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Abstract

The Morris–Lecar (M–L) equations are an important neuron model that exhibits classes I

and II excitabilities when system parameters are set appropriately. Although many papers

have clarified characteristic behaviors of the model, the detailed transition between two classes

is unclear from the viewpoint of bifurcation analyses. In this paper, we investigate bifurcations

of invariant sets in a five-dimensional parameter space, and identify an essential parameter of

the half-activated potential of the potassium activation curve that contributes to the
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alternation of the membrane properties of the M–L neuron. We also show that the membrane

property can be controlled by varying the value of the single parameter.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Various types of biophysical models have been proposed [1,28,33,41] for studying
dynamical properties of biological membranes. Most of them are based on the
Hodgkin–Huxley (H–H) type of equations that originally described the electrically
excitable characteristics of the squid giant axons [16]. Generally, the neuron models
are classified into two types, classes I and II, according to the difference of the onsets
of repetitive firing [11,15,17,22,32]. Neurons with the class I excitability begin
repetitive firing with an almost zero frequency. In contrast, class II neurons begin
repetitive firing with a finite frequency. This difference can be explained by the
bifurcation theory. The generation of the repetitive firing in the class I neuron results
from a saddle-node bifurcation on an invariant circle. For example, the
Morris–Lecar (M–L) model [26], the Hindmarsh–Rose model [14], and the Conner
model [7] generate repetitive firing by a saddle-node bifurcation. While, subcritical
Hopf bifurcations underlie the class II excitability. The original H–H [16] and the
FitzHugh–Nagumo [9,27,31] models are the typical class II neurons.

Related to repetitive firing, physiological experiments [10,35,40] have reported
different phenomena with synchronous firing observed in the real brain. To
understand possible information processing, synchronization in coupled H–H
models has been investigated [20,21,24,39,43]. However, many cortical neurons in
mammals, such as pyramidal cells, are thought to possess the class I excitability.
Hence, it is important to investigate synchronized responses in systems of coupled
class I neurons.

When neural networks composed of a large number of coupled neurons are
considered, a simple neuron model with less state variables like the M–L
neuron model with two variables can have an advantage. Moreover, detailed
knowledge of the dynamics of the single neuron model with class I excitability is
desirable for studying synchronization phenomena observed in coupled neural
systems.

For example, Rinzel and Ermentrout [32] studied mechanisms of bifurcations in
the M–L neuron model by changing the externally applied DC current and found
that the bifurcation in the generation of the repetitive firing changes from the saddle-
node bifurcation to the subcritical Hopf bifurcation due to the variation of the
system parameters. Namely, the M–L model can exhibit properties of classes I and II
excitabilities [11,22]. Although, it is shown that the properties of the M–L model
changes when the values of four parameters are simultaneously changed [11,32], it is
not very clear which parameter change is dominantly related to the changes of
properties in the M–L model.
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Accordingly, in this paper, we analyze a global view of the bifurcation
structure of the M–L neuron in the multiple-parameter space and clarify the
essential parameter that contributes to the change of the membrane property of the
model. We change various parameters of the M–L model over wide ranges, including
previously studied parameters [11,32]. Paying much attention to the change in
bifurcation structures between classes I and II, we analyze the bifurcation sets
numerically and investigate two-parameter bifurcation diagrams with the applied
DC current as the abscissa and the other parameter as the ordinate. Using
bifurcation diagrams obtained from the analysis, we can identify parameter regions
in which the M–L model behaves as the class I neuron. We also show that the
membrane property of the M–L neuron can be controlled by changing the value of
only one parameter.

This paper is organized as follows. The M–L neuron model is described in Section
2. In Section 3, bifurcation types considered in this paper and numerical methods are
summarized. The results are shown in Section 4. Finally, the discussion and the
conclusion are given in Section 5.
2. Model

2.1. Morris–Lecar neuron

The M–L neuron model [26], proposed as a model for describing a
variety of oscillatory voltage patterns of Barnacle muscle fibers, is
described by

CM

dV

dt
¼ � gLðV � VLÞ � gCaM1ðV � VCaÞ � gKNðV � VKÞ þ I ext,

dN

dt
¼

N1 �N

tN

, ð1Þ

where V is the membrane potential, N 2 ½0; 1� is the activation variable for Kþ, I ext is
the externally applied DC current that is assumed to be temporally constant as a
parameter and t denotes the time measured in milliseconds. The system parameters
VCa, VK, and VL represent equilibrium potentials of Ca2þ; Kþ, and leak currents,
respectively, and gCa; gK, and gL denote the maximum conductances of correspond-
ing ionic currents.

