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Abstract Bursting is an intrinsically electrical activ-
ity in excitable cells such as endocrine cells and many
types of neurons. Our purpose is to recognize the
pituitary model from a new perspective and provide
guidance for its further improvement by exploring the
mechanism of bursting generation and its dynamic
behavior. The technique of slow–fast dynamics analy-
sis is very helpful when analyzing two subsystems that
vary significantly in time scale. Based on the original
model, A-type potassium channels and BK-type potas-
sium channels are added simultaneously to the system.
And its dynamical property differs frommerely adding
a fast potassium ion channel (A-type or BK-type). We
acquire a deeper understanding for the novel bursting
pattern (pseudo-plateau) from discussing the original
system to considering bifurcation analysis to the whole
system. We mainly explore the existence of mixed-
mode oscillations (MMOs) in the improved pituitary
model and its bifurcation behaviors via using geometric
singular perturbation theory and slow–fast dynamics
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analysis, respectively. The result we obtained is very
helpful in explaining mathematical mechanisms and
improving the pituitary model.
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1 Introduction

Bursting pattern of electrical activity is characterized
by episodes of a depolarized spiking (active phase) fol-
lowed by a hyperpolarized quiescence (silent phase).
These bursting oscillations are closely related to phys-
iological significance such as bursting pattern may
mean a higher level of neurotransmitter and hormone
secretion than tonic spiking [1,2], and this mecha-
nismhas become the focus ofmathematical exploration
and analysis. Many hormone-secreting cell-types in
the anterior pituitary gland exhibit the pseudo-plateau
bursting pattern, and they have been established on
their ownmathematicalmodel, such as lactotroph [3,4],
which secrete prolactin, somatotroph [5], and corti-
cotroph [6–8], which secrete adrenocorticotrophic hor-
mone. Pseudo-plateau bursting is different from many
types of neuron models with plateau (square-wave)
bursting, as reported in [9]. Bursting pattern is diverse
both in the external presentation and in the internal ion
mechanism, and considerable advancement has been
made to tie them together [10–14]. Recently, the rela-
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tionship between bifurcation mechanism and bursting
pattern is discussed in [15–17].

In many neuron models, dynamical behaviors of
bursting pattern have been explored using a variety
of methods such as bifurcation theory [18,19], adding
time delay [20,21], increasing electromagnetic radi-
ation [22–25], geometric singular perturbation the-
ory (GSPT)[26–30] and so on. Similarly, many pitu-
itary models can be implemented using these meth-
ods as a tool to explore their intrinsic dynamics. One
of these, the lactotroph model, has abundantly poten-
tial dynamic behaviors, and it was researched in [31–
34] using geometric singular perturbation theory and
slow–fast dynamics analysis. However, there is a little
information on detailed bifurcation analysis and specif-
ically theoretical illustration ofMMOs. One of the pur-
poses of this paper is to enhance the result that lacks
detailed calculation. Therefore, we attempt to explore
some properties of different bursting oscillations and
also analyze related bifurcation to further understand
bursting modes in the lactotroph model. Furthermore,
we find that the MMOs of signature 1s exist, and
some bursting patterns are illustrated using slow–fast
dynamics in detail. And one fast variable analysis com-
plements the information that is not obtained from
one slow variable analysis. Moreover, we investigate
one-parameter bifurcation and determine the stabil-
ity of the Hopf bifurcation via calculating the first
Lyapunov coefficient to improve the understanding of
bursting and spiking. In addition,we also explicate two-
parameter bifurcation analysis in the (gbk, gsk) phase
plane and analyze the Bogdanov–Takens bifurcation. It
is not easy that a saddle homoclinic bifurcation curve
was discovered near the Bogdanov–Takens bifurcation
point.

The rest of this paper is organized as follows. Sec-
tion 2 describes the lactotrophmodel and explicates the
theoretical tools that we use in simulation.We illustrate
dynamics of MMOs in Sects. 3.1 and 3.2. In Sect. 3.3,
we research the bursting pattern and compare it with
the first two sections. Section 4 explores behavior of
the Hopf bifurcation point. In Sect. 5, we consider
codimension-two bifurcation of the whole system in
the (gbk, gsk) phase plane and exhibit the Bogdanov–
Takens bifurcation. Finally, we have a discussion with
the conclusion in Sect. 6.

2 Model and methods

We improve a single-compartment model [3] that was
developed by modifying previous model for the pitu-
itary lactotroph.Weexplore themodel that contains cal-
cium ion current, delayed rectifier potassium current,
calcium-activated potassium current, BK-type potas-
sium current and A-type potassium current. The four
variables are the membrane voltage V, the activated
gating channel (n) of the delayed rectifier potassium
current, the cytosolic-free concentration [Ca] and the
inactivated channel (h) of the A-typed potassium cur-
rent, respectively. The four differential equations are
described as follows:

Cm
dV

dt
= −(ICa + IK + ISK + IBK + IA), (1)

τn
dn

dt
= λ(n∞(V ) − n), (2)

d[Ca]
dt

= − fc(α ICa + kc[Ca]), (3)

τh
dh

dt
= (h∞(V ) − h). (4)

where ICa, IK, ISK, IBK and IA are inward calcium
ion current, delayed rectifier type current, calcium-
activated potassium ion current, fast potassium current
and A-type current, respectively. The specific expres-
sion of ion currents are described by

ICa = gcam∞(V )(V − VCa),

IK = gkn(V − VK),

ISK = gsks∞([Ca])(V − VK),

IBK = gbk f∞(V )(V − VK),

IA = gaa∞(V )h(V − VCa).

Steady-state functions are given by

x∞(V ) = 1

{1 + exp[(vx − V )/sx ]} ,
f or x = m, n, h, f, a,

s∞([Ca]) = [Ca]2

{[Ca]2 + ks
2} .

Corresponding system parameters are: membrane
capacitance Cm (pF), time constant τn , τh , reversal
potential VCa (calcium), VK (potassium), maximal con-
ductance gca, gk, gsk, gbk, ga and related parameter
for steady-state functions vx , sx (x = m, n, h, f, a).
In addition to some variables, other fixed parameters
throughout the paper are given in Table 1.
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Mixed-mode oscillations and bifurcation analysis 809

We have an extended dynamical understanding of
the lactotroph cell model from the use of geometric sin-
gular perturbation theory for the systemconsists of Eqs.
(1)–(3) to the application of slow–fast dynamics analy-
sis and bifurcation theory for the whole system. MAT-
CONT is a continuation package in MATLAB, which
is a powerful nonlinear dynamics bifurcation and chaos
analysis software. For example, it can explore curves
of equilibria, fold bifurcation point, Hopf bifurcation
point, branch point, limit point bifurcation of cycles
(LPC), period doubling bifurcation point and so on
in codimension-one bifurcation, and in codimension-
two bifurcation, it can compute cusp bifurcation point,
Bogdanov–Takens bifurcation point, generalized Hopf
bifurcation point, fold curve, Hopf curve, period dou-
bling curve, L PC curve and so on. Of course, only a
small part of its functionality is used here.We are using
MATLAB and MATCONT software package [35,36]
for all numerical calculation and graphic rendering,
and adopt fourth-order Runge–Kutta algorithm in all
of simulation and calculation.

