase-oxidase (PO) reaction [78, 100, 101, 102, 103, 109, 174, 209]

HPTCu reaction [15, 138, 177, 178, 230]

Bray–Liebhafsky (BL) reaction [75, 150, 233]

copper and phosphoric acid [6, 202]

indium/thiocyanate (IT) reaction [126, 127]

BSFA-system [129]

p-CuInSe2/H2O2-system [168, 184]

spin-wave experiment [5]

rhythm neural network (PreBötC) [40]

stellate cells [47, 48, 63]

pituitary cells [228, 232]

combustion oscillations [84]

dusty plasmas [161]

semiconductor lasers [7, 83, 229]

CO oxidation [59, 60, 137]
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9.1。MMO文献综述。本节以三个表格的形式提供相关的参考文献的概述，其中MMOs的示例已经在实验或模型系统中进行了研究。我们不肯定此概述是完整的；相反，这些表目的是作为关于找到这个主题的大量文献的切入点。表4列出了MMOs的相关实验工作。这些实验大部分是针对化学反应进行的。正如参考文献[8]中所建议的，我们已经将大量关于BZ反应的文献细分为一个研究组。表5列出了针对以MMOs为特征的特定应用而导出或提出的数学模型的参考文献；表4中的若干论文还包含理论模型，因此在表5中再次列出。最后，表6列出了几个抽象模型，它们被设计为产生具有特定特征的MMOs的最简单系统之一；表的前五行列出了本文所提出的折结点、折鞍结点和奇异Hopf分支的框架。表4-6中的化学反应特征很强。从质量作用定律出发，已经作出大量努力来建立能够再现实验观测的模型。我们注意到，试图捕获反应的全部化学的详细模型通常非常严格，并且包含大量参数；因此，常常难以将模型拟合到实验数据。我们希望本文中所回顾的理论和数值方法能够使模型与数据更好地拟合。注意，最近MMO对神经科学的兴趣也反映在这三个表中。从质量作用定律出发，已经作出大量努力来建立能够再现实验观测的模型。我们注意到，试图捕获化学反应的全部详细模型通常非常困难，并且模型中会包含大量参数；因此，常常难以用模型来拟合实验数据。我们希望本文中所回顾的理论和数值方法能够使模型更好地与数据相吻合。
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Table 5 References for realistic mathematical models that exhibit MMOs.

Mathematical Model Dimension References

Belousov–Zhabotinsky (BZ) reaction

- Field–Koros–Noyes (FKN) 11 [72]

- FKN-extended (GTF-model) 26 [98]

- Showalter–Noyes–Bar-Eli 7 [16, 36, 155, 190, 207]

- (minimal) Oregonator 3 [73, 181, 205, 221, 223]

- Model K (“Kyoto”) 3 [219, 224]

- IUator (“Indiana University”) 4 [203, 224]

- Geiseler–Föllner Oregonator 3 [79, 224]

- FKN-modified 7 [188]

- Zhabotinsky–Korzuhkin 3 [245]

BR-reaction

- De Kepper, Epstein; Furrow, Noyes 11 [39, 171, 172, 222, 234]

- Kim, Lee, Shin 8 [121, 122]

- Vukojević, Sørensen, Hynne 13 [234]

PO-reaction

- Olsen / DOP models 4 [4, 37, 44, 151, 153, 154, 174, 210]

- BFSO model, Urbanalator 10 [29, 30, 102, 152, 175, 200]

- Yokota–Yamazaki (YY) model 8 [67, 201, 243]

- FAB model 7 [66, 201]

- Model A, Model C 9, 10 [2, 3]

- Model C-HSR 12 [109]

Plenge model (hydrogen oxidation) 4 [11]

IT-reaction 3 [124, 125, 126, 128]

BSFA-system 4 [129]

p-CuInSe2/H2O2-system 2, 4 [168, 184]

self-replicating dimer 3 [180, 183]

autocatalytic SU3 unit 3 [220]

Hodgkin–Huxley (HH) 4 [54, 198, 199]

self-coupled HH 3 [55]

CO oxidation 3 [60, 137]

self-coupled FitzHugh–Nagumo (FHN) 3 [42, 237]

FHN, traveling frame 3 [91, 93]

combustion oscillations 3 [77, 84]

stellate cells

- Acker, Kopell, White (AKW) 7 [1, 193, 239]

- reduction of AKW 3 [112, 194, 239]

pituitary cells 3, 4 [170, 211, 215, 232]

dopamine neurons 4 [140, 160]

autocatalator 3 [94, 162, 163, 182]

LP neuron 14 [89]

Erisir model 5 [64, 65]

semiconductor lasers 3 [7, 53, 134, 136, 179]

number of references on the BZ reaction into research groups. Table 5 lists references
to mathematical models that were derived or proposed for a particular application
that features MMOs; several papers from Table 4 also contain a theoretical model
and are, hence, listed again in Table 5. Finally, Table 6 lists several abstract models
that are designed to be among the simplest systems that yield MMOs with specified
characteristics; the first five rows of the table represent frameworks of folded nodes,
folded saddle-nodes, and singular Hopf bifurcation that are presented in this paper.
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Table 6 References for abstract models exhibiting MMOs.

