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Abstract
The paper studies the relationship between the electric spike order of the winnerless competition (WLC) model and the inhibition direction of the inhibitory neural system. The numerical results show the spike order of the neuron is opposite to the inhibition direction of the network. This spike order property connects the WLC model with any inhibitory structure together. With the help of WLC model this paper analyzes the spatial patterns of olfactory cortex and explains the relationship of the external stimulus to the spatial patterns. The pattern displays here can be seen in the experiment of rabbit olfactory cortex. 
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1. Introduction
Cerebra are composed of millions of neural neurons, each one of which connects with a passel of other neural neurons. They makeup the neural gateway of the brain and fulfill the function of transporting the message that expresses the output and controls the mechanism [1,2]. The process of stimulus and response to the neural system involves electrical spiking signal and chemical transfer among the neurons. In the neural system a neuron either appears in a silent or spiking states and the spike has a defining role. These carry the basic message transmissions of the brain and reflect the neural code. The traditional method to study this message transport means is physiology anatomy, but as the problem is studied more deeply many authors begun to use nonlinear dynamic theory to study it. In theory a neural neuron can be described by a dynamic model and the states of the neural system can be described by a set of dynamic models [3,4].

Recently, based on this experiment of olfactory processing in insects and fish, Rabinovich and his colleagues show a small winnerless competition (WLC) network composed of FitzHugh-Nagumo spiking neurons which efficiently transforms the input information into a spatiotemporal output [5]. It models a neural network with the inhibitory interactions among the neural neurons. The WLC model is written as follows
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Equation (1) models the electric spike of neuron 
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 in the inhibitory neural system. The variable 
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denotes the membrane potential of neuron
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denotes the effects of synaptic current. The unit step function 
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 describes the synaptic connection of two neurons. The coefficient 
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 denotes the strength of the synaptic inhibition. If a neuron 
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. The variable 
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 is the external stimulus to neuron
[image: image20.wmf]i

. WLC models the electric spike of the inhibitory neural system and gives the timing code and spatial code of the brain. In the following sections we consider the spike sequence and its application to the inhibition system.

2. The Spike Sequence of the WLC Model

A WLC model was established for insects and fish’s olfactory neural system with the neuron relation being inhibition. In order to study the spike sequence the study constructed an 
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 inhibition neural network and analyzed their spike order. Fig. 1 shows constructed networks. The lines headed by black dots denote that neuron 
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 inhibits neuron 
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 and the inhibition relation formed a closed orbit. For a network containing 
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 neurons the external stimulus can be described by (
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), the response of the neural network is defined by the electrical spike (
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). The Runge-Kutta method was used to simulate equation (1) using the parameters 
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Fig 1. The inhibition structure of the neural system

Two sets of external stimuli were applied to the neural system. The external stimuli to any neuron were the same in both sets except for those to neuron 6. The values appear in table 1.

Table 1 Two sets of external stimulus
	N
	S1
	S2
	S3
	S4
	S5
	S6
	S7
	S8

	(1)
	0.01
	0
	0.02
	0
	0.01
	0.01
	0.02
	0

	(2)
	0.01
	0
	0.02
	0
	0.01
	0.02
	0.02
	0

	

	N
	S9
	S10
	S11
	S12
	S13
	S14
	S15
	S16

	(1)
	0.01
	0
	0.02
	0
	0.01
	0
	0.02
	0

	(2)
	0.01
	0
	0.02
	0
	0.01
	0
	0.02
	0


The electrical spike resulting from stimuli in table 1 can be seen in Fig. 2. We investigated the relations between the order of the spike seen in Fig. 2 and the inhibition direction of Fig. 1, especially the time interval between the starting and the ending of the neuron and the inhibition direction. The results in each case show the order of the electric spike is converse to the direction of inhibition structure. For example:

The top left hand corner of Fig. 1 shows an inhibition orbit formed by neuron 1, 5, 2 and then back to neuron 1. 

