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Abstract: Incorporating with machine learning techno-
logy, neuroimaging markers which extracted from struc-
tural Magnetic Resonance Images (sMRI), can help 
distinguish Alzheimer’s Disease (AD) patients from 
Healthy Controls (HC). In the present study, we aim to 
investigate differences in atrophic regions between HC 
and AD and apply machine learning methods to classify 
these two groups. T1-weighted sMRI scans of 158 patients 
with AD and 145 age-matched HC were acquired from the 
ADNI database. Five kinds of parameters (i.e. cortical 
thickness, surface area, gray matter volume, curvature 
and sulcal depth) were obtained through the preprocess-
ing steps. The recursive feature elimination (RFE) method 
for support vector machine (SVM) and leave-one-out 
cross validation (LOOCV) were applied to determine the 
optimal feature dimensions. Each kind of parameter was 
trained by SVM algorithm to acquire a classifier, which 
was used to classify HC and AD ultimately. Moreover, 
the ROC curves were depicted for testing the classifiers’ 
performance and the SVM classifiers of two-dimensional 
spaces took the top two important features as classifica-
tion features for separating HC and AD to the maximum 
extent. The results showed that the decreased cortical 
thickness and gray matter volume dramatically exhib-
ited the trend of atrophy. The key differences between AD 
and HC existed in the cortical thickness and gray matter 
volume of the entorhinal cortex and medial orbitofrontal 
cortex. In terms of classification results, an optimal accu-
racy of 90.76% was obtained via multi-parameter com-
bination (i.e. cortical thickness, gray matter volume and 
surface area).  Meanwhile, the receiver operating charac-
teristic (ROC) curves and area under the curve (AUC) were 
also verified multi-parameter combination could reach a 
better classification performance (AUC = 0.94) after the 
SVM-RFE method. The results could be well prove that 
multi-parameter combination could provide more useful 

classified features from multivariate anatomical structure 
than single parameter. In addition, as cortical thickness 
and multi-parameter combination contained more impor-
tant classified information with fewer feature dimensions 
after feature selection, it could be optimum to separate HC 
from AD to take the top two important features of them 
to construct SVM classifiers in two-dimensional space. 
The proposed work is a promising approach suggesting 
an important role for machine-learning based diagnostic 
image analysis for clinical practice.

Keywords: Alzheimer’s disease; classification; cortical 
feature; multi-parameter combination; structural MRI; 
support vector machine.

Introduction
Alzheimer’s disease (AD) is a severe neurodegenera-
tive disease which results in cognitive impairment and 
memory ability damage, even leading to unceasing dete-
rioration of viability and death in the end [23]. Recent 
studies indicated that there were 24.3 million people with 
dementia in the world in 2001, and predicted that this 
would rise to 42.3 million in 2020 and 81.1 million by 2040 
[21]. Traditionally neuropsychological tests are time-con-
suming with passable recognition rate for AD [45]. With 
the development of neuroimaging technology, sMRI has 
initiated a non-invasive and widely prevalent method, 
which can be used to detect more subtle morphological 
abnormalities in brain disorders [11, 18, 44]. Therefore, to 
discover the abnormalities of imaging characteristics of 
AD and prevent the progression of disease would be par-
ticularly urgent.

To our knowledge, gradual cerebral atrophy is one 
of the obvious changes of AD and the degree of atrophy 
can be observed via high-resolution MRI technology. Mor-
phology-related cortical volume and cortical thickness 
measure have been used to better understand the under-
lying pathophysiology in AD diagnosis. Nowadays diverse 
tools such as statistical parametric mapping (SPM) [24], 
voxel-based morphometry (VBM) [4] and Freesurfer [22] 
could be applied in extracting morphologic whole-brain 
MRI features. However, the majority of these studies [9, 
10, 26, 42] mainly focused on the differences of cortical 
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thickness and gray matter volume. It is still lacking with 
respect to the research on surface area, curvature and 
sulcal depth. In addition, previous studies [15, 47] had 
specifically investigated the use of hippocampal volumes 
and medial temporal lobe for diagnosis in AD. The com-
bination of multiple cortical metrics (i.e. volumes and 
thicknesses) across multiple brain regions may provide 
better discrimination between AD and HC. Therefore, 
the advanced multivariate machine-learning based 
approaches, which can extract the fine-grained relation-
ship among the multiple metrics and regions [8, 37, 51], 
have significant potential for assisting with diagnosis and 
prediction of AD.