Abstract Model Dimension References

Boissonade and De Kepper; Koper 2, 3 [26, 38, 123]

Boissonade and De Kepper; Strizhak 2, 3 [26, 82, 120]

Kawczynski and Strizhak 3 [116, 117, 186, 187]

folded node toy model 3 [31]

3-scale: Krupa, Popović, Kopell 3 [139, 140]

Hopf-hysteresis normal form 3 [16, 188]

two coupled oscillators 4 [212]

Rössler; Gaspard and Nicolis 3 [16, 76]

Barkley 4 [16]

Chemical reactions feature strongly in Tables 4–6. There have been substantial
efforts to develop models, from the law of mass action, that reproduce experimental
observations. We remark that detailed models that attempt to capture the full chem-
istry of a reaction are typically very stiff and contain large numbers of parameters; as a
result, it is often difficult to fit the models to experimental data. We hope that the the-
ory and numerical methods reviewed in this paper lead to better fits of models to data.
Note that recent interest in MMOs in neuroscience is also reflected in the three tables.

9.2. Other MMO Mechanisms in ODEs. Historically, MMOs have also been
studied in the context of bifurcations of systems with a single time scale. More
specifically, homoclinic or heteroclinic cycles involving one or several invariant objects
provide a mechanism for MMOs that does not require an explicit slow-fast structure.
The best-known case is that of a homoclinic orbit to a saddle-focus in R

3. A theorem
by Shil′nikov [90, 148, 206] proves that (depending on a condition on the eigenvalues of
the saddle-focus) there exists one or an infinite number of periodic orbits in a tubular
neighborhood of the homoclinic orbit; see also [81]. Each such periodic orbit near this
global bifurcation involves one or several large excursions along the homoclinic orbit,
as well as small oscillations when the trajectory spirals away from, or back toward,
the saddle-focus. This type of oscillation near Shil′nikov bifurcations can be found
readily in laser systems: one or several large pulses of the laser power are followed by
small damped oscillations near the saddle-focus; see, for example, [7, 53, 83, 134, 136,
179, 229, 241]. The small oscillations are at a characteristic frequency and are due
to a periodic exchange of energy between the optical field and the carrier reservoir
(electron-hole pairs in the case of a semiconductor laser). Similarly, more complicated
heteroclinic cycles may give rise to large excursions followed by small oscillations. A
concrete example is a heteroclinic cycle between a saddle equilibrium and a saddle
periodic orbit, as can be found, for example, near a saddle-node Hopf bifurcation with
global reinjection. Near this global bifurcation one can find large attracting periodic
orbits that visit a neighborhood of the equilibrium and also have an arbitrary number
of smaller loops around the saddle-periodic orbit; see [130, 135].

While such global bifurcations are generic and require no special properties of
the system, they often appear in slow-fast systems, and proving their existence is
greatly simplified in this context [164, 213]. A notable example was introduced by
Rössler [191, 192] and later illustrated by a model due to Gaspard and Nicolis [76].
Figure 35(a) shows the geometry of this model; it has a classical S-shaped critical
manifold S with two fold lines and there exists a stable MMO periodic orbit Γ that
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在文本上注释
ODEs中的其他MMO机制。在历史上，MMO也曾在具有单个时间尺度的系统的分支背景下进行研究。更具体地说，涉及一个或多个不变对象的同宿循环或异宿循环为MMOs提供了一种不需要显式慢-快结构的机制。Shilnikov[90，148，206]的一个定理证明（取决于鞍焦点的特征值的条件）在同宿轨线的管状邻域中存在一个或多个周期轨线；参见[81]。靠近这个全局分支的每个这样的周期轨线都涉及沿着同宿轨线的一个或多个大的偏移，以及当轨线螺旋离开或回到鞍焦点时的小振荡。这种在Shilnikov分支附近的振荡很容易在激光系统中发现：激光功率的一个或多个大脉冲之后紧接着在鞍焦点附近有小的阻尼振荡；参见[7,53,83,134,136，179,229,241]。小振荡产生于特征频率处，并且是由于光场和载流子贮存器(半导体激光器情况下的电子-空穴对)之间的周期性能量交换导致产生的。类似地，更复杂的异宿循环可能导致大的偏移，然后是小的振荡。一个具体的例子是鞍平衡和鞍周期轨线之间的异宿循环，例如，在具有全局再注入的鞍结点Hopf分支附近可以发现上述情况。在这个全局分支附近，人们可以发现大的吸引的周期轨线，它们向平衡点附近靠近，并且在鞍周期轨线周围具有任意数量的小环；参见[130，135]。虽然这种全局分支是普遍的并且不需要系统的特殊性质，但它们经常出现在慢速系统中，并且证明它们的存在在参考文献[164，213]中被大大简化了。R_ossler在[191,192]中介绍了一个值得注意的例子，后来这个例子由Gaspard和尼科利斯在[76]中提出的一个模型里加以说明。图35(a)显示了这个模型的几何结构，它有一个具有两条折线的经典S形临界流形S，并且存在一个包含两个快段的稳定的MMO周期轨线。图35(b)显示了Γ的一个坐标对应的时间序列，并说明Γ具有特征12。Γ的LAOs是由通常的张弛振荡机制形成的。图35(a)中的相图是靠近(简单的)Shilnikov分支的情况；SAOs的发生是因为在一个快速转变之后，Γ处于鞍焦平衡点附近，鞍焦平衡点是慢流的不稳定焦点。注意，时间序列还表明SAOs发生在慢的时间尺度上。Barkley[16]观察到，这种机制不能解释MMOs在BZ反应中产生的原因，因为SAOs也有快速的成分。此外，这种特殊的机制似乎并不像第3节中所介绍的慢-快机制那样经常出现在其他模型中。直观地讲，这种情况是预料之内的，因为全局回归机制必须是特殊的（即靠近Shilnikov分支），以提供返回到慢流焦点的小邻域内。然而，R_ossler机制在历史上作为最早提出的产生MMOs的几何机制之一而备受关注。这也是另一个很好说明了利用系统的慢特性来理解产生MMOs的几何方法的例子。在具有单个时间尺度的系统中，亚临界Hopf分支也被观察到产生了MMOs。这些MMOs的外观形状类似于与Shilnikov分支相关的MMOs的外观形状。Guckenheimer和Willms[95]分析了这种现象，我们在这里也简要地描述一下这种现象。考虑一个三维系统，其中平衡点q通过亚临界Hopf分支从下沉点到鞍焦点的转变。当q是鞍焦点时，它具有O(1)量级的实特征值和一对实部较小且为正的复特征值。接近q的稳定流形的轨线将流到q附近，然后随着振荡幅度的增大而缓慢地螺旋离开，类似于在奇异Hopf分支附近观察到的那些情况；参见图21。如果这些螺旋形轨线全局回归到q附近，MMOs就会产生。q的不稳定流形的部分的全局回归是鲁棒的，并且可能已经存在于Hopf分支处，其中q的中心流形是弱不稳定的。在这种情况下，回归可能会接近q，从而引起长期的小幅、缓慢增长的振荡。有关三维示例，请参见Guckenheimer和Willms[95]以及Guckenheimer等。[89]给出了一个发生在神经模型中的高维示例。我们注意到，虽然这种用于产生MMOs的机制适用于单时间系统，但是Hopf分支自然地在系统中引入了与不稳定复特征值的实部相关联的慢时间尺度。我们在此次研究中讨论的MMOs具有由在限制性系统的特定点附近的局部机制生成的SAOs。然而，SAOs和与之相关MMOs也可能在慢-快系统中以其他方式出现。这方面的一个例子是具有两个明确定义的独立振荡的MMOs，当边界层方程具有两个周期轨线族（一个大轨线族，一个小轨线族）并且它们之间会发生快速跳跃。这种情形类似于神经系统中常见的突发现象。在突发过程中，振荡与静止两种状态交替出现时期（与沿着边界层方程的稳定平衡点的缓慢偏移相关），而不是存在不同振幅的振荡。自Rinzel[189]开创性工作以来，突发一直被视为一种多时间尺度现象。在这种情况下，当模型的边界层方程同时具有平衡吸引子和极限环吸引子并且整个系统在这两个方向上的这些特征之间快速跳跃时，就会发生突发。Izhikevich[111]根据引发和终止突发振荡的边界层方程的分支，对突发模式进行了分类。可以为MMOs构建一个类似的分类列表，但是这的表会更大。Golubitsky、Josi_c和Kaper[80]使用基于奇异性理论的不同类别的突发模式，这更符合本研究的宗旨。第六节简要介绍了对MMOs中大振荡和小振荡之间相互转换的全局机制的分析。
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Fig. 35 An MMO periodic orbit Γ in the Gaspard–Nicolis–Rössler model [76]. Panel (a) shows Γ
relative to the S-shaped critical manifold; this illustrates that the SAOs are taking place
entirely on the slow manifold. Panel (b) shows the time series of the x-coordinate of Γ.

