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Individual identification using multi-metric of DTI in Alzheimer’s
disease and mild cognitive impairment∗
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Accurate identification of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is crucial so as to improve
diagnosis techniques and to better understand the neurodegenerative process. In this work, we aim to apply the machine
learning method to individual identification and identify the discriminate features associated with AD and MCI. Diffusion
tensor imaging scans of 48 patients with AD, 39 patients with late MCI, 75 patients with early MCI, and 51 age-matched
healthy controls (HCs) are acquired from the Alzheimer’s Disease Neuroimaging Initiative database. In addition to the
common fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity metrics, there are two novel metrics,
named local diffusion homogeneity that used Spearman’s rank correlation coefficient and Kendall’s coefficient concordance,
which are taken as classification metrics. The recursive feature elimination method for support vector machine (SVM)
and logistic regression (LR) combined with leave-one-out cross validation are applied to determine the optimal feature
dimensions. Then the SVM and LR methods perform the classification process and compare the classification performance.
The results show that not only can the multi-type combined metrics obtain higher accuracy than the single metric, but
also the SVM classifier with multi-type combined metrics has better classification performance than the LR classifier.
Statistically, the average accuracy of the combined metric is more than 92% for all between-group comparisons of SVM
classifier. In addition to the high recognition rate, significant differences are found in the statistical analysis of cognitive
scores between groups. We further execute the permutation test, receiver operating characteristic curves, and area under the
curve to validate the robustness of the classifiers, and indicate that the SVM classifier is more stable and efficient than the
LR classifier. Finally, the uncinated fasciculus, cingulum, corpus callosum, corona radiate, external capsule, and internal
capsule have been regarded as the most important white matter tracts to identify AD, MCI, and HC. Our findings reveal a
guidance role for machine-learning based image analysis on clinical diagnosis.
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1. Introduction
Alzheimer’s disease (AD) is a brain disorder character-

ized by a progressive dementia that occurs in middle or late
life. The pathological findings are degeneration of specific
nerve cells, neurofibrillary tangles, and neuritic plaques.[1]

The Delphi consensus study predicted that the number of AD
patients would rise to 42.3 million in 2020 and 81.1 million
in 2040.[2] Although numerous efforts had been made in the
past decades to develop new treatment strategies, there was no
effective treatment or diagnostic instrument until now. It leads
to a heavy social and economic burden, as well as psycho-
logical and emotional burden to patients and their families.[3]

Prior research had indicated that pathologic onset of AD may
begin at any point and keep on for several years even decades
before clinical diagnosis, with an initial asymptomatic phase
(preclinical AD) followed by a phase named mild cognitive
impairment (MCI). MCI, an intermediate stage between nor-
mal cognition and AD, has a high risk of progressing to AD.[4]

While the annual incidence rate of healthy subjects to develop
AD is 1% to 2%, the conversion rate from MCI to AD is re-
ported up to 10% to 15% per year.[5] Thus, it is necessary to

identify MCI and also predict its risk of progressing to AD.
As is well known, an accurate diagnosis of AD can make

patients and their families commendably plan their future life,
including optimum treatment and care.[6] With the develop-
ment of medical imaging technology, computer-based diagno-
sis using MRI technology and machine learning methods pro-
vide sufficient accuracy in discriminating ADs from HCs.[7–9]

In earlier time, AD had been considered a disease of the gray
matter (GM) of the brain, with white matter (WM) affection
often considered secondary to GM damage.[10] Although cur-
rently there is a great deal of focus on WM degeneration in
AD, our knowledge remains limited compared to GM atro-
phy and other AD biomarkers. Recently, a related review il-
luminated two main entry points about how WM changes in
AD.[11] The first line of evidence for direct WM affection in
AD came from molecular neurobiology.[12,13] The second line
of evidence came from neuroimaging studies,[14] which is the
focus of the current article. In addition, with the development
of diffusion tensor imaging (DTI), diffusion anisotropy effects
can be fully extracted, characterized, exploited, and provide
even more exquisite details on tissue microstructure.[15] The
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most frequently used DTI metrics are fractional anisotropy