3 Dynamics analysis

3.1 MMOs in the lactotroph model with three
differential equations

Let V = kvv, t = ktτ , then the system consists of
Eqs. (1)–(3) transforms to

dv

dτ
= gmaxkt

Cm
[−gcam∞(v)(v − VCa) − gkn(v − Vk)

− gsks∞([Ca])(v − VK) − gbk f∞(v)(v − VK)],
dn

dτ
= ktλ (n∞ − n)

τn
,

d[Ca]
dτ

= −kt fc
(
αgcam∞(v)(v − VCa) + kc[Ca]

)
,

where gmax = 100 nS, kv = 1 mv, kt = 1 ms, gi =
gi/gmax and i represents ca,k,sk,bk. We can obtain the
dimensionless system Eqs. (5)–(7) by setting

ε
�= Cm/(gmaxkt ) � 1.

ε
dv

dτ
= −gcam∞(v)(v − VCa) − gkn(v − VK)

− gsks∞([Ca])(v − VK) − gbk f∞(v)(v − VK)

�= f (v, n, [Ca]) , (5)
dn

dτ
= λ (n∞ − n)

τn

�= g1 (v, n) , (6)

d[Ca]
dτ

= − fc
(
αgcam∞(v)(v − VCa) + kc[Ca]

)

�= g2 (v, [Ca]) . (7)

It is a singular perturbation system; ε is the perturba-
tion parameter. The model variable V is a fast kinetic
variable, while (n, [Ca]) is slow kinetic variable. We
make the timescale transformation τ = εt1, and letting
ε → 0, the system will be transformed into a layer
problem as the following:

dv

dτ
= f (v, n, [Ca]) ,

dn

dτ
= 0,

d[Ca]
dτ

= 0.

Solutions of the layer system are called fast fibers.

Statement 1 The critical manifold S0 of the system
consists of Eqs. (5)–(7) is a locally folded surface.

We can show that f (v, n, [Ca]) and fv(v, n, [Ca])
(partial derivative of f (v, n, [Ca]) to v) are contin-
uous bounded functions in the closed regions I =
[−80, 10] × [0, 0.3] × [0.2, 0.4]. By the intermedi-
ate value theorem on continuous functions, we can
know that the null surface of fv(v, n, [Ca]) is exis-
tent. The critical manifold is consisted of equilibrium
points of the fast subsystem, and it is shown as follow:
S0 = {(v, n, [Ca]) : f (v, n, [Ca]) = 0}, that is, S0 is
a folded surface that satisfies the equation.

As shown in Fig. 1a, the locally critical manifold S
is the part of S0 and it satisfies S = {(v, n, [Ca]) ∈
I, f (v, n, [Ca]) = 0}. And S = Sa

+ ∪ L+ ∪
Sr ∪ L− ∪ Sa

−, where Sa
± = {(v, n, [Ca]) ∈

S, fv(v, n, [Ca]) < 0} are two attracting branches,
Sr = {(v, n, [Ca]) ∈ S, fv(v, n, [Ca]) > 0}
is the repelling branches. L± = {(v, n, [Ca]) ∈
S, fv(v, n, [Ca]) = 0, fvv(v, n, [Ca]) �= 0} are two
folded curves.

In Fig. 1b, we can describe two folded curves, which
are intersecting curves of the locally critical manifold
and the null surface and they are denoted by L+ and
L−, respectively. Therefore, we can obtain the state-
ment that the global return mechanism is formed in the
critical manifold. The trajectory (pink) is resting until
it reaches the folded curves L− along the lower critical
manifold. Then the trajectory leave the folded curve
L− along the fast fibers arrive to the upper attracting
branch, and reach to the folded curves L+ along the
upper critical manifold, and eventually it returns to the
starting point along the fast fibers and exactly through
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Fig. 1 The critical manifold of system (5)–(7); a the superimposed diagram of the trajectory (Cm = 0.1pF) and the critical surface; b
folded curve in the critical manifold. (Color figure online)

the jump point L+. Repeating the above process, relax-
ation oscillations can be discovered.

Definition 3.1 [30] Fold point P0 ∈ L± is called a
jumppoint, if it satisfies the normal switching condition
fng1 + f[Ca]g2 �= 0.

Definition 3.2 Fold point P0 ∈ L± is called a folded
saddle, folded node and folded focus, if it is not a jump
point (is a singular point) and the equilibrium of system
Eqs. (6), (7) restricted to S corresponds to saddle, node
and focus, respectively.

Statement 2 There exists a folded singular node P0 ∈
L± in the system consists of Eqs. (5)–(7), which sat-
isfies fng1 + f[Ca]g2 = 0, and eigenvalues of Jaco-
bian matrix of Eqs. (6), (7) restricted to S at P0 are:
− 9209836.318,− 0.1598397647.

The folded singularities of the system satisfy:

f (P0) = 0,
∂ f

∂v
(P0) = 0,

∂2 f

∂v2
(P0) �= 0,

∂ f

∂n
(P0) g1 (P0) + ∂ f

∂[Ca]
(P0) g2 (P0) = 0.

Let ε → 0 (Eqs. 5–7), we can give the 2D reduced
system (left):
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = f (v, n, [Ca]) ,
dn

dτ
= g1 (v, n) ,

d[Ca]
dτ

= g2 (v, [Ca]) ,

⇒

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− fv
dv

dτ
= fn g1 + f[Ca]g2,

dn

dτ
= g1 (v, n) ,

d[Ca]
dτ

= g2 (v, [Ca]) ,

which depict the flow of reduced problem. Usually, we
need to cover a manifold to explain more than a single
coordinate chart. Here, the critical manifold is exhib-
ited in Fig. 1, which remind us to use one coordinate
chart and we can obtain the projection phase plane of
the reduced system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dv

dτ
= − H1(v, n, [Ca])

H2(v, n, [Ca])
,

d[Ca]
dτ

= − fc(α ICa + kc[Ca]),

restricted to

n = − 1

gk

[
gcam∞(v)

v − VCa

v − VK
+ gsks∞([Ca]) + gbk f∞(v)

]
,

where

H1(v, n, [Ca]) = fng1 + f[Ca]g2

= gsk ṡ∞([Ca])[− fc(α ICa

+ kc[Ca])](v − VK)

+ gk
λ

τn
(n∞ − n)(v − VK),

H2(v, n, [Ca]) = fv(v, n, [Ca])

= gkn + gsks∞([Ca])

+ gbk ḟ∞(v)(v − VK)

+ gcaṁ∞(v)(v − VK) + gcam∞(v)

+ gbk f∞(v),
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Mixed-mode oscillations and bifurcation analysis 811

Fig. 2 The folded curve and the trajectories are projected to the (V, [Ca]) plane. a Show the superimposed diagram; b the partial
enlargement of a; c, d are the time series of membrane potential corresponding the trajectory of a

where “·” indicates derivative with respect to time τ

and A0 denotes Jacobian matrix of the system.
Let λ1, λ2 denote the eigenvalues of Jacobianmatrix

A0 at P0, and it can be written as

A0|P0 =
( −9209836.318 466555.8231
0.00003163053013 −0.0016

)
.

Therefore, we can solve the eigenvalues λ1 =
−9209836.318, λ2 = −0.1598397647, i.e., P0 is a
folded singular node. There exist singular canards, and
it can always perturb to a maximal canard near the
folded singular node. Readers can refer to [26–30] for
a more detailed introduction to canards theory.

Statement 3 There exists a singular periodic orbit
(pink line) � = �a ∪ �g for the system consists of

Eqs. (5)–(7), the smooth segment �a is the trajectory
that is in the interior of the singular funnelwith P0 as the
ending point, and�g = �a

+∪� f
+∪�a

−∪� f
−, where

�a
± is the orbit to connect L± and P(L∓), � f

± is the
fast fibers to connect L± and P(L±). (Note: P(L±)

is the trajectory, which is projected by L± along the
direction of the fast fibers to the lower (upper) attract-
ing branch of the critical manifold.)