contains two fast segments. Figure 35(b) shows the corresponding time series of one of
the coordinates of Γ and illustrates that Γ has signature 12. The LAOs of Γ are formed
by the usual relaxation-oscillation mechanism. The phase portrait in Figure 35(a) is
near (the simple case of) a Shil′nikov bifurcation; the SAOs occur because, after one
fast transition, Γ is in the vicinity of a saddle-focus equilibrium, which is an unstable
focus of the slow flow. Note that the time series also show that the SAOs happen on
the slow time scale. Barkley [16] observed that this mechanism does not account for
MMOs in the BZ reaction because there the SAOs also have a fast component. More-
over, this particular mechanism does not seem to occur in other models as commonly
as the slow-fast mechanisms presented in section 3. Intuitively this is expected since
the global return mechanism has to be special (namely, near a Shil′nikov bifurcation)
to provide returns to a small neighborhood of a slow-flow focus. Nevertheless, the
Rössler mechanism is of interest historically as one of the first proposed geometric
mechanisms for MMOs. It is also another nice example that illustrates the geometric
approach of exploiting the slow-fast nature of a system to understand MMOs.

Subcritical Hopf bifurcation in a system with a single time scale has also been
observed to give rise to MMOs. The appearance of these MMOs resembles those
associated with Shil′nikov bifurcation. Guckenheimer and Willms [95] analyze this
phenomenon, which we briefly sketch here. Consider a three-dimensional system in
which an equilibrium q makes the transition from a sink to a saddle-focus via a
subcritical Hopf bifurcation. When q is a saddle-focus, it has a real eigenvalue of
magnitude O(1) and a pair of complex eigenvalues whose real parts are small and
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positive. Trajectories that come close to the stable manifold of q will flow close to q
and then slowly spiral away with oscillations of increasing magnitude, similar to those
observed near a singular Hopf bifurcation; see Figure 21. MMOs will occur if these
spiraling trajectories make a global return to the vicinity of q. Global returns for
portions of the unstable manifold of q are robust and may exist already at the Hopf
bifurcation where the center manifold of q is weakly unstable. In this case, the returns
are likely to come close enough to q that they will give rise to long epochs of small,
slowly growing oscillations. See Guckenheimer and Willms [95] for a three-dimensional
example and Guckenheimer et al. [89] for a high-dimensional example occurring in a
neural model. We remark that, although this mechanism for creating MMOs applies
to a single-time system, the Hopf bifurcation naturally introduces a slow time scale
in the system associated with the real parts of the unstable complex eigenvalues.