Because the Ca2þ current changes much faster than the Kþ current, we assume
that the Ca2þ current is always in equilibrium with its activation curve, which is
given by

M1 ¼ 0:5½1þ tanhfðV � V1Þ=V 2g�, (2)

where V 1 is the midpoint potential at which the calcium current is half-activated, i.e.,
M1 ¼ 0:5. Moreover we assume V 2 is a constant, corresponding to the steepness of
the activation voltage dependence.



ARTICLE IN PRESS

Table 1

Fixed parameters for the M–L neuron [11]

CM ¼ 20 ðmF=cm2Þ

gK ¼ 8 ðmS=cm2Þ

gL ¼ 2 ðmS=cm2Þ

VCa ¼ 120 ðmVÞ

VK ¼ �80 ðmVÞ

VL ¼ �60 ðmVÞ

V1 ¼ �1:2 ðmVÞ

V2 ¼ 18 ðmVÞ
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The steady-state potassium activation N1 is also a voltage-dependent function
defined as follows:

N1 ¼ 0:5½1þ tanhfðV � V 3Þ=V 4g�, (3)

where V3 is the activation midpoint potential at which the potassium current is half-
activated and V 4 denotes the slope factor of the potassium activation. In Eq. (1), we
assume that the time constant tN with respect to the potassium activation is
described by

tN ¼ 1=½f coshfðV � V 3Þ=2V4g�. (4)

In this paper, we treat I ext as a main control parameter, and analyze two-parameter
bifurcations in the parameter plane of I ext and one of the parameters gCa;f;V 3, and
V 4. The parameter values in Eqs. (1)–(4), except for I ext; gCa;f;V3, and V 4, are listed
in Table 1 [11].
2.2. Nullclines

In order to understand how the system evolves with time, let us define two
isoclines, each of which is a curve in the (V ;N) plane, along which one of the
derivatives is constant. In particular, the null isocline, or the nullcline, is the curve
along which either dV=dt or dN=dt is zero. The V-nullcline associated with the fast
variable V, defined by the set satisfying dV=dt ¼ 0, is described by the following
function:

N ¼
I ext � gLðV � VLÞ � gCaM1ðV � VCaÞ

gKðV � VKÞ
. (5)

The N-nullcline associated with the variable N, defined by the set satisfying
dN=dt ¼ 0, is a monotonically increasing function of V as follows:

N ¼ 0:5½1þ tanhfðV � V3Þ=V 4g�ð� N1Þ. (6)
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3. Analysis methods

In this section, we summarize methods for calculating various types of
bifurcations in the M–L system.

Let us represent the two-dimensional autonomous differential equations
composed of Eqs. (1)–(4) as follows:

dx

dt
¼ f ðxÞ, (7)

where t 2 R and x 2 R2 denote the time and the state vector, respectively.
3.1. Bifurcation of equilibrium point

In Eq. (7), a point x� satisfying f ðx�Þ ¼ 0 is an equilibrium point. The stability of
the equilibrium point can be evaluated by linearizing the system around the
equilibrium point and by computing eigenvalues of the Jacobian matrix. When we
write the Jacobian matrix on the equilibrium point x� as

Df ðx�Þ ¼
qf ðx�Þ

qx
, (8)

the characteristic equation is given by

detðliI2 �Df ðx�ÞÞ ¼ l2i þ a1li þ a2 ¼ 0, (9)

where I2 is the 2� 2 identity matrix, li’s with i ¼ 1; 2 denote eigenvalues of the
Jacobian matrix Df ðx�Þ. We call x� a hyperbolic equilibrium point, if real parts of all
eigenvalues are non-zero. A bifurcation of an equilibrium point occurs when the
hyperbolicity of the equilibrium point is lost by the variation of a system parameter.
Possible bifurcations of the equilibrium point appearing in the M–L neuron are as
follows:
(1)
 The Hopf bifurcation: Two eigenvalues in Eq. (9) are purely imaginary numbers.
By changing the value of a parameter, an oscillatory solution appears.
(2)
 The saddle-node bifurcation: One of the eigenvalues is zero. By changing the
parameter value, a pair of equilibrium points appear.
The condition of each bifurcation can be described by a function of the coefficients in
Eq. (9). The Hopf bifurcation curve is calculated from the condition a1 ¼ 0 and
a240. A parameter set satisfying a2 ¼ 0 becomes a curve of saddle-node bifurcations
of equilibrium points.
3.2. Poincaré map and bifurcation of limit cycles