As shown in Fig. 2, (a) the projection of two folded
curve L± in the (V, [Ca]) plane. The trajectory �1 is
the periodic orbits atCm = 0.1 pF. The curve L± is two
folded curve, P0 is the folded singular node, and SV
denotes the strong eigendirection at the folded singular
node. (b) is the partial enlargement of (a). (c) is time
series of membrane potentials corresponding the phase
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plane of (a). (d) is time sequences of membrane poten-
tials at Cm = 15 pF. Shadows of (a) are the singular
funnel, and it is surrounded by the strong eigendirec-
tion SV and the folded curve L+. There exist small
amplitude oscillations in the funnel. Furthermore, we
hope that there is a singular periodic orbit to connect the
relaxation oscillations and the small amplitude oscilla-
tions. By theorem [30,37–39], we have an assumption
that there exists a subset N± ⊂ P(L∓) with the char-
acteristic that it can arrive the folded curve L± when
all trajectories of the slow subsystem satisfy the initial
domains in N± . So, the associatedmaps can be defined
by

∏± : N± ⊂ P(L∓) �→ L±. Moreover, the return

map can be defined by
∏ �= P ◦∏+ ◦P ◦∏− : N− �→

P(L+), and
∏

(N−) ⊂ N−. According to the con-
tracted mapping principle and Brouwer’s fixed point
theorem, we can prove the existence of singular peri-
odic orbit. By the return map, small amplitude oscil-
lations can return to the singular funnel, while mixed-
mode oscillations emerge.

We can see that small amplitude oscillations can
return the singular funnel by the map

∏
. Therefore,

MMOs emerge, and trajectory �1 falls out of the sin-
gular funnel by themap

∏
. So, we can obtain the above

conclusion.
In this section, we use inherent initial values shown

in Table 1 except that the membrane capacitance Cm =
0.1 pF or Cm = 15 pF. The reason for choosing them is
that both sets of parameters can produce mixed-mode
oscillations, but there is a set of trajectories that cannot
fall into the singular funnel, which indicates that the
theory is sufficient and not necessary. And we show
that the MMOs of type 1s appear by using the folded
node theory, the error mainly comes from the accuracy
of computer in the numerical procedure.

Therefore, we can obtain the following result.

Theorem 3.1 Suppose that all assumptions in state-
ment 1–3 are established, then for sufficiently small ε,
there exists a stable MMO of type 1s for the system con-
sists of Eqs. (5)–(7), for certainly determined s > 0.

3.2 Two slow–two fast analysis of the whole system
with four differential equations

By rescaling the time (t = kt1 t1),we introduce a dimen-
sionless system that refers to the method of [33] as

follows:

ε1
dV

dt1
= Cm

kt1gr

dV

dt1

= − 1

gr
(ICa + IK + ISK + IBK + IA)

�= f1(V, h, n, [Ca]),

ε2
dh

dt1
= τh

kt1

dh

dt1
= h∞ − h

�= f2(V, h),

dn

dt1
= λkt1

τn
(n∞ − n)

�= h1(V, n),

d[Ca]
dt1

= −kt1 fckc

(
α

kc
ICa + [Ca]

)

�= h2(V, [Ca]), (8)

where kt1 = τn /λ is a scale factor, gr is a reference
conductance scale.

Here, we ignore the rescaling of V and [Ca] as they
have no change in timescale. In our calculation, we
implicitly assume that V is a non-dimensional vari-
able and the result is stored in the dimensional form
V . For system (8), we can know that the membrane
voltage V is faster than other variables. As we can see
that the gating variable n is slower than the activation
variable h, while the calcium variable is essentially
slower than other three variables. We introduce two
small parameters ε1 = Cm/(kt1gr) and ε2 = τh/kt1 ,
which will control the change of variables. By setting
ε1, we can better identify the timescale between V and
(h, n, [Ca]), while decreasing τh , the timescale of h and
(V, n, [Ca]) are separated. Here, we can obtain system
(8) with two fast variables (V, h), two slow variables
(n, [Ca]) and two small parameters (ε1, ε2). System
(8) is described by two slow timescale; hence by con-
verting the timescale t1 = ε2t2, we can obtain the fast
timescale system (9):
dV

dt2
= ε2

ε1
f1(V, h, n, [Ca]),

dh

dt2
= f2(V, h),

dn

dt2
= ε2h1(V, n),

d[Ca]
dt2

= ε2h2(V, [Ca]). (9)

We are going to consider the change in two perturba-
tion parameters. There are two situations, one is faster
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Mixed-mode oscillations and bifurcation analysis 813

than the other or both have the same timescale. Here,
we assume that lim

(ε1,ε2)→(0,0)

ε2

ε1
= r , that is ε2 → 0

means that ε1 → 0. Therefore, letting ε2 → 0 (means
ε1 → 0) in the fast system (9), we can obtain the 2D
layer problem:

dV

dt2
= r f1(V, h, n, [Ca]),

dh

dt2
= f2(V, h),

dn

dt2
= 0,

d[Ca]
dt2

= 0. (10)

Similarly, letting ε2 → 0 in the slow timescale sys-
tem (8), we can give the reduced problem:

0 = f1(V, h, n, [Ca]),

0 = f2(V, h),

dn

dt1
= h1(V, n),

d[Ca]
dt1

= h2(V, [Ca]). (11)

By using the methods of asymptotic expansions,
the analysis of the above two cases can characterize
the solution of the original system to a certain extent.
Our purpose is to understand the original 4D system
based on the 2D layer problem and 2D reduced prob-
lem using GSPT. We exhibit only a cursory analysis
whilst emphasizing the MMOs is produced by canard
phenomenon.

First, we have to do an analysis of 2D layer problem.
The nature of layer problem is to consider slow variable
as a parameter in system (10).Next,we give the equilib-
ria of the layer problem, that is called critical manifold.
SS = {

V, h, n, [Ca]) ∈ R4, f1(V, h, n, [Ca]) = f2
(V, h) = 0

}
. Obviously, we can see that it is a folded

surface and the fold bifurcation curve can be denoted
as L={

(V, h, n, [Ca]) ∈ SS, det(Jr ) = f1V f2h −
f1h f2V = 0

}
, where Jr =

(
f1V f1h

f2V f2h

)
.

The attraction sheets SSa (in SS) and repelling
sheets SSr (in SS) are separated by two folded curves.
All trajectories of the initial condition that are not on
the critical manifold will eventually be confined to the
critical manifold. Once the trajectory enters the critical
manifold, the layer problem may be out of operation
on it and slow variable will contribute the major dom-

ination. Therefore, we will use the slow equation to
analyze dynamics via the reduced problem.

By considering the layer problem, we can give the
projection system of reduced problem as:

(detJ )
dV

dt1
= − f2h( f1nh1 + f1[Ca]h2),

d[Ca]
dt1

= h2(V, [Ca]). (12)

We can obtain the desingularized system by time
rescaling (t1 = det (J )τ1) to eliminate the singular
term.

dV

dτ1
= − f2h( f1nh1 + f1[Ca]h2)

�= F,

d[Ca]
dτ1

= det(J )h2. (13)

Therefore, we can see that there are two kinds of
singularities: one is ordinary singularity, which con-
sists of the equilibria of the reduced problem and
the other is folded singularity, which can be given
by L0= {(V, n, h, [Ca]) ∈ L , F = 0} . In these folded
singularities, both sides of the V-equation of system
(12) are equal to zero simultaneously. That means
dV/dt is finite at folded singularity. This means that
the trajectory will take turns through the fold L within
a controllable time. These solutions are called singular
canards, and it will exist until small perturbations vary
greatly in complex dynamics.

