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Many types of neurons and excitable cells could intrinsically generate bursting activity, even
in an isolated case, which plays a vital role in neuronal signaling and synaptic plasticity. In
this paper, we have mainly investigated bursting types and corresponding bifurcations in the
pre-Bötzinger complex respiratory rhythm neuron by using fast–slow dynamical analysis. The
numerical simulation results have showed that for some appropriate parameters, the neuron
model could exhibit four distinct types of fast–slow bursters. We also explored the bifurcation
mechanisms related to these four types of bursters through the analysis of phase plane. Moreover,
the first Lyapunov coefficient of the Hopf bifurcation, which can decide whether it is supercrit-
ical or subcritical, was calculated with the aid of MAPLE software. In addition, we analyzed
the codimension-two bifurcation for equilibria of the whole system and gave a detailed theoret-
ical derivation of the Bogdanov–Takens bifurcation. Finally, we obtained expressions for a fold
bifurcation curve, a nondegenerate Hopf bifurcation curve, and a saddle homoclinic bifurcation
curve near the Bogdanov–Takens bifurcation point.

Keywords : Bursting; Bogdanov–Takens bifurcation; fast–slow dynamical analysis; potassium
channel; external electric field; pre-Bötzinger complex.

1. Introduction

As a small region in the ventrolateral medulla, the
pre-Bötzinger complex (pre-BötC) is considered to
be the genesis of respiratory rhythm in mammals
and can autonomously generate rhythmic activity
without external input [Smith et al., 1991; Smith
et al., 2013; Johnson et al., 1994; Koshiya & Smith,
1999]. Recordings from the medulla in vitro show
that this intrinsic rhythmic activity persists even
after blockade of inhibitory synaptic connections

[Feldman & Smith, 1989; Shao & Feldman, 1997];
in other words, this activity can be triggered by
a single bursting pacemaker neuron located in the
medullary pre-BötC [Butera et al., 1999; Rekling &
Feldman, 1998; Thoby-Brisson & Ramirez, 2001;
Rybak et al., 2004].

In this context, we study the pre-BötC neuron
which was modeled in the Hodgkin–Huxley style
proposed by Butera et al. [1999]. The single neu-
ron model includes persistent sodium current, fast
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sodium current, delayed rectifier potassium current
and leakage current. Among these four kinds of
current, the delayed rectifier potassium current is
worthy of study owing to its important role in neu-
ronal activities and transitions between spiking and
bursting [Rybak et al., 2003]. Bacak et al. [2016]
recently investigated endogenous bursting proper-
ties by changing extracellular potassium concentra-
tion. They found that endogenous bursting activity
is the result of a particular relationship between
the delayed rectifier potassium current and leak-
age current. Shevtsova et al. [2003] focused on the
conditions that could trigger or suppress endoge-
nous population oscillations and the specific roles
of voltage-gated potassium current in single pace-
maker neurons. Negro et al. [2001] showed that a
transition from bursting to tonic spiking could be
elicited by elevating extracellular potassium concen-
tration, whose effect is to attenuate the potassium
current.

Bursting oscillation has been widely researched
in neuronal models and certain excitable cells
because of its significant roles in information pro-
cessing and transmission [Izhikevich & Hippen-
steadt, 2004], and its functional effects in reliable
communication among neurons [Izhikevich, 2003;
Lisman, 1997; Eyherabide et al., 2009] and neu-
ronal synaptic plasticity [Wang, 1999; Huerta & Lis-
man, 1995]. As a unit of neural information and the
primary discharge pattern, bursting involves two
processes: one is the relatively fast process asso-
ciated with generation of action potentials, and
another is relatively slow process that modulates
fast variables [Izhikevich, 2000, 2005]. So far, some
important methods were proposed to reveal the
bifurcation mechanism of transitions between the
quiescent state and the spiking state. The singu-
lar perturbation theory has made great progress
since the turn of the last century [Smith, 1985; Hop-
pensteadt, 1993; Mishchenko et al., 1994; Fenichel,
1979; Jones, 1995]. In addition, the approach of
fast–slow dynamics analysis has been extensively
applied to topologically classify several typical
bursting types [Izhikevich, 2000; Yang & Lu, 2007;
Wang et al., 2008; Wang et al., 2015; Lu et al.,
2016]. Based on one-parameter and two-parameter
bifurcation analysis, the generation and transition
of bursting types could be explained clearly.

The main purpose of the present study is to
explore bursting oscillations and related bifurca-
tions in the pre-BötC neuron model. Four types

of fast–slow bursters are found as the maximum
conductance of delayed rectifier potassium current
(gK) is varied. And the mechanisms of generating
bursting are investigated in detail using fast–slow
dynamics analysis and phase plane analysis. For
one-parameter bifurcation analysis, we compute the
first Lyapunov coefficient of the Hopf bifurcation to
determine whether it is supercritical or subcritical.
Furthermore, we give the two-parameter bifurcation
analysis of the whole system in the (Ve, gK)-plane,
and analyze the Bogdanov–Takens bifurcation. At
the same time, we obtain a fold bifurcation curve,
a Hopf bifurcation curve, and a homoclinic bifurca-
tion curve near the Bogdanov–Takens bifurcation
point.

The rest of this paper is arranged as follows.
Section 2 describes the single pre-BötC neuron
model and introduces the tools for computer simu-
lations. In Sec. 3, we present detailed codimension-
one bifurcation diagrams and phase portraits of
the fast subsystem. We explore the properties of
the Hopf bifurcation point in Sec. 4. Section 5
investigates the codimension-two bifurcation anal-
ysis of the whole system. Finally, we conclude in
Sec. 6.