We consider a method for analyzing qualitative properties of limit cycles observed
in Eq. (7). For this purpose, a geometric approach plays an effective role. Namely,
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the qualitative analysis of Eq. (7) can be reduced to the study of a diffeomorphism,
which we call the Poincaré map.

We assume that there exists a limit cycle solution in Eq. (7) with an initial
condition x ¼ x0 at t ¼ t0, denoted by xðtÞ ¼ jðt; x0Þ, for all t. We take a local
section S which the solution crosses transversely as follows:

S ¼ fx 2 R2 j gðxÞ ¼ 0g, (10)

where gðxÞ is a scalar valued function of x in R2. In this paper, we define the cross-
section

S ¼ fðV ;NÞ 2 R2 j gðxÞ ¼ V � V� ¼ 0; NoN�g, (11)

where V� and N� denote the coordinate values of an equilibrium point x� of the
M–L system.

Let us define h as a local coordinate of S

h : S! P � R ; x 7!x ¼ hðxÞ (12)

and its inverse h�1 as an embedding map

h�1 : P! S ; x 7!x ¼ h�1ðxÞ, (13)

where x satisfies gðxÞ ¼ 0. Pick a point x 2 S and let P � S be some neighborhood
of x ¼ hðxÞ. Then the Poincaré map T is defined by the following composite map for
a point x 2 P:

T : P! P ; x 7! h jðtðh�1ðxÞÞ; h�1ðxÞÞ
� �

, (14)

where t denotes the time in which the trajectory emanating from a point x 2 S will
hit the local cross-section S again. The time t is called a return time.

The fixed point of the Poincaré map T is given by

x� TðxÞ ¼ 0. (15)

We can obtain a one-to-one correspondence between the limit cycle of Eq. (7) and
the fixed point of the Poincaré map T. Hence, the analysis of the limit cycle can be
reduced to an analysis of the fixed point of the Poincaré map T.

Now, let x� 2 S be a fixed point of T. Then the characteristic multiplier m 2 R is
obtained by

m ¼
dTðxÞ
dx

����
x¼x�

. (16)

Note that, by using Liouville’s formula, the value of m must be positive [30]. We call
x� a hyperbolic fixed point, if ma1. The topological type of the hyperbolic fixed
point can be classified by the distribution of the characteristic multiplier [18]. We
have two topologically different types of hyperbolic fixed points, that is, 0D and 1D

such that 0omo1 and m41, respectively.
Local and global bifurcations appearing in this paper are as follows:
(1)
 The tangent bifurcation: This type of local bifurcation occurs when the condition
with m ¼ 1 is satisfied. By changing a parameter, a pair of fixed points appears.
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(2)
 The homoclinic bifurcation: This global bifurcation is caused by the connection of
stable and unstable manifolds of an equilibrium point. A closed orbit emerges
with the variation of a system parameter.
The bifurcation sets in this paper were calculated by the fourth-order Runge–Kutta
method with the double precision numbers. The numerical determination of the local
bifurcation was accomplished using the method proposed by Kawakami [18]. On the
other hand, for the calculation of the homoclinic bifurcation, we used the method in
Refs. [19,42].

Before showing the results, we summarize notations about equilibrium points,
limit cycles, and their bifurcations. For representing types of equilibrium points, we
use the notation kOs with k ¼ 0; 1; 2, where the subscript integer k indicates the
unstable dimension of the equilibrium point and s is used to distinguish multiple
equilibrium points, if they coexist. On the other hand, the symbol kD with k ¼ 0; 1,
denotes a fixed point of the Poincaré map, where k denotes the unstable dimension of
the fixed point. In bifurcation diagrams, we use the following notations: g‘ and h‘ for
the saddle-node and the Hopf bifurcations of an equilibrium point, respectively,
where ‘ indicates the number to distinguish the several same bifurcation sets if they
exist; G‘ and H‘ for the tangent and the homoclinic bifurcations, respectively, where
‘ indicates the number to distinguish the same bifurcation sets as well.
4. Results

In this section, we show numerical results obtained by the bifurcation analysis of
the M–L neuron with the fixed system parameter values denoted in Table 1.

