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Peculiarities of the Tail-Withdrawal Reflex Circuit in 
Aplysia: a Model Study
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The circuit of the tail-withdrawal reflex in Aplysia opens up possibilities to construct model systems 
allowing researchers to effectively investigate simple forms of learning and memory. Using the Python 
interface of the NEURON software, we simulated this reflex circuit and studied various characteristics 
of the latter. The phenomenon of spike frequency adaptation (SFA) and the period-adding bifurcation of 
the minimum were found in sensory neurons, when the latter were stimulated by square-wave stimuli. 
In all neurons of the circuit, variation of the stimulus strength first increased and then decreased the 
number of spikes in a burst. In addition, with decreases in the number of stimulated sensory neurons, 
a subliminal firing other than that in an intact burst appeared at the outputs of interneurons and motor 
neuron. Moreover, the potentials produced in the motor neuron induced corresponding oscillations of 
the muscle fiber force, which was indicative of a procedure of excitement-contraction coupling in the 
tail part of Aplysia. Finally, upon alteration of the conductance of synapses between interneurons and 
motoneuron, the duration of long-lasting responses increased regularly, implying synaptic plasticity.
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INTRODUCTION

The nervous system of a marine mollusk, Aplysia 
(Gastropoda), is an extensively used object in the 
studies of reflexes, due to the relatively simple 
structure of this system [1]. In Aplysia, there are 
two important motor reflex reactions, the tail-
withdrawal reflex and the gill-withdrawal reflex 
(note that the term “tail” is conventionally attributed 
to the posterior part of the mollusk’s body despite 
the fact that the tail per se, in the strict sense of 
the term, exists only in Chordata). Both the above-
mentioned motor phenomena are examined because 
data obtained help researchers to understand the 
general principles of functioning of the reflex 
neuronal networks [2]. Owing to the relatively 
simpler pattern of the neuronal circuit, considerable 
attention was focused on the tail-withdrawal reflex. 
In reality, the arc of this reflex includes three kinds 
of neurons: sensory units, interneurons, and motor 
neurons. Many studies were focused mainly on the 

monosynaptic connections between sensory neurons 
and motor neurons, which were thought to be a site 
of plasticity [3]. For example, Phares et al. [4] 
studied the contribution of synaptic depression to the 
monosynaptic circuit. Although these authors could 
simulate the properties of basic firing, the long-
duration (long-lasting) responses observed in the 
physiological experiments could not be reproduced, 
and the role of interneurons interposed between the 
sensory and motor neurons was not analyzed. White 
et al. [1] improved the former models by constructing 
a polysynaptic circuitry that included interneurons. 
This circuitry, consisting of monosynaptic and 
polysynaptic pathways, reproduced long-lasting 
responses and drew attention to the phenomenon 
of the synaptic plasticity modifying the synaptic 
connection. Baxter et al. [5] developed this 
polysynaptic model by adding synaptic depression 
and potentiation to modulate synaptic connection. 
Most of the above-mentioned researches, however, 
focused only on the correspondence of the spiking 
patterns between actual neurons and the model 
network. The properties of the muscle, i. e., the 
effector of the reflex, were not discussed in the 
above papers.

Motor neurons are central elements that provide 
connections between the CNS and muscle fibers 
[6, 7]. Due to the fundamental difficulties of 
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experimental research, there are still lots of problems 
on how motor neurons or a neural network control 
muscle fibers to achieve certain characteristics of 
the activities. Consequently, much attention was 
focused on the computational approach to simulate 
the neural network and muscle fibers. Bashor [8] 
constructed a neural network simulating that in 
the cat; this network associated two antagonistic 
muscles to study the influences coming to the 
muscles from the network. Cisi and Kohn discretized 
the critically damped second-order system that was 
further developed by Fuglevand et al. [6, 9]. This 
discrete model made simulation much simpler, and 
its simulation/reality accuracy provided a relatively 
high level of successfulness in the reproduction of 
experimental data. 