(FA), a measure of the degree of directionality of water diffu-

sion in the tissue, and mean diffusivity (MD), a measure of the

total diffusion in a voxel. In addition, axial diffusivity (DA)

and radial diffusivity (RD) represent the diffusion coefficient

which are parallel and vertical with the WM tracts direction

respectively.[16] Moreover, more and more machine learning

methods have been used for classification of ADs from HCs

recently,[17–19] especially the support vector machine (SVM),

which is one of the most widely used supervised machine

learning methods in the field of pattern recognition.[20–23]

In this study, we apply two machine learning methods

to discriminate AD, early MCI (EMCI), late MCI (LMCI),

and HC, respectively. DTI data is firstly preprocessed to re-

ceive several WM diffusion metrics. Then the SVM and logis-

tic regression (LR) algorithms are applied to classify the four

groups. Moreover, the permutation tests and the ROC curves

are applied to validate the stability and robustness of the clas-

sifiers. In the end, some discriminative features for classifica-

tion are listed to associate with the pathomechanism of MCI

and AD.

2. Materials and methods
2.1. Participants

Our 213 participants were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (http://www.loni.ucla.edu/ADNI/). A whole brain
DTI is roughly described as following scanning parameters:
repetition time (TR), 13000 ms; echo time (TE), 68.3 ms; flip
angle, 90◦; field strength, 3.0; slice thickness, 2.7 mm; 41
non-collinear directions with a b-value of 1000 s/mm2, and
5 images with no diffusion weighting. The exact parameters
are varied slightly across scanners. Participants can be di-
vided into four groups according to ADNI baseline diagnosis:
HC, EMCI, LMCI, and AD groups. Before scanning, the
participants experience cognitive and behavioral assessments.
There are no significant differences (P > 0.05) between the
four groups when comparing age and gender (See Table 1 for
group characteristics). There are differences between groups
for demographics including mini-mental state examination
(MMSE),[24] clinical dementia rating (CDR).[25] According to
the comparison of cognitive scores between groups in Fig. 1,
a decreasing MMSE and an increasing CDR along with the
aggravation of disease can be obviously found. The statistical
analysis of basic information is computed in SPSS 22.0.

Table 1. Participant demographics and clinical information. In the table, the data are represented as mean ±
standard deviation (SD). Columns on the right display P values of F-test for each sample characteristic except
for gender, which displays the P value from a Chi-square test.

HC EMCI LMCI AD P value

Sample size 51 75 39 48
Gender (male/female) 26/25 49/26 25/14 28/20 0.400
Age (years) 72.68±6.16 72.96±8.04 72.83±5.72 74.59±9.01 0.563
MMSE 28.96±1.40 28.04±1.54 27.21±1.82 23.33±1.80 < 0.01
CDR 0.03±0.12 1.21±0.60 1.81±0.98 4.62±1.46 < 0.01
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Fig. 1. (color online) Two sample t-tests of two kinds of cognitive scores between the four groups. The x axis represents HC, EMCI, LMCI, and AD groups,
and the y axis indicates (a) MMSE score and (b) CDR score. The bar map indicates the mean values of cognitive scores among the four groups. The error
bar represents the SD. ⋆: P < 0.01, ⋆⋆: P < 0.005, and ⋆⋆⋆: P < 0.001. The asterisks indicate significant difference between groups.