The MMOs that we have discussed in this survey have SAOs generated by a
local mechanism near a special point of the limiting system. However, SAOs and
associated MMOs may also arise in other ways in slow-fast systems. An example
of this is that of MMOs with two well-defined separate oscillations that occur when
the layer equations have two families of periodic orbits, one large and one small, and
fast jumps between them. This scenario is analogous to the phenomenon of bursting,
which is common in neural systems. In bursting, oscillations alternate with quiescent
epochs (associated with a slow drift along a stable equilibrium of the layer equations)
instead of there being oscillations of different amplitudes. Since the seminal work of
Rinzel [189], bursting has been viewed as a multiple-time-scale phenomenon. In this
context, bursts occur when the layer equations of a model have both equilibria and
limit-cycle attractors and the full system makes fast jumps between these features
in both directions. Izhikevich [111] compiled an extensive classification of bursting
patterns based upon the bifurcations of the layer equations that initiate and terminate
the oscillations in a burst. A similar table could be constructed for MMOs, but it
would be even larger. Golubitsky, Josiç, and Kaper [80] use a different classification
of bursting patterns based on singularity theory, which is more in the spirit of this
survey. Section 6 gives a brief taste of the analysis of global mechanisms for transitions
between large and small oscillations in MMOs.

9.3. MMOs Beyond ODEs. This survey only considers MMOs that arise in slow-
fast ODEs, but they have also been found in dynamical systems that are described
by stochastic differential equations (SDEs), delay differential equations (DDEs), and
partial differential equations (PDEs). The analysis of MMOs in these more involved
settings is much less developed than that for ODEs. To give a flavor, we now describe
briefly a few recent examples in which a slow-fast structure is an important aspect of
the MMOs that have been identified.

9.3.1. Stochastic MMOs. Muratov and Vanden-Eijnden [166] study the Van der
Pol oscillator with small (additive) noise; they use λ as the bifurcation parameter and
consider the case 0 < ε � 1. Their analysis shows an intricate interplay between
the noise and the singular perturbation parameter ε and how this depends on λ. For
example, it can be shown that even if the deterministic limit without noise has just
a stable fixed point for suitable λ, the SDE can exhibit relaxation-type oscillations;
also, MMOs that are composed of “small canard orbits” and relaxation LAOs can
occur. Borowski and Kuske [146] consider a similar stochastic slow-fast equation of
FitzHugh–Nagumo type and find MMOs due to noise as well; see also [147]. Closely
related is the work by Berglund and Gentz [24, 25], who study spike generation in
slow-fast neural models with noise in the framework of SDEs. The common ingredient
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在文本上注释
除了ODEs之外的MMOs。本综述只考虑在慢速ODEs中出现的MMOs，但也发现在由随机微分方程(SDEs)、延迟微分方程(DDEs)和偏微分方程(PDEs)描述的动力系统中也有MMOs产生。在这些更复杂的系统中对MMOs的分析比ODEs的分析要少得多。我们现在简要地描述几个最新的例子，在这些例子中慢-快结构是已经被确认的MMOs的一个重要方面。
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随机的MMOs。Muratov和Vanden-Eijnden[166]研究了具有小(附加的)噪声的Van der Pol振荡器，它们使用λ作为分支参数，并考虑0<ε<<1情形。他们的分析表明噪声和奇异摄动参数ε之间的复杂相互作用，以及它如何依赖于λ。例如，该分析可以表明，即使无噪声的确定性极限对于适当的λ只有一个稳定的不动点，SDE也可以表现出张弛振荡，并且也可以出现由“小鸭轨线”和张弛LAOs组成的MMOs。Borowski和Kuske[146]考虑FitzHugh–Nagumo类型的类似的随机慢-快方程，从而发现由于噪声导致的MMOs；参见[147]。与此密切相关的是Berglund和Gentz[24，25]的工作，他们在SDEs的框架内研究具有噪声的慢-快神经模型中的尖峰时期。这些例子中的共同成分是都具有可激发性：虽然小噪声只导致小的不规则振荡，但是足够大的噪声扰动可以使系统超出导致大偏移的阈值。当系统密切相关或规则时，存在一个噪声电平（噪声级），因此显示出定义良好但不规则的MMOs。在几个激光系统中[56，134]也观察到和研究了作为外部和/或内部噪声产生大脉冲的机制的激发性。Yu Kuske和Li[244]研究了噪声诱导产生MMOs的另一种可能机制，他们考虑了耦合振荡器SDEs系统。如果确定性极限至少是双稳的，那么噪声可以提供一种机制，使样本路径在确定性稳定不变集的吸引域之间交替。可视化这个想法的最简单方法是考虑ODE的两个稳定极限环，一个具有较小振幅，另一个具有较大的振幅。如果吸引流域的位置合适，噪声可以引起每个周期的管状邻域之间的重复转换。因此，典型的样本路径将是不规则的MMOs。
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in these examples is excitability: while small noise only leads to small irregular oscil-
lations, a sufficiently large noise perturbation can kick the system beyond a threshold
that results in a large excursion. There is a noise level when the system is most co-
herent or regular and, hence, shows well-defined but irregular MMOs. Excitability as
a mechanism to generate large pulses as the result of external and/or internal noise
has also been observed and studied in several laser systems [56, 134].

Another possible mechanism for noise-induced MMOs was investigated by Yu,
Kuske, and Li [244], who consider a system of coupled-oscillator SDEs. If the deter-
ministic limit is at least bistable, then noise can provide a mechanism for sample paths
to alternate between the basins of attraction of deterministically stable invariant sets.
The simplest way to visualize this idea is to consider two stable limit cycles for an
ODE, one with a small and the other with a large amplitude. If the basins of attraction
are suitably located, noise can induce repeated transitions between tubular neighbor-
hoods of each cycle. Hence, a typical sample path will then be an irregular MMO.