METHODS

Our tail-withdrawal reflex-simulating circuit 
consists of a muscle fiber model and a neural model. 
The neural model constructed by White et al. [5] 
includes four sensory neurons, two interneurons, and 
one motor neuron. There are two kinds of synapses 
between the interneurons and motoneuron: the 
increased-conductance and decreased-conductance 
synapses. The muscle fiber model constructed by 
Cisi and Kohn [6] receives action potentials (APs) 
from the motor neuron directly. These neurons, 
synapses, and muscle fiber form a four-layer 
network model (Fig. 1). 

The muscle force is described by a motor unit-
twitch model. It is the discrete-time impulse 
response of a second-order critically damped 
system, as follows [6, 9, 10]:

   

(1)

In equations (1), ni represents the times of 
motor unit activation, Apeak is the twitch amplitude 
whose value is between 5 and 12.5 gram force  
(~ 0.05 to 0.125 N), tpeak represents the twitch 
contraction time (between 80 and 250 msec), T is 
the time step (msec), e(n) represents the discrete-
time spike train generated by the motor neuron, and 
f(n) represents the muscle force.

In the circuit, every neuron is described by 
Hodgkin-Huxley-type equations,

 

,    (2)

where Vi is the membrane potential of the neuron 
i, ILeak(i) is the leakage current, Iion(ik) represents the 
current in the neuron i due to the ion k, Isyn(ij) is the 
synaptic current in the cell i due to the influence 
of the presynaptic cell j, and Cm(i) is the membrane 
capacitance (Cm(i) is 0.001 μF in sensory neurons 
and interneurons and 0.01 μF in motor neuron). 
Each current can be modeled by I=g(V - E) where 
g is the conductance and E is the reversal potential. 
The conductance gion(ik) of an ion channel k in every 
neuron was obtained from the following equations:

, 

(3)

where X represents A and B. When there is IKS in 
the sensory neuron or IKV in motor neuron, nexp = 2;  
for other channels, it is 1. The conductance of 
the increased-conductance synapse is described 
by gsyn(ij = gmax(ij) αIC Asyn(ij) , and the conductance 
of the decreased-conductance synapse is 
obtained from the following equation: gsyn(ij) = 
gmax(ij)/ / (1+αDC Asyn(ij)) where αDC equals 7. The 
other synapse conductance can be described by  
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Table 1. Parameters describing the membrane currents

Iion

E
mV

gmax

µS
hA

mV
sA

mV
p

τA(max)

msec
τA(min)

msec
hτA
mV

sτA
mV

hB

mV
sB

mV
Bmin

τB(max)

msec
τB(min)

msec
hτB
mV

sτB
mV

SN
INa 70 10.0 -18.2 -8.8 3 2.0 0.56 -9.0 7.0 -40 3.2 0.0 10.0 2.8 -9.0 7.0
IKA -70 0.25 -20.7 -26.0 2 15.0 5.0 -33.8 2.9 -49.3 23.3 0.0 140.0 46.2 -30.0 5.8
IKV -70 2.2 -3.7 -9.5 3 28. 2.8 22.0 17.5 -22.9 12.4 0.0 360.0 36.0 5.7 1.9
ICa 60 0.01 -20.0 -10.8 3 50.0 6.0 -20.0 21.8 -20.0 7.9 0.75 300.0 225.0 -40.1 33.3
IKS -70 0.62 21.2 -19.7 1 250.0 60.0 -15.0 10.0

-46.0 -6.5
ILeak -18 0.033
MN
INa 67 5.5 -30.1 -5.8 3 1.4 0.39 -8.7 1.9 -27.5 9.2 0.0 23.8 5.7 -15.2 3.5
IKV -75 10.0 3.9 -6.6 1 145.0 0.0 -0.4 12.6 -8.0 12.8 0.0 1066 202.6 -8.0 7.4

-23.0 -13.3
ICa 87 0.2 -1.3 -10.8 1 8.7 1.0 -42.8 21.8 -16.3 7.9 0.24 372.6 67.1 -40.1 33.3
ILeak -19.0 0.035

LPl17
INa 70 8.0 -18.1 -8.8 3 2.0 0.56 -9.0 7.0 -37.0 3.2 0.0 10.0 2.8 -9.0 7.0
IKV -70 4.2 -3.7 -9.5 3 28.0 2.8 22.0 17.5 -22.9 12.4 0.0 460.0 46.0 5.7 1.9
ILeak -51.0 0.02

gsyn(ij) = gmax(ij) Asyn(ij), where Asyn(ij) is a synaptic activation 
function that can be obtained from the equation 

2 2 2
( )

( )
( )( ) ( )( )) // ( 2syn ij sy

syn ij
syn ijn ij syn ijX t

dA
d A dt A

dt
τ τ+= − − . All 

parameters in the equations are listed in Tables 1 
and 2.