2.2. Data processing

The data preprocessing is performed by using PANDA
(www.nitrc.org/projects/panda),[26] which is a pipeline tool-
box for diffusion MRI analysis. PANDA is developed
by applying the MATLAB software under an Ubuntu Op-

erating System. A number of the processing functions

from the FSL,[27] the Pipeline System for Octave and Mat-

lab (PSOM),[28] Diffusion Toolkit,[29] and MRIcron soft-

ware (http://www.mccauslandcenter.sc.edu/mricro/mricron/)

are called by PANDA. Briefly, the preprocessing procedure
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includes skull-stripping, eddy-current, and head-motion cor-
rection, diffusion metrics calculation. FA, MD, AD, and RD
maps in the MNI space are generated for each individual. Be-
yond that, Gong proposed a novel inter-voxel metric referred
to as the local diffusion homogeneity (LDH).[30] This met-
ric is defined to characterize the overall coherence of water
molecule diffusion within a neighborhood, and can be used to
explore inter-subject variability of WM microstructural prop-
erties. Computationally, the LDH metric uses Spearman’s
rank correlation coefficient (LDHs) or Kendall’s coefficient
concordance (LDHk) to quantify the overall coherence of the
diffusivity series.

The diffusion metrics (i.e., FA, MD, DA, RD, LDHs, and
LDHk) characterize microsturctural (e.g., degree of myelina-
tion or axonal organization) WM properties.[31] The regional
values for these metrics are extracted using the White Matter
Parcellation Map (WMPM), which is a prior WM atlas defined
in the MNI space.[32] The mean of FA, MD, DA, RD, LDHs,
and LDHk are calculated for each WMPM region. Here, a
total of 50 WMPM regions are selected, and these areas are
defined as the “core white matter”.[32] The remaining periph-
eral WM regions near the cortex are excluded because they are
highly variable across individuals.

2.3. Machine learning methods and analysis

A SVM method is applied to classify the four groups
using diffusion metrics. The leave-one-out cross-validation
(LOOCV) is adopted to evaluate the classification perfor-
mance, which provides a good estimation for the generaliz-
ability of the classifiers, particularly when the sample size
is small. Similarly, an LR method is reapplied to compare
with the SVM method. All machine learning analyses are per-
formed using Python (https://www.python.org/) and the tools
are freely available at https://sourceforge.net/projects/scikit-
learn.[33] The process flow chart of machine learning is shown
in Fig. 2.

2.3.1. Feature combination

The data preprocessing can be seen in Fig. 2(a). Through
the 50 WMPM atlas, we extract the regional values for dif-
ferent metrics. Then the six WM metrics (i.e., FA, MD, DA,
RD, LDHs, and LDHk) for the 50 WMPM regions are con-
catenated to yield a single raw feature vector for each sub-
ject (Fig. 2(b)). A combination of multi-metric likely im-
proves classification performance due to different metric could
capture different aspects of WM tissue, which are potentially
complementary for discrimination.

2.3.2. Feature selection

As is well known, the elimination strategy of the non-
informative features is widely employed to enhance classifica-
tion performance. A recursive feature elimination (RFE)[34]

method combined with SVM or LR is applied in order to
obtain an optimum feature dimension. The SVM-RFE or
LR-RFE method allows one to minimize redundant and ex-
traneous features which could potentially degrade classifier
performance.[35] It works backwards from the initial set of
features and eliminates the least “useful” feature on each re-
cursive pass, and it had been applied successfully for fea-
ture selection in several functional neuroimaging studies.[36,37]

Specifically, the process of feature selection is shown in
Fig. 2(c). The x axis of the line chart represents the feature di-
mension, and the y axis indicates the classification score. The
peak value marked with a red circle is the optimal feature di-
mension. Take SVM-RFE for example, the ranking criterion
score of the i-th feature is defined as:

ci = ω
2
i . (1)

In each iteration, the feature with minimum ranking cri-
terion score is removed and the remaining features are trained
on the SVM classifier. The concrete algorithm of SVM-RFE
is as follows:

Input: training samples {𝑥i,yi}, yi ∈ {−1,1}.
Output: feature sorting set R.
(i) Initialization. Original feature set S = {1,2, . . . ,D},

feature sorting set R =∅.
(ii) Loop through the following procedure until S =∅:
ii-1) Acquisition of training samples with candidate fea-

ture sets;
ii-2) Receive 𝜔 according to Eq. (2):

max
𝛼

N

∑
i=1

αi−
1
2

N

∑
i=1

N

∑
j=1

αiα jyiy j(𝑥i ·𝑥 j)

s.t.
N

∑
i=1

αiyi = 0; 0 6 αi 6C, i = 1,2, . . . ,N, (2)

where αi is the Lagrange multiplier and C is the penalty pa-
rameter.

ii-3) Calculate the ranking criterion score according to
Eq. (1)

ck = ω
2
k , k = 1,2, . . . , |S|; (3)

ii-4) find out the feature with minimum ranking criterion
score

p = argmax
k

ck; (4)

ii-5) Update the feature set

R = {p}∪R; (5)

ii-6) Remove the feature among S

S = S/p. (6)
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2.3.3. Classification

In terms of classification methods, SVM is by far the most
popular method and is already known as a tool that discov-
ers informative patterns.[34] The linear SVM with the LOOCV
method is applied to implement the classification. Meanwhile,
the logistic regression (LR),[38] another widely used classifi-
cation model, is reapplied to validate the robustness of clas-
sification results via SVM. The classification diagram for the
SVM classifier is shown in Fig. 2(d). Specifically, there exist
training samples {𝑥i,yi}N

i=1 where 𝑥i ∈ 𝑅D, yi ∈ {−1,1} is
the class labels. N is the number of training samples, and D is
the feature dimension of the sample. The goal of SVM is to
explore the optimally classified hyperplane:

𝑤 ·𝑥+b = 0, (7)

where 𝑤 is the weight vector of the optimal hyperplane and
b is the threshold value. This makes the optimally classified
hyperplane not only separate the two kinds of samples accu-
rately, but also maximize the classification interval between
the two classes. The following optimization problem needs to
be solved in order to obtain the weight vector and threshold

vector:

min
𝑤,b,ξ

1
2
‖𝑤‖2 +C

N

∑
i=1

ξi

s.t. yi(𝑤 ·𝑥i +b)> 1−ξi, i = 1,2, . . . ,N,

ξi > 0, i = 1,2, . . . ,N,

(8)

where C > 0 is the penalty parameter and ξi is the slack vari-
able. Parameter C plays a role in controlling the punishment
degree of the misclassficaton, and realizes the tradeoff be-
tween the proportion of the wrong sample and the complexity
of the algorithm. By introducing Lagrange multiplier, the op-
timization problem of SVM can be transformed into the dual
programming problem as Eq. (2). The relationship between
weight vector and dual optimization Eq. (2) is as follows:

𝑤 =
N

∑
i=1

αiyi𝑥i. (9)

The discriminant function of SVM is as follows:

f (𝑥) = sgn

(
N

∑
i=1

αiyi𝑥i ·𝑥+b

)
, (10)

where sgn(·) is the sign function.

(a) (b)

(c)
(d)

50 WMPM Atlas feature
combination

SVM

individual

prediction

optimal feature

dimension
0   10   20   30  40   50   60  70  

0.74

0.76

0.78

0.80

Fig. 2. (color online) The process flow chart in our work.

Similar to the SVM method, the LR method also aims

to obtain a linear classifier with a decision function y = f (x),

in which y is the classification score and x is the multidi-

mensional feature vector. The training and predicting frame-

work is the same as the SVM method. In contrast, the LR

method predicts the probability that a sample belongs to one
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class, rather than a hard label. The probability is defined as
P = ey/(1+ ey), and the predicted label will be 1 (i.e., con-
trols) if the probability is bigger than 0.5, otherwise −1 (i.e.,
AD). According to the algorithm implementation, the LR ap-
plies the maximum likelihood estimation to obtain the optimal
classifier, rather than maximizing the margin as the SVM.

