The root of a polynomial in new notation

The root of a polynomial can be understood in the following:
(1) The equation $x^{2}-4=0$ can be solved as $x= \pm 2$. While we try to solve the equation $x^{2}-3=0$ we cannot solve it in rational field. The method to find the root is to introduce a new notation $x= \pm \sqrt{3}$. the general notation is $n-$ th root $x=\sqrt[n]{r}$

The notation n-th root can write the root of a polynomial if the degree of power less or equal to 4 .
(2) If the power of a polynomial great or equal than 5 we cannot write the root in the n-th root notation $x=\sqrt[n]{r}$.

Our conjecture is if we introduce new notation

$$
\tilde{n} T h e \text { root of equation } x^{n}-(p x+q)=0 \text { is } x=\sqrt[n]{(p, q)} \text { ò }
$$

We can use this notation to write the root of equation $x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}=0$.
Maybe we need general notation

$$
\text { ñThe root of equation } x^{n}-\left(p x^{2}+q x+r\right)=0 \text { is } x=\sqrt[n]{(p, q, r)} \text { ò }
$$

if the power of polynomial is higher

Liu Shenquan
Professor of Department of Mathematics,
South China University of Technology,
Guangzhou, China, 510640
12/11/2012