Bifurcation diagrams in (I ext;V 3), (I ext; gCa), (I ext;f), and (I ext;V 4)–planes are
shown in Figs. 1(a)–(d), respectively. In each diagram, the parameters, except for a
couple of parameters of the coordinate system, are fixed as values for a class I neuron
model as shown in Table 2. In the bifurcation diagrams, the regions and
denote the parameter regions in which a stable limit cycle and three equilibrium
points exist, respectively, and the shading pattern in Fig. 1(c) and (d) indicates the
regions of tristability, meaning coexistence of two stable equilibrium points and a
stable limit cycle. In the following, we consider bifurcation phenomena observed in
each parameter plane.

4.1. Bifurcations in the ðI ext;V 3Þ–plane

We consider typical bifurcations related to a generation of a limit cycle, which
corresponds to emergence of repetitive firing. First, we account for each bifurcation
mechanism along lines ‘1 and ‘2 in Fig. 1(a).

Fig. 2(a) shows a one-parameter bifurcation diagram along the line ‘1 in Fig. 1(a).
When the externally applied DC current I ext is increased, the stable and the saddle
equilibrium points denoted by symbols 0OL and 1OM in Fig. 2(a), respectively, get
closer to each other. At the saddle-node bifurcation g1, two equilibrium points
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at which a stable limit cycle exists. In parameter region , three equilibrium points coexist.

Table 2

System parameters for classes I and II models [11,32]

Parameter Class I Class II

gCa ðmS=cm2Þ 4.0 4.4

f ðs�1Þ 1
15

1
25

V3 ðmVÞ 12 2

V4 ðmVÞ 17.4 30

K. Tsumoto et al. / Neurocomputing 69 (2006) 293–316300
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coalesce and disappear. After the saddle-node bifurcation g1, we can see a generation
of a limit cycle with type 0D. Phase portraits and waveforms before and after the
saddle-node bifurcation g1 are illustrated in Figs. 3(a)–(c). Note that the values of
I ext labeled by (a)–(c) in Fig. 2(a) correspond to the phase portraits shown in
Figs. 3(a)–(c), respectively. On the other hand, a one-parameter bifurcation diagram
along the line ‘2 in Fig. 1(a) is shown in Fig. 2(c). If I ext is relatively small, then the
M–L neuron has a stable equilibrium point with type 0O, an example of which is
shown in Fig. 3(d). By increasing I ext, a pair of limit cycles is generated by the
tangent bifurcation G2 as shown in Fig. 2(c). The generated limit cycle with type 0D

corresponds to repetitive firing in the M–L neuron.Consequently, the stable limit
cycle 0D coexists with the stable equilibrium point with type 0O. Namely, there is
bistability in the narrow range between the tangent bifurcation G2 and the Hopf
bifurcation h2 in Fig. 2(c). An example of bistability observed at the point labeled by
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(e) in Fig. 2(c) is shown in Fig. 3(e). By further increasing I ext, we observe a
subcritical Hopf bifurcation h2 with the following formula:

0O þ 1D! 2O, (17)
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where the left- and right-hand sides of the arrow show equilibrium points and a limit
cycle before and after the bifurcation, respectively. After the Hopf bifurcation h2, the
stable limit cycle with type 0D remains a unique attractor (see Fig. 3(f)).

Next, let us consider bifurcation phenomena around the point labeled c1 in
Fig. 1(a). Fig. 4 shows an enlarged bifurcation diagram near the point c1 in Fig. 1(a),
while relevant phase portraits are presented in Fig. 5. We can explain various
transitions between an equilibrium state and a periodic firing state emerging by
passing through each bifurcation curve in Fig. 4. We suppose that the values of
parameters I ext and V 3 vary across bifurcation sets as in the following cases:

Case 1: ! ! H !