The principle of leave-one-out cross validation (LOOCV)
method is as follows. Suppose there are N samples, each sam-
ple is taken as the test sample and the other N− 1 sample as
the training sample. In this way, N classifiers and N test re-
sults are obtained. The average of these N results is used to
measure the performance of the model.

2.3.4. Evaluation of classification performance

The results of classification are the accuracy, sensitivity,
and specificity. Specifically, accuracy is the proportion of sub-
jects who are correctly classified into group A or group B.
Sensitivity and specificity are the proportion of group A and
group B classified correctly. In order to understand the per-
formance of a classifier, it is important to report the sensitiv-
ity or specificity along with the overall accuracy. The other
very common way of reporting the sensitivity or specificity
for a binary classifier is by plotting the “receiver operating
characteristic” (ROC) curve.[39] The ROC curve is the plot of
sensitivity against “1-specificity” by changing the discrimina-
tion threshold and therefore provides a complete picture of the
classifier’s performance. The ROC curve is usually summa-
rized by the area under the curve (AUC), which is a number
between 0 and 1.[39] Additionally, we apply a 1000 times per-
mutation test without replacement to determine whether the
actual accuracy is significantly higher than the values expected
by chance. The p value for the accuracy is calculated by di-
viding the number of permutations that showed a higher value
than the actual value for the real sample by the total number
of permutations (i.e., 1000). At last, some discriminative fea-
tures for each between-group comparison will be received af-
ter feature selection. A feature with higher weight represents
a greater contribution to the classification.

3. Results
3.1. Cognitive performance

Since the machine learning methods used here are super-
vised learning, we need to know the label of each subject in
advance, therefore the neuropsychological scale tests are es-
sential. As is well known, psychometric analysis is applied to
cognitive tests to improve their reliability, to allow the compar-
ison of different cognitive tests, and to increase understanding
of the cognitive processes underlying each test.

Based on the above purpose, we perform two sample
T-tests on the cognitive score differences between different
groups. The results are shown in Fig. 1. A decreasing MMSE
score and increasing CDR score along with the severity of dis-
ease can be investigated obviously. The difference for MMSE
score between the EMCI and LMCI group is less significant
than that between other groups (P < 0.01). However, there
are extremely significant differences in CDR scores among all
four groups (P < 0.001). The above results are basically con-
sistent with the statistical results in a recent review.[40]

The psychological scale of cognitive behavior is subjec-
tive and only used in patients with some clinical symptoms.
In addition, once the symptoms have emerged and have been
measured by the cognitive behavior scale, they have devel-
oped to the stage of disease. The effect has been very limited
through medication and other therapeutics at this time. How-
ever, if we can find the effective markers in imaging diagnosis,
we can intervene as early as possible.

3.2. Classification

The results shown in Table 2 have already experienced
feature selection. The SVM and LR classifiers accurately dis-
criminate the four groups using the single-type metric (FA,
MD, DA, RD, LDHs, LDHk) and the combined metrics (Ta-
ble 2). The classification accuracy here is significantly im-
proved compared with previous research.[41–43] It seems that
the combined metrics receive a better accuracy than the single-
type metric. Notably, the SVM classifiers show a little advan-
tage over the LR classifiers. To validate the robustness of the
classification result, the permutation tests (1000 times) are ap-
plied in the combined metrics of between-group comparisons.
The results show that the accuracies obtained above are sig-
nificantly higher than values expected by chance (p < 0.001)
except HC-EMCI comparison (p = 0.969) for LR.