Recently, a review [3] roundly summarized the single 
subject prediction of several brain disorders such as 
AD and involved several key aspects such as modality, 
machine learning algorithms, sample size and extracted 
features. This implies that the multi-modal neuroimag-
ing techniques, advanced machine learning algorithms, 
big data, multi-parameter combination will become the 
mainstream of neuroimaging research. To our knowl-
edge, the machine learning approaches can train a clas-
sifier to predict the label of an unseen subject by taking 
multi-regional brain features into account jointly. Spe-
cifically, machine learning can capture the size of weight 
coefficients among various anatomical regions, which 
have exhibited their importance to distinguish AD from 
HC [49]. There are several different aspects for classifica-
tion research of machine learning. One is classification 
using the features extracted from T1-weighted images and 
diffusion tensor images (DTI). For example, Li and col-
leagues [33] reported an accuracy of 94.3% in discrimi-
nating between AD and HC among 36 individuals after 
combined the tract-based fractional anisotropy (FA) with 
gray matter volumes. The second one [2] compared four 
supervised learning methods [i.e. orthogonal projections 
to latent structures (OPLS), decision trees, artificial neural 
networks (ANN) and SVM], who indicated that SVM and 
OPLS were slightly superior to decision trees and ANN. 
The third one [7] researched the classification effect 
across the sample sizes and feature dimensions among 
AD, mild cognitive impairment (MCI) and HC. Given that 
multi-parameter combination and large sample has enor-
mous potential for improving discriminative capability, 
it is likely that the above two factors can contribute to 
extraction of prominent features and stability of classi-
fication model.

In this study, we applied a machine learning approach 
to discriminate AD from HC. Structural MRI data was 
firstly preprocessed by FreeSurfer to receive five kinds of 
parameters and applied in query design estimate contrast 

(QDEC) for statistical analysis. Except common cortical 
thickness and gray matter volume, we also took surface 
area, curvature and sulcal depth as cortical parameters. 
Then the SVM algorithm was used to classify HC and AD. 
The ROC curve and SVM classifier of two-dimensional 
space were depicted to validate the classification perfor-
mance of SVM classifier.

Materials and methods
Data

Our participants involved in the experimental analysis were obtained 
from the Alzheimer’s disease neuroimaging initiative (ADNI) data-
base (adni.loni.usc.edu), which is consisted of high-resolution 
T1-weighted sMRI of 303 participants. The screening process was 
described in detail in the database manuals. The T1-weighted struc-
tural image parameters of all participants were roughly described as 
follows: TR = 2400 ms, TE = 4 ms, slice thickness = 1.0 mm, voxel size 
1.0 mm × 1.0 mm × 1.0 mm. The exact parameters were varied slightly 
across scanners. Before scanning, the participants experienced cog-
nitive and behavioral assessments. There was no significant differ-
ence (p > 0.05) between HC group and AD group when comparing 
age and gender (See Table 1 for group characteristics). There were 
differences between groups for demographics including mini-mental 
state examination (MMSE), clinical dementia rating (CDR), such as 
AD had a lower score of MMSE but a higher score of CDR than HC. The 
statistical analysis of basic information was completed in SPSS 22.0.

Freesurfer analysis

The T1-weighted sMRI scans were processed with Freesurfer’s recon-
all preprocessing for cortical reconstruction and volumetric segmen-
tation [22], freely available at http://surfer.nmr.mgh.harvard.edu. 
This method automatically generated reliable volume and thickness 
segmentations of white matter, gray matter, and subcortical vol-
umes. The streamlined pipeline included the removal of non-brain 
tissue, Tailarach transformations, segmentation of subcortical gray 

Table 1: Mean and standard deviation of sample demographics 
used in this study.

