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Determining the response characteristics of neurons to fluctuating noise-like inputs similar to
realistic stimuli is essential for understanding neuronal coding. This study addresses this issue by
providing a random dynamical system analysis of the Morris–Lecar neural model driven by a white
Gaussian noise current. Depending on parameter selections, the deterministic Morris–Lecar model
can be considered as a canonical prototype for widely encountered classes of neuronal membranes,
referred to as class I and class II membranes. In both the transitions from excitable to oscillating
regimes are associated with different bifurcation scenarios. This work examines how random
perturbations affect these two bifurcation scenarios. It is first numerically shown that the Morris–
Lecar model driven by white Gaussian noise current tends to have a unique stationary distribution
in the phase space. Numerical evaluations also reveal quantitative and qualitative changes in this
distribution in the vicinity of the bifurcations of the deterministic system. However, these changes
notwithstanding, our numerical simulations show that the Lyapunov exponents of the system remain
negative in these parameter regions, indicating that no dynamical stochastic bifurcations take place.
Moreover, our numerical simulations confirm that, regardless of the asymptotic dynamics of the
deterministic system, the random Morris–Lecar model stabilizes at a unique stationary stochastic
process. In terms of random dynamical system theory, our analysis shows that additive noise
destroys the above-mentioned bifurcation sequences that characterize class I and class II regimes in
the Morris–Lecar model. The interpretation of this result in terms of neuronal coding is that, despite
the differences in the deterministic dynamics of class I and class II membranes, their responses to
noise-like stimuli present a reliable feature. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1756118#

A fundamental issue for understanding information cod-
ing in nervous systems is that of neuronal reliability. As
pointed out by Movshon,1 neural responses to an identi-
cal stimulus in vivo are unreliable from moment to mo-
ment. Identical stimuli delivered to neurons never elicit
precise responses on repeated trials. Recently, neural
variability and its importance for the signal processing
have been most intensively investigated in experimental
and computational neuroscience studies. However, little
has been performed from the theoretical and analytical
points of view. From the standpoint of random dynamical
system theory, we tackled this issue for a simple but re-
alistic neural model, the Morris–Lecar „ML … equations.
Qualitative difference of response characteristics in the
ML model generates two bifurcation scenarios. We found
that additive stochastic perturbations completely destroy
the bifurcation scenarios. In other words, noise-like

stimulus does not induce any stochastic dynamical bifur-
cations. Moreover, we found that the ML model evoked
by noise-like stimulus has an asymptotically stable sto-
chastic attractor. This implies that if the ML model is
initiated at a different state point and presented with the
same noise-like input repeatedly, the same response will
be evoked after a transient time. In this sense, the ML-
model response evoked by such noise-like input is reli-
able. These results should help to elucidate neural coding
in actual neural systems.

I. INTRODUCTION

Neurons respond to stimuli by generating sequences of
brief electrical pulses, referred to as action potentials. The
form of action potentials varies little, so that information
concerning the stimulus cannot be readily conveyed by their
shape. Conversely, the timing of these electrical discharges is
stimulus dependent, so that elucidating the neuronal code
consists essentially in determining the relation between some
stimulation and the discharge train it evokes. This study ad-
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dresses this issue by analyzing the response of a canonical
membrane model, namely the Morris–Lecar~ML ! model,2 to
white Gaussian noise current stimulation considered as a re-
alistic model for the inputs of some neuronsin vivo.

The response of neurons to periodic stimuli such as sinu-
soidal currents, as well as periodic pulse trains have been
widely studied.3–6 These have revealed that such stimuli
evoke diverse firing patterns that are phase locked, quasi-
periodic or chaotic. A large number of theoretical analyses
have been devoted to characterize these behaviors from the
standpoint of the geometrical theory of dynamical systems
and determine