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The phenomenon of stochastic resonance and synchronization on some complex neuronal networks have been inves-
tigated extensively. These studies are of great significance for us to understand the weak signal detection and information
transmission in neural systems. Moreover, the complex electrical activities of a cell can induce time-varying electromag-
netic fields, of which the internal fluctuation can change collective electrical activities of neuronal networks. However,
in the past there have been a few corresponding research papers on the influence of the electromagnetic induction among
neurons on the collective dynamics of the complex system. Therefore, modeling each node by imposing electromagnetic
radiation on the networks and investigating stochastic resonance in a hybrid network can extend the interest of the work
to the understanding of these network dynamics. In this paper, we construct a small-world network consisting of excita-
tory neurons and inhibitory neurons, in which the effect of electromagnetic induction that is considered by using magnetic
flow and the modulation of magnetic flow on membrane potential is described by using memristor coupling. According to
our proposed network model, we investigate the effect of induced electric field generated by magnetic stimulation on the
transition of bursting phase synchronization of neuronal system under electromagnetic radiation. It is shown that the inten-
sity and frequency of the electric field can induce the transition of the network bursting phase synchronization. Moreover,
we also analyze the effect of magnetic flow on the detection of weak signals and stochastic resonance by introducing a
subthreshold pacemaker into a single cell of the network and we find that there is an optimal electromagnetic radiation in-
tensity, where the phenomenon of stochastic resonance occurs and the degree of response to the weak signal is maximized.
Simulation results show that the extension of the subthreshold pacemaker in the network also depends greatly on coupling
strength. The presented results may have important implications for the theoretical study of magnetic stimulation tech-
nology, thus promoting further development of transcranial magnetic stimulation (TMS) as an effective means of treating
certain neurological diseases.
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1. Introduction
Biological nervous system comprises a large number of

neurons, of which the neurodynamics has been extensively
studied. Moreover, some biological neuron models have been
established, which is helpful in understanding mode transition
in electric activities. The Hodgkin–Huxley[1] and Morris–
Lecar[2] neuron models can be used to describe the effect
of ion channels, which are thought of as a reliable neu-
ron model. A discrete map-type model was recently pro-
posed by Rulkov,[3] which can produce the main properties
of neuronal activities despite its low dimensionality and in-
trinsic simplicity.[4] The mathematical Hindmarsh–Rose neu-
ron model, which is simplified by the original Hodgkin–
Huxley neuron model, can reproduce the dynamical proper-
ties in neuronal activities and model the bifurcation behaviors
of neurons.[3,4] A detailed description of other models can be
found in Ref. [7] However, because neurodynamics in biolog-
ical system are much too complex, many factors need consid-
ering in the neuronal model. According to the Faraday’s elec-

tromagnetic induction law, the fluctuation over time in inter-
nal action potentials in neurons can produce a magnetic field,
which changes the distribution of electromagnetic fields inside
and outside the neuron. Therefore, the electromagnetic effect
should be considered. Lv et al. suggested that the magnetic
flux across the membrane can be used to describe the effect of
electromagnetic induction.[8,9]

In the past few decades, many experimental and theoreti-
cal studies have focussed on synchronous oscillations in neural
systems.[10] Gu et al. investigated the influences of bursting on
the control parameter, initial value, and attraction domain on
synchronization transition processes of coupled neurons.[11,12]

A prevailing view is that some neurological diseases and nu-
merous cognitive functions are related to neuronal oscilla-
tions. For example, some studies show that the cortical gamma
rhythm is associated with memory[13] and movement.[14]

Moreover, abnormal synchronous gamma oscillations occur in
patients with Alzheimer’s disease[15,16] and autism.[17] More
recently, Wang and Zhang studied the effect of phase synchro-
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nization in neural information transmission.[18] Jiao and Wang
investigated the synchronous discharge patterns of neuronal
population, which are composed of excitatory and inhibitory
connections.[19]

Moreover, the phenomenon of stochastic resonance has
also been extensively studied.[20–22] For instance, Gong et al.
studied the spatial synchronization and the temporal coher-
ence of the stochastic Hodgkin–Huxley model on complex
networks which are subjected to channel noise, and found
that the temporal coherence and synchronization can be en-
hanced by randomly adding shortcuts.[23] The research of Gao
et al. showed that the stochastic resonance effect and synchro-
nization depend greatly on the coupling strength and rewiring
probability in a small-world neural network.[24] Studies of
neural networks reported that the stochastic resonance is very
important for our understanding of the weak signal detection
and information transmission.[25] Moerover, adding noise into
the neuron system can significantly enhance the ability of sen-
sory neurons to respond to weak input signals.[26,27] However,
in all these studies, the dynamics of neural networks is based
on the loading of weak periodic stimuli on each constitutive
unit. Perc et al. introduced a subthreshold periodic pace-
maker into a single unit of the network, which imposes the
operating rhythm on adjacent cells to guide the functioning
of the whole network.[28] Furthermore, they also investigated
the phenomenon of stochastic resonance on small-world net-
works with a pacemaker.[29] Moreover, Wang et al. studied the
phenomenon of pacemaker-driven stochastic resonance on ex-
citable modular neural networks, which are composed of sev-
eral subnetworks and driven only by one neuron.[30]