Characteristic HC AD p-Value

Sample size 145 158
Gender (male/female) 71/74 86/72 0.342
Age (years) 75.76 ± 4.42 75.21 ± 7.47 0.432
MMSE 29.14 ± 0.94 23.30 ± 2.05 <0.000001
CDR 0.04 ± 0.14 4.68 ± 1.74 <0.000001

The data are represented as mean ± standard deviation. Columns 
on the right display p-values for two sample t-tests for each sample 
characteristic except for gender, which displays p-value from a χ2 
test.
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and white matter regions, intensity normalization and atlas regis-
tration. After these steps, a mesh model of the cortical surface was 
generated and the cortical surface was parcellated into 34 cortical 
regions based on gyral and sulcal landmarks for each hemisphere 
according to the Desikan-Killiany atlas [14]. For purpose of statis-
tical analysis, smoothing was applied using recon-all with qcache 
option added. QDEC, a tool within Freesurfer, was used to identify 
differences in cortical thickness, surface area, gray matter volume 
and cortical folding (curvature and sulcal depth) between HC and 
AD. To control for multiple comparison, statistical significance lev-
els were cluster corrected for both hemispheres using false discovery 
rate (FDR), p < 0.05 [48].

Machine learning methods and analysis

The machine-learning analysis was performed by using a scikit-learn 
open source package [38] (version 0.18.1, freely available http://
scikit-learn.org/) in Python. Scikit-learn is a Python module integrat-
ing with a wide range of advanced machine learning algorithms for 
supervised and unsupervised problems. The basic function of scikit-
learn mainly contains six parts: classification, regression, clustering, 
dimensionality reduction, model selection and preprocessing. For 
specific machine learning problem, it usually could be divided into 
three steps: data preparation and preprocessing; model selection 
and training; model validation and parameter optimization.

In terms of classification methods, support vector machine 
(SVM) [5] was by far the most popular method. SVM was already 
known as a tool that discovered informative patterns [27]. The pre-
sent application demonstrated that SVM was also very effective 
for discovering informative features or attributes. Different forms 
of SVM such as linear, non-linear along with recursive feature 
elimination and regularization had been used for classification 
of various disorders. In this paper, linear support vector machine 
recursive feature elimination (SVM-RFE) [27] was applied in order 
to obtain a ranked list of features which could best distinguished 
HC from AD. The SVM-RFE method allowed one to minimize 
redundant and extraneous features that could potentially degrade 
classifier performance [19]. SVM-RFE worked backwards from the 
initial set of features and eliminated the least “useful” feature on 
each recursive pass and it had been applied successfully for fea-
ture selection across several functional neuroimaging studies [12, 
13]. The performance of the classifier was evaluated by utilizing 
the leave-one-out cross validation (LOOCV) test. In each trial, the 
data from all but one (N − 1 of the N sample) to train the classi-
fier, then the classifier tested the remaining one. This procedure 
was repeated N times and then each time leaving out a different 
sample [52]. The learning and classification process involved four 
steps: (i) dividing the subjects into a training set and a testing set, 
(ii) selecting discriminative regions, (iii) training the SVM classi-
fier model using the training data, and (iv) evaluating the perfor-
mance of the SVM model using the testing data. To determine the 
general performance of the SVM classifier, a LOOCV approach was 
taken. Every subject was selected once as the testing dataset, with 
the remaining 302  subjects forming the training dataset (step i). 
Step (ii) and step (iii) were performed to select the discriminative 
features and trained the SVM classifier model. The final step (step 
iv) was to evaluate the performance of the SVM model using the 
testing data. An overview of AD/HC process flow chart was shown 
in Figure 1.