The network was simulated in the Python interface 
of NEURON [11]. All charts were plotted using the 
Python library Matplotlib.

RESULTS

Square-Wave Stimulus Makes Sensory Neurons 
Reveal Two Characteristics. In the tail-withdrawal 
reflex, a sensory neuron is the site that receives 

external stimuli, whose nature plays an important 
role in modifying the circuit output. To reveal the 
properties of the sensory neuron, simulations were 
performed by applying square-wave stimuli. As a 
result, the sensory neuron produced burst discharges 
that displayed some interesting characteristics. First, 
the frequency of action potentials (APs) declined, a 
phenomenon known as spike frequency adaptation, 
SFA (Fig. 2E). Second, an increment in the stimulus 
strength caused the minimum of the AP number to 
change regularly (Fig. 2F).

From Fig. 2 A and B, we can see that series of 
bursts were induced by square-wave stimuli, and 
the distance between two APs gradually increased. 
Figure 2E shows the frequency of spikes fired 
by the modeled sensory neuron depending on the 
ordinal on the interval between two APs. As the 
ordinal increases, the frequency of firing shows a 
corresponding reduction (i.e., SFA). The formation 
of SFA was mainly determined by the properties 
of the potassium channels. With time increase, an 
inactive state of the potassium channels is prolonged 
gradually (Fig. 2 C, D). As a result, the frequency 
decreases correspondingly.

Figure 2 F shows that the minimum of the AP 

Table 2. Parameters of synaptic connections

Connection gmax , µS Esyn , mV τsyn , msec

SN → MN 0.16 30 2.7
SN → LPl17 0.007 30 4.0
LPl17 → MN 0.05 30 2.0
LPl17 → MN 0.035 -70 6000
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Fig. 2. Responses of the sensory neuron to stimulation. A) Series of burst discharges evoked by square-wave stimuli; B) enlargement 
of one burst shown in A. C) Variation of the conductance in each ion channel; D) enlargement of C. E) Instantaneous frequency of 
spikes (sec–1) related to their ordinal number. F) Minimum of the potential (mV) varying depending on the stimulus strength (nA).

number varies with increase in the stimulus strength. 
Initially, the minimum exhibits the period-adding 
bifurcation. When the stimulus strength exceeds 
1.08 nA, an inverse motion could be observed. 

Effect of the Stimulus Strength on the Circuit 
Firing Pattern. To study how the stimulus strength 
influences the circuit, we applied different stimuli 
to the sensory neuron. With increase in stimulus, 
the network output changes regularly, and the three 
kinds of neurons manifest synchronized firing  
(Fig. 3 A-H). When the stimulus strength was 0.1 nA, 
the sensory neuron, interneuron, and motor neuron 
all fired a single AP (Fig. 3 A). After cessation of 
the stimulus, the motor neuron became resting for  
1500 msec and then generated a long-lasting 
response for 4500 msec. As the stimulus strength 
increased, the three kinds of neurons all fired series 
of bursts, and the number of spikes in the bursts 
increased until the stimulus strength reached 1.1 nA 
(Fig. 3 I). When the stimulus strength exceeded this 
value, its increment began to cause decreases in the 
number of spikes in the bursts (Fig. 3 I). However, 
independently of the stimuli strength, a long-
duration response was still generated after cessation 
of stimulation.

In this procedure, the sensory neuron, interneuron, 

and motor neuron fired synchronously and generated 
the same number of APs when the stimulation 
strength was below 1.25 nA.