As the first bifurcation, we observe a subcritical Hopf bifurcation h1 related to a
spiral source of an equilibrium point 2OH . The bifurcation formula is given by

2OH ! 0OH þ 1D. (18)

The unstable limit cycle with type 1D, which is generated by the Hopf bifurcation h1,
approaches the saddle equilibrium point 1OM by further increasing V 3, and then a
homoclinic orbit is generated at the bifurcation point H (see the panel H in Fig. 5).
After the homoclinic bifurcation H, the unstable limit cycle disappears as shown in
panel in Fig. 5.

Case 2: ! !

At the parameter value labeled by in Fig. 4, there is a stable limit cycle with
type 0D and a spiral source of an equilibrium point 2OH . By increasing V 3 from
to , we observe the Hopf bifurcation h1. At Hopf bifurcation h1, the stability of the
equilibrium point 2OH changes, and then an unstable limit cycle with type 1D

appears, as shown in panel in Fig. 5. A tangent bifurcation of limit cycles occurs
when the value of V 3 crosses the bifurcation set G1 by further increasing V3. The
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bifurcation formula is given by

0D þ 1D! F, (19)
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where the symbol F denotes the disappearance of a pair of the stable and the
unstable limit cycles. Panel in Fig. 5 shows an example of a phase portrait after
the tangent bifurcation G1.

Case 3: ! g01!

By increasing I ext, the stable and the saddle equilibrium points get closer to each
other. At the saddle-node bifurcation g01, two equilibrium points coalesce and
disappear. After the saddle-node bifurcation g01, the stable limit cycle with type 0D

exists. Note that the mechanism of the genesis of the limit cycle is the same as that of
the bifurcation mechanism along the line ‘1 in Fig. 1(a).

Case 4: ! g001 !

In the point labeled by in Fig. 4, two stable equilibrium points 0OL and 0OH

coexist as attractors. Moreover, an unstable limit cycle exists since the value of V 3 is
larger than that of the Hopf bifurcation h1. By increasing I ext, we observe the saddle-
node bifurcation g001. Due to this saddle-node bifurcation g001, the stable and the saddle
equilibrium points 0OL and 1OM coalesce and disappear, and a stable limit cycle with
type 0D appears according to the same mechanism of case 3. After the saddle-node
bifurcation g001, we can see a typical phenomenon of bistability of the stable
equilibrium point 0OH and the stable limit cycle 0D.

Case 5: ! g2!

When the value of I ext varies across the bifurcation set g2 in the direction from
to , we observe the following bifurcations:

0OL þ 1OM ! F (20)

Note that a generation of a limit cycle is not observed after the saddle-node
bifurcation g2.

It should be noted that a degenerated bifurcation occurs at the point labeled by c1
in Fig. 4. At point c1, the saddle-node bifurcation of equilibrium points, the
homoclinic bifurcation, and the tangent bifurcation of limit cycles occur
simultaneously (see the panel c1 in Fig. 5).

Finally, we consider bifurcation phenomena observed around the point labeled by
BT in Fig. 1(a). Fig. 6 shows enlarged and detailed bifurcation diagrams near the
bifurcation point BT in Fig. 1(a). At the saddle-node bifurcation g3, a saddle and a
nodal source of equilibrium points coalesce and disappear. When the values of I ext
and V 3 across the saddle-node bifurcation set g3 in the direction from inside to
outside the region , the number of equilibrium points changes from three to one.
Unlike the saddle-node bifurcation g1, a limit cycle does not emerge with the
bifurcation g3. After the saddle-node bifurcation g3, a stable equilibrium point
remains as a unique attractor. On the other hand, the bifurcation set g6 forms a cusp
point, which is labeled by CP in Fig. 6(a), together with the saddle-node bifurcation
set g4 of equilibrium points. At the cusp point CP, nodal source of two equilibrium
points and a saddle coalesce into one nodal point. The Hopf bifurcation set h2 is
terminated on the saddle-node bifurcation sets composed of g1 and g4. At this value
of the termination, there is an equilibrium point with double zero eigenvalues.
Moreover, the homoclinic bifurcation curve H3 originates from the terminated point
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of the Hopf bifurcation set h2. Thus, the system exhibits the generic Bogdanov–
Takens (BT) bifurcation [2,23,37] at this point.