The results of classification were the mean accuracy, sensitivity 
and specificity. The accuracy was defined as accuracy = (TP + TN)/n 
where TP was the number of true positives, TN was the number of 
true negatives and n was the total number of subjects. Following a 
common convention, we defined correctly classified patients with 
AD as true positives. The sensitivity and the specificity measured 
the ability of a classifier to identify positive and negative instances, 
i.e. sensitivity = TP/(TP + FN), specificity = TN/(TN + FP), where 
FN and FP were the number of false negative and false positive 
instances, respectively. The classification performance computed 
from the confusion matrix was shown in Table 3. In order to under-
stand the performance of a classifier, it was important to report the 
sensitivity or specificity along with the overall accuracy. The other 
common way of reporting results for a classifier was by plotting 
“receiver operating characteristic” (ROC) curve [53]. The ROC curve 
was the plot of sensitivity against “1-specificity” by changing the 
discrimination threshold and therefore provided a complete picture 
of classifier’s performance. The ROC curve was usually summarized 
by the area under the curve (AUC), which was a number between 0 
and 1 [20].

Results

Statistical analysis

The statistical analysis between HC and AD is performed 
on QDEC, a module of Freesurfer developed to design and 
execute surface analysis. Color areas showing significant 
distinction among groups are superimposed on the tem-
plate (Figure 2).

The results of cortical thickness, surface area, gray 
matter volume, curvature and sulcal depth analysis are 
drawn in Figure 2. Based on the Desikan-Killiany atlas 

Preprocessing

Classification N samples

N – 1 training samples One testing sample

Feature selection
SVM-RFE

Feature selection
SVM-RFE

Classification

Testing

SVM classifier
SVM-LOOCV

Training

sMRI data

Feature extraction Statistical analysis
Freesurfer: cortical reconstruction

and volumetric segmentation
Qdec: surface group analysis

Figure 1: Process flow chart of AD/HC preprocessing and 
classification.
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[14], the human cerebral cortex is divided into 34 cortical 
features in each hemisphere. As the number of discrep-
ant features is much, only several top-ranked significant 
differences of features are listed for five kinds of para-
meters. Table 2 presents the position and involves a range 
of clusters of differences in cortical thickness, surface 
area, gray matter volume, curvature and sulcal depth at 
each vertex between HC and AD by QDEC controlling. In 
this table, only the top four features which have signifi-
cant differences for each kind of parameter are provided. 
Combined with statistical maps Figure 2 and statistical 

Table 2, the cortical thickness of the bilateral entorhinal, 
bilateral paracentral, left medial orbitofrontal, left supe-
rior parietal, right cuneus, right postcentral was thinner 
in AD compared with HC. In the surface area, AD have 
smaller areas than HC in the left inferior temporal, left 
precuneus, right entorhinal, right bankssts, right inferior 
parietal and have greater areas than HC in the left pre-
central, left superior parietal, right insula. Compared 
with HC, the gray matter volume of the bilateral entorhi-
nal, bilateral precentral, left superior frontal, left caudal 
middle frontal, right posterior cingulate and right rostral 

Figure 2: Analysis of five kinds of parameters (including cortical thickness, surface area, gray matter volume, curvature, sulcal depth) to 
differentiate between HC and AD.
For each row from top to bottom, statistical maps show parameter pattern in HC relative to AD for the (A) cortical thickness, (B) surface 
area, (C) gray matter volume, (D) curvature, (E) sulcal depth of the left and right hemisphere presented on the inflated cortical surface (dark 
grey = sulci; light gray = gyri). For each column from left to right, statistical maps show parameter pattern in lateral and medial of the left 
hemisphere and right hemisphere respectively. An increased parameter is marked by red and yellow, and a decreased parameter is marked 
by dark and pale blue. The significant thresholds are set at p < 0.05, FDR corrected. Cortical maps are smoothed with full-width at half- 
maximum (FWHM) Gaussian kernel set at 10 mm. The color bar scale represents maximum −log10 (p-value) in the cluster.
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middle frontal was smaller in AD. In the curvature, HC 
have smaller curvatures than AD in the bilateral parahip-
pocampal, bilateral superior temporal, left insula, left 
entorhinal, right supramarginal and right temporal pole. 
Moreover, AD have greater depths than HC in the bilateral 
posterior cingulate, left insula, left rostral anterior cin-
gulate, left posterior cingulate, right superior temporal, 
right parahippocampal and have smaller curvatures than 
HC in the left paracentral, right bankssts in the sulcal 
depth.