Neurons in the nervous system undergo multiple phys-
iological processes, such as the influences of electrical field
and magnetic flux across the membrane. The influence of an
induced electric field on the rhythmic activity of the nervous
network has been investigated. For example, transcranial mag-
netic stimulation (TMS) generates a magnetic field in an area
of interest in the brain, which can modulate the neuronal activ-
ity in a particular brain tissue.[31] Devos and Lefebvre found
the abnormal patterns of cortical oscillatory activity.[32] Ma
jun et al. studied the synchronization behaviors of coupled
neurons under electromagnetic radiation and found that the
neuronal synchronization degree depends on the intensity of
electromagnetic radiation.[33]

However, to the best of our knowledge, in the past there
has been no corresponding work on studying the influence of
the electromagnetic induction among neurons on the collec-
tive dynamics of the complex system. Therefore, in this paper,
in order to explore this, we study the phenomenon of neuron
population synchronization and pacemaker-driven stochastic
resonance in a small-world network consisting of excitatory
neurons and inhibitory neurons (we call it the E-I small-world

network). More precisely, we construct a small-world network
proposed by Watts and Strogatz.[34] The excitatory neuron and
inhibitory neurons are modeled by a simple two-dimensional
model proposed recently by Izhikevich,[35] which is as biolog-
ically plausible as the Hodgkin–Huxley model, but in terms
of computational efficiency, it is like the integrate-and-fire
model, thus allowing detailed dynamic analysis for large-scale
network simulations. In particular, the effects of electromag-
netic induction among neurons and external induced electric
field are imposed on the model. The synaptic currents in the
model are the AMPA and the GABA currents elicited by ex-
citatory neurons and the inhibitory neurons, respectively. Us-
ing this E-I small-world network, we systemically study the
influences of electromagnetic induction among neurons on
pacemaker-driven stochastic resonance and the detection of
weak signals. Moreover, the effect of electrical field induced
by the magnetic stimulus on neuron population synchroniza-
tion is also investigated.

2. Materials and methods
In this section, we will introduce the topology structure of

the considered network, mathematical description of neurons,
and synaptic model used by neurons coupling. In addition,
the measurement network synchronization index is also intro-
duced.

First, according to Faradays’ law, a time-varying electric
field will be induced when a magnetic field, which changes
with time, is applied to the brain. Therefore, this electric field
can also be determined. Moreover, the influence of induced
electric field on membrane depolarization can be considered.
We know that the membrane potential V is due to the differ-
ence in ion concentration between inside and outside the cell
membrane. The effect of induction electric field on cell mem-
brane potential is shown to change the concentrations of ions
inside and outside the cell membrane, thus causing the mem-
brane potential to change, and thus further affecting the firing
patterns of neurons. Under the effect of induced electric field,
charges will accumulate in some parts of the membrane. As
charge accumulation increases, the depolarization of the mem-
brane will be greater. The relationship between the electric
field E and the electric field-induced membrane depolarization
∆V will satisfy the following differential equation:

∆V
dt

+
∆V
τ

=
λ

τ
E, (1)

where λ is the polarization length and τ is the Maxwell–
Wagner time constant, which represents the ‘speed’ of charge
accumulation.[36] According to formula (1), when the external
electric field is a direct current (DC) electric field, the corre-
sponding membrane depolarization ∆V is

∆V = λE. (2)
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For alternating current (AC) electric field E(t) =

(A/ω)sin(ωt), where A and ω represent the amplitude and
angular frequency respectively, the corresponding membrane
depolarization ∆V is

∆V
λ

=
AV
ω

sin(ωt)−2π f τ cos(ωt)
1+(ωt)2 . (3)

Because τ is very small and its magnitude is 10−10, while
the frequency f is in an extremely low frequency range, so
ωτ � 1, formula (3) can be rewritten as

∆V (t) = λ
A
ω

sin(ωt). (4)

Here, the polarization length is λ = 1 mm.
The field-induced membrane depolarization ∆V can be

seen as an additive perturbation to the membrane potential
V .[37] The neuron models of DC and AC electric field can be
obtained by substituting the formulas (2) and (4) into the mem-
brane potential equation respectively. In this study, we use Ve

to represent ∆V .