2. Model and Methods

Our research model is based on a single-compart-
ment Hodgkin–Huxley formalism as described by
Butera et al. [1999]. The model contains persistent
sodium current, fast sodium current, delayed recti-
fier potassium current and leakage current. In this
study, we think about the effect of external elec-
tric field. Once a cell is exposed to an external
electric field, the induced trans-membrane potential
emerges which superimposes on the primary ionic
membrane potential [Polk & Postow, 1996; Kotnik
et al., 2011; Che et al., 2012; Che et al., 2014]; that
is to say, the total membrane potential is substi-
tuted by V + Ve. Then the original current balance
equation is modified as follows:

C
d(V + Ve)

dt

= −gNaPmNaP∞(V )h(V + Ve − ENaP)

− gNam
3
Na∞(V )(1 − n)(V + Ve − ENa)

− gKn4(V + Ve − EK) − gL(V + Ve − EL),
(1)
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where C is the whole cell membrane capacitance,
V is the membrane potential, and Ve is the induced
membrane potential reflecting the influence of the
external electric field. The value of Ve is set to 0 mV
unless otherwise noted. Since we only consider the
influence of DC electric field, the term CdVe/dt on
the left of Eq. (1) is equal to 0.

The dynamics of gating variables n and h are
described according to

dn

dt
=

αn(V )(1 − n) − βn(V )n
τn

, (2)

dh

dt
=

αh(V )(1 − h) − βh(V )h
τh

. (3)

The steady-state voltage-dependent (in)activation
functions are given by

mNaP∞(V ) =
1{

1 + exp
[
−V + 40

6

]} , (4)

mNa∞(V ) =
1{

1 + exp
[
−V + 34

5

]} , (5)

αx(V ) = exp
[
−V − θx

2σx

]
, x = n, h, (6)

βx(V ) = exp
[
V − θx

2σx

]
, x = n, h. (7)

Throughout the rest of this paper, except for
gK and Ve, all the other parameters involved in this
model are fixed as given in Table 1. The model has
been integrated by the fourth-order Runge–Kutta
algorithm and the step size is 0.01 ms. The bifurca-
tion diagrams and phase portraits are performed
using MATCONT software [Dhooge et al., 2003;
Dhooge et al., 2006].

Table 1. Parameter values for the pre-BötC neuron
model.

Membrane Capacitance (pF) C = 21

Time constants (ms) τn = 20, τh = 20 000
Conductance gNaP = 2.8, gNa = 28,

constants (nS) gL = 2.8
Reversal potentials (mV) ENaP = 50, ENa = 50,

EK = −85, EL = −57.5
Other kinetics θn = −29, θh = −48,

parameters (mV) σn = −4, σh = 6

3. Bursting Type Analysis

In the fast–slow dynamics analysis, since τh is sev-
eral orders of magnitudes faster than C and τn, the
variable h changes at a far slower pace than the
other variables V and n for the same time scale.
Hence, the whole system (1)–(3) can be decomposed
into a fast subsystem (1) and (2), and a slow sub-
system (3). And the slow variable h is treated as a
bifurcation parameter. Then, the bifurcation curve
for equilibria of the fast subsystem complies with
the following equations:

gNaPmNaP∞(V )h(V − ENaP)

+ gNam
3
Na∞(V )(1 − n)(V − ENa)

+ gKn4(V − EK) + gL(V − EL) = 0, (8)

αn(V )(1 − n) − βn(V )n = 0. (9)

The h-nullcline satisfies:

h =
αh(V )

αh(V ) + βh(V )
. (10)

In this section, we shall show the numerical
results from the bifurcation analysis of the fast
subsystem (1)–(2). Through numerical calculations,
we find that four completely different waveforms
appear with the maximum conductance of delayed
rectifier potassium current ranges gK ∈ [3.82,
4.76) nS, gK ∈ [4.76, 6.5) nS, gK ∈ [6.5, 14.14) nS,
and gK ∈ [14.14, 25.8] nS. Within these ranges,
the values of gK are separately picked as 4.7 nS,
4.8 nS, 12 nS and 15 nS to show the characteris-
tics of these four discharge patterns. Before present-
ing the numerical results, we explain the emerging
symbols in the text below: LP i (i = 1, 2) repre-
sents the fold bifurcations of an equilibrium point;
H represents the Hopf bifurcation of an equilib-
rium point; LPC i (i = 1, 2) represents the tan-
gent bifurcations of limit cycles; HC represents the
saddle homoclinic bifurcation. For the meaning of
these bifurcations, the reader is referred to [Guck-
enheimer & Holmes, 1983; Kuznetsov, 1998]. In
the codimension-one bifurcation diagrams, the sym-
bols Vmax and Vmin separately denote the maximum
value and the minimum value of the corresponding
limit cycle. The dashed–dotted line represents the
slow variable h-nullcline. The solid and dashed lines
separately denote the stable and unstable equilibria
(or limit cycles).
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(a) (b)

Fig. 1. The fast–slow dynamics of “circle/homoclinic” bursting via the “circle/homoclinic” hysteresis loop for gK = 15nS.
(a) Time evolution of the membrane potential and (b) fast–slow dynamics analysis of the fast subsystem. The dashed–dotted
line represents the slow variable h-nullcline. The solid and dashed lines separately denote the stable and unstable equilibria
(or limit cycles).

3.1. “Circle/homoclinic” bursting
via the “circle/homoclinic”
hysteresis loop

By using MATCONT software [Dhooge et al., 2003;
Dhooge et al., 2006], the membrane potential and
the bifurcation diagram for equilibria of the fast
subsystem for gK = 15 nS are shown in Figs. 1(a)
and 1(b), respectively. From Fig. 1(b), we can
see there is an S-shaped curve of steady state in
the (h, V )-plane, where the solid line denotes sta-
ble equilibria and the dashed line denotes unsta-
ble ones. The S-shaped curve is made up of three
branches. On the lower branch, the equilibria are
all stable nodes. The middle branch is composed of
unstable saddles. On the upper branch, the equilib-
rium is a stable focus or an unstable focus, whose
stability changes via a Hopf bifurcation point H
with h = 1.177609.

To analyze the generating process of spiking
through bifurcations related to quiescence and dis-
charge state, we append the spiking trajectory and
the h-nullcline to Fig. 1(b). During the quiescent
state, the neuron follows the lower branch of equi-
libria to the right. At the right fold bifurcation LP1,
the stable node and unstable saddle merge into one,
and then disappear. Meanwhile, a stable limit cycle
appears and goes through the point LP1. Hence,
the resting state switches to the repetitive spik-
ing via the fold bifurcation on the invariant circle
(SNIC ). When V exceeds the h-nullcline, h begins
to decrease. Until the spiking state reaches the point
HC , which is a saddle on the middle branch with
h = 0.46778. So a saddle homoclinic orbit forms and

the repetitive spiking switches to the resting state.
The same bifurcations form the hysteresis loop.
According to the classification of fast–slow dynam-
ics analysis [Izhikevich, 2000], this type of bursting
pattern belongs to “circle/homoclinic” bursting via
the “circle/homoclinic” hysteresis loop.