In the following, we summarize bifurcation mechanisms related to geneses of limit
cycles. Fig. 6(b) shows an enlarged bifurcation diagram around the homoclinic
bifurcation set H3 in Fig. 6(a). The points labeled by Q–X show parameter values at
which the attractors shown in Figs. 7(a)–(h) are observed, respectively. When the
value of I ext increases between the points Q and S, for the fixed value of V 3 equal to
4.1mV, a homoclinic orbit emerges at point R. The orbit along one of the unstable
manifolds of the saddle equilibrium point 1OM agrees with that along one of the
stable manifolds, encircling equilibrium points 2OH and 0OL as shown in Fig. 7(b).
The homoclinic orbit is destroyed by increasing I ext, and a stable limit cycle appears
as shown in Fig. 7(c). By further increasing I ext, we observe another kind of
homoclinic bifurcation H3 at point T in Fig. 6(b). After the homoclinic bifurcation
H3, the homoclinic orbit generates an unstable limit cycle. The unstable limit cycle
with 1D, which emerges after the homoclinic bifurcation H3, disappears at the Hopf
bifurcation h2. Before and after the Hopf bifurcation h2, we have the following
bifurcation formula:

0OL þ 1D! 2OL. (21)

The transition is illustrated in Figs. 7(e) and (f). A saddle-node bifurcation of
equilibrium points is observed when I ext crosses the bifurcation set g4 with further
increasing I ext. Figs. 7(f)–(h) correspond to the phase portraits observed before and
after the saddle-node bifurcation g4. On the other hand, it should be noted that
degenerate bifurcations occur at points labeled by P1 and P2 in Fig. 6(a) and (b) such
that each homoclinic bifurcation set is terminated on a saddle-node bifurcation set.
Figs. 8(a) and (b) show schematic phase portraits at points P1 and P2 in Fig. 6(a) and
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(b), respectively. At each phase portrait, the saddle-node bifurcation with a
saddle and a nodal source of equilibrium points and each type of homoclinic
bifurcations occur simultaneously. Furthermore, at point P1, the homoclinic
bifurcation related to an unstable limit cycle also occurs simultaneously. Note that
the unstable limit cycle is generated by passing through the bifurcation set g5 in the
direction from inside to outside the region . The bifurcation mechanism of the
genesis of the unstable limit cycle is the same as that in the case of the saddle-node
bifurcation g1.

4.2. Bifurcations in the ðI ext; gCaÞ–plane

Fig. 1(b) shows a bifurcation diagram of equilibrium points and limit cycles in the
(I ext, gCa)–plane. Except for the Hopf bifurcation h2, each bifurcation labeled by the
same symbol as in Fig. 1(a) has the qualitatively similar mechanism described in the
previous subsection. Hence, we consider the bifurcations related to the Hopf
bifurcation h2. The tangent bifurcation set G emanates from the c1 point and
terminates at another point of the parameter space with the Hopf bifurcation set.
Namely, the terminated point labeled by B in Fig. 1(b) denotes the Bautin
bifurcation point [23] at which the Hopf bifurcation of an equilibrium point and the
tangent bifurcation G of limit cycles occur simultaneously. At bifurcation point B,
the Hopf bifurcation curve is divided into two curves with different properties: curve
h1 with a subcritical Hopf bifurcation and curve h2 with a supercritical Hopf
bifurcation. When the value of I ext and gCa vary across the bifurcation set h2 in the
direction from outside to inside the region , we observe the supercritical Hopf
bifurcation with the following formula:

0O! 2O þ 0D. (22)
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Note that the limit cycle generated by the supercritical Hopf bifurcation h2 arises
with an arbitrarily small amplitude.
4.3. Bifurcations in the ðI ext;fÞ–plane

Let us consider bifurcations in the (I ext;f)–plane. In Fig. 1(c), it should be noted
that the parameter region in which two stable equilibrium points and a stable limit
cycle coexist, denoted by , appears due to the variation of f. Namely, we can
observe the phenomenon of tristability. In the following, we show a mechanism of
the bifurcation process that enables the generation of the tristability. An enlarged
bifurcation diagram near point c2 in Fig. 1(c) is shown in Fig. 9. Figs. 10(a)–(d) show
schematic one-parameter bifurcation diagrams along the lines ‘k