2.1. Neuron dynamics

We use the single two-dimensional (2D) neuron model
proposed by Izhikevich[35] to simulate the dynamics of indi-
vidual neurons in the network, which can be expressed as

v′ = 0.04v2 +5v+140−u+ I,

u′ = a(bv−u), (5)

with resetting the auxiliary after-spike condition:

if v≥ 30 mV, then

{
v← c,

u← u+d,
(6)

where v and u represent the transmembrane voltage of the neu-
ron and membrane recovery variable, respectively. The vari-
able I represents the synaptic current or injected dc-current: a,
b, c, and d are the dimensionless parameters. Through various
choices of these parameter values, the model can show dis-
charge patterns of all known types of cortical neurons. In this
paper, we choose a regular spiking model (RS) as excitatory
neurons, which corresponds to a = 0.02, b = 0.2, c = −65,
and d = 8, and we choose low-threshold spiking model (LTS)
as inhibitory neurons, which corresponds to a = 0.1, b = 0.25,
c =−50, and d = 8.

2.2. E-I small-world network

According to the random rewiring procedure proposed by
Watts and Strogatz,[34] we use the following methods to build
a small-world network: starting from a ring-like network with
regular connectivity, where each node is connected to its 2m
nearest neighbors, then we rewire each edge at random with
probability p. Self-connected and duplicate edges are forbid-
den. By increasing probability p, the construction of the net-
work can be tuned between regularity (p = 0) and disorder
(p = 1). As shown in Fig. 1, small-world networks can be
characterized by intermediate region 0 < p < 1. Generally,
the topology can be viewed as a random one when p > 0.3.

Our small-world network consists of N = 200 neurons, in-
cluding Ne = 160 excitatory neurons (E-cells) and Ni = 40 in-
hibitory neurons (I-cells). The dynamics of the individual neu-
ron in the network is represented by following the improved
regular spiking model and improved low-threshold spiking
model.

(a) (b) (c)

p/ p/. p/

Fig. 1. (color online) Examples of considered small-world network topologies and only 20 isolated nodes are displayed in each panel,
showing (a) regular ring-like network characterized by random rewiring probability p= 0, with each node being connected to its m= 4
nearest neighbors, (b) p = 0.1, and (c) p = 1.

2.3. Neuron model and synaptic model in network

Here, we consider a network with a small-world topology
which is coupled by E-cells and I-cells. These excitatory neu-
rons derive from the regular spiking model, and inhibitory neu-
rons derive from the low-threshold spiking mentioned above.
We use the improved regular spiking model as E-cells and the

improved low-threshold spiking model as I-cells in the net-
work, which contain the effects of electromagnetic induction
among neurons and external electric field. Therefore, to de-
scribe the dynamical properties of neurons in the network, we
only need to change Eq. (5) into the following form and the
corresponding parameters a, b, c, d stay the same
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v′ = 0.04(v+Ve)
2 +5(v+Ve)+140−u− k1ρ(ϕ)(v+Ve)

−Ae f cos( f t)+ Isyn + Ib +ξ (t),

u′ = a(bv−u),

ϕ
′ = v− k2ϕ,

dq(ϕ)
dϕ

= ρ(ϕ),

(7)

where Ve = Ae sin( f t) is an AC electric field, which can be
seen as an additive perturbation to the membrane potential
v, Ae is the amplitude of the electric field, and f is the fre-
quency. This time, we change v into v+Ve, and dVe/dt =
(Ae sin( f t))′ = Ae f cos( f t). This is what the right side of
Eq. (7) describes. The variable ϕ represents the magnetic flux
across the membrane. The function ρ(ϕ) is the memory con-
ductance used to describe the relationship between magnetic
field and membrane potential of the neuron, which develops
from the magnetic flux-controlled memristor.[38] We often use
ρ(ϕ) = α +3βϕ2 to describe the memory conductance of the
memristor and the parameters α , β are fixed.[39] k1 and k2

are parameters that describe the interaction between the mem-
brane potential and magnetic flux. The term k1ρ(ϕ)v repre-
sents the inhibitory regulation on the membrane potential. Ac-
cording to the definition of the memristor and Faraday law, we
can think of the term k1ρ(ϕ)v as the induction current on the
membrane, and the equation is as follows:

i′ =
dq(ϕ)

dt
=

dq(ϕ)
dϕ

dϕ

dt
= ρ(ϕ)V = k1ρ(ϕ)v, (8)

where Ib is the Brownian white noise term with mean 0.2uA
and standard deviation 2uA, which represents the nonspecific
background current from other brain areas and ξ (t) is the
Gaussian white noise, which satisfies the following properties:

〈ξ (t)〉= 0;〈ξ (t)ξ (t ′)〉= 2Dδ (t− t ′), (9)

where δ (∗) represents the Dirac-δ function, D is the noise in-
tensity, 〈∗〉 is the average of variable on time, and Isyn is the
coupling term, the form of which depends on the small-world
network topology.