To understand the properties of this bursting
type in detail, we apply the phase plane analysis to
present the phase portraits on the (V, n)-plane with
different values of h in Fig. 1(b). The filled dot,
hollow dot and hollow pentagram in Figs. 2(a)–2(c)
separately denote stable equilibrium, unstable equi-
librium and fold bifurcation point. The red closed
curve in Fig. 2(b) represents the stable limit cycle
and the purple curve in Fig. 2(c) represents the sad-
dle homoclinic orbit. Arrows indicate the direction
of the vector field. It is shown in Fig. 2(a) that when
h = 0.46, the fast subsystem has a stable node,
a saddle and an unstable focus. With the increase
of h, the stable node and the saddle are gradually
approaching each other, and they coalesce at the
fold bifurcation LP1 and then disappear. At the
same time, a stable limit cycle is generated from
this fold bifurcation point. Thus, the resting state
switches to repetitive spiking via fold bifurcation
on the invariant circle. The hollow pentagram in
Fig. 2(b) represents the bifurcation point SNIC . As
h decreases to 0.46778, the closed orbit meets the
saddle of the middle branch and forms a homoclinic
orbit in Fig. 2(c), namely, a saddle homoclinic bifur-
cation takes place. Hence, the neuron transits from
repetitive spiking to resting state via the homoclinic
bifurcation.
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(a) (b) (c)

Fig. 2. Examples of phase portraits on the (V, n)-plane with different values of the slow variable h. (a) h = 0.46, (b)
h = 0.468326 and (c) h = 0.46778. Here the dashed line and dotted line indicate V -nullcline and n-nullcline, respectively. The
filled dot, hollow dot and hollow pentagram separately denote stable equilibrium, unstable equilibrium and fold bifurcation
point. The red closed curve in phase portrait (b) represents the stable limit cycle and the purple curve in phase portrait (c)
represents the homoclinic orbit. Arrows indicate directions of trajectories.

3.2. “Fold/homoclinic” bursting via
the “fold/homoclinic”
hysteresis loop

For the second type of bursting as we analyze next
as shown in Fig. 3(a), the corresponding bifurca-
tion diagram of the fast subsystem with respect to
the slow variable h is shown in Fig. 3(b). There
is also a S-shaped equilibria bifurcation curve in
the (h, V )-plane. The separation of the lower and
middle branches is fold bifurcation LP1 with h =
0.468326; the separation of the upper and middle
branches is another fold bifurcation LP2 with h =
−1.661421. This type of bursting is slightly differ-
ent from the former case. At the right knee LP1, the
stable node and the saddle coalesce and annihilate
each other. Besides, a stable limit cycle emerges and

fails to pass through the point LP1. Thereby, the
resting state switches to the repetitive spiking via a
fold bifurcation. Then h decreases and the spiking
state reaches the saddle at HC on the middle branch
with h = 0.46035, and a saddle homoclinic orbit
forms. Hence, the repetitive spiking switches to the
resting state via a saddle homoclinic bifurcation.
The same bifurcations form the hysteresis loop.
Depending on the classification of fast–slow dynam-
ics analysis [Izhikevich, 2000], this type of bursting
pattern belongs to “fold/homoclinic” bursting via
the “fold/homoclinic” hysteresis loop (or “square-
wave” bursting).

Similarly, we use the phase plane analysis to
analyze properties of equilibria and periodic orbit
on the (V, n)-plane with different values of h in

(a) (b)

Fig. 3. The fast–slow dynamics of “fold/homoclinic” bursting via the “fold/homoclinic” hysteresis loop for gK = 12 nS. (a)
Time evolution of the membrane potential and (b) fast–slow dynamics analysis of the fast subsystem. The dashed–dotted line
represents the slow variable h-nullcline. The solid and dashed lines separately denote the stable and unstable equilibria (or
limit cycles).
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(a) (b)

(c) (d)

Fig. 4. Examples of phase portraits on the (V, n)-plane with different values of the slow variable h. (a) h = 0.45, (b)
h = 0.468326, (c) h = 0.465 and (d) h = 0.46035. Here the dashed line and dotted line indicate V -nullcline and n-nullcline,
respectively. The filled dot, hollow dot and hollow pentagram separately denote stable equilibrium, unstable equilibrium and
fold bifurcation point. Red closed curves in phase portraits (b) and (c) represent the stable limit cycles and the purple curve
in phase portrait (d) represents the homoclinic orbit. Arrows indicate directions of trajectories.

Fig. 3(b). It is shown in Fig. 4(a) that when h =
0.45, the fast subsystem has three equilibria, which
are a stable node, a saddle and an unstable focus.
When h = 0.468326, the stable node and the sad-
dle merge into one so that a fold bifurcation occurs
and a periodic orbit exists. Moreover, the fold bifur-
cation is away from the generated limit cycle. With
the decrease of h, the fast subsystem has three equi-
libria and a stable limit cycle as shown in Fig. 4(c).
As h decreases to 0.46035, a saddle homoclinic orbit
forms with a stable node and an unstable focus.

3.3. “Fold circle/homoclinic”
bursting via the “fold/
homoclinic” hysteresis loop

When gK = 4.8 nS, the neuron exhibits the third
type of bursting as shown in Fig. 5(a). Figure 5(b)
is the one-parameter bifurcation diagram of the fast
subsystem. The analysis method of burster clas-
sification is similar to the previous two types of

bursting. The quiescent state disappears via fold
limit cycle bifurcation and the spiking state disap-
pears via saddle homoclinic orbit bifurcation. The
formation of the hysteresis loop is different. The
bifurcation of the transitions from the down-state to
the up-state is fold bifurcation LP1, and the bifur-
cation of the transitions from the up-state to the
down-state is saddle homoclinic orbit bifurcation
HC . Thus, this bursting mode is defined as “fold cir-
cle/homoclinic” bursting via the “fold/homoclinic”
hysteresis loop.