The considerable classification accuracy among the com-
pared groups can be well validated with the results of Fig. 1.
Our results show that the majority of classifiers using com-
bined metrics performed largely better than single WM metric-
based classifiers, suggesting that all these features are jointly
affected by AD. It should be noted that the discrimination
performance using combined metrics only shows a slight im-
provement or even a trend compared with HC-AD comparison
for SVM and HC-AD, HC-EMCI, and EMCI-AD compar-
isons for LR (Table 2). This may relate to the limited sample
size or classification algorithm of this study, which requires
future validation. Although the classification performances of
a certain single-metric of certain between-group comparisons
for the SVM classifier are worse than that of the LR classi-
fier, the SVM classifier is better than the LR classifier for all
between-group comparisons after metric combination, which
also indirectly reflects that white matter damage is reflected
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Table 2. Classification performance for each kind of metric. All the numerical values in the table represent
accuracy of percentage.

SVM

Between-group comparison FA MD DA RD LDHs LDHk Combined

HC versus AD 87.88 84.85 91.92 89.90 91.92 90.91 89.90

HC versus EMCI 66.67 80.95 65.08 68.25 68.25 67.46 88.10

HC versus LMCI 80.00 83.33 72.22 71.11 86.67 87.78 100

EMCI versus LMCI 81.58 71.93 65.79 70.18 85.96 86.84 92.98

EMCI versus AD 78.05 78.86 77.24 74.80 77.24 74.80 84.55

LMCI versus AD 78.16 77.01 79.31 78.16 91.95 81.61 97.70

LR

Between-group comparison FA MD DA RD LDHs LDHk Combined

HC versus AD 85.86 87.88 87.88 88.89 84.85 82.83 89.90

HC versus EMCI 62.70 69.04 68.25 66.67 73.81 65.08 64.30

HC versus LMCI 72.22 72.22 71.11 71.11 83.33 87.78 97.78

EMCI versus LMCI 70.18 67.54 69.30 71.05 77.19 76.32 88.60

EMCI versus AD 77.24 82.93 82.93 78.86 80.49 80.49 82.11

LMCI versus AD 73.56 79.31 79.31 80.46 79.31 81.61 95.40

on different levels. Moreover, it can be found that two novel metrics (i.e., LDHs and LDHk) also receive considerable accuracy,
implying which may become imaging markers with great potential. In addition, the results of the permutation test also indirectly
show the robustness of the classifiers (see Figs. 3 and 4).
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Fig. 3. (color online) The histograms of permutation distribution of the accuracy for SVM classifier.
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Fig. 4. (color online) The histograms of permutation distribution of the accuracy for LR classifier.

3.3. Evaluation of classifier performance

The application of ROC curve analysis in the evaluation of diagnostic testing has been more and more widely accepted, and
has become the standard statistical method of clinical screening and diagnostic evaluation at home and abroad.[44] The greatest
characteristic of ROC curve analysis is the integration of sensitivity and specificity into one index, which is not affected by the
incidence of disease. This characteristic is beneficial for both diagnosis and elimination of disease.[45] The essence of ROC curve
analysis is to analyze its sensitivity and specificity under multiple diagnostic thresholds.[46] These ROC curves and AUCs (Fig. 5)
show the classifiers’ performance for combined metrics of all between-group comparisons. It can be found that the use of SVM
classifiers generally obtain better performance than that of LR classifiers. It seems that the robustness of HCs versus EMCIs
is not superior to that of other groups, possibly because the EMCIs marker on brain imaging is similar to that of HCs, even
though they exhibit difference in cognitive function. Notably, the above results indirectly reflect the sensitivity and specificity
of classifiers. Therefore, the ROC curves and AUCs can be validated by the classification performance of combined multi-type
WM metrics and reflected the sensitivity and specificity of the classifiers.
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Fig. 5. (color online) The ROC curves and AUCs for different between-group comparisons of SVM classifiers and LR classifiers to evaluate classifier output
quality using twenty-fold cross-validation. Different colors of full line represent different between-group comparisons.
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3.4. Discriminative WM features

To further illustrate the importance of different WM tract to classification, the top 10 features with higher weight are selected
for each between-group comparison. Meanwhile, the best feature dimensions are shown in Table 3. For any features which
appear repeatedly in multiple between-group comparisons, we consider them as the most important features which contribute to
classification. Statistically, these features are uncinate fasciculus, cingulum, superior corona radiate, external capsule, internal
capsule, corpus callosum, and pontine crossing tract, respectively.