3, for k ¼ 1; 2; 3, and
4, in Fig. 9. As shown in Fig. 10(a), the mechanism of the generation of the stable
limit cycle when I ext increases along the line ‘13 is the same as those in the ðI ext;V3Þ—
and the ðI ext; gCaÞ–planes; an example of the one-parameter bifurcation diagram is
shown in Fig. 2(a). When the parameter I ext changes along line ‘23 in Fig. 9, a
degenerated bifurcation at point c2 is observable. At point c2, the saddle-node
bifurcation of equilibrium points and the homoclinic bifurcation H occur
simultaneously. By increasing the value of f, the parameter value of the generation
of the homoclinic bifurcation H is shifted in the direction of decreasing the value of
I ext. The point c2 in Fig. 9 is the border of the parameter value of f such that the
bifurcation mechanism related to the generation of a stable limit cycle changes from
the saddle-node bifurcation to the homoclinic one. Moreover, the bifurcation
processes along lines ‘33 and ‘

4
3 in Fig. 9 are explained as follows. When the value of

I ext passes through the Hopf bifurcation curve h, the stability of the spiral source

2OH changes. The bifurcation formula is given by

2OH ! 0OH þ 1D (23)
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in the direction of increasing the value of I ext. By further increasing I ext, the saddle
equilibrium point 1OM is subjected to the homoclinic bifurcation H, and then a
stable limit cycle appears. After the homoclinic bifurcation H, we can observe the
tristability phenomenon such that two stable equilibrium points 0OL and 0OH and
the stable limit cycle generated by the homoclinic bifurcation H coexist. The stable
limit cycle disappears at the tangent bifurcation G, together with the unstable limit
cycle, which is generated by the Hopf bifurcation of Eq. (23). Note that the
phenomenon of the tristability can be observed in the range of parameters between
the homoclinic bifurcation H and the saddle-node bifurcation g2 (resp., tangent
bifurcation point G) with the change along the line ‘33 (resp., ‘43). These parameter
ranges correspond to the region in Fig. 1(c) or Fig. 9.
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4.4. Bifurcations in the ðI ext;V 4Þ–plane

Finally, we consider bifurcations in the (I ext;V 4)–plane. According to the same
mechanism described in the previous subsections, stable limit cycle is generated by
varying the values of I ext and V4 through the bifurcation set g1 in the direction from
inside to outside the region in Fig. 1(d). On the other hand, it should be noted
that a different type of a stable limit cycle generated via a homoclinic bifurcation can
be observed in a certain parameter region. The homoclinic bifurcation is generated
by decreasing the value of V 4, passing through the curve H in Fig. 1(d). The
bifurcation mechanisms observed at around the point labeled as c2 in Fig. 1(d) are
qualitatively similar to those around the point c2 in Fig. 1(c). In the region in
Fig. 1(d), we observe a phenomenon of the tristability, which may be meaningful as
nerve dynamics. An example of the phase portrait and the waveform in a situation of
the tristability is shown in Figs. 11(a) and (b), respectively. Fig. 11(b) shows
transitions among three attractors caused by input perturbations to the variable V

with appropriate timing.
5. Discussion

We have investigated bifurcations observed in the M–L neuron model. By
analysing bifurcations by changing I ext, gCa;f;V 3, and V4, we have identified the
parameter regions in which the M–L neuron exhibits properties of the class I
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excitability, the bistability, and the tristability with the existence of two stable
equilibrium points and one stable limit cycle.

In this section, we discuss the change in properties between classes I and II
neurons. In particular, we focus on whether the membrane property can switch
between two classes if a single parameter is changed. Rinzel and Ermentrout [32]
studied stable solutions observed in the M–L model by changing the system
parameters f, gCa, V 3, and V 4, and presented that the membrane properties of
classes I and II correspond to repetitive firing oscillations generated by a saddle-node
and a subcritical Hopf bifurcations of equilibrium points, respectively. However, the
mechanism of the global transition between two classes is still unclear from the
bifurcational point of view. Therefore we have investigated detailed bifurcations of
invariant sets in the parameter space ðI ext;f; gCa;V 3;V4Þ. To identify the most
important single parameter contributing to the membrane properties, we had the
following strategy. First, we took the parameter values listed in Table 2, which are
the same as considered in Ref. [11], namely we can observe that the neuron exhibits
the class I excitability. Then, by using our method for bifurcation analysis, we
calculated various kinds of planer bifurcation diagrams for the values of three
parameters fixed above, and investigated a route to the class II excitability through
bifurcation.