9.3.2. MMOs in DDEs. One can ask what happens when one adds delay terms
to a slow-fast system. Sriram and Gopinathan [208] consider the BZ reaction with
delay in an experiment. They compare the results with a version of the classical
three-dimensional Oregonator model [73, 205] with delay and claim that the delay
induces MMOs [208]. This prompts the question of whether DDEs have slow-fast
phenomena, such as canards, similar to their ODE counterparts. In principle, this
should be expected at least for the case of a finite number of fixed delays, for which
the DDE does not feature a continuous spectrum [96]. Indeed a positive answer was
recently obtained by Campbell, Stone, and Erneux [32] for a two-dimensional DDE
model of high-speed machining. In their system a small delay induces perturbation
from a degenerate Hopf bifurcation, which results in a canard explosion as discussed
in section 2.2; see also [34] for details of the underlying theory for slow-fast DDEs
with small delay.

9.3.3. MMOs in PDEs. Given a time-dependent PDE on a domain in R
n, one

can look for MMOs in space, time, or a mixture of space and time. Nagumo’s equa-
tion [167], which models the evolution of an activator v(x, t) and a slow inhibitor
u(x, t), is an example that has been studied extensively as an idealized model for
propagation of action potentials. Traveling-wave profiles are found via the ansatz
v(x, t) = v(x + σt) = v(τ) and w(x, t) = w(x + σt) = w(τ) as homoclinic solutions of
a three-dimensional ODE with two fast variables and one slow variable [92]; here, σ
is the wave speed. It has been shown that MMOs exist as solutions of this reduced
ODE [93]. More generally, work on evolution equations given by PDEs suggests that
oscillatory patterns with alternating amplitudes [35] and slow-fast structures [17] ex-
ist in many common models. Hence, the study of this type of MMO for PDEs will
benefit from multiple-time-scale methods.

9.4. MMOs: Bringing Together Theory and Data. We end with a few addi-
tional remarks about outstanding issues concerning MMOs in the context of multiple-
time-scale ODE models. We regard the central goal of research on MMOs as compre-
hensive analysis of empirical data: this opinion shapes our view of the priorities for
further research on the subject. The MMO literature reviewed above has only a mod-
est amount of empirical data, but that is sufficient to raise concern about whether
we have yet discovered models that capture the essence of the MMOs observed in
experiments. We have discussed the amplitudes of SAOs and the sizes of parameter
regimes yielding MMOs in this review but have not explored the implications of our
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在DDEs中MMOs。人们可能会问，当向慢-快系统添加延迟项时会发生什么。Sriram和Gopinathan[208]在实验中考虑具有延迟的BZ反应。他们把结果与经典的具有延迟的三维Oregonator模型[73，205]进行比较，并声称延迟诱导MMOs的产生[208]。这引发了一个问题，即DDEs是否具有慢-快现象，如鸭解，与ODE对应类似的。原则上，这应该至少对于有限数量的固定延迟的情况是希望得到的，对于有限数量的固定延迟，DDE不具有连续谱[96]。的确，Campbell、Stone和Erneux[32]最近针对高速运转的二维DDE模型得到了确切的答案。在他们的系统中，小延迟引起了来自退化（衰减）Hopf分支的扰动，这导致产生了如2.2节中所讨论的鸭爆炸；为了解具有小延迟的慢-快DDEs的基本理论的细节可以参见[34]。

Administrator
在文本上注释
在PDEs中的MMOS。给定定义在Rn中的与时间相关的PDE，可以在空间、时间或时空中寻找MMOs。Nagumo方程[167]模拟了激活剂v(x，t)和慢阻滞剂u(x，t)的演化，该模型是作为动作电位传播的理想化模型而广泛研究的一个例子。通过拟设 v(x,t)=v(x+t)=v(x+_)=v(_)和w(x,t)=w(x+t)=w(_)作为具有两个快变量和一个慢变量的三维ODE的同宿解[92]，这里σ是波速。已经表明，MMOs作为这种约化ODE的解而存在[93]。更一般地，对通过PDE给出的演化方程的研究表明具有交替振幅[35]和慢-快结构[17]的振荡样式存在于许多常见模型中。因此，针对PDEs的这类MMO的研究将从多时间尺度方法中受益。