Feature selection and classification accuracy

The SVM-RFE method is firstly applied to 68 cortical fea-
tures for five kinds of parameters to discriminate HC from 
AD (Figure 3A–E). The SVM-RFE method is then applied in 
multi-parameter combination to receive significant corti-
cal features. (Fig. 3F). The multi-parameter combination 
was constructed by concatenating the cortical thickness 
(CT), gray matter volume (GMV) and surface area (SA) into 
a long feature vector.

Table 2: Clusters of differences in cortical thickness, surface area, gray matter volume, curvature, sulcal depth between HC and AD for each 
hemisphere.

Cortical feature Cluster region Maximum −log10 
(p-value) in the cluster

Surface area of 
cluster (mm2)

Peak coordinates 
(TalX, TalY, TalZ)

Cortical thickness Left entorhinal −31.9509 36397.37 −20.3, −9.8, −30.4
Left medial orbitofrontal −10.4145 18753.17 −6.7, 21.3, −12.0
Left paracentral −3.5496 76.61 −6.0, −30.7, 60.7
Left superior parietal −2.8016 182.31 −10.4, −92.2, 20.1
Right entorhinal −28.2426 56846.33 23.4, −10.2, −32.2
Right cuneus −3.5091 138.44 6.0, −84.2, 18.1
Right paracentral −3.2123 132.92 4.1, −37.0, 63.7
Right postcentral −2.9332 147.51 49.5, −19.0, 56.4

Surface area Left inferior temporal −6.0970 2858.19 −41.3, −10.6, −32.4
Left precentral 3.6319 500.20 −5.9, −28.8, 71.5
Left precuneus −3.3975 253.55 −9.4, −49.5, 59.9
Left superior parietal 2.9183 177.05 −23.0, −61.0, 59.0
Right entorhinal −7.1872 3234.69 26.0, −0.4, −30.6
Right bankssts −4.8450 908.26 46.8, −43.0, 3.4
Right inferior parietal −4.3094 995.26 41.8, −64.5, 44.6
Right insula 3.5801 93.18 34.6, −18.4, 19.6

Gray matter volume Left entorhinal −27.0247 28227.10 −21.3, −8.0, −31.5
Left superior frontal −6.1045 7019.18 −9.5, 59.9, 9.5
Left caudal middle frontal −4.5035 583.28 −38.6, 6.4, 54.1
Left precentral −3.9812 403.43 −50.4, −2.6, 37.9
Right entorhinal −23.8018 25123.34 23.9, −8.2, −33.1
Right posterior cingulate −9.2975 1270.68 5.3, −30.0, 40.6
Right rostral middle frontal −8.9783 8604.92 29.5, 49.8, −3.1
Right precentral −5.2569 1239.65 49.5, −5.3, 49.0

Curvature Left insula −6.0272 109.69 −30.9, −27.7, 15.8
Left entorhinal −5.9569 159.26 −21.6, −16.5, −29.2
Left parahippocampal −5.1017 51.80 −19.4, −32.3, −13.6
Left superior temporal −4.8077 75.11 −41.0, −10.3, −15.9
Right supramarginal −6.3087 219.14 36.2, −34.0, 16.9
Right superior temporal −5.3212 81.26 43.5, −8.2, −16.3
Right parahippocampal −5.0900 135.18 23.2, −19.6, −26.5
Right temporal pole −5.0422 49.17 30.3, 5.4, −32.5