As shown in Figs. 1(a)–(d), repetitive firing is caused by the saddle-node
bifurcation g1. This means the repetitive firing starts with the zero frequency. Indeed,
from the graph of the frequency as a function of the parameter I ext, shown in
Fig. 2(b), the M–L neuron exhibits the property of the class I excitability. On the
other hand, in the case of bifurcations observed in the (I ext;V 3)–plane, when the
value of I ext is changed, e.g., along the line ‘2 in Fig. 1(a), the repetitive firing with a
non-zero frequency appears via the subcritical Hopf bifurcation, see Figs. 2(c) and
(d). This is the typical property of class II neurons. Among four bifurcation
diagrams of Fig. 1, the only parameter plane including the route to class II
excitability is (I ext;V3). This result implies that the essential parameter determining
the property of the membrane excitability of the M–L neuron is V 3, which denotes
the half-activated potential of the potassium activation curve.

Note that our investigation is based on the parameter setting by Rinzel and
Ermentrout [32]. We can also observe different bifurcations by changing each
bifurcation parameter over a wider range. For example, we observe a continuous
transition from an equilibrium point to a limit cycle by the supercritical Hopf
bifurcation h2 in the (I ext; gCa)–plane when the value of gCa is relatively small. Then,
the limit cycle emerges with a non-zero frequency and a small amplitude, that is, the
limit cycle corresponds to a non-firing subthreshold oscillation. By increasing
the values of I ext and gCa, the oscillation of the limit cycle, which is generated by
the Hopf bifurcation h2, continuously goes from non-firing to firing. In this case, the
M–L model possess the property of the class II neuron in the sense that the firing
oscillation starts with the non-zero frequency. While, the classification of repetitive
firing based on the frequency as an oscillation termination has been proposed by
Izhikevich [17]. Following Izhikevich’s classification, the M–L neuron also has
properties of the class II spiking.
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It is thought that the presence of an A-current, which is known as a transient
potassium current [6], plays a major role in the determination of the property of the
nerve excitability. Therefore, it was widely believed that the original H–H model [16]
does not exhibit the class I excitability unless the potassium A-current is added [6].
Rush and Rinzel [34] have shown, however, that an A-current is not necessary for
the class I excitability if the sodium and potassium (in) activation curves in the H–H
model are shifted appropriately. While, in the M–L model without the potassium A-
current, the variation of the parameter V3 corresponds to a shift on the potassium
activation curve in the ðV ;NÞ plane. Therefore our result suggests that, in a general
neuron model, the membrane property of classes I and II can be changed by shifting
the potassium activation curve.

There are several studies related to analyses of coupled systems of class I neurons.
Hansel et al. [12] reported that a synchronized repetitive firing does not appear and
an anti-phase synchronization and cluster states can be observed in a class I neuron
model coupled through the chemical synapse [8,12]. Nomura et al. [29] studied the
effect of the synchronized firings on the variation of synapse conductances in
coupled systems composed of a class I neuron with the chemical and the electrical
synapses, and demonstrated that a synchronized repetitive firing and an anti-
synchronized one coexist, depending on the initial condition. The result obtained in
this paper will be useful in considering the difference of the spatio-temporal firing
activities between two coupled systems consisting of the M–L neuron with distinct
classes because the property of the membrane excitability can be controlled by only
one-parameter variation of the half-activated potential of the potassium activation
curve. From a physiological point of view, it might be difficult to directly test the
change of properties of a nerve membrane by changing the activation curve of a
potassium channel because the potassium activation is determined by the nature of
the ion channel. However, advances in molecular biology, genetics, biochemistry,
and physiology have been clarifying the structures of ion channels [4,36]; e.g., there
are various kinds of potassium channels in nerve membranes [13]. In addition, it has
recently been reported that the voltage dependence of the (in) activation of a certain
potassium channel can be shifted by modulating a channel protein by a kinase, a
phosphatase, etc. [3,5,25,38]. If the (in) activation curve of a potassium channel is
appropriately shifted by modulating the channel protein, it may be possible to alter
the property of the nerve membrane between classes I and II. Then, bifurcation
analysis based on our numerical method will be feasible for investigating bifurcation
structures related to the difference of neuron classes. Analysis of bifurcations in
coupled systems of class I neurons with anatomically plausible connections is an
important future problem.
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