Table 3. The discriminative features of SVM classifier. In the table letter “L” means left, “R” means right.

WMPM regions
Metric

WMPM regions
Metric(AD versus EMCI: 143) (AD versus LMCI: 120)

Retrolenticular part of internal capsule (R) FA External capsule (L) FA
Uncinate fasciculus (L) RD External capsule (L) RD
Cingulum hippocampus (L) LDHk Splenium of corpus callosum LDHk
Retrolenticular part of internal capsule (L) DA Middle cerebellar peduncle LDHs
Superior corona radiata (R) LDHk Splenium of corpus callosum LDHs
Tapetum (R) FA External capsule (L) MD
Superior corona radiata (R) LDHs Medial lemniscus (R) FA
Inferior fronto-occipital fasciculus (L) FA Retrolenticular part of internal capsule (R) DHk
Uncinate fasciculus (L) MD Genu of corpus callosum LDHk
Cingulum (cingulate part) (R) DA Genu of corpus callosum LDHs

WMPM regions
Metric

WMPM regions
Metric(AD versus NC: 232) (EMCI versus NC: 163)

Pontine crossing tract DA Pontine crossing tract RD
Cingulum hippocampus (L) FA Pontine crossing tract MD
External capsule (L) FA Cingulum (cingulate part) (R) DA
Splenium of corpus callosum LDHk Cingulum hippocampus (R) LDHs
Splenium of corpus callosum LDHs Cerebral peduncle (R) LDHk
Crus of fornix (L) FA Cingulum hippocampus (L) DA
Cingulum hippocampus (R) FA Cingulum hippocampus (R) LDHk
Superior corona radiata (L) FA Uncinate fasciculus (R) LDHs
Anterior limb of internal capsule (L) FA Superior corona radiata (R) LDHk
External capsule (L) RD Anterior limb of internal capsule (L) DA

WMPM regions
Metric

WMPM regions
Metric(LMCI versus EMCI: 25) (LMCI versus NC: 94)

Middle cerebellar peduncle LDHs Middle cerebellar peduncle LDHs
Body of corpus callosum LDHk Pontine crossing tract LDHk
External capsule (L) LDHs Cingulum hippocampus (L) MD
Superior longitudinal fasciculus (L) LDHs Anterior corona radiata (R) LDHk
Superior cerebellar peduncle (L) DA Cingulum hippocampus (L) DA
Cingulum (cingulate part) (R) LDHs Cingulum hippocampus (L) RD
Anterior corona radiata (L) LDHs Pontine crossing tract LDHs
Superior fronto-occipital fasciculus (R) LDHk Middle cerebellar peduncle LDHk
Superior corona radiata (L) RD Body of corpus callosum FA
Cingulum hippocampus (L) RD Uncinate fasciculus (L) FA

The limbic system and association fiber were the abnor-
mal areas that were being most reported in WM research of
AD.[47–49] Cingulum is the important associative fiber that
was tight related with episodic memory between cingulate
gyrus and other brain GM structures. An impaired cingu-
lum would lead to interruption of hippocampus and cerebral
cortex, even causing dysmnesia in AD patients. Bozoki and
colleagues[50] revealed that descending cingulum integrity de-
clined during both the transition from normal aging to MCI
and the transition from MCI to AD. This research strongly ver-

ified that the cingulum played an important role in between-
group classification. The corpus callosum is a thick plate of
fibers that reciprocally interconnected the left and right hemi-
sphere. According to previous studies, the anterior part of the
corpus callosum contained interconnecting fibers that associ-
ated with the feeling of motivation were from the prefrontal
cortex.[51] Furthermore, the deficiency of the corpus callosum
integrity might lead to slow initiation and longer reaction times
in ADs. Bozzali and colleagues[52] discovered a notable de-
crease of the corpus callosum area from ADs compared with
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age matched healthy subjects. The aforementioned research
illustrated the corpus callosum is an importance WM tract for
revealing the developmental stage of AD. Moreover, the rel-
evant studies indicated that AD was associated with changes
in the WM of the frontal and temporal lobes.[53,54] The un-
cinate fasciculus is a white matter tract that connects the an-
terior part of the temporal lobe and is considered to play a
role in emotion, decision-making, and episodic memory.[55,56]