Administrator
在文本上注释
MMOs：将理论与数据结合在一起。最后，我们对多时间尺度ODE模型中MMOs的未决问题作了一些补充说明。我们把对MMOs研究的中心目标看成是对实验数据的综合分析：这个观点形成了我们对于进一步研究MMOs的优先次序的想法。以上综述的MMOs文献只有少量的实验数据，但这足以引起我们对是否已经发现了捕捉实验中观察到的MMOs本质的模型的关注。在这篇综述中，我们讨论了SAOs的振幅和产生MMOs的参数范围的大小，但是没有探讨我们对实验数据的发现的影响。我们建议将这些特征用于模型与数据的拟合。MMOs的研究起源于化学反应中振荡的研究，特别是在20世纪70年代和80年代，当时人们感兴趣的是确定这些系统中的非周期动力学是否是确定性混沌还是噪声的产生的结果。以BZ反应为研究对象，建立了复杂动力学系统的定量模型。尽管如此，这些为反应建立精确动力学模型的尝试只是部分成功。这些模型具有多个时间尺度，使得很难根据当时存在的理论来解释它们的动力学。从那时起，GSPT的进展表明，对这些模型的重新研究可以在已被抛弃的问题上取得重大进展，而没能在一代人之前得到解决。新技术也可能使实验能够比1980年代更精确地测量这些反应的动力学。然后，现在，研究这些反应的动机之一是开发研究生物系统动力学的方法。这次调查研究的重点是通过特殊点附近的通道产生SAOs的局部机制，这些特殊点通常可以在多时间尺度系统中找到。MMOs是在返回机制之前产生的，返回机制允许轨线一次又一次地通过SAOs区域。我们这里只考虑返回机制，该机制在一次大的偏移之后立即将轨线带回SAO区域，这对应于一个单LAO。然而，MMOs可能在产生SAOs时期具有更一般的特征，该特征伴有多个LAOs的。迄今为止，对于L>1的MMOs的产生机制研究甚少。对于一些具有两个慢变量和一个具有S形临界流形的快速变量的三维系统，从SAOs周围的区域返回到其自身的全局回归是非常规则的，并且可以通过大约一维线性映射来近似。这个场景预计不会产生许多L>1的复杂特征。对于具有三个时间尺度[139，140]的系统，也被分析出了类似的效果，其中被找到的唯一特征是21，22和L1。这些结果也得到了其他几个三维模型[123、126、182、198、199]和在[6]中实验的数值证据的支持。目前文献中很少对L>1的更复杂的MMO特征进行详细分析。这种情况似乎最常发生在高维化学反应中，如BZ反应[159,157,158,106]、Briggs–Rauscher反应[122]和PO反应[154,151]；参见第7节。我们讨论了一种获得把L>1的LAOs作为MMO一部分的可能性：在MMO轨线重新进入SAO区域之前，快子系统中存在几个大的振荡。正如3.3节所述的那样，这要求至少在相空间的某些部分中存在二维快速动力学。我们注意到，在具有两个或更多个快速变量的系统中，L>1的MMOs的存在类似于在突发系统[111]中发现的振荡。在具有MMOs的慢速系统的边界层方程中，很少会去尝试分析跟随周期轨线族的LAOs的起始和终止相关的机制。对于突发，Terman和Lee的论文[217]是一篇很具有代表性的研究。更一般地，对于在具有至少两个慢变量和两个快变量的系统中的MMOs来说，人们期望发现大量的不同的全局回归机制，这些机制可能在SAOs存在的各个时期导致产生多个LAOs。对具有两个以上慢变量的慢系统的研究才刚刚开始。Wechselberger在论文[238]中将鸭解理论推广到这类系统中。以及Harvey等人在[99]中利用这些结果来研究细胞内钙动力学的模型。在模型中的MMOs的大部分分析都是基于分支序列的数值研究和用一维映射的迭代对这些序列进行解释。理论上，本文所举的回归映射的性质的例子可以分解为两个映射的组合，第一个描述流经产生SAOs的小区域，第二个描述从该区域出现的轨线的全局返回。这些映射相当复杂，值得进一步研究。在具有SAOs的区域，它们可能具有不连续性和间断，其中轨线趋向于小的吸引子，并且跟随鸭解的轨线的情况通常很难计算。在回归映射的一维近似中的分岔和混沌的更多分析可能有助于进一步表征实验数据中观察到的MMOs的潜在机制。完成此类分析的一个重要系统是Koper模型及其作为具有全局返回的奇异Hopf分支的修正规范式的推广。动态系统理论的一大亮点是它成功地判别了捕获于大类系统中被发现的行为的本质的简单模型。尽管如此，我们分析像化学反应动力学或棘突神经元的现实模型那样复杂的模型的能力受到数值方法的有效性的限制。我们在这里已经演示了如何将用于慢系统的高级数值方法用于研究多达四个维度的系统。然而，对高维、多时间尺度系统的动力学分析方法的进一步发展是十分必要的。在具有低维吸引子的情形中，用更好的方法使系统化模型简化对研究分析是有帮助的。在更一般的情况下，计算不变流形的数值方法和高维系统中轨线的快速分解也有助于MMOs的分析。特别地，这种数值技术对于研究新型返回机制以及因此产生具有更复杂LAOs和SAOs特征的MMOs将是至关重要的。
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findings for empirical data. We do suggest that these characteristics be used in fitting
models to data.

The study of MMOs has its origins in investigations of oscillations in chemical re-
actions, especially during the 1970s and 1980s. There was interest then in determining
whether aperiodic dynamics in these systems are the result of deterministic chaos or
noise. With a focus on the BZ reaction, quantitative models for systems with complex
dynamics were developed. Nonetheless, these attempts to produce accurate kinetic
models for the reactions were only partially successful. The models had multiple time
scales, making it difficult to interpret their dynamics in the light of theory existing
at that time. The advances that have been made in GSPT since then suggest that a
renewed study of these models could make significant progress on problems that were
abandoned rather than solved a generation ago. New technologies may also enable
experiments that measure the dynamics of these reactions with greater precision than
was possible in the 1980s. Then, and now, one of the motivations for studying these
reactions is to develop methods for studying the dynamics of biological systems.

The focus of this survey has been on local mechanisms that generate SAOs via
the passage near special points that can be found generically in multiple-time-scale
system. MMOs arise in the presence of a return mechanism that allows trajectories
to pass through the region of SAOs over and over again. We considered here only
return mechanisms that bring the trajectory immediately back to the SAO region
after one large excursion, which corresponds to a single LAO. However, MMOs may
have more general signatures with several LAOs in between epochs of SAOs. There
has been little study to date of mechanisms that produce such MMOs with L > 1. For
some three-dimensional systems with two slow variables and one fast variable with an
S-shaped critical manifold, the global returns from a region surrounding SAOs back
to itself are very regular and can be approximated by nearly one-dimensional linear
maps. This scenario is not expected to produce many complicated signatures with
L > 1. A similar effect has also been analyzed for a system with three time scales
[139, 140], where the only signatures that are found are 21, 22, and L1. These results
are also supported by numerical evidence in several other three-dimensional models
[123, 126, 182, 198, 199] and in an experiment [6].