We can combine analysis of layer problem with
exploration of reduced problem to understand dynam-
ical behaviors of the 4D system. We describe the for-
mation of periodic solutions. The trajectory begin from
the fold L− along the fast fibers to the upper attract-
ing branch; then, the flow is controlled by system (11)
until it reaches fold L+. Therefore, the layer problem
illustrates transition of down-jump (up-jump) and the
reduced problem explains the process of trajectory on
the critical manifold. Therefore, there exists a relax-
ation oscillation,which is similar to Sect. 3.1, and it cor-
responds to the spiking of system consists of Eqs. (1)–
(4).

We exhibit graphic rendering of the critical mani-
fold in Fig. 3. The critical manifold can be shown in
the three-dimensional phase space, and the resulting
mixed-mode oscillation is very sensitive to changes in
membrane capacitance. The initial values are shown in
Fig. 3.
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Fig. 3 4D system with the MMOs. a Singular orbit and criti-
cal manifold are composed of the projection of system (10) and
(11) on the (V, n, [Ca]) space; bmixed-mode oscillations corre-

spond to the trajectory of a. Modified parameters: Cm = 0.5 pF,
τh = 2.0 ms, ga = 18 nS and other parameters are given in
Table 1

3.3 One slow–three fast dynamics illustration of the
whole system

There may be two origins for the generation of bursting
of the pituitary lactotroph model. One is the opening
of Ca+ channels [2], and the other is that A-type K +
current can trigger the generation of bursting [4]. The
existence of mixed-mode oscillations is illustrated in
the preamble. In this section, we will use the slow–fast
dynamics to demonstrate the transition between firing
state and quiescent state. The corresponding diagram
is provided in Fig. 4.

Some researchers use average voltage to study the
fast–slow system [13]. We will investigate whether it
is possible to determine the transition mechanism via
one slow–three fast dynamics analysis. Teka and his
collaborators have already made the transition from
plateau to pseudo-plateau bursting via transforming the
parameters (vn, vm, gk et al.) and vice versa [40]. That
means, it requires us to analyze superimposed bifur-
cation diagram. In the following, we give a cursory
analysis of the three superimposed cases. In Fig. 4a,
left-hand shows the bifurcation diagram of fast subsys-
tem with slow variable [Ca] as a bifurcation parameter
and the [Ca]-nullcline is superimposed the bifurcation
diagram. There is no stable limit cycle of the fast sub-
system, and it has a periodic spiking, which is aroused
from the saddle-node L P1. In Fig. 4, all parameters are

set to Cm = 10 pF, gbk is varied, and others are frozen
in Table 1.

In Fig. 4b, an unstable limit cycle emerges via the
subcritical Hopf bifurcation point and a stable limit
cycle appears by the saddle-node cycle bifurcation. At
that moment, they are coexisting and pseudo-plateau
bursting occurs. The fast subsystem is bistable in a
small range of [Ca] value, and it contains the depo-
larized upper steady state consists of the stable limit
cycle and hyperpolarized lower steady state consists of
the stable node. The electrical activity is depolarized
in the saddle-node point L P2, but finally we cannot
use the normal bursting classification to analyze how
it is to reach the quiescent steady state, although it is
like the “fold/homoclinic” bursting mode. This may
depend on the difference between fast timescale and
slow timescale, and the emergence of P D may be also
one of the important reasons.

The subcritical Hopf bifurcation will move to the
right when gbk is decreased to −2.0 nS. There is no
stable periodic spiking in the fast subsystem, and the
unstable limit cycle exists in the small range of [Ca]
value as shown in Fig. 4c. Bistability occurs in a tiny
range while accompanying by the rapid change of peri-
odic spiking, and the [Ca] concentration is quickly
gathered or subsided. The bifurcation diagram may be
considered as “fold/Hopf” bursting mode if not to con-
sider the situation of the limit cycle. The pattern is pro-
duced by saddle-node L P , and finally, the oscillation
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Fig. 4 Slow–fast dynamics analysis forCm = 10pF , and differ-
ent conductance values for gbk. The blue “z-curve” is equilibria
curve of fast subsystem. The red line represents the maximum
and minimum value of limit cycles, the black closed line of left
panel is (V, n) phase plane, and the right indicates the corre-
sponding membrane voltage sequence diagram. All labels are as
follows: L Pi represents the saddle-node bifurcation point, P Di
represents the flip bifurcation, H denotes the Hopf bifurcation
point, H0

i indicates the neutral saddle, L PC denotes fold cycle

bifurcation, and N Si represents theNeimark–Sacker bifurcation.
a gbk = 0.5 nS, the whole system can produce periodic spiking,
and its appearance just has little relationship to the bifurcation of
fast subsystem; b gbk = 0 nS, pseudo-plateau bursting oscilla-
tion occurs. The stable and unstable limit cycles are coexisting,
and the model exhibits the bistable steady state in the tiny range
of [Ca] value. c gbk = −2.0 nS, signature 1s mixed-mode oscil-
lation emerges, which is similar to “fold/Hopf” discharge mode.
(Color figure online)

decays to steady resting state via the unstable Hopf
bifurcation. N S bifurcation and other kinetic parame-
ters may have an impact on it.

The result illustrates the idea that which method we
should use to solve the question depends on the differ-

ence between fast variable and slow variable. In most
cases, bursting transition mechanism is explored to use
one slow variables dynamics analysis, and bursting pat-
tern can be well categorized. But if the slow variable
is not obvious enough, the two slow variables will be
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Fig. 5 Bifurcation diagram of [Ca] as the bifurcation parameter.
a Equilibria of the fast subsystem, the lower branch of “z-curve”
is occupied by the node, the middle and the upper are saddle, the
red line represents the maximum and minimum values of limit
cycle. b Period transition of limit cycles. c The spatial map of
limit cycle in (v, n, [Ca]) phase plane. The corresponding labels

are as follows: L PCi represents the saddle-node of limit cycle,
P Di represents the flip bifurcation, H denotes the Hopf bifurca-
tion point , H0

i indicates the neutral saddle, L Pi represents the
saddle-node bifurcation point, B PC represents the branch point
of cycle. (Color figure online)

a more meaningful way to analyze the system from
another level. Certainly, we are required to determine
the one-dimensional fast subsystem via decreasing the
membrane capacitance Cm. That is to say, with the
decrease in membrane capacitance, the analysis of one
fast variable may be better. In summary, we will focus
on the classification of subsystems for better use of
slow–fast dynamics.

4 Codimension-one bifurcation analysis

As the same as Sect. 3.3, we use the slow variable
as a bifurcation parameter. As shown in Fig. 5a, we
will determine stability of the Hopf bifurcation point
via calculating the first Lyapunov coefficient. We all
know Hopf bifurcation is supercritical (or subcritical)
if the first Lyapunov coefficient is negative (or pos-
itive). Here, we adopt the bifurcation diagram when
gbk = 0.3 nS and other parameters are given in Table 1.
Some numerical results are explained later. Following
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this idea, we have a detailed calculation in “Appendix
A.”

The first Lyapunov coefficient is a index of stability
of the equilibrium, which is produced when the two-
dimensional system is transformed into a poincare nor-
mality at the Hopf equilibrium. For high-dimensional
systems, we need to calculate the norms in the center
manifold. From the above, we can obtain the first Lya-
punov coefficient via applying the invariant expression
(5.62) in [41].

l1(0) = 1

2ω0
Re

{
〈p, C(q, q, q)〉

− 2
〈
p, B(q, A−1B(q, q))

〉

+
〈
p, B(q, (2iω0E − A)−1B(q, q))

〉}

= 0.0042112 > 0.