The synaptic current elicited by E-cells is the AMPA and
the synaptic current elicited by the I-cells is the GABA.[40]

In E-cells model of the network, the form of Isyn is IE→E
AMPA +

II→E
GABA, and in I-cells, the form of Isyn is IE→I

AMPA + II→I
GABA. For

E-cells (i ≤ Ne), the AMPA currents to both E-cells ( j ≤ Ne)

and I-cells ( j > Ne) can be described by the following forms:

IE→E
AMPA, j(v,{sAMPA})

= gE→E
AMPA(v−VGlu)εEE

Ne

∑
i=1

Mi jsAMPA,i, (10)

dsAMPA,i

dt
= kfpTGlu,is∞(vi)(1− sAMPA,i)

−sAMPA,i/τAMPA, (11)

dTGlu,i

dt
= −kts∞(vi)TGlu,i + kv(1−TGlu,i), (12)

s∞(vi) = (1+ exp(−(v− (θs)/σs))), (13)

IE→I
AMPA, j(v,{sAMPA})

= gE→I
AMPA(v−VGlu)εEI

Ne

∑
i=1

Mi jsAMPA,i, (14)

where θs = −20 mV, σs = 2 mV, kfp = 1 ms−1, kt = 1 ms−1,
kv = 0.0001 ms−1, τAMPA = 5 ms, gE→E

AMPA = 0.08 mS/cm2,
gE→I

AMPA = 0.05 mS/cm2, and VGlu = 0 mV. The synaptic weight
of E-cells-to-E-cells is εEE = 3, and that of E-cells-to-I-cells is
εEI = 1.

For I-cells (i > Ne) the GABA currents to both E-cells
( j ≤ Ne) and I-cells ( j > Ne) can be described as

IGABA, j(v,{sGABA})

= gGABA(v−VGABA)ε
N

∑
i=Ne+1

Mi jsGABA,i, (15)

dsGABA,i

dt
= kfas∞(vi)(1− sGABA,i)− sGABA,i/τGABA, (16)

where kfa = 1 ms−1, gGABA = 0.05 mS/cm2, τGABA = 10 ms,
VGABA = −70 mV. ε is the synaptic weight, the weight of I-
cells-to-E-cells is 3, and that of I-cells-to-I-cells is 1.

Here, M is the connectivity matrix: Mi j = M ji = 1 if neu-
ron i is connected to neuron j, Mi j = M ji = 0 otherwise, and
Mii = 0. Obviously, the connectivity matrix M is asymmetric
and sparse.

2.4. Network synchronization measurement

For a collection of uncoupled neurons, bursting at differ-
ent times may occur in a non-coherent way. However, when
they are connected with synapses, they can have a coherent
behavior. It is worth noting that the coherent behavior here
refers to their bursting phase synchronization rather than syn-
chronization on a spiking time scale. But this does not sub-
stantially affect the approximate periodicity of the mean field
dynamics. In fact, in most cases, the spiking within the burst-
ing is not completely synchronized. In order to characterize
the synchronization degree of the bursting neurons, we can
also use the mean field of the ensemble, which is defined as

X(t) =
1
N

N

∑
i=1

vi(t), (17)

where N is the number of coupled neurons, vi(t) represents the
transmembrane voltage for the i-th neuron at the time t.

We fix rewiring probability p = 0.1, amplitude of elec-
tric field Ae = 0.4, and frequency f = 6.2, k1 = 0.001, and
k2 = 0.001. With the increase of coupling intensity η between
the neurons, a transition to bursting phase synchronization is
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observed. When the coupling intensity η = 0, the correla-
tion of bursting behavior at different times in the small-world
network is very weak, and the discharge rhythm of the net-
work becomes very irregular (Fig. 2(c)). The mean field of
excitatory neurons exhibits random fluctuation with a small
amplitude (Fig. 2(b)). When the coupling intensity increases
to η = 5, the discharge rhythm of the network becomes very
regular (Fig. 2(f)). Both E-cells and I-cells show their burst-
ing phase synchronization respectively. At this time, the mean
field of excitatory neurons exhibits significant periodic oscil-
lation (Fig. 2(e)). Here we can also observe that the cluster

discharges of E-cells and I-cells present almost out-of-phase
bursting synchronization. Therefore, it can be seen that the
large periodic oscillation of the mean field characterizes the
bursting phase synchronization, while random fluctuation with
a small amplitude means that the bursting of coupled neurons
is not synchronized. Because a state of synchronized bursting
is characterized by a large-amplitude oscillation of mean field
and random fluctuation with a small amplitude represents the
absence of synchronization, we can use the variance of mean
field oscillation Var(X) to measure the degree of synchroniza-
tion of the network.
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Fig. 2. (color online) ((a) and (d)) Time series for membrane potentials of a randomly selected E-cell in a small world network with η = 0 (a) and
5 (d); ((b) and (e)) mean fields of E-cell with η = 0 (b) and 5 (e); ((c) and (f)) spatiotemporal patterns of the network with η = 0 (c) and 5 (f).