The Number of Stimulated Sensory Neurons 
Affects the Circuit Output. In our simulated 
network, the first layer of the circuit consists of four 
sensory neurons. The same stimulus was applied to 
different numbers of sensory neurons in order to 
detect the role of this parameter. The responses of 
such simulations are shown in Fig. 4. 

When only one sensory neuron was stimulated, 
the potential produced by this sensory neuron did 
not lead to intense bursts in both interneurons and 
motor neuron but made them generate single spikes 
and subliminal firing alternately (Fig. 4A). As the 
number of stimulated sensory neurons increased, 
subliminal firing in a burst of interneurons decreased 
gradually, and suprathreshold firing increased 
correspondingly. Although there was no subliminal 
firing in the motor neuron, the amplitudes of some 
APs were still relatively low (Fig. 4B-C). While all 
sensory neurons were stimulated, subliminal firing 
was not observed, and series of intact bursts were 
produced in the interneurons and motor neuron. If 
the number of stimulated sensory neurons was less 
than three, the bursts produced in the interneuron 
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and motor neuron were incomplete. This seems to 
be a factor related significantly to signal encoding 
in the tail-withdrawal reflex.

The Tail-Withdrawal Network Controls the 
Muscle Fiber Force. In order to find out how 
motor neurons control the muscle force, we linked 
our muscle fiber model to the tail-withdrawal 
reflex neural model. In this model, the electrical 
signal produced by the neural network controls the 
physical force developed by the muscle. Because 
sensory neurons, interneurons, and motor neuron 
fire synchronously, Fig.5 depicts the responses of 
the motor neuron and muscle fiber only. 

As might be expected, each AP produced in 
the motor neuron led to oscillation of the muscle 
fiber force. The depolarizing potential in the motor 
neuron induced the muscle fiber force to increase 
rapidly. Moreover, the burst that contains several 
subsequent APs produced a greater muscle force. As 
we can see in Fig. 5, a single AP led to the maximal 
muscle fiber force of 0.72 gram force, while bursts 
containing 3, 6, and 11 subsequent spikes made 
the maximum of the muscle force reach 1.39, 
2.39, and 3.68 gram force, respectively. However, 
when the motor neuron entered into the phase of 
hyperpolarization and afterhyperpolarization, the 
muscle fiber force began to decrease. The minimum 
point in every oscillation was not zero but still 
exceeded this value. When the motor neuron was 
depolarized again, the muscle fiber force assumed 
higher values once more. In about 9000 msec, 
the motoneuron became resting and did not fire 
anymore, and the muscle fiber force decreased to 
zero gradually. These results indicate that the muscle 
fiber force depends on the membrane potential in the 
motoneuron, while the potential in this neuron is in 
the phase of depolarization and hyperpolarization. 
Oscillations of the muscle fiber force are related to 
the excitation-contraction coupling in the muscle. 
As the subgraph in Fig. 5A shows, the increasing 
change in the muscle fiber force could lead to the 
contraction of the entire muscle. On the contrary, 
the relaxation phase in the muscle fiber is the result 
of the muscle fiber force decreasing [12].

Synaptic Plasticity in the Tail-Withdrawal 
Reflex Circuit Model. Synaptic plasticity is an 
important mechanism for regulation of reflexes, 
learning and memory. To understand how activation 
of synaptic connections influences the output of 
the network model, we used a series of simulation 
tests for modulating the parameters in the synapse  
(Fig. 6).

The conductance of the decreased-
conductance synapse is given by the equation  
gsyn(ij) = gmax(ij) / (1+αDC Asyn(ij)). A increment in αDC 
caused the duration of the long-lasting response of 
the motor neuron to rise regularly, which caused 
the conductance to decrease correspondingly 
at the same time (Fig. 6D). When αDC was 8, 
the duration of the long-lasting response was 
7264.9 msec, and this response caused the 
muscle fiber force to vary correspondingly  
(Fig. 6A). By increasing αDC to 100, the duration 
of the long-lasting response showed an obvious 
increment, increasing to 28,911.8 msec. When 
αDC reached 1000, the duration of the long-lasting 
response reached 44,914.4 msec (Fig. 6C). In these 
procedures, the muscle fiber force oscillated with 
variations of the potential in the motor neuron and 
became zero, while the motor neuron turned into 
resting. Figure 6D shows a positive correlation 
between αDC and the duration of the long-lasting 
response. When αDC was less than 300, the duration 
of such response rose rapidly. After that, the rate 
of increment changes entered a plateau period, 
and this process became relatively slow. When αDC 
was greater than 5000, the long-lasting response 
approached a stable state. Variations of the synaptic 
conductance induced regular outputs in both motor 
neuron and muscle fiber, which may imply that there 
is some synaptic plasticity in the synapse between 
the interneuron and motor neuron.