Hence, H is a subcritical Hopf bifurcation point and
it can branch out the unstable limit cycle.

From above, we can know that it produces an unsta-
ble limit cycle starting from the Hopf bifurcation point
H . Moreover, we can find that the period of limit cycle
is increased with the decrease in [Ca] value as shown
in Fig. 5a, b. Stable and unstable limit cycle coexists
in the fast subsystem via the limit point of cycle and
a flip bifurcation occurs. Limit cycle will always exist
until a stable limit cycle hits the saddle point in the
middle branch of the bifurcation curve to form a saddle
homoclinic bifurcation. Meanwhile, the period of limit
cycle varies greatly. And ultimately, it breaks through
a bounded value to infinity when the [Ca] value is a
determined constant between 0.25 and 0.3µM, which
may be able to form a homoclinic orbit. Furthermore,
branching point cycle is detected when we take the P D
bifurcation point as starting point to explore the limit
cycle, and that is clearer to observe the transition pro-
cess of the limit cycle by exhibiting it in Fig. 5c.

5 Codimension-two bifurcation analysis

In this section, we will analyze the whole system
that consists of Eqs. (1)–(4), and we focus on ana-
lyzing its cusp bifurcation, Bautin bifurcation and
Bogdanov–Takens bifurcation. Its initial values are
given in Table 1. Singular point coordinates can vary
greatly even when there are small perturbations in this
set of parameters. We use the MAPLE software that is
a symbolic package for calculation and analysis.

5.1 Analysis in the (gbk, gsk) phase plane

As shown in Fig. 6, we demonstrate two-parameter
bifurcation plane of the whole system via numerical
simulation, and related kinetic parameters are given in
Table 1. (a) Exhibiting the codimension-two bifurca-
tion diagram. (b), (c) are the partial enlargement of
bifurcation diagram (a). (d) Exhibiting the P D bifur-
cation curve that is found starting from the P D point.
In Fig. 6, the meaning of each label is explained as
follows: G Hi (i = 1, 2, 3, 4, 5) represents the Bautin
bifurcation;C Pi (i = 1, 2, 3) represents the cusp bifur-
cation; Z H represents the fold-Hopf bifurcation; BT
represents the Bogdanov–Takens bifurcation; L P N S
represents fold-Neimark–Sacker bifurcation; R1 rep-
resents 1:1 resonance; R2 represents 1:2 resonance;
L P P D represents the fold-flip bifurcation. Readers
can refer to [41,42] for a detailed illustration of all
the bifurcation labels. Some of the data at these special
bifurcation point are shown in Table 2.

FromFig. 6a,we can know that the change in saddle-
node bifurcation curve f1 is independent on the con-
ductance gsk and there is no codimension-two bifurca-
tion point on it. There is a little information in the Hopf
curve h2. Most of codimension-two bifurcation points
are situated on the saddle-node curve f2 and the Hopf
curve h1. There is a L PC curve between the R11 and
the R12, and it coincideswith the part of theHopf bifur-
cation curve h1, although that is not easy to identify.
C P1 is a termination point of saddle-node bifurcation
curve f1 and f2. Saddle-node bifurcation curve f2 is
divided into three sections by marking the cusp point
C P2 and C P3.

Near the cusp point C P1 (− 3.665138, 1.171912),
the system’s eigenvalues are λ1 = 0, λ2 = −0.239172,
λ3 = −0.049999, λ4 = −0.0290647. The differential
system is locally topologically equivalent to following
normal forms:
{

η̇ = β1 + β2η + sη3, η ∈ R1,

ξ̇− = −ξ−, ξ− ∈ R3,

where β1, β2 ∈ R, s = sign(c) = −1.
Near the cusp pointC P2 (− 14.741551, 18.745219),

the system’s eigenvalues are λ1 = 0, λ2 =
− 0.0500106, λ3 = 0.0283496, λ4 = 0.273392, and
C P3 (−2.264354,3.503469), the system’s eigenvalues
are λ1 = 0, λ2 = − 0.0502939, λ3 = −0.011844,
λ4 = 0.54639. The differential system is locally topo-
logically equivalent to following normal forms:
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Fig. 6 Codimension-two
bifurcation diagram of the
whole system. a
Two-parameter bifurcation
on the (gbk, gsk) phase
plane. b–d are partial
enlargement of the
bifurcation diagram a. The
corresponding labels are as
follows: f1 and f2 are the
saddle-node bifurcation
curves, h1 and h2 are the
Hopf bifurcation curves,
G Hi -generalized Hopf
(Bautin), H Hi -neutral
saddle, P D-flip bifurcation
curve (green line),
L PC-fold cycle bifurcation
curve (pink line),
Z H0-zero-neutral saddle,
Z H -fold-Hopf, C Pi -cusp,
BT -Bogdanov–Takens,
R1i -1:1 resonance,
L P N Si -fold-Neimark–
Sacker, R2i -1:2 resonance
and L P P Di -fold-flip.
(Color figure online)

⎧
⎨

⎩

η̇ = β1 + β2η + sη3, η ∈ R1,

ξ̇− = −ξ−,

ξ̇+ = ξ+,

where β1, β2 ∈ R, s = sign(c) = 1, ξ− ∈ R1, ξ+ ∈ R2

for C P2, ξ+ ∈ R1, ξ− ∈ R2 for C P3.
In Table 2, we can see that there are five Bautin

bifurcation points on two bifurcation curves. There are
a pair of pure imaginary eigenvalues and two nonzero
real eigenvalues, and the first Lyapunov coefficient is
equal to zero at these Bautin bifurcation points. Near
the Bautin bifurcation point G Hj ( j = 1, 2), the dif-
ferential system is locally topologically equivalent to
following normal forms:
⎧
⎨

⎩

ż = (β1 + i)z + β2z|z|2 + sz|z|4, z ∈ C1,

ξ̇− = −ξ−, ξ− ∈ R1,

ξ̇+ = ξ+, ξ+ ∈ R1,

where β1, β2 ∈ R, s = sign(l2) = −1.
Near the bifurcation point G Hj ( j = 3, 4, 5), the

differential system is locally topologically equivalent
to following normal forms:
{

ż = (β1 + i)z + β2z|z|2 + sz|z|4, z ∈ C1,

ξ̇− = −ξ−, ξ− ∈ R2,

where β1, β2 ∈ R, s = sign(l2) = −1.

Specially, theHopf bifurcation curve h1 is tangent to
the saddle-node bifurcation curve f2 at codimension-
two Bogdanov–Takens bifurcation. It has two zero
eigenvalues λ1,2 = 0 and two nonzero real eigen-
values λ3 = −0.0500154, λ4 = 0.635512. Near the
Bogdanov–Takens bifurcation point, the differential
system is locally topologically equivalent to following
normal forms:

⎧
⎪⎪⎨

⎪⎪⎩

η̇1 = η2,

η̇2 = β1+β2η1+η1
2+sη1η2,

ς̇− = −ς−, ς− ∈ R1,

ς̇+ = ς+, ς+ ∈ R1,

where β1, β2 ∈ R, s = sign(ab) = 1, (η1, η2)T ∈ R2.
Furthermore, there is a fold-Hopf bifurcation point,

which is labeled Z H with one zero eigenvalue, a pair
of pure imaginary eigenvalues and one nonzero real
eigenvalue, but there is no fixed normal form in the
case (s = 1, θ = −1.710129×102). There exist three
neutral saddles, which are labeled ZH0 (zero-neutral
saddle, one zero eigenvalue and two real eigenvalues
that satisfy their sum is equal to zero), H H1 (Hopf-
neutral saddle, a pair of pure imaginary eigenvalues
and two real eigenvalues that satisfy their sum is equal
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to zero) and H H2 ( two pairs of real eigenvalues satisfy
the sum of each pair is equal to zero), respectively.