More complicated MMO signatures with L > 1 have rarely been analyzed in
any detail in the current literature. They seem to occur most frequently in higher-
dimensional chemical reactions such as the BZ reaction [159, 157, 158, 106], the
Briggs–Rauscher reaction [122], and the PO reaction [154, 151]; see also section 7.
We discussed one possibility of obtaining L > 1 LAOs as part of an MMO: that
there are several large oscillations in the fast subsystem before an MMO trajectory
reenters the SAO region. As was discussed in section 3.3, this requires there to be
two-dimensional fast dynamics in at least some part of phase space. We remark that
in systems with two or more fast variables, the presence of MMOs with L > 1 is
analogous to the oscillations found in bursting systems [111]. Analysis of the mech-
anisms associated with the initiation and termination of LAOs that follow a family
of periodic orbits in the layer equations of slow-fast systems with MMOs has hardly
been attempted. For bursting, Terman and Lee [217] is a representative study. More
generally, for MMOs in systems with at least two slow and two fast variables, one
would expect to find quite a number of different global return mechanisms that may
give rise to several LAOs between epochs of SAOs.

Investigations of slow-fast systems with more than two slow variables have just
begun. Wechselberger [238] extends the theory of canards to such systems and Harvey
et al. [99] use these results to study models of intracellular calcium dynamics.
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Much of the analysis of MMOs in models has been based upon numerical studies
of bifurcation sequences and the interpretation of these sequences in terms of the
iterations of one-dimensional maps. Theoretically, the properties of return maps for
the examples of this paper could be decomposed into a composition of two maps,
the first describing flow through the small region producing SAOs and the second
describing the global returns of trajectories emerging from this region. These maps
are quite complicated and deserve further study. They may have discontinuities and
gaps where trajectories tend to small attractors in the region with SAOs, and the
fate of trajectories following canards is often difficult to compute. More analysis of
bifurcation and chaos in one-dimensional approximations of the return maps may help
further to characterize the mechanisms underlying MMOs observed in empirical data.
An important system in which to complete such an analysis is the Koper model and
its extension as a modified normal form for singular Hopf bifurcation with a global
return.

One of the highlights of dynamical systems theory has been its success in identify-
ing simple models that capture the essence of behaviors that are found in large classes
of systems. Nonetheless, our ability to analyze models as complex as realistic models
for chemical reaction kinetics or spiking neurons is limited by the efficacy of our nu-
merical methods. We have demonstrated here how advanced numerical methods for
slow-fast systems can be brought to bear for the study of systems of dimension up
to four. However, further development of methods to analyze the dynamics of high-
dimensional, multiple-time-scale systems is definitely needed. It would be helpful to
have better methods to enable a systematic model reduction in regimes with low-
dimensional attractors. The analysis of MMOs in more general situations would also
be facilitated by numerical methods for computing invariant manifolds and the fast-
slow decomposition of trajectories in higher-dimensional systems. In particular, such
numerical techniques will be crucial for the study of new types of return mechanisms
and, hence, MMOs with more complicated signatures of LAOs and SAOs.
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[192] O. E. Rössler, Different types of chaos in two simple differential equations, Bull. Math. Biol.,
39 (1977), pp. 275–289.

[193] H. G. Rotstein, T. Oppermann, J. A. White, and N. Kopell, The dynamic structure
underlying subthreshold oscillatory activity and the onset of spikes in a model of medial
entorhinal cortex stellate cells, J. Comput. Neurosci., 21 (2006), pp. 271–292.

[194] H. G. Rotstein, M. Wechselberger, and N. Kopell, Canard induced mixed-mode oscilla-
tions in a medial entorhinal cortex layer II stellate cell model, SIAM J. Appl. Dyn. Syst.,
7 (2008), pp. 1582–1611.

[195] J.-C. Roux, A. Rossi, S. Bachelart, and C. Vidal, Experimental observations of complex
dynamical behaviour during a chemical reaction, Phys. D, 2 (1981), pp. 395–403.

[196] J.-C. Roux, R. H. Simoyi, and H. L. Swinney, Observation of a strange attractor, Phys. D,
8 (1983), pp. 257–266.



MIXED-MODE OSCILLATIONS WITH MULTIPLE TIME SCALES 287

[197] J.-C. Roux and H. L. Swinney, Topology of chaos in a chemical reaction, in Nonlinear
Phenomena in Chemical Dynamics, C. Vidal and A. Pacault, eds., Springer-Verlag, Berlin,
New York, 1981, pp. 38–43.

[198] J. Rubin and M. Wechselberger, Giant squid—hidden canard: The 3D geometry of the
Hodgkin-Huxley model, Biol. Cyb., 97 (2007), pp. 5–32.

[199] J. Rubin and M. Wechselberger, The selection of mixed-mode oscillations in a Hodgkin-
Huxley model with multiple timescales, Chaos, 18 (2008), 015105.

[200] W. M. Schaffer, T. V. Bronnikova, and L. F. Olsen, Nonlinear dynamics of the peroxidase-
oxidase reaction. II. Compatibility of an extended model with previously reported model-
data correspondences, J. Phys. Chem., 105 (2001), pp. 5331–5340.

[201] A. Scheeline, D. L. Olson, E. P. Williksen, G. A. Horras, M. L. Klein, and R. Larter,
The peroxidase-oxidase oscillator and its constituent chemistries, Chem. Rev., 97 (1997),
pp. 739–756.

[202] M. Schell and F. N. Albahadily, Mixed-mode oscillations in an electrochemical system. II.
A periodic-chaotic sequence, J. Chem. Phys., 90 (1989), pp. 822–828.