N_1 (( N_5 ((N_2 (( N_1

Looking at these same neurons in Fig. 2 we can see firing pattern in this sequence.

N_1《— N_5 《— N_2《— N_1

The Fig.2 shows that neuron 1 stop spiking exactly the when neuron 5 begins its spike. The same order is seen for spike time can be investigated neuron 5 and neuron 2 or neuron 2 and neuron 1. And this spike order property reflects a closed inhibitory orbit. Similarly using a numerical method to analyze other inhibition structures such as, Freeman olfactory neural system or the neural system of Lobster stomatogastric with WLC model [6,7,8], the same order property is seen. This indicates the WLC model can accurately reflect the structure of the inhibitory system with the potential spike order. This spike order rule is the fundamental property of the WLC model. When the inhibition structure is complex, the spike order will have some special properties. These phenomena are summaries as follows. Notice the inhibitory order in the Fig. 1 can form a closed orbit that has relationship with spatial code and the spike number of a neuron has relationship with timing code. 

(1) The two sets of DC current stimuli were the same except neuron 6 changed to 0.02 in the second set. Fig. 2b shows that all the neurons changed their spike time due to this slight difference. But because the WLC model is sensitive to the external stimulus the spatial code remained unchanged although the timing code changed greatly in response to the external stimulus.

(2) The external stimulus applied in the test was DC current. If on the other hand, the neural system responds to variable external stimuli, such as a periodic stimulus or Gauss white noise, the results show the spike order is unchanged but the spike time or spike number will change. This means the external stimulus doesn’t affect the spike order, only changes the spike time and spike number [8].
(3) The spike order of the neurons has close relationship with closed inhibitory structure. This connection carries the message of the timing code and the spatial code. In some situations when a closed inhibition structure occurs the spike of the WLC model in the orbit exhibits the “bifurcation” phenomenon.

There is an example of spike “ bifurcation” phenomenon in Fig. 2. After the spike of neuron N_4, Fig. 1 shows there are two choices, N_8 or N_3: silence and a spike. This property came from the inhibition relation in Fig. 1 and here we called it the “bifurcation” phenomenon of the electric spike.
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（a） stimulus number (1) from table 1          （b） stimulus number (2) from table 1

Fig.2 The 
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 Fig. 1 with the two sets of external stimulus. The complex spike orbit

   N_4—》N_8—》N_7—》N_6—》N_3—》N_7—》N_4 contains the simple

spike orbit N_4—》N_3—》N_7—》N_4.

In other words, in the inhibition neural system, the spike order of the WLC model is opposite to that the neural inhibition structure. The more complex orbit the structure is the more abundant inhibition orbits, implying more encoding capability. For a fixed inhibitory structure the external stimulus spike order property remain but it changes the spike time and spike number. In some situations the neuron spike undergoes “bifurcation”. These phenomena cause the spike order to vary and reflect the intrinsic property of the inhibitory neural structure. As the neuron relations in the olfactory cortex are mainly connected with inhibition, we will use WLC to consider their spikes pattern.
3. Spatial Patterns of the Olfactory

  Cortex

Because the WLC model partly reflects the property of inhibitory neural system, in this section, we will use it to analyze the spatial patterns of the inhibitory structure, olfactory cortex. There are many models of the olfactory system, such as the Freeman structure and the Mori neurons connection, etc [6,9,10]. The message transfer in the olfactory structure involves the receptor neuron, excited mitral neurons, tufted neurons and granule neurons and through LOT transformed to the cortex neuron. The cortex neuron feeds back to the granule neurons [10]. On the olfactory cortex the neurons relationships are mainly inhibitory and they appear in an EEG or in spatial patterns. Based on the physiology anatomy we can construct a simple model of this cortex and use the WLC model to analyze its spike pattern. 