DISCUSSION

The SFA phenomenon is a frequently observed 
feature of sensory neurons [13, 14]. It plays an 
important role in the tuning of sensory responses to 
specific features, which is considered a significant 
modulatory mechanism. This feature emphasizes 
the fact that sensory neurons in the tail-withdrawal 
reflex are involved in the regulation of the firing 
pattern of the entire circuit and transmission of 
specific electrical signals. Another feature of 
the sensory neuron is that the minimum of the 
AP number changes regularly. With increments 
in the stimulus strength, the minimum of the AP 
number shows pattern looking like a period-adding 
bifurcation. It is a mathematical characteristic that 
reveals a variation of the firing patterns.

Initially, the strength of stimulation correlated 
positively with the number of spikes at the output of 
the network model. When the stimulating strength 
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exceeded 1.1 nA, the correlation between the 
stimulus intensity and the number of APs acquired 
a negative sign. This regularity may be relevant 
to the fatigue phenomenon, which is frequently 
manifested in motor reflex activity [15]. Fatigue 
can induce a suppression of the response when the 
stimulus strength exceeds a certain threshold. Thus, 
changes in the number of APs in the model network 
may be connected with the fatigue-related decrease 
in the magnitude of the tail-withdrawal reflex. 

The data obtained using our model network agree 
in general with the statement that not only the mean 
firing rate but also the number of sensory neurons 
involved affect the information encoding in the tail-
withdrawal reflex [16, 17]. 

Muscles of the “tail” are the effector of the tail-
withdrawal reflex in Aplysia. The muscle force 
induced by the stimulus makes the tail perform the 

corresponding movements. Our results show that a 
positive correlation exists between the muscle fiber 
force and characteristics of AP bursts generated by 
the network. Increases in the number of spikes in 
a burst provide a summation effect that increases 
the muscle fiber force. While APs generated by 
the motor neuron are coming to the muscle fiber, 
the muscle fiber force increases correspondingly. 
This increment leads to more intense contraction of 
the muscle fiber. Then, when the motor neuron is 
after-hyperpolarized, this induces relaxation of the 
muscle fiber. Such fiber does not relax entirely but 
still maintains a certain degree of muscle contraction 
force. These effects provide persistent withdrawal 
of the tail. When the motor neuron turns into the 
resting state, the motor fiber relaxes entirely. 
However, our model allowed us to stimulate only 
one motor unit, while the real tail-withdrawal reflex 
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circuit in Aplysia includes a number of motor units. 
More complete simulation is needed to combine a 
comparable number of motor units for studying how 
the muscle force varies.

In many studies, it was reported that synapses 
between interneurons and motor neurons of Aplysia 
is a key site of plasticity [1, 2, 4, 5]. The relationship 
between αDC and the duration of the long-lasting 
responses indicates that the plasticity phenomenon 
in synapses between interneurons and motor neuron 
in the tail-withdrawal reflex network is manifested 
rather clearly. Although the mechanisms of many 
aspects of synaptic plasticity are unknown, some 
assumptions with respect to this plasticity can 
be made according to our results. Long-lasting 
responses of the motor neuron can provide sustained 
contraction of the tail muscles [18]. Changes in the 
characteristics of activity generated by units of 
the network can modulate sustained contraction of 
muscle fiber of the “tail.” It appears that Aplysia 
has a possibility to alter the duration of muscle 
contractions due to changes in the conductance of 
synapses between neurons forming the respective 
network.

The authors, W. Ye, Sh. Liu, and Ya. Zeng, confirm that 
they have no conflict of interest. 
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