It is shown in Fig. 6(a) that when h = 0.35,
the fast subsystem has three equilibria, which are
a stable node, a saddle and an unstable focus.
When h = 0.468326, the stable node and the sad-
dle merge into one so that a fold bifurcation occurs
and no periodic orbit exists. With the decrease of
h, the fast subsystem has three equilibria again. As
h decreases to 0.4554251, an unstable limit cycle
appears in Fig. 6(d). With the further decrease of h,
a stable and an unstable limit cycle coexist with a
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(a) (b)

Fig. 5. The fast–slow dynamics of “fold circle/homoclinic” bursting via the “fold/homoclinic” hysteresis loop for gK = 4.8 nS.
(a) Time evolution of the membrane potential and (b) fast–slow dynamics analysis of the fast subsystem. The dashed–dotted
line represents the slow variable h-nullcline. The solid and dashed lines separately denote the stable and unstable equilibria
(or limit cycles).

(a) (b) (c)

(d) (e) (f)

Fig. 6. Examples of phase portraits on the (V, n)-plane with different values of the slow variable h. (a) h = 0.35, (b)
h = 0.468326, (c) h = 0.46, (d) h = 0.4554251, (e) h = 0.4 and (f) h = 0.36625. Here the dashed line and dotted line
indicate V -nullcline and n-nullcline, respectively. The filled dot, hollow dot and hollow pentagram separately denote stable
equilibrium, unstable equilibrium and fold bifurcation point. The red closed curve in phase portrait (e) represents the stable
limit cycle; green closed curves in phase portraits (d)–(f) represent the unstable limit cycles; the purple curve in phase portrait
(f) represents the homoclinic orbit. Arrows indicate directions of trajectories.

1750010-7

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

7.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
O

U
T

H
 C

H
IN

A
 U

N
IV

E
R

SI
T

Y
 O

F 
T

E
C

H
N

O
L

O
G

Y
 o

n 
02

/2
3/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



February 3, 2017 9:52 WSPC/S0218-1274 1750010

J. Wang et al.

(a) (b)

Fig. 7. The fast–slow dynamics of “fold/Hopf” hysteresis loop bursting of point–point type for gK = 4.7 nS. (a) Time evolu-
tion of the membrane potential and (b) fast–slow dynamics analysis of the fast subsystem. The dashed–dotted line represents
the slow variable h-nullcline. The solid and dashed lines separately denote the stable and unstable equilibria (or limit cycles).

(a) (b)

(c) (d)

Fig. 8. Examples of phase portraits on the (V, n)-plane with different values of the slow variable h. (a) h = 0.468326,
(b) h = 0.4, (c) h = 0.36285 and (d) h = 0.124436. Here the dashed line and dotted line indicate V -nullcline and n-nullcline,
respectively. The filled dot, hollow dot and hollow pentagram separately denote stable equilibrium, unstable equilibrium and
fold bifurcation point. The red closed curve in phase portrait (b) represents the stable limit cycle; green closed curves in phase
portraits (b)–(c) represent the unstable limit cycles; the purple curve in phase portrait (c) represents the homoclinic orbit.
Arrows indicate directions of trajectories.
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stable node, a saddle and an unstable focus. When
h = 0.36625, an unstable limit cycle is shrinking,
while a stable limit cycle is gradually expanding
until it meets the saddle on the middle branch and
comes into being as a saddle homoclinic orbit as
illustrated in Fig. 6(f).

3.4. “Fold/Hopf ” hysteresis loop
bursting of point–point type

Now we discuss the last type of bursting in this
neuron model for gK = 4.7 nS. The waveform and
one-parameter bifurcation diagram are presented
in Figs. 7(a) and 7(b), respectively. Although the
upper branch of the bifurcation curve in Fig. 7(b)
has a Hopf bifurcation and stable and unstable
limit cycles, the fast subsystem does not have a
limit cycle attractor for any value of the slow vari-
able h. The cause of bursting is that the rate of
convergence to the spiking up-state is relatively
weak in comparison with the magnitude of 1/τh.
Then the fast variables spend most of their time
converging to the equilibrium and the convergence
forms damped oscillations. So the system’s behav-
ior resembles bursting as illustrated in Fig. 7(a).
In Fig. 7(b), with the increase of h, the quies-
cent down-state corresponding to the stable nodes
of the lower branch disappears via fold bifurcation
LP1 at h = 0.468326, then transits to the quies-
cent up-state corresponding to the stable focuses
of the upper branch of S-shaped bifurcation curve,
but does not transit to the repetitive spiking cor-
responding to the stable limit cycles. With the
decrease of h, the quiescent up-state disappears via
a Hopf bifurcation at h = 0.124436 and transits
to the quiescent down-state. So a point–point type
of hysteresis loop is generated by the transitions
from one quiescent state to another quiescent state.
Therefore, this bursting type exhibits the dynami-
cal properties of “fold/Hopf” hysteresis loop point–
point bursting.

In the same manner, we can get several phase
portraits on the (V, n)-plane as shown in Fig. 8
if we take some values of h in Fig. 7(b). When
h = 0.468326, the fast subsystem has two equilibria,
which are a saddle-node and a stable focus. With
the decrease of h, the fast subsystem has three equi-
libria and two limit cycles. The large limit cycle is
stable and another is unstable. For h = 0.36285, the
large limit cycle continues to expand and becomes
a saddle homoclinic orbit. As h = 0.124436, the

homoclinic orbit disappears and the unstable limit
cycle is reduced to a stable focus.

4. Hopf Bifurcation Analysis

In this section, we will compute the first Lyapunov
coefficient of the Hopf bifurcation appearing in the
previous section. The Hopf bifurcation is subcriti-
cal (supercritical) if the first Lyapunov coefficient is
positive (negative). Take the example of the Hopf
bifurcation H in Fig. 7(b) (gK = 4.7 nS), first, we
rewrite the fast subsystems (1) and (2) as

V̇ = f1(V, n, h), (11)

ṅ = f2(V, n, h), (12)

where

f1 =
1
C

[−gNaPmNaP∞(V )h(V − ENaP)

− gNam
3
Na∞(V )(1 − n)(V − ENa)

− gKn4(V − EK) − gL(V − EL)],

f2 =
αn(V )(1 − n) − βn(V )n

τn
,

(13)

where mNaP∞(V ), mNa∞(V ), αn(V ), βn(V ) are
defined in Eqs. (4)–(7) and parameters are kept con-
sistent in Table 1.