5.2 Bogdanov–Takens bifurcation

In this section, we investigate the Bogdanov–Takens
bifurcation by the theoretical method that is imple-
mented in [43]. In the whole system, we use (gbk, gsk)
as a pair of bifurcation parameter, and other parame-
ters are shown in Table 1. In Fig. 6a, the Bogdanov–
Takens bifurcation point emerges when (gbk, gsk) =
(−12.645060, 15.956172)

�= μ0 and its coordinate is
(V , n, h, [Ca]) = (−4.071616, 0.523193, 0.000014,

0.801346)
�= X0. The detailed proof process is in

“Appendix B.”
From the preceding analysis, we can obtain the fol-

lowing main results by using the method in [41].

Theorem 5.1 Let (X0, μ0) be a Bogdanov–Takens
bifurcation point of the whole system that consists of
Eqs. (1)–(4). Note that λ1 = gbk + 12.645060, λ2 = gsk
− 15.956173, if 0 < ‖ (λ1, λ2) ‖ 2 � 1, the dynamics
on the center manifold of the system near X = X0,
μ ≈ μ0 is locally topologically equivalent to the fol-
lowing system

dη1
dt1

= η2,

dη2
dt1

= 4.05839597 × 104λ1 + 3.091079973 × 104λ2

+ (−36.06012167λ1 − 5.537943388 × 107λ2
)
η1

+ η1
2 + η1η2,

which have three local representation of bifurcation
curves in the small neighborhood near the origin:

(i) there exists a saddle-node bifurcation curve

SN = {(λ1, λ2) : 0.008010137408λ1
2

+ 2.460318237 × 104λ1λ2

+ 1.889220347 × 1010λ2
2

− λ1−0.7616506608λ2=0};
(ii) there exists a Hopf bifurcation curve

H = {(λ1, λ2) : λ1 + 0.7616506608λ2 = 0, λ2 < 0} ;

(iii) there exists a saddle homoclinic bifurcation curve

Hom = {(λ1, λ2) : 0.007689731910λ1
2

+ 2.361905508 × 104λ1λ2

+ 1.813651533 × 1010λ2
2

+ λ1 + 0.7616506608λ2

= o
(
‖(λ1, λ2)‖2

)
,

λ1 + 1.535752829 × 106λ2 < 0}.

6 Discussion

The transition has been explored from tonic spiking
to bursting when only BK -type potassium channel
or A-type potassium channel is added to the original
system. There are different mathematical mechanisms
even though they are both influencing the increase or
decrease in calcium concentration. The model we have
considered is simultaneously adding both BK -type
channels and A-type channels to the original pituitary
model. We mainly explored the mathematical mecha-
nism of mixed-mode oscillations via using geometric
singular perturbation theory, and we theoretically cal-
culated the dynamical properties near the Bogdanov–
Takens bifurcation by using the bifurcation theory and
the center manifold theorems. Its dynamical behavior
is different from merely adding a fast potassium ion
channel to the system, and it may have an adequate
guide to model improvement.

The pituitary lactotroph can promote development
of the mammary gland which plays a vital role in
stimulating and maintaining prolactin levels. Burst-
ing and tonic spiking are effective translation for sig-
nals between neurons. Therefore, it is essential that we
explore electrical activity of the lactotroph model to
understand physiological meaning in the real neural
networks with large number of neurons. In this study,
we have researched the dynamical mechanism that is
hidden in the bursting electrical activity via using two
different timescale analysis. And we also have drawn
a comparison between different timescale. Based on
these results, we propose that which one we should
use will be more effective depending on the appropri-
ate conditions. Moreover, we also have demonstrated
behavior of bifurcation point by multi-parameter bifur-
cation analysis in a small range.

In this paper, mixed-mode oscillation has been dis-
covered and we have proved the existence of signa-
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ture 1s by using geometric singular perturbation theory,
which is greatly an effective way to analyze the dynam-
ics of a system. In particular, we have showed the gen-
eration mechanism of MMOs by using the folded node
singular theory. We found a fly in the ointment: it is not
to estimate the number of small amplitude oscillations.
Because relevant theory of MMOs is incomplete for
nonlinear system, and it shows only folded node singu-
lar theory and singular Hopf theory to explain the exis-
tence ofMMOs. These two conditions are sufficient but
not necessary. We have privately calculated the MMOs
as shown in Fig. 2d, but it is not satisfied with the
above two theories (no show). Therefore, these are still
very mysterious to us for further research and they also
become our focus. Furthermore, the dynamical patterns
of electrical activity were explained by using slow–fast
dynamics analysis, which has been used frequently in
the classification of bursting pattern and it had a great
development in the later. We have used this method to
illustrate many bursting modes and discharge types. A
variety of bursting patterns appeared in our model with
pseudo-plateau bursting, and we explained the firing
mechanism to a certain extent. From the above discus-
sion, we can see that it is necessary to identify fast
kinetic variable and slow kinetic variable. In addition,
we calculated the first Lyapunov coefficient of Hopf
bifurcation to determine whether it forms a stable limit
cycle, and in our calculations, the first Lyapunov coef-
ficient is positive; hence, it has to generate an unstable
limit cycle via the Hopf bifurcation. The transition of
electrical activity was illustrated by describing the sta-
bility of limit cycle. Particularly, stable limit cycle cor-
responds to the tonic spiking and unstable limit cycles
are associated with the transition of tonic spiking to
bursting. Finally, we mainly discussed the property of
Bogdanov–Takens bifurcation by two-parameter bifur-
cation analysis. We not only calculated the local topo-
logically equivalent normal forms but also theoretically
determined the existence of three bifurcation curves
near the Bogdanov–Takens bifurcation. Trajectories of
these bifurcation curves are not easily found in draw-
ing them byMATCONTwhen saddle-node bifurcation
curve andHopf bifurcation are very close. These results
have a positive effect on us to better understand bursting
pattern of discharge activity.

7 Conclusions

Compared with the mixed-mode oscillation of the
three-dimensional system appearing in previous publi-
cations, the paper is mainly manifested in demonstrat-
ing concrete implementation steps of the existence of
mixed-mode oscillations and we combine theory and
graphics to suggest that fold node singular theory guar-
antees its existence for the three-system with only a
BK-type potassium channel. Furthermore, it is illus-
trated that this condition is sufficient but not necessary.
(As shown in Fig. 2d, fold node theory cannot guaran-
tee its existence even though it presents mixed-mode
oscillations.) These are different from the sketch inter-
pretation of mixed-mode oscillation in the published
literature.