Sulcal depth Left insula 8.9027 995.78 −35.9, −2.6, −7.2
Left rostral anterior cingulate 7.2678 504.93 −9.0, 38.9, 9.5
Left posterior cingulate 5.1191 267.25 −5.8, 3.0, 37.5
Left paracentral −4.7826 135.83 −10.4, −41.1, 64.4
Right superior temporal 6.4106 768.71 43.9, −17.7, −7.9
Right posterior cingulate 5.2002 873.02 7.5, 5.9, 38.1
Right bankssts −3.8653 228.25 44.1, −38.6, 1.1
Right parahippocampal 3.5100 125.27 19.1, −41.3, −6.3
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Via the SVM-RFE method combined with LOOCV, the 
optimal feature dimensions for six kinds of parameters 
have been drawn in the corresponding rectangular frame 
(Figure 3). The peak value of the curve corresponding to 
the value of the X-axis is the best number of features. It 
seems that the range of feature selection for cortical thick-
ness and Gaussian curvature is most remarkable (Table 3). 
The range of feature selection for mean curvature can take 
the second place, while the effect of feature selection for 
surface area and gray matter volume is not particularly 
significant. For the classified quality of single parameter, 
gray matter volume receives the highest accuracy, sensitiv-
ity and specificity which are 86.80%, 86.08% and 87.59% 
respectively. In addition, the classified quality of the rest 

four kinds of parameters also obtains improvement via 
the SVM-RFE method. By fusing cortical thickness, gray 
matter volume and surface area together, the classifica-
tion accuracy gets a decent increase in comparison to 
single parameter classification. The accuracy, sensitivity 
and specificity increase from 74.25%, 76.58%, 71.72% to 
90.76%, 89.87%, 91.72% respectively after SVM-RFE.

Evaluation of classifier performance

ROC curves typically depict true positive rate (TPR) on the 
Y-axis, and false positive rate (FPR) on the X-axis. This 
means that the top left corner of the plot is the “ideal” 

Figure 3: Selection of the optimal feature dimensions of cortical features via the SVM-RFE and LOOCV method.
(A)–(F) represent the SVM-RFE cross validation score corresponding to the number of features selected from cortical thickness, surface area, 
gray matter volume, mean curvature, Gaussian curvature and CT + GMV + SA. The optimal feature dimensions have been described in the 
rectangular frame for each kind of parameter. It is remarkable that except diagram (F) which is computed based on 204 features, the rest is 
based on 68 features including the whole cerebral cortex. CT, Cortical thickness; GMV, gray matter volume; SA, surface area.

Table 3: Classification performance for each kind of parameter.

Parameter Optimal feature 
dimensions

Accuracy (%) Sensitivity (%) Specificity (%)

Before After Before After Before After

Cortical thickness 5 78.55 85.48 79.11 84.81 77.93 86.21
Surface area 52 66.34 76.24 68.35 79.11 64.14 73.10
Gray matter volume 49 74.58 86.80 74.05 86.08 75.17 87.59
Mean curvature 6 62.38 69.97 58.86 69.62 66.21 70.34
Gaussian curvature 5 58.09 65.68 48.10 52.53 68.97 80.00
CT + GMV + SA 16 74.25 90.76 76.58 89.87 71.72 91.72
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point – a FPR of zero, and a TPR of one. This is not very 
realistic, but it does mean that a larger AUC is usually 
better. Notably AUC = 0.5  stands for completely random 
predictions and AUC = 1.0  stands for perfect separation. 
The “steepness” of ROC curves is also important, since it 
is ideal to maximize the TPR while minimizing the FPR.

These ROC curves (Figure 4A–F) show the classifier 
performance for different kinds of parameters, computed 
from six-fold cross-validation. It can be found that all 
AUCs for each kind of parameter receive enhancement 
after the SVM-RFE method. As well as the classification 
accuracy in Table 3, multi-parameter combination obtains 
higher classifier performance than single parameter.

SVM classifier performance  
of two- dimensional space

For depicting the classification results more visually, SVM 
classifiers in two-dimensional spaces are used in sepa-
rating HC from AD. The feature dimensions have been 
reduced through SVM-RFE method at the beginning. 
Therefore, the top two of optimal features of each kind of 
parameter can be used for separating HC from AD.