The Jacobian matrix can be represented as

A =




∂f1

∂V

∂f1

∂n

∂f2

∂V

∂f2

∂n


,

where

∂f1

∂V
=

1
C

[−gNaPṁNaP∞(V )h(V − ENaP)

− gNaPmNaP∞(V )h − 3gNam
2
Na∞(V )

× ṁNa∞(V )(1 − n)(V − ENa)

− gNam
3
Na∞(V )(1 − n) − gKn4 − gL],

∂f1

∂n
=

1
C

[gNam
3
Na∞(V )(V − ENa)

− 4gKn3(V − EK)],

∂f2

∂V
=

α̇n(V )(1 − n) − β̇n(V )n
τn

,
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∂f2

∂n
=

−αn(V ) − βn(V )
τn

,

ṁNaP∞(V ) =
e−(V +40)/6

6[1 + e−(V +40)/6]2
,

ṁNa∞(V ) =
e−(V +34)/5

5[1 + e−(V +34)/5]2
,

α̇n(V ) = −e−(V −θn)/(2σn)

2σn
,

β̇n(V ) =
e(V −θn)/(2σn)

2σn
.

(14)

At the point H in Fig. 7(b), by calculating,
we get h = 0.124436 and the equilibrium of the
fast subsystem (1)–(2) is (V0, n0) = (−22.021386,
0.85127719). The corresponding Jacobian matrix is

A|H =

(
0.1405224489 −108.7074129

0.004447687878 −0.1405224475

)
,

which has a pair of purely imaginary eigenvalues λ,
λ, with λ = iw, w = 0.680992. Therefore, there is a
Hopf bifurcation in the fast subsystem as shown in
Fig. 7(b). Let

q =

(
−0.9793465214 + 0.202087798i

0.00639629796i

)
,

p =

(
−0.5105445204

16.13039581 + 78.17021699i

)

satisfy Aq = iwq, AT p = −iwp, and 〈p, q〉 = 1. Here
〈p, q〉 = p1q1 + p2q2 is the standard scalar product
in C

2.
In the following, to compute the first Lyapunov

coefficient, move the equilibrium of the fast sub-
system to the origin of coordinate by making the
transformation {

V = ξ1 + V0,

n = ξ2 + n0.
(15)

This transforms system (11)–(12) into


ξ̇1 = − 1
21

{
2.8h(ξ1 + V0 − 50)
1 + e−(ξ1+V0+40)/6

− 28(1 − ξ2 − n0)(ξ1 + V0 − 50)
[1 + e−(ξ1+V0+34)/5]3

− 4.7(ξ2 + n0)4(ξ1 + V0 + 85) − 2.8(ξ1 + V0 + 57.5)
}

,

ξ̇2 =
1
20

[e(ξ1+V0+29)/8(1 − ξ2 − n0) − e−(ξ1+V0+29)/8(ξ2 + n0)].

(16)

This system can be represented as

ẋ = Ax + F (x), x ∈ R
2, (17)

where A = A|H , F (x) = 1
2B(x, x)+ 1

6C(x, x, x)+O(‖x‖4), B(x, y) and C(x, y, z) are symmetric multilinear
vector functions which take on the planar vectors x = (x1, x2)T , y = (y1, y2)T , and z = (z1, z2)T . In
coordinates, we have

Bi(x, y) =
2∑

j,k=1

∂2Fi(ξ)
∂ξj∂ξk

∣∣∣∣∣∣
ξ=0

xjyk, i = 1, 2, Ci(x, y, z) =
2∑

j,k,l=1

∂3Fi(ξ)
∂ξj∂ξk∂ξl

∣∣∣∣∣∣
ξ=0

xjykzl, i = 1, 2,

(18)

where ξ = (ξ1, ξ2)T .
It is not difficult to calculate

B(x, y) =

(−0.09027757544x1y1 − 3.229500079(x1y2 + x2y1)

−0.01234058236(x1y2 + x2y1)

)
,

C(x, y, z) =

(
0.006323823582x1y1z1

0.00006949512312x1y1z1

)
.
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Then we can simply compute

g20 = 〈p,B(q, q)〉
= 0.05066197946 − 0.03890083991i,

g11 = 〈p,B(q, q)〉
= 0.04983675642 + 0.002493882429i,

g21 = 〈p,C(q, q, q)〉
= 0.003161782429 + 0.004894127457i

and calculate the first Lyapunov coefficient at H by
formula (3.20) in [Kuznetsov, 1998],

l1(0) =
1

2w2
Re(ig20g11 + wg21)

= 0.0042754657 > 0.

Hence the Hopf bifurcation point H in Fig. 7(b) is
subcritical.

5. Codimension-Two Bifurcation
Analysis of the Whole System

5.1. Bifurcations in the
(Ve, gK)-plane

In this section, we exhibit the bifurcation analy-
sis of the whole system (1)–(3) by numerical sim-
ulation with fixed parameter values denoted in
Table 1. Figure 9(a) is a global structure of the
two-parameter bifurcation diagram in the (Ve, gK)-
plane. Figures 9(b)–9(d) are the enlarged bifur-
cation diagrams of Fig. 9(a). In Figs. 9(a)–9(d),
h1 and h2 indicate the Hopf bifurcation curves;
f1 and f2 denote the fold bifurcation curves; CPi

(i = 1, 2) represents the cusp bifurcation; BT rep-
resents the Bogdanov–Takens bifurcation; GHi (i =
1, 2, 3, 4, 5, 6) represents the generalized Hopf (or
Bautin) bifurcation; NS represents the zero Neutral
Saddle bifurcation. For the meaning of these bifur-
cations, the reader is referred to [Guckenheimer &
Holmes, 1983; Kuznetsov, 1998]. Some data related
to these bifurcation points are listed in Table 2.