Review of many experimental studies supported the role of
the uncinate fasciculus whose disruption resulted in severe
memory impairment.[55,57] The disruption in connectivity be-
tween the temporal and frontal lobes via the uncinate fascicu-
lus was postulated as a possible cause of posttraumatic retro-
grade amnesia.[55,58] The internal capsule is the major route
that connects with the brainstem and spinal cord and contains
both ascending and descending axons. Moreover, the internal
capsule contains the pyramidal tracts, which imply its effect in
somatic movement. It is likely that the impairment of an inter-
nal capsule would lead to movement disturbance in AD. The
corona radiata, as the most prominent projection fiber, radi-
ates out from the cortex and comes together in the brain stem,
which continue ventrally as the internal capsule. Corona radi-
ata is related to the motor pathway and speculative analysis so
that the AD or MCI patients would suffer motor and cognitive
dysfunction.[59] The external capsule and uncinate fasciculus
comprise the capsular division of the lateral cholinergic path-
way. The capsular division of the lateral cholinergic pathway
innervates frontal, parietal, and temporal neocortices.[60] The
damage in the lateral cholinergic pathway is consistent with
AD pathology. The above research demonstrated the corona
radiate, external capsule, and internal capsule are important
WM features for classification in our research.

4. Conclusion and perspectives
The present work applies six kinds of WM metrics and

two classification methods to identify HC, EMCI, LMCI, and
AD. To the best of our knowledge this is the first time LDHs
and LDHk have been used as novel classification metrics. Ad-
ditionally, the uncinated fasciculus, cingulum, corpus callo-
sum, corona radiate, external capsule, and internal capsule are
considered to be distinguishing features for classification of
between-group. The promising results indicate that multi-type
and multi-regional brain WM features can effectively improve
the accuracy of diagnosis for AD and MCI. This study demon-
strates that AD or MCI can be distinguished from HC by
jointly using multi-type and multi-regional WM features, indi-
cating a multidimensional impairment existed in AD. Notably,
a set of discriminative features are consistently recognized
using two distinct classification models (i.e., SVM and LR).
These WM results commendably illuminate the neural mech-
anisms underlying AD. Finally, the proposed WM imaging-

feature-based classification method for AD implies an alterna-
tive way for identifying Alzheimer’s individuals, which offers
a valuable clue in clinical diagnosis.

The importance of our study can be summarized in four
points. (I) Except the familiar diffusion metrics FA, MD, DA,
and RD, we add the LDHs and LDHk diffusion metrics for
multi-metric analysis. (II) The MCI is divided into EMCI and
LMCI to further validate the classification capacity of the clas-
sifier. (III) Except single diffusion metric classification, we
combine the multi-type and multi-regional metrics together
for improving classification performance. (IV) The discrim-
inative features for classification are listed to show the impor-
tance of different WM fiber tracts. There are several limita-
tions in this study. First, the results may be unreliable by the
relatively small sample size. Although our results successfully
classify the four groups using a machine learning model, fur-
ther validation on a larger sample is required to understand the
present results. Second, longitudinal studies should be con-
ducted to clarify the progression of brain changes over time.
Finally, many factors such as brain atrophy, hyper-intensity,
and between-subject misalignment due to registration errors
may distort the values of diffusion metrics. To avoid this, more
advanced imaging techniques and sophisticated algorithms are
desired.
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