Figure 5 shows that cortical thickness and multi-
parameter combination receive a maximum of classifica-
tion effect, while for surface area and gray matter volume 
the classification effect does not seem obvious. The reason 
for these phenomena is the optimal feature dimensions 
of cortical thickness and multi-parameter combinations 
which are small enough to represent the main features, 
while the optimal feature dimensions of surface area and 
gray matter volume still remain large. Therefore, in order 
to furthest separate AD from HC, all the optimal features 
should be utilized simultaneously.

Discussion
In this study, we applied both the statistical analysis and 
pattern classification to compare AD with HC. The par-
ticipants were firstly preprocessed using Freesurfer tool. 
Then the statistical analysis was applied in QDEC and the 
classification was conducted by SVM, respectively.

For the difference comparison of the cortical metrics, 
five kinds of parameters (i.e. cortical thickness, surface 
area, gray matter volume, curvature, sulcal depth) were 
compared between HC and AD. Compared with HC, the 

Figure 4: The ROC curves and AUCs for different kinds of parameters to evaluate classifier output quality using six-fold cross-validation.
(A)–(F) represent the ROC curve and AUC for cortical thickness, surface area, gray matter volume, mean curvature, Gaussian curvature and 
CT + GMV + SA, respectively. The dot-dashed lines represent the raw ROC curve and the full lines represent the ROC with SVM-RFE method.
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cortical thickness, surface area and gray matter volume 
of the entorhinal cortex are severely decreased in AD. The 
cortical thickness of the entorhinal cortex in the right 
hemisphere is thinner than that in the left hemisphere. 
These phenomena approximately agree with pre-existing 
literature involved in entorhinal cortex’s atrophy [17, 28, 
46]. About the difference research of cortical thickness, 
surface area and gray matter volume, the atrophy mainly 
appears in the temporal lobe, frontal lobe, occipital lobe, 
parietal lobe and cingulate gyrus. This phenomenon 
shows a strong agreement with previous findings related 
to the changes seen in HC and AD [18, 39]. These regions 
have been involved in complex cognitive behavior, motor 
execution, personality expression and decision making 
[50]. In addition, the attenuation of cortical thickness 
of left medial orbitofrontal reveals a cognitive inhibition 

related to the symptom of AD [29, 43]. Unlike pre-existing 
literature [16], there are no any atrophy of left entorhinal 
cortex in surface area. In the meantime, the surface areas 
of left precentral, left superior parietal and right insula 
show a small increase in AD. In the research of gray matter 
volume between HC and AD, apart from bilateral entorhi-
nal cortex, the frontal lobe also has severe atrophy in AD, 
such as the left superior frontal and right rostral middle 
frontal, which agree with previous research [30, 41]. Pre-
vious research [6] had demonstrated that patients with 
AD showed an increasing degree of false recognition due 
to frontal lobe dysfunction. Our research on the atrophy 
of the frontal lobe is based on gray matter volume, while 
Salat’s research [41] focused on white matter volume, 
they have some relevance to a certain extent. For the 
changes of sulcal shape (curvature in folded regions and 

Figure 5: The dataset with the top two features for each kind of parameter in two-dimensional space using the SVM classifier with linear 
kernel.
The red color circles represent AD and the blue circles represent HC. (A) Right entorhinal versus right inferior parietal from cortical thickness. 
(B) Left caudal anterior cingulate versus right bankssts from surface area. (C) Left bankssts versus left caudal anterior cingulate from gray 
matter volume. (D) Left caudal middle frontal from cortical thickness versus left entorhinal from gray matter volume.
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sulcal depth) between HC and AD, shallower sulcal depth 
mainly involved in left insula, bilateral cingulate gyrus 
for AD. While in other brain regions, the sulcal depths 
show different degrees of increase or decrease. These 
discoveries have some small deviations with previous 
research [31].