The constructed model contains 
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 cortex neural neurons. The strength synaptic inhibitions between neurons are 
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. Fig. 3 illustrates a simply 
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 structure. The numerical method and parameters of WLC are same as in section 2.
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Fig. 3 The simple inhibited structure of cortex

Fig. 4 shows the isoline of the WLC model for three different external situations. Potential value greater than 1 are displayed in red, Potential value less than 0.1 are displayed in blue while value less than 1 and greater than 0.1 are colored black. The analysis will again use formula (1) and the parameters given at the beginning of section 2.

Fig. 4(a) shows that when there is no external stimulus the neuron spike begins at the boundary and diffuses to the center gradually then all the neurons will finally spike. If some neurons are damaged the spatial patterns near the damaged area will change greatly, and other areas will be affected slowly. These results correctly model the olfactory experiment and here we can see the simulation results [6,12].
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（a）t=1075              （b） t=698                 （c）t=1084
Fig. 4 The simulation results model the spatial patterns of the olfactory cortex in respond to different external stimulus. (a) no external stimulus to the structure. (b) the center 
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 neurons are deleted and modeled as damaged. (c) the head corner 
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 neurons are deleted and modeled as damaged.
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           （a）t=200                  （b）t=237                   （c）t=276              

[image: image54.png]


  [image: image55.png]


  [image: image56.png]



          （d）t=510                 （e）t=626                    （f）t=729   

Fig. 5 The neuron spike when neuron 4000 to 4050 have increased the external stimulus.
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（a）t=218           （b）t=510             （c）  t=303          （d）  t=354

Fig. 6 The neuron spike with 3 neurons (a and b) and 4 neurons (c and d) have increased external stimulus.
In 
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 cortex if we have increased external stimulus on the neuron 4000 to 4050 and these neurons are on a segment in the structure. Fig. 5 shows the neuron spike and we can see the change of potential in the spike. Fig. 6 shows the spike pattern for stimulus to 3 neurons and 4 neurons. You can see the influence clearly.

There are many references to the spatial patterns of the cortex [2,6,12]. In Freeman experiment the contour of the spatial pattern the cortex of a rabbit had been conditioned to the scent of sawdust. Spike when it smells sawdust after also learning to recognize the smell of a banana, however, new pattern occurred when the rabbit was reexposure to sawdust. If we compare those results to the results of this study a common pattern occurs. At the stimuli points the isoline diffuses gradually. This is a basic law of applying a stimulus to the spatial patterns. But to finding the general diffusion rule remains a difficult problem.

4. Conclusion

  In this paper numerical methods are used here to analyze the electric spike order of the inhibitory neural system using the WLC model. The WLC model was also applied to the study the electric spike of the olfactory cortex to obtain the spatial patterns.
The study shows the WLC model is sensitive to the external stimulus and it represents well the response to the stimulus. This ability confirms that the WLC model can reflect the effect of the stimulus on the inhibitory system. In the WLC model the sequence of the electric spike is opposite to the inhibition direction. Different stimuli maintain the same spike sequence but cause changes the starting time and ending time of the spike and alter the spike numbers. Those spikes express the timing code and the spatial code of the neural system. For the system with closed orbits the spike causes “bifurcation” phenomena and the orbit spikes contain the message transmitting.

  If we use WLC to study the spatial patterns of the olfactory cortex we can obtain the variety of wave patterns. When there is no external stimulus to the neurons the spike begin from the boundary and diffuses gradually to the center. Long time evolvement all the neuron begin spike. If some neurons are damaged we can see the changing of that area. For several points stimulus we can see the spike movement clearly. These simulation results imply the cortex neurons structure of bidirectional inhibition not only reflect the external stimulus but also appear their stability. All this model results can be observed in the experiments of the rabbit olfactory cortex. That is the WLC model reflects the experiments results of the inhibitory olfactory.   

  So, WLC model can explain some property of the inhibitory system. It is a good model to analyze the inhibitory neural code. There are, however, many experiments to be done if we are going to understand the inhibitory neural system with WLC, especially the relationship between electric spike and closed orbits [12], and which is our present work.
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