2.5. Different types of neuron respond to localized signals

Previous studies have shown that the stochastic resonance
phenomenon of the neural network induced by localized peri-
odic signal stimulation is more remarkable than that of the pe-
riodic signal loading on all neurons. Here, we introduce a lo-
calized periodic signal stimulation in the form I = A∗ sin(ωt),
which is loaded additively into neurons in the network as a
pacemaker. Here, parameter A represents the amplitude of the
external forcing current, and ω is the corresponding frequency.
Because the excitatory neuron population accounts for 80% of
the total, we only consider the discharge characteristics of ex-
citatory neurons population in the following discussion.

To quantitatively characterize the correlation between
temporal output series of each excitatory neuron ve

i and the
frequency of the pacemaker f , we calculate the Fourier coeffi-
cient Qi according to Ref. [28], which is defined as

Q(i)
sin =

1
T

T

∑
t=1

2ve
i(t)sin(ωt), (18)

Q(i)
cos =

1
T

T

∑
t=1

2ve
i(t)cos(ωt), (19)

Q(i) =

√
Q(i)

sin

2
+Q(i)

cos
2
, (20)

where T is the iteration step, and also the operation period
of the pacemaker. We know that the Fourier coefficients are

proportional to the square of the spectral power amplification,
which is often used to measure stochastic resonance or the sys-
tem output in a linear response to the input signal frequency
ω . We use the average value of all Q(i) as a resonance factor,
i.e., Q = Ne

−1
∑

Ne
i=1 Q(i). In the following calculation, we take

T = 106. To eliminate the influence of system random fac-
tors, the final result presented in the figures below is gained by
averaging Q over 20 different realizations of each network.

Fixing parameter values A = 0.1, ω = 2π , η = 10, Ae =

0.1, f = 6.28 and the other parameters remain unchanged, we
randomly select the same number of E-cells and I-cells, and
load this sinusoidal forcing current on these selected neurons,
respectively. The collective behaviors of the systems for dif-
ferent types of neurons are depicted in Fig. 3(a). We can no-
tice that when local signals are loaded into E-cells, the excita-
tory neurons show a synchronized bursting discharge activity.
However, when the inhibitory neurons that are the same as the
excitatory neurons in number receive the periodic signal, the
population of excitatory neurons is in a subthreshold mem-
brane potential oscillation state. Figure 5(a) also shows the
dependence of Q on the number of neurons that receive the
signal. This indicates that excitatory neurons in the network
play an important role in receiving and detecting signals, and
inhibitory neurons play a regulatory role in this process.
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Fig. 3. (color online) (a) Resonance factor Q versus the number of
driven neurons for different types of neurons and (b) the dependence of
Q on the number of excitatory neurons that receive the local signal for
different values of coupling strength η .

Figure 3(b) shows the dependence of Q on the number
of excitatory neurons that receive the local signal for different
values of coupling strength η . For coupling strength η = 10,
it can be seen that the value of Q increases first, then stays
the same with the increase of the number of excitatory neu-
rons receiving signals. This result indicates that the collective
dynamics of the system caused by a small number of neuron
receptions is similar to that of a large number of neurons re-
ceiving signals, i.e, in the process of signal detection and in-
formation propagation, only a small number of neurons are
required to receive signals to trigger an accurate response to
input signals in the small world network. For too large val-
ues of coupling strength η , even local signal can activate the
network synchronization activity, but the correlation between
the temporal output series of each excitatory neuron and the
frequency of the pacemaker ω is very poor. Moreover, a small
coupling strength η may fail to evoke the discharge of other
neurons in the network and the discharge synchronization ac-
tivity of the whole network can be activated only when the
coupling strength exceeds a certain threshold.

In fact, small values of coupling strength η make the in-
teractions between neurons in the network weaker as if these
neurons were a set of separate neurons. In this case, the neu-
rons that do not receive signals in the network fail to produce
action potential due to a lack of sufficient synaptic stimulation.
That is to say, because of the small strength of the connection,
these neurons cannot benefit from their neighbors, so local-

ized rhythmic activity cannot effectively transmit across the
network. On the other hand, a large coupling strength makes
all neurons of the ensemble act as a single unit, so that the syn-
chronous discharge of the network is due to the structure of the
network itself, rather than the frequency of external stimula-
tion. Both cases result in a poor correlation between temporal
output series and the frequency. Therefore, the structure of
the network has an important influence on the efficiency of the
transmission of local signals. It seems that only the proper net-
work parameters can balance the effectiveness and complete-
ness of the signal transmission across all coupled units.