[203] S. Schmidt and P. Ortoleva, Electric field effects on propagating BZ waves: Predictions of
an Oregonator and new pulse supporting models, J. Chem. Phys., 74 (1981), pp. 4488–4500.

[204] R. A. Schmitz, K. R. Graziani, and J. L. Hudson, Experimental evidence of chaotic states
in the Belousov-Zhabotinskii reaction, J. Chem. Phys., 67 (1977), pp. 3040–3044.

[205] S. K. Scott, Oscillations, Waves, and Chaos in Chemical Kinetics, Oxford University Press,
Oxford, 1994.

[206] L. P. Shil
′
nikov, A case of the existence of a denumerable set of periodic motions, Soviet

Math. Dokl, 6 (1965), pp. 163–166.
[207] K. Showalter, R. M. Noyes, and K. Bar-Eli, A modified Oregonator model exhibiting

complicated limit cycle behaviour in a flow system, J. Chem. Phys., 69 (1978), pp. 2514–
2524.

[208] K. Sriram and M. S. Gopinathan, Effects of delayed linear electrical perturbation of the
Belousov-Zhabotinsky reaction: A case of complex mixed mode oscillations in a batch
reactor, React. Kinet. Catal. Lett., 79 (2003), pp. 341–349.

[209] C. G. Steinmetz, T. Geest, and R. Larter, Universality in the peroxidase-oxidase reaction:
Period doublings, chaos, period three, and unstable limit cycles, J. Phys. Chem., 97 (1993),
pp. 5649–5653.

[210] C. G. Steinmetz and R. Larter, The quasiperiodic route to chaos in a model of the
peroxidase-oxidase reaction, J. Phys. Chem., 94 (1991), pp. 1388–1396.

[211] J. V. Stern, H. M. Osinga, A. LeBeau, and A. Sherman, Resetting behavior in a model of
bursting in secretory pituitary cells: Distinguishing plateaus from pseudo-plateaus, Bull.
Math. Biol., 70 (2008), pp. 68–88.

[212] M. N. Stolyarov, V. A. Romanov, and E. I. Volkov, Out-of-phase mixed-mode oscillations
of two strongly coupled identical relaxation oscillators, Phys. Rev. E, 54 (1995), pp. 163–
169.

[213] P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbation problems,
J. Differential Equations, 92 (1991), pp. 252–281.

[214] P. Szmolyan and M. Wechselberger, Canards in R
3, J. Differential Equations, 177 (2001),

pp. 419–453.
[215] J. Tabak, N. Toporikova, M. E. Freeman, and R. Bertram, Low dose of dopamine may

stimulate prolactin secretion by increasing fast potassium currents, J. Comput. Neurosci.,
22 (2007), pp. 211–222.

[216] F. Takens, Constrained equations: A study of implicit differential equations and their discon-
tinuous solutions, in Structural Stability, the Theory of Catastrophes, and Applications
in the Sciences, Lecture Notes in Math. 525, Springer-Verlag, Berlin, New York, 1976,
pp. 143–243.

[217] D. Terman and E. Lee, Uniqueness and stability of periodic bursting solutions, J. Differential
Equations, 158 (1999), pp. 48–78.

[218] A. N. Tikhonov, A. B. Vasil’eva, and A. G. Sveshnikov, Differential Equations, Springer
Ser. Soviet Math., Springer-Verlag, Berlin, New York, 1985.

[219] K. Tomita, A. Ito, and T. Ohta, Simplified model for Belousov-Zhabotinsky reaction, J.
Theoret. Biol., 68 (1977), pp. 459–481.

[220] P. Tracqui, Mixed-mode oscillation genealogy in a compartmental model of bone mineral
metabolism, J. Nonlinear Sci., 4 (1994), pp. 69–103.

[221] W. C. Troy, Mathematical analysis of the Oregonator model of the Belousov-Zhabotinskii re-
action, in Oscillations and TravelingWaves in Chemical Systems, R. J. Field and M. Burger,
eds., Wiley-Interscience, New York, 1985, pp. 145–170.



288 DESROCHES ET AL.
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[238] M. Wechselberger, À propos de canards (apropos canards), Trans. Amer. Math. Soc., 364
(2012), pp. 3289–3309.

[239] M. Wechselberger and W. Weckesser, Bifurcations of mixed-mode oscillations in a stellate
cell model, Phys. D, 238 (2009), pp. 1598–1614.

[240] M. Wechselberger and W. Weckesser, Homoclinic clusters and chaos associated with a
folded node in a stellate cell model, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), pp. 829–
850.

[241] S. Wieczorek and B. Krauskopf, Bifurcations of n-homoclinic orbits in optically injected
lasers, Nonlinearity, 18 (2006), pp. 1095–1120.

[242] A. Winfree, Spiral waves of chemical activity, Science, 175 (1972), pp. 634–636.
[243] K. Yokota and I. Yamazaki, Analysis and computer simulation of aerobic oxidation of re-

duced nicotinamide adenine dinucleotide catalyzed by horseradish peroxidase, Biochemistry,
16 (1977), pp. 1913–1920.

[244] N. Yu, R. Kuske, and Y. X. Li, Stochastic phase dynamics and noise-induced mixed-mode
oscillations in coupled oscillators, Chaos, 18 (2008), p. 15.

[245] A. M. Zhabotinskii, The early period of systematic studies of oscillations and waves in chem-
ical systems, in Oscillations and Traveling Waves in Chemical Systems, R. J. Field and
M. Burger, eds., Wiley-Interscience, New York, 1985, pp. 1–6.