In Fig. 9(a), we can see that the Hopf bifur-
cation curve h1 (straight line) is independent of
the parameter gK. And there is no codimension-two
bifurcation point on this curve. Then we look at
the other three bifurcation curves. The branches
of f1 and f2 terminate at the cusp point CP2

(45.752884, −2.597061) where the eigenvalues are
λ1 = 0, λ2 = −0.00592119, λ3 = 0.280925. The

fold bifurcation curve f2 is divided into two sec-
tions by the cusp point CP1 (39.336876, −2.155251)
where the eigenvalues are λ1 = 0, λ2 = −0.434235,
λ3 = 0.00038313.

Near the point CPi (i = 1, 2), system (1)–(3) is
equivalent to the following topological normal form


ξ̇ = β1 + β2ξ + σξ3,

η̇− = −η−,

η̇+ = η+,

(19)

where

η± ∈ R
1, β1,2 ∈ R,

σ = sign(c) =

{
1, for CP1,

−1, for CP2.

A Bogdanov–Takens bifurcation takes place at
the point labeled BT (39.519172, −2.15726) with
two zero eigenvalues λ1,2 = 0 and one nonzero real
eigenvalue λ3 = −0.4908234728. The point BT is
the tangency point of the Hopf bifurcation curve h2

and the fold bifurcation curve f2. Near the point
BT, system (1)–(3) can be reduced to the following
topological normal form{

η̇1 = η2,

η̇2 = β1 + β2η1 + η2
1 + sη1η2,

(20)

where a = −9.080841×10−7 , b = −2.037929×10−3 ,
s = sign(ab) = 1.

There are six generalized Hopf bifurcations in
the Hopf bifurcation curve h2. At the point GHi

(i = 1, 2, 3, 4, 5, 6), the system (1)–(3) has one real
eigenvalue and a pair of purely imaginary eigenval-
ues. Furthermore, the first Lyapunov coefficient is
equal to 0. Near the point GHi (i = 1, 2, 3, 4, 5, 6),
system (1)–(3) is locally topologically equivalent to
the following complex normal form{

ż = (β1 + i)z + β2z|z|2 + sz|z|4, z ∈ C
1,

η̇− = −η−, η− ∈ R
1,

(21)

where l2 is the second Lyapunov coefficient and

s = sign(l2) =

{
1, for GHi (i = 3, 5, 6),

−1, for GHj (j = 1, 2, 4).

There exists a zero Neutral Saddle bifurca-
tion in the fold bifurcation curve f2 labeled NS
(45.203946, −2.48432) with one zero eigenvalue
λ1 = 0 and two real eigenvalues satisfying λ2 +
λ3 = 0.
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(a) (b)

(c) (d)

Fig. 9. Codimension-two bifurcation analysis of the whole system. (a) Representation of the two-parameter bifurcation dia-
gram in the (Ve, gK)-plane. (b)–(d) The enlarged bifurcation diagrams of (a). The labels represent the following bifurcations:
CP — cusp, BT — Bogdanov–Takens, GH — generalized Hopf (or Bautin), NS — zero neutral saddle. Besides, h1 and h2 are
the Hopf bifurcation curves, and f1 and f2 are the fold bifurcation curves.

Table 2. Data related to the special points.

Points Parameter Values (Ve, gK) Eigenvalues λ1, λ2, λ3 Normal Form Parameter

CP1 (39.336876, −2.155251) λ1 = 0, λ2 = −0.434235, λ3 = 0.00038313 c = 6.355374 × 10−4

CP2 (45.752884, −2.597061) λ1 = 0, λ2 = −0.00592119, λ3 = 0.280925 c = −1.763739 × 10−4

BT (39.519172, −2.15726) λ1,2 = 0, λ3 = −0.4908234728 a = −9.080841 × 10−7,

b = −2.037929 × 10−3

GH1 (39.308659, −2.154919) λ1 = −0.44761, λ2,3 = ±0.000520476i l2 = −1.172727 × 10−3

GH2 (39.320244, −2.154993) λ1 = −0.405652, λ2,3 = ±0.000736812i l2 = −5.713233 × 10−4

GH3 (44.651508, −2.39805) λ1 = −0.000472917, λ2,3 = ±0.071716i l2 = 2.243264 × 10−3

GH4 (44.722346, −2.417798) λ1 = −0.0649106, λ2,3 = ±0.00267965i l2 = −3.273501

GH5 (44.955248, −2.445208) λ1 = −0.000676546, λ2,3 = ±0.0400693i l2 = 0.294592

GH6 (45.063059, −2.462362) λ1 = −0.00508465, λ2,3 = ±0.0100635i l2 = 692.4995

NS (45.203946, −2.48432) λ1 = 0, λ2,3 = ±0.0355362 None
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5.2. Bogdanov–Takens bifurcation
analysis

In this section, we research the Bogdanov–Takens
bifurcation of the whole system (1)–(3) by the
method proposed by Carrillo et al. [2010]. In
Fig. 9(c), the Bogdanov–Takens bifurcation point
BT appears when

(Ve, gK) = (39.519172,−2.15726) � µ0.

Now the equilibrium of the whole system (1)–(3) is
(V, n, h) = (−11.721, 0.98687, 0.0023605) � X0.

First, we rewrite the whole system (1)–(3) as

dX

dt
= F (X,µ) =




f1(X,µ)

f2(X,µ)

f3(X,µ)


, (22)

where X = (V, n, h)T , µ = (Ve, gK)T , and

f1(X,µ) =
1
C

[−gNaPmNaP∞(V )h(V + Ve − ENaP)

− gNam
3
Na∞(V )(1 − n)(V + Ve − ENa)

− gKn4(V + Ve − EK)

− gL(V + Ve − EL)],

f2(X,µ) =
αn(V )(1 − n) − βn(V )n

τn
,

f3(X,µ) =
αh(V )(1 − h) − βh(V )h

τh
,

(23)

where mNaP∞(V ), mNa∞(V ), αn(V ), αh(V ), βn(V ),
βh(V ) are defined in Eqs. (4)–(7) and parameters
are kept consistent in Table 1.