3. Results
3.1. Effect of induced electric field on synchronization

Since the network presents complex dynamical behaviors
in electrical activities under different conditions, it is interest-
ing to study the collective response of an E-I small world net-
work exposed to an induced electric field generated by mag-
netic stimulation. Next, we will investigate the effect of an
induced electric field on the bursting phase synchronization
of the E-I small world network. We fix coupling intensity
η = 0.1, amplitude of electric field Ae = 2, and the other pa-
rameters remain unchanged. Figure 4 shows the spatiotem-
poral patterns of this E-I small world network obtained for
different values of frequency f . It can be seen that the fre-
quency of the external field has an important influence on the
transition of network bursting phase synchronization. When
f = 0.1, the discharge rhythm of the network is very cluttered
and the mean field of E-cells exhibits small-amplitude random
fluctuation as shown in Fig. 4(a). Increasing the frequency
to f = 3.14, the excitatory neurons in the network are in a
bursting synchronization state, while the discharge rhythm of
inhibitory neurons is not regular as shown in Fig. 4(b). Con-
tinue to increase the frequency f = 6.28, then all the neurons
in the network will get bursting synchronization (Fig. 4(d)).
As the frequency increases further, the synchronization state
of the system disappears at f = 8 (Fig. 4(e)) and reappears
at f = 12.56 (Fig. 4(f)). Figure 4(f) shows the evolution of
Var(X) with f by different values of p. We can see that
the greater the rewiring probability, the greater the maximum
value of Var(X) is, that is to say, a larger p allows the system
to achieve greater synchronization. The above results show
that the frequency of the external field can promote or de-
stroy the synchronous discharge behavior of the small world
network with mixed synaptic connections, which can trigger
a transition of the synchronization state. In addition, it can
also be observed that with the increase of the frequency that
is able to trigger the network synchronization, system syn-
chronization gradually changes from merely excitatory neu-
ron synchronization to a global network synchronization, and
synchronous oscillation frequency becomes larger and larger.
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Fig. 4. (color online) (Left) Spatiotemporal patterns of the network obtained by different frequencies of AC electric field at f = 0.1 (a), 3.14 (b), 5 (c), 6.28
(d), 8 (e), and 12.8, (f). (Right) Variations of mean field Var(X) with electric field frequency f .

Figure 5 (left) shows the discharge rhythm of the E-I small world network with different electric field intensity at the time
when the stimulus frequency f = 6.28. It is obvious that the intensity of the external field has an important influence on the
bursting synchronization of the network. When Ae = 0.1, the collective electrical activity of the system is very messy (Fig. 5(a)).
With the increase of the amplitude of the electric field, the collective electrical activity becomes more and more synchronized.
Unlike the case of frequency change, the discharge rhythm of a neuron in the network is either in a disorganized state or in a
bursting synchronization state, rather than only the excitatory neurons are in bursting synchronization. Next, we detect the effect
of Ae on Var(X). Since rewiring probability p and external electric field frequency f may affect the dependence of the mean field
variance on electric field strength, we depict the values of the variance of mean field Var(X) versus the electric field amplitude Ae

for different values of p and f in Fig. 5(d). Fixing f = 6.28, we can observe that smaller Ae can cause network synchronization.
At the beginning, as the amplitude of the electric field increases, the variance Var(X) increases rapidly and then slowly. For a
smaller stimulus frequency f = 3.14, however, the smaller electric field amplitude Ae cannot cause network synchronization,
only when the electric field intensity exceeds a certain threshold can the system produce the synchronous discharge activity, and
then, with the increase of electric field intensity, the synchronicity of the network becomes stronger and stronger. In addition,
too small frequency fails to evoke any synchronous discharge of the network, no matter how strong the electric field amplitude
is. It is worth noting that the rewiring probability p does not affect the dependence of the mean field variance on electric field
strength at a fixed external electric field frequency. These results show that the electric field can induce the transition of the
network synchronization state, and when the intensity of the electric field is larger or the frequency takes some value, the neuron
population shows abnormal synchronous discharge behavior. This may explain why electromagnetic radiation can cause some
diseases.
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Fig. 5. (color online) (Left) Mean field X(t) and spatiotemporal patterns of the network obtained by different amplitudes of AC electric field when f = 6.28,
and Ae = 0.01 (a), 1 (b), and 4 (c). (Right) Variations of mean field Var(X) with electric field amplitude Ae for different values of rewiring probability p and
frequency f .