In the process of machine learning, the SVM-RFE 
technology is firstly used for the five kinds of parameters. 
Four kinds of single parameter and one kind of multi-
parameter combination are used for constructing the 
classifiers. Among these parameters, multi-parameter 
combination yields the best classification result with an 
accuracy of 90.76%, a sensitivity of 89.87% sensitivity, a 
specificity of 91.72% specificity and an AUC of 0.94 after 
feature selection. The optimal feature dimensions for 
each kind of parameter rank from top to bottom are corti-
cal thickness, Gaussian curvature, mean curvature, multi-
parameter combination, gray matter volume and surface 
area in turn. The parameter with best improvement is 
multi-parameter combination whose accuracy increases 
from 74.25% to 90.76% via the SVM-RFE method. It shows 
that multi-parameter combination exhibit a better clas-
sification result than single parameter. In general, the 
classification performance receives favorable improve-
ment through the SVM-RFE method. Combined with ROC 
curve and AUC, the performance of classifier receive 
improvement after feature selection. Moreover, the top 
two important features of different cortical parameters 
are used to build SVM classifier in a two-dimensional 
space to separate HC from AD. It is observed that cortical 
thickness or multi-parameter combination as a parameter 
could preferably separate HC from AD, which relates to 
the effect of feature selection. In other words, the fewer 
the significant features is, the more information the fea-
tures carry.

Combining Freesurfer with QDEC tool, discrep-
ant brain regions can be observed between groups. The 
discrepant brain regions can be contacted with previ-
ous research involving clinical manifestation. VBM just 
applies in single type of voxel-based comparison and the 
preprocessing steps are simple, while Freesurfer spends 
at least 10 h for each participant via numerous steps on 
reestablishing multi-type cerebral cortex. The existing lit-
erature with large sample analysis based on SPM [7, 32, 36] 
outdistance Freesurfer [25, 34, 40] so that it need to carry 
on more research based on Freesurfer. Beyond that, the 
majority of existing literature on classification research 
based on Freesurfer simply takes the cortical thickness 
and gray matter volume as classification parameters, this 
study even regards surface area, curvature and combined 
parameter as classification parameters. In addition, this 

study has proven the scikit-learn package could be suc-
cessfully used in neuroimaging research. The articles of 
machine learning applied with scikit-learn for neuroimag-
ing are still rare and just found in fMRI research [1, 35], 
not yet found in sMRI research. Taking SVM as a machine 
learning method, a high accuracy could be received via 
the SVM-RFE method. Combined with ROC curve, AUC 
and SVM classifier of two-dimensional space, classifica-
tion performance could be shown vividly.

However, the achieved classification accuracy is still 
not optimal due to several factors. Firstly, the ADNI is a 
multicenter database (approximate 50 centers using dif-
ferent voxel sizes and acquisition parameters), and it 
does not take scanner or center effects into account. Next, 
potential brain vascular lesions in the participants may be 
a confounding factor. Finally, due to hundreds of images, 
the normalization quality of these MRI images cannot be 
manually validated. All of these aspects can influence the 
final classification accuracy.

Conclusion
This study applied cortical-based multiple parameters 
of MRI data to exhibit the differences of brain regions 
between groups. Then each kind of parameter for the data 
was trained by SVM algorithm to build the classification 
models for differentiating AD from HC. Via the SVM-RFE 
and LOOCV methods, the classification accuracy received 
a decent improvement. In addition, the ROC curve and 
AUC were used to verify the stability of constructed clas-
sifier model. The results indicated the key change in AD 
was the entorhinal cortex and medial orbitofrontal. The 
classification results revealed the multi-parameter combi-
nation could receive an accuracy of 90.76% and a better 
classification performance (AUC = 0.94). It proved that 
the classification performance of multi-parameter com-
bination was superior to that of single parameter. More-
over, the classification performance of SVM classifiers in 
two-dimensional space indirectly related to the effect of 
SVM-RFE. This research reflects a promising advance for 
diagnostic image analysis based on machine learning. 
In the future, we will extend this work to a larger clinical 
data and include multiple modalities or more advanced 
machine learning techniques to further improve the clas-
sification accuracy.
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