Real biological neurons actually have A-type potas-
sium channels (fast, inactivating) and BK -type potas-
sium channels (fast, activating), which have a defined
expression of ion currents. Further three-dimensional
and four-dimensional system have different dynamic
behaviors. By comparing the analysis of three-
dimensional and four-dimensional models, we find that
the number of singular points does not change, but their
coordinate is significantly different. But analysis of
three-dimensional model is relatively explicit, there is
less discussion of four-dimensional model. Therefore,
we divide the system into one slow–three fast or two
fast–two slow subsystem to propose that which one we
should select will be more effective method to analyze
a differential systemdepending on the timescale of sub-
system and perform codimension analysis to the four-
dimensional system. Equivalent form and three local
representations of bifurcation curves have been inves-
tigated. The above results have deepened our under-
standing of dynamics of neuron discharge, and dis-
charge behavior is closely associated with neurological
information.
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Appendix A

We rewrite the fast subsystem of the whole system as:

dV

dt
= F1 (V, n, h, [Ca]) ,

dn

dt
= F2 (V, n) ,

dh

dt
= F3 (V, h) , (14)

where

F1 = − 1

Cm
F0,

F2 = λ

τn
(n∞(V ) − n) ,

F3 = 1

τh
(h∞(V ) − h) ,

F0 = gcam∞(V )(V − VCa) + gkn(V − VK)

+ gsks∞([Ca])(V − VK) + gbk f∞(V )(V − VK)

+ gaa∞(V )h(V − VK),

where m∞(V ), s∞([Ca]), f∞(V ), a∞(V ) and related
parameters are defined in Sect. 2.

The Jacobian matrix A of the fast subsystem (14)
can be written as:

A =

⎛

⎜⎜⎜⎜⎜
⎝

∂ F1

∂V

∂ F1

∂n

∂ F1

∂h
∂ F2

∂V

∂ F2

∂n

∂ F2

∂h
∂ F3

∂V

∂ F3

∂n

∂ F3

∂h

⎞

⎟⎟⎟⎟⎟
⎠

.

The fast subsystem has an equilibria H when we take
[Ca] = 0.193055, the Jacobian matrix A at H can be
represented as:

A =
⎛

⎝
0.02319841247 −25.16964160 −108.2843060

0.0005160044168 0.02333333333 0
0.0000006875519 0 −0.05

⎞

⎠

with a pair of conjugate pure imaginary roots λ,
λ̄, and λ = iw, w = 0.111259, another eigen-
value λ1 = −0.0501334. There is a Hopf bifur-
cation in the fast subsystem as shown in Fig. 5a.

q = (0.999989698, 0.000931642 − 0.0044424375i,
−0.0000023105 + 0.0000051416i)T is an eigenvec-
tor of λ, which satisfies Aq = λq, Aq̄ = λ̄q̄
and the adjoint eigenvector p satisfies AT p = λ̄p,

AT p̄ = λ p̄ and normalization 〈p, q〉 = 1, here
〈p, q〉 = p̄1q1 + p̄2q2 + p̄3q3 is the standard scalar
product inC3. Therefore, we take p as (0.499885101+
0.104312573i,−0.112746356 − 113.063114i,
−97.4196870 − 442.649734i)T.

We transform the equilibria H to coordinate origin
to calculate the first Lyapunov coefficient. Next, we
will make the following transformation:
⎧
⎨

⎩

V = ξ1 + V0,

n = ξ2 + n0,

h = ξ3 + h0,

The fast subsystem (14) can be converted to the fol-
lowing:

dV

dt
= − 1

Cm
G,

dn

dt
= λ

τn
(n∞(ξ1+V0) − ξ2 − n0) ,

dh

dt
= 1

τh
(h∞(ξ1+V0) − ξ3 − h0) , (15)

where

G = gcam∞(ξ1+V0)(ξ1+V0 − VCa)

+ gk(ξ2 + n0)(ξ1+V0 − VK)

+ gsks∞([Ca])(ξ1+V0 − VK)

+ gbk f∞(ξ1+V0)(ξ1+V0 − VK)

+ gaa∞(ξ1+V0)(ξ3 + h0)(ξ1+V0 − VK).

Consider the system

ẋ = Ax + F(x), x ∈ R3,

where A = A|H , F(x) is a smooth vector function and
F(x) = O(‖x‖2). F(x) can be represented as

F(x) = 1

2
B(x, x) + 1

6
C(x, x, x) + O(‖x‖4)

at the neighborhood of x = 0. Where B(x, y) and
C(x, y, z) are multilinear vector functions, and x =
(x1, x2, x3)T, y = (y1, y2, y3)T, u = (u1, u2, u3)

T.
Specifically, in coordinates, we have

Bi (x, y) =
3∑

j,k=1

∂2Fi (ξ)

∂ξ j∂ξk

∣∣
∣
∣∣
∣
ξ=0

x j yk , i = 1, 2, 3,

Ci (x, y, u) =
3∑

j,k,l=1

∂3Fi (ξ)

∂ξ j∂ξk∂ξl

∣
∣
∣
∣∣
∣
ξ=0

x j ykul , i = 1, 2, 3,
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where ξ = (ξ1, ξ2, ξ3)
T.

Therefore, it is not complicated to compute

B(x, y) =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

−0.01773763x1y1 − 0.4(x1y2 + x2y1)
−5.09556659(x1y3 + x3y1)

0.0000175305618x1y1

0.00000013749147x1y1

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

,

C(x, y, u) =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

−0.00044106463x1y1u1+
0.01986145964(x1y1u3 + x1y3u1 + x3y1u1)

−0.0000016866559x1y1u1

−0.00000002749073x1y1u1

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

.

Appendix B

We can rewrite the system as follows:

dX

dt
= F (X, μ)=

⎛

⎜⎜
⎝

G1 (X, μ)

G2 (X, μ)

G3 (X, μ)

G4 (X, μ)

⎞

⎟⎟
⎠ ,

where X = (V, n, h, [Ca])T, μ = (gbk, gsk)T, and

G1 = − 1

Cm
F0,

G2 = λ

τn
[n∞(V ) − n] ,

G3 = 1

τh
[h∞(V ) − h] ,

G4 = − fc {αgCam∞(V )(V − VCa) + kc[Ca]} ,

wherem∞(V ), n∞(V ), s∞(V ), f∞(V ) and a∞(V ) are
defined in the above content.

Consider the Taylor series of F(X, μ) around (X0,
μ0) as follows:

F(X, μ) = DF(X0, μ0)(X − X0)

+ Fμ(X0, μ0)(μ − μ0)

+1

2
D2F(X0, μ0)(X − X0, X − X0)

+ FμX (X0, μ0)(μ − μ0, X − X0) + · · · .

Note

B
�= DF(X0, μ0) =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

∂G1

∂V

∂G1

∂n

∂G1

∂h

∂G1

∂[Ca]

∂G2

∂V

∂G2

∂n

∂G2

∂h

∂G2

∂[Ca]

∂G3

∂V

∂G3

∂n

∂G3

∂h

∂G3

∂[Ca]
∂G4

∂V

∂G4

∂n

∂G4

∂h

∂G4

∂[Ca]

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

.

We can calculate the eigenvalues of matrix B, which
are 0, 0, − 0.05001538536, 0.6355118804. Next, we
will assume that p1, p2 ∈ R4 are generalized eigenvec-
tors that correspond to zero eigenvalue of B. Let P =
(p1, p2, P0) be an invert matrix, which satisfies

P−1B P =
(

J0 0
0 J1

)
,

where

J0 =
(
0 1
0 0

)
, J1 =

(−0.05001538536 0
0 0.635511804

)
.

Then, we can get

p1 = (1, 0.02494561460,−0.000002774149057,

− 0.0008235181936)T,

p2 = (1,−1.044151560, 0.00005270876537,

0.5138753283)T,

P0 =

⎛

⎜
⎜
⎝

−45.83929075 1131.884357
1 1

−0.4130569636 −0.0002290327697
−0.001247557576 −0.002340951714

⎞

⎟
⎟
⎠.