3.2. Influence of magnetic flow on detection of weak sig-
nals

By remembering the magnetic flux across the membrane,
memristor ρ(ϕ) can be used to describe the memory effect,

which is analogous to the autapse connection of the network.
Moreover, the magnetic flux across the membrane on the neu-
ronal system can change collective behaviors of neuronal net-
works and signal propagation. Now, we study the influence of
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magnetic flux on the detection of weak signals in small world
networks. According to the localized periodic signal described
above, I = A ∗ sin(ωt), we introduce a localized weak peri-
odic signal. We take A = 0.001, which can make sure that
the pacemaker is subthreshold without other external stimuli.
That means that it cannot lead to the neurons large-amplitude
spikes by itself. We add this weak periodic signal to an ex-
citatory neuron randomly selected, set the parameter values
η = 2 and p = 0.1, and keep the other parameters unchanged.
Since the effect of magnetic flow on membrane potential is
described by imposing additive memristive current (k1ρ(ϕ)v)
on the membrane variable, we take the intensity of interaction
k1 between membrane potential and magnetic flux as a control
parameter to describe the effect of magnetic flow.

Figure 6 shows the spatiotemporal patterns and the mean
fields of the E-cell ensemble of the network obtained for differ-

ent intensities of interaction k1. It can be seen that the no-flux
boundary condition being used or a very small intensity of in-
teraction k1(< 0.0003) may fail to trigger any large-amplitude
excitations (Fig. 6(a)), nor evoke only a few random ones and
the distribution of the action potential is sparse (Figs. 6(b) and
6(c)). When the intensity of interaction is moderate, such as
k1 = 0.0025, temporal dynamics of each E-cell unit tends to
be regularized and follows the rhythmic activity of this pace-
maker (Fig. 6(d)). While a larger intensity of interaction k1 can
lead to spontaneous excitations, which are no longer consis-
tent with the frequency of the pacemaker and the randomness
is significantly enhanced (Fig. 6(f)). These phenomena show
that the electric activity of a system triggered by a pacemaker
appears to be rather irregular for large intensity of interaction
k1, and relatively regular electric activity appears when appro-
priate magnetic flux is applied to the membrane potential.
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Fig. 6. (Left) Spatiotemporal patterns of the small-world network obtained by different electromagnetic induction intensities in the cases of (a) zeroed
electromagnetic induction, k1 = 0.0001 (b), 0.0005 (c), 0.001 (d), 0.0025 (e), and 0.004 (f). (g) Dependence of Q on interaction intensity k1.

In order to gain more insights into the influences of elec-
tromagnetic induction on the weak periodic signal detection
and information dissemination in neural systems, we calcu-
late the dependence of Q on interaction intensity k1 by us-
ing seven different values of coupling strength η , and keeping
other parameters unchanged. The obtained results are shown
in Fig. 7(a), when the coupling intensity is not very high (less
than 2), there is an intermediate value of interaction strength
k1 at which Q is maximal for each particular coupling strength
ω . Moreover, the maxima obtained in different cases are con-
centrated in the case where k1 is between 0.002 and 0.003. It
is worth noting that when the coupling intensity ω is too high
(more than 10), the increase of electromagnetic induction in-
tensity does not enhance the response of the system to weak
periodic signal. These results indicate that neurons produce
a discharge response to the weak periodic signal only when
an appropriate magnetic flux is applied to the membrane po-
tential, thus achieving accurate detection and transmission of
weak periodic signals. A strong interaction k1 can cause the
regularity of the neuron action potential to be poor, so that the
weak external periodic stimulus signal is blocked.

Since the frequency tuning is important in weak periodic
signal detection and information transmission, we study the ef-
fects of different frequencies of weak stimulus signals on the
global outreach of pacemakers. We calculate the dependence
of Q on pacemaker frequency f by using three different val-
ues of electromagnetic induction intensity k1. Results are pre-
sented in Fig. 7(b), from which it can be seen that the relation-
ships between Q and pacemaker frequency ω are very different
for different electromagnetic induction intensities, especially,
the Q values in the three states have obvious boundaries. When
the electromagnetic induction is less intense (k1 = 0.0001), Q
exhibits random fluctuation with a large amplitude as the fre-
quency increases, and the range of fluctuations is concentrated
between 1 and 2.5. When the electromagnetic induction inten-
sity is greater (k1 = 0.001), Q also shows the state of random
fluctuation with the increase of pacemaker frequency. How-
ever, compared with the case of k1 = 0.0001, its fluctuation
range is small, but the total value of Q is large (between 3
and 4.5). When the electromagnetic induction intensity is too
large (k1 = 0.004), Q also shows irregular oscillations of small
amplitude, the amplitude is concentrated between 2.75 and 3,
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which can be regarded as invariable. The electromagnetic ra-
diation on the biological neuronal system has important influ-
ences on the detection of weak signals and information of the
neuron system. It may determine the response degree of the
biological system to the weak external signal.
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Fig. 7. (color online) (a) Variations of Q with electromagnetic induction
intensity k1 for different values of coupling strength η . (b) Variations of
Q with frequency of weak stimulus signal for different values of elec-
tromagnetic induction intensity k1 at η = 0.02.

3.3. Influence of electromagnetic induction on stochastic
resonance

The phenomena of stochastic resonance on many neu-
ronal networks, especially the excitatory systems, have been
extensively studied recently.[41,42] It has been shown that the
response of a nonlinear system to a weak signal exhibits a res-
onance dependence on the intensity of noise.[43] Wang et al.
found that the effect of pacemaker-driven stochastic resonance
depends extensively on network structure, such as rewiring
probability, and coupling strengths.[30] Here, memristor ρ(ϕ)

can be used to describe the memory effect of the neuronal sys-
tem, which has important influences on collective electrical
activity and signal transmission; therefore, in what follows,
we will examine the dependence of pacemaker-driven stochas-
tic resonance of the network on the electromagnetic induction
intensity on the neuronal system, which can be measured by
the interaction between ρ(ϕ) and membrane potential k1. Fig-
ure 8(a) shows the dependence of Q on k1 for a given noisy
intensity σ = 0.2. We can see that as k1 increases, Q first in-

creases, then decreases. Moreover, there exists a pronounced
maximum, which indicates the existence of an optimal electro-
magnetic induction intensity for the transmission of localized
electrical activities.

 . . . . .
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Fig. 8. (color online) (a) Dependence of Q on electromagnetic induc-
tion intensity k1 for a given noisy intensity σ = 0.2. (b) Dependence of
Q on noisy intensity σ for different values of electromagnetic induction
intensity k1.

In order to systematically analyze the effect of electro-
magnetic induction on the outreach of the subthreshold pace-
maker, we calculate the temporal correlation between noisy
intensity σ and system accurate response Q by using seven
different values of k1, and keep other parameters unchanged.
As shown in Fig. 8(b), it can be seen that when the electromag-
netic induction intensity is very small, no matter how the noise
intensity changes, the stochastic resonance phenomenon of the
nervous system cannot be induced. When the electromagnetic
induction intensity is very large, a smaller noise intensity can
trigger stochastic resonance. However, as the noise intensity
increases, the value of Q decreases rapidly, and it fails to evoke
the system response. Therefore, only in the case of moderate
electromagnetic induction (k1 is 0.0013 or 0.0015) does there
exist some suitable noise intensity, which makes the stochastic
resonance appear.

At the same time, we can also observe that the Q de-
creases with the increase of the noise intensity, then study the
maximum steady-state value, which oscillates at the steady-
state value and then oscillates with decay, and finally stabi-
lizes at a certain value. Wang et al. found that there exists an
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intermediate value of noisy intensity σ at which Q is a peak
value for each particular coupling strength or rewiring prob-
ability. However, unlike their conclusions, our results show
that there is a certain range of noise intensity rather than a sin-
gle intermediate value, which makes Q a larger value in this
range. This result indicates that under the influence of elec-
tromagnetic induction, there is a large range of noise intensity
to make the system generate random resonance phenomenon.
Therefore, we can conclude that the subthreshold pacemaker
is easier to extend in the network and the system is easier to de-
tect external weak signals in the appropriate electromagnetic
induction.

4. Conclusions
In this paper, using the E-I small world network we built,

we first investigate the influence induced electric field on the
bursting phase synchronization of the E-I small world net-
work. We find that the external field has an important influ-
ence on the transition of network bursting phase synchroniza-
tion. When the intensity of the electric field is large enough
or the frequency is taken to be some value, the neuron pop-
ulation shows abnormal synchronous discharge behavior. We
then explore the responses of different types of neurons to pe-
riodic signals in the network, and find that excitatory neurons
in the network play an important role in recepting and detect-
ing signals. Moreover, the effects of the number of excitatory
neurons that receive the local signal on resonance factor Q un-
der different coupling intensities are detected. It is shown that
only a small number of neurons in the small world network
are required to receive signals that can trigger an accurate re-
sponse to the input signal, and the structure of the network has
an important influence on the efficiency of the transmission
of local signals. On the other hand, we analyze the effect of
magnetic flow on the localized weak periodic signal detection
and information dissemination in neural systems. We show
that neurons produce a discharge response to the weak peri-
odic signal only when an appropriate magnetic flux is applied
to the membrane potential. Finally, we demonstrate the influ-
ence of magnetic flux on stochastic resonance, and find the
existence of an optimal intensity of interaction (k1) for the
transmission of localized electrical activities, that is to say, a
subthreshold pacemaker is easier to extend in the network and
the system is more likely to detect external weak signals under
the appropriate magnetic flux. For now, the effects of induced
electric field generated by magnetic stimulation and magnetic

flux across the membrane on collective electrical activities and
signals propagation have been investigated. We hope that our
findings will help promote further development of transcranial
magnetic stimulation (TMS), which is a noninvasive procedure
for treating certain neurological diseases.
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