Let us consider the Taylor series of F (X,µ)
around (X0, µ0),

F (X,µ) = DF (X0, µ0)(X − X0)

+ Fµ(X0, µ0)(µ − µ0)

+
1
2
D2F (X0, µ0)(X − X0,X − X0)

+ FµX(X0, µ0)(µ − µ0,X − X0) + · · · .
(24)

Note

A1 � DF (X0, µ0) =




∂f1

∂V

∂f1

∂n

∂f1

∂h

∂f2

∂V

∂f2

∂n

∂f2

∂h

∂f3

∂V

∂f3

∂n

∂f3

∂h




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(X0,µ0)

=




−0.05052336025 15.95289677 2.93390807

0.001422893352 −0.4392696686 0

−4.043966734 × 10−7 0 −0.00103033198


,

Fµ(X0, µ0) =




∂f1

∂Ve

∂f1

∂gK

∂f2

∂Ve

∂f2

∂gK

∂f3

∂Ve

∂f3

∂gK




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(X0,µ0)

=



−0.05311922025 −5.09474621

0 0

0 0


.

The matrix A1 has three eigenvalues, namely, 0, 0, and −0.4908234728. Let P = (p1, p2, P0)
be an invertible matrix, which satisfies P−1A1P = J , where J =

(J0 0
0 J1

)
, J0 =

(0 1
0 0

)
, J1 =

−0.4908234728, p1, p2 are generalized eigenvectors of the matrix A1 corresponding to the double-zero
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eigenvalue and P0 contains the generalized eigen-
vectors of the matrix J1. Then we obtain

p1 = (1, 0.003238830447,−0.0003924437902)T ,

p2 = (1,−0.004133991543, 0.3804981318)T ,

P0 = (−36.23159257, 1,−0.00002991454481)T .

If we define P−1 = (q1, q2, Q
T
0 )T , then

q1 = (0.8942746637, 32.40093551,−1.998247578)T ,

q2 = (0.0009221228139, 0.03348853589,

2.626074177)T ,

Q0 = (−0.002892591961, 0.895197305,

0.01732815354).

By calculating expressions (28) and (29) in [Carrillo
et al., 2010], then we get

a =
1
2
pT
1 (q2 · D2F (X0, µ0))p1

= −9.078787855 × 10−7,

b = pT
1 (q1 · D2F (X0, µ0))p1

+ pT
1 (q2 · D2F (X0, µ0))p2

= −0.002037531361,

S1 = F T
µ (X0, µ0)q2

= (−0.00004898244485,−0.004697981711)T ,

S2 =
[
2a
b

(pT
1 (q1 · D2F (X0, µ0))p2

+ pT
2 (q2 · D2F (X0, µ0))p2)

− pT
1 (q2 · D2F (X0, µ0))p2

]
F T

µ (X0, µ0)q1

− 2a
b

2∑
i=1

(qi · (FµX (X0, µ0) − ((P0J
−1
1 Q0)

×Fµ(X0, µ0))T × D2F (X0, µ0)))pi

+ (q2 · (FµX (X0, µ0) − ((P0J
−1
1 Q0)

×Fµ(X0, µ0))T × D2F (X0, µ0)))p1

= (−5.504274272, 0.3645960161)T .

If we choose λ1, λ2 as bifurcation parameters, where
λ1 = Ve − 39.519172, λ2 = gK + 2.15726, then

β1 = ST
1 (µ − µ0)

= −0.00004898244485λ1 − 0.004697981711λ2,

β2 = ST
2 (µ − µ0)

= −5.504274272λ1 + 0.3645960161λ2.

Using Theorem 1 in [Carrillo et al., 2010], the
whole system (1)–(3) at X = X0, µ ≈ µ0, is locally
topologically equivalent to


dz1

dt
= z2,

dz2

dt
= β1 + β2z1 + az2

1 + bz1z2

= −0.00004898244485λ1 − 0.004697981711λ2

+ (−5.504274272λ1 + 0.3645960161λ2)z1

− 9.078787855 × 10−7z2
1

− 0.002037531361z1z2.

(25)

Making the transformation of variables by

t =
∣∣∣∣ ba
∣∣∣∣ t1 =

0.002037531361
9.078787855 × 10−7

t1,

z1 =
a

b2
η1 =

−9.078787855 × 10−7

(−0.002037531361)2
η1,

z2 = sign
(

b

a

)
a2

b3
η2 =

(−9.078787855 × 10−7)2

(−0.002037531361)3
η2,

system (25) becomes


dη1

dt1
= η2,

dη2

dt1
= β1 + β2η1 + η2

1 + sη1η2,

(26)

where

β1 =
b4

a3
β1

= 1.12816874 × 103λ1 + 1.082044011 × 105λ2,

β2 =
b2

a2
β2

= −2.772381129 × 107λ1 + 1.83638944 × 106λ2,

s = sign(ab) = 1.
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Since

4β1 − β2
2 = 0 ⇔ 1.703224183 × 1011λ2

1

− 2.256387386 × 1010λ1λ2

+ 7.473009256 × 108λ2
2 − λ1

− 95.91153988λ2 = 0,

β1 = 0 ⇔ λ1 = −95.91153988λ2,

β2 < 0 ⇔ λ2 < 15.09691283λ1,

β1 +
6
25

β2
2 = o(β2

2) ⇔ 1.635095216 × 1011λ2
1

− 2.166131891 × 1010λ1λ2

+ 7.174088887 × 108λ2
2 + λ1

+ 95.91153988λ2

= o(|λ1, λ2|2).
According to the theory on Bogdanov–Takens

bifurcation in [Kuznetsov, 1998] and the preceding
analysis, we have

Theorem 1. Let λ1 = Ve − 39.519172 and λ2 =
gK + 2.15726. Then system (1)–(3) is locally
topologically equivalent to the following system
at the Bogdanov–Takens bifurcation point BT
if bifurcation parameters (Ve, gK) vary around
(39.519172,−2.15726):


dη1

dt1
= η2,

dη2

dt1
= 1.12816874 × 103λ1

+ 1.082044011 × 105λ2

+ (−2.772381129 × 107λ1

+ 1.83638944 × 106λ2)η1 + η2
1 + η1η2.