Let P−1 = (q1, q2, Q0
T)T; then, we can obtain

q1 = (−0.03925640296, 44.67205297, 112.2320192,

90.83474535)T,

q2 = (−0.00005872864288, 0.07140905060,

0.1730808461, 2.091191031)T,

Q0 =

⎛

⎜
⎜⎜
⎜
⎝

−0.0000002529718183 0.0009182064663

−0.0002689868114 −0.03954095832

−2.421295828 −0.1973782337
−0.0002976805699 −0.08211049236

⎞

⎟
⎟⎟
⎟
⎠

T

.

Therefore, we can calculate the following expres-
sions.

a = 1

2
p1

T
(

q2 · D2F(X0, μ0)
)

p1

= 1.75568328184171 × 10−6,

b = p1
T

(
q1 · D2F (X0, μ0)

)
p1

+ p1
T

(
q2 · D2F (X0, μ0)

)
p2

= 0.00486009518308801,

S1 = Fμ
T (X0, μ0) q2

= (0.0003936532486, 0.0002998262570)T,

S2 =
[
2a

b

(
p1

T
(

q1 · D2F(X0, μ0)
)

p2
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+ p2
T

(
q2 · D2F(X0, μ0)

)
p2

)

− p1
T

(
q2 · D2F(X0, μ0)

)
p2

]
Fμ

T(X0, μ0)q1

−2a

b

2∑

i=1

(
qi ·

(
FμX (X0, μ0) − ((P0 J1

−1Q0)

×Fμ(X0, μ0))
T × D2F(X0, μ0)

))
pi

+
(

q2 ·
(

FμX (X0, μ0) − ((P0 J1
−1Q0)

×Fμ(X0, μ0))
T × D2F(X0, μ0)

))
p1

= (−4.705762294 × 10−6,−7.22688775)T.

We can make the transformation λ1 = gbk +
12.645060, λ2 = gsk − 15.956173, that is, λ1, λ2
become a pair of bifurcation parameter. Then, we have

β1 = S1
T (μ − μ0)

= 0.0003.936532486λ1 + 0.0002998262570λ2,

β2 = S2
T (μ − μ0)

= −4.705762294 × 10−6λ1 − 7.22688775λ2.

Obviously, our nonlinear system conforms to the
conditionofTheorem1 in [43].By the theoreticalmeth-
ods, the dynamics on the center manifold of the whole
system at X = X0, μ = μ0 is locally topologically
equivalent to

dz1
dt

= z2,

dz2
dt

= β1 + β2z1 + az1
2 + bz1z2

= 0.0003936532486λ1 + 0.0002998262570λ2

+
(

− 4.705762294 × 10−6λ1

− 7.22688775λ2
)

z1

+ 1.75568328184171 × 10−6z1
2

+ 0.00486009518308801z1z2.

Making the replacement of variables by

t =
∣∣∣∣
b

a

∣∣∣∣ t1=
∣∣∣∣

0.00486009518308801

0.00000175568328184171

∣∣∣∣ t1,

z1 = a

b2
η1 = 0.00000175568328184171

(0.00486009518308801)2
η1,

z2 = sign

(
b

a

)
a2

b3
η2

= (0.00000175568328184171)2

(0.00486009518308801)3
η2.

The original system becomes

dη1
dt1

= η2,

dη2
dt1

= β̄1 + β̄2η1 + η1
2 + sη1η2,

where

β̄1 = b4

a3 β1

= 4.05839597 × 104λ1 + 3.091079973 × 104λ2,

β̄2 = b2

a2 β2

= −36.06012167λ1 − 5.537943388 × 107λ2,

s = sign(ab) = 1.

By the theory in [41], we can calculate the following
equivalence term in advance.

4β̄1−β̄2
2 = 0

⇔ 0.008010137408λ1
2+2.460318237 × 104λ1λ2

+1.889220347 × 1010λ2
2−λ1−0.7616506608λ2=0,

β̄1=0

⇔ λ1= −0.7616506608λ2,

β̄2 < 0

⇔ λ1< −1.535752829 × 106λ2,

β̄1 + 6

25
β̄2
2 = o

(
β̄2
2

)

⇔ 0.007689731910λ1
2+2.361905508 × 104λ1λ2

+1.813651533 × 1010λ2
2 + λ1 + 0.7616506608λ2

=o
(‖(λ1, λ2)‖2

)
.

See Tables 1, 2.
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Table 1 Parameter values
are used in the calculation

Definition Parameter values

Maximal conductances
(nS)

gca = 2.0, gk = 4.0, ga = 25

Time constants (ms) τn = 30, τh = 20

Reversal potentials (mV) VCa = 50, VK = −75

Gating variable
parameters (mV)

Vm = −20, sm = 12, Vn = −5,
sn = 10, V f = −20,

s f = 5.6, Va = −20, sa = 10,
Vh = −60, sh = 5

Other parameters λ = 0.7, ks = 0.5µM,
kc = 0.16ms−1,

fc = 0.01, α = 0.0015µM f C−1

Table 2 Data related to special points

Points Coordinate values (gbk, gsk) Eigenvalues Normal form coefficient

G H1 (0.000703, − 48.975903) λ1,2 = ±0.0265214i, λ3 = − 0.0500039,
λ4 = 0.20376

l2 = − 2.124141 × 10−4

G H2 (0.005693, − 37.067576) λ1,2 = ± 0.0754509i, λ3 = − 0.0500045,
λ4 = 0.0197066

l2 = − 6.945405 × 10−4

G H3 (0.014912, − 9.199701) λ1,2 = ±0.122114i, λ3 = −0.0500111,
λ4 = − 0.000852519

l2 = − 5.108963 × 10−5

G H4 (0.011299, − 0.321252) λ1,2 = ±0.106296i, λ3 = − 0.0501872,
λ4 = − 0.00176338

l2 = − 4.991566 × 10−6

G H5 (0.000887, − 0.208443) λ1,2 = ±0.0297757i, λ3 = − 0.0697144,
λ4 = − 0.0149915

l2 = − 2.392979 × 10−7

C P1 (− 3.665138, 1.171912) λ1 = 0, λ2 = − 0.239172, λ3 =
− 0.049999, λ4 = − 0.0290647

c = − 3.203405 × 10−6

C P2 (− 14.741551, 18.745219) λ1 = 0, λ2 = − 0.0500106, λ3 =
0.0283496, λ4 = 0.273392

c = 1.372069 × 10−5

C P3 (− 2.264354, 3.503469) λ1 = 0, λ2 = − 0.0502939, λ3 =
− 0.011844, λ4 = 0.54639

c = 9.359168 × 10−6

H H1 (0.003019, − 44.777990) λ1,2 = ±0.0549442i, λ3,4 =
±0.0500042,

None

H H2 (− 0.000242,− 1.895243) λ1,2 = ±0.0573209, λ3,4 = ±0.0155559, None

Z H0 (− 14.666964, 18.643160) λ1 = 0, λ2,3 = ±0.05001, λ4 = 0.183805 None

Z H (− 13.162279, 16.546031) λ1 = 0, λ2,3 = ±0.116936i, λ4 =
− 0.0500084

(s, θ , E0) = (1, − 1.710129 × 102, − 1)

BT (− 12.645060, 15.956172) λ1,2 = 0, λ3 = − 0.0500154, λ4 =
0.635512

(a, b) = (− 2.018350 × 10−7, − 5.211393 ×
10−3)

R2 (− 0.7738865, 1.359544) μ1 = 0.063181, μ2 = 0.999998, μ3,4 = 1,
Arg1,2 = 0, Arg3,4 = 180.

(a, b) = (− 2.264819 × 10−7, − 1.071368 ×
10−4)
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