(27)

System (27) has three bifurcation curves in a small
neighborhood of the origin:

(1) the local representation of a fold bifurcation
curve is

T = {(λ1, λ2) : 1.703224183 × 1011λ2
1

− 2.256387386 × 1010λ1λ2

+ 7.473009256 × 108λ2
2 − λ1

− 95.91153988λ2 = 0};

(2) the local representation of a nondegenerate Hopf
bifurcation curve is

H = {(λ1, λ2) : λ1 = −95.91153988λ2, λ2 < 0};
(3) the local representation of a saddle homoclinic

bifurcation curve is

P = {(λ1, λ2) : 1.635095216 × 1011λ2
1

− 2.166131891 × 1010λ1λ2

+ 7.174088887 × 108λ2
2 + λ1

+ 95.91153988λ2 = o(|λ1, λ2|2),
λ2 < 15.09691283λ1}.

6. Conclusions

Respiratory movement in mammals is a kind of
neural activity, which is produced by the neural
network composed of neurons in the lower brain.
Therefore, it is of great significance to research
the discharge characteristics of these neurons for
understanding the transmission of nerve electri-
cal signal in neural networks. As a manner of
neural information coding, bursting and spiking
can well depict the properties of neural electri-
cal activity. In this article, we have investigated
the mechanisms underlying bursting and spiking
and analyzed their dynamics. Based on the pre-
Bötzinger complex respiratory neuron model, fast–
slow dynamics analysis and phase plane analysis
are performed from the perspective of bursting
classification. In particular, we find four types
of fast–slow bursters by modulating the parame-
ter gK. These four types of bursting are “circle/
homoclinic” bursting via the “circle/homoclinic”
hysteresis loop, “fold/homoclinic” bursting via
the “fold/homoclinic” hysteresis loop, “fold circle/
homoclinic” bursting via the “fold/homoclinic” hys-
teresis loop, and “fold/Hopf” hysteresis loop burst-
ing of point–point type. With the decreasing of
parameter gK, firing patterns of this model vary
from tonic spiking to bursting. In addition, the sign
of the first Lyapunov coefficient at Hopf bifurcation
point is computed to decide whether it is super-
critical or subcritical or not. When the first Lya-
punov coefficient is positive, the Hopf bifurcation is
subcritical. For two-parameter bifurcation analysis,
we mainly discuss the Bogdanov–Takens bifurcation
point. We not only calculate the topological normal
form of the whole system to the center manifold, but
also give three bifurcation curves, which are a fold
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bifurcation curve, a nondegenerate Hopf bifurcation
curve, and a saddle homoclinic bifurcation curve.
When the fold bifurcation curve is very close to the
Hopf bifurcation curve, it is quite difficult to draw
the homoclinic bifurcation curve by software such
as MATCONT [Dhooge et al., 2003; Dhooge et al.,
2006]. But we can theoretically determine the equa-
tion of this curve by the method described above.
Our obtained results may provide an instruction for
a further investigation of other neuronal cells.
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complex. I: Bursting pacemaker neurons,” J. Neuro-
physiol. 82, 382–397.

Carrillo, F. A., Verduzco, F. & Delgado, J. [2010]
“Analysis of the Takens–Bogdanov bifurcation on m-
parameterized vector fields,” Int. J. Bifurcation and
Chaos 20, 995–1005.

Che, Y., Wang, J., Deng, B., Wei, X. & Han, C. [2012]
“Bifurcations in the Hodgkin–Huxley model exposed
to DC electric fields,” Neurocomputing 81, 41–48.

Che, Y., Li, H., Han, C., Wei, X., Deng, B. & Wang,
J. [2014] “Effects of DC electric fields on neuronal
excitability: A bifurcation analysis,” Int. J. Mod.
Phys. B 28, 5447–5452.

Dhooge, A., Govaerts, W. & Kuznetsov, Y. A. [2003]
“MATCONT: A MATLAB package for numerical
bifurcation analysis of ODEs,” ACM Trans. Math.
Softw. 29, 141–164.

Dhooge, A., Govaerts, W., Kuznetsov, Y. A., Mestrom,
W., Riet, A. M. & Sautois, B. [2006] MATCONT and
CL MATCONT: Continuation Toolboxes in MAT-
LAB (Utrecht University, The Netherlands).

Eyherabide, H. G., Rokem, A., Herz, A. V. & Samengo, I.
[2009] “Bursts generate a non-reducible spike-pattern
code,” Front Neurosci. 3, 8–14.

Feldman, J. L. & Smith, J. C. [1989] “Cellular mecha-
nisms underlying modulation of breathing pattern in
mammals,” Ann. NY Acad. Sci. 563, 114–130.

Fenichel, N. [1979] “Geometric singular perturbation
theory for ordinary differential equations,” J. Diff.
Eqs. 31, 53–98.

Guckenheimer, J. & Holmes, P. [1983] Nonlinear
Oscillations, Dynamical Systems and Bifurcations of
Vector Fields (Springer-Verlag, NY).

Hoppensteadt, F. C. [1993] Analysis and Simulations of
Chaotic Systems (Springer-Verlag, NY).

Huerta, P. T. & Lisman, J. E. [1995] “Bidirectional
synaptic plasticity induced by a single burst during
cholinergic theta oscillation in CA1 in vitro,” Neuron
15, 1053–1063.

Izhikevich, E. M. [2000] “Neural excitability, spiking and
bursting,” Int. J. Bifurcation and Chaos 10, 1171–
1266.

Izhikevich, E. M. [2003] “Bursts as a unit of neural
information: Selective communication via resonance,”
Trends Neurosci. 26, 161–167.

Izhikevich, E. M. & Hippensteadt, F. [2004] “Classifica-
tion of bursting mappings,” Int. J. Bifurcation and
Chaos 14, 3847–3854.

Izhikevich, E. M. [2005] Dynamical Systems in Neuro-
science: The Geometry of Excitability and Bursting
(MIT Press).

Johnson, S. M., Smith, J. C., Funk, G. D. & Feldman,
J. L. [1994] “Pacemaker behavior of respiratory neu-
rons in medullary slices from neonatal rat,” J. Neu-
rophysiol. 72, 2598–2608.

Jones, C. K. R. T. [1995] “Geometric singular pertur-
bation theory,” Dynamical Systems, Lecture Notes
in Mathematics, Vol. 1609 (Springer, Berlin, Heidel-
berg), pp. 44–118.

Koshiya, N. & Smith, J. C. [1999] “Neuronal pacemaker
for breathing visualized in vitro,” Nature 400, 360–
363.

Kotnik, T., Pucihar, G. & Miklavčič, D. [2011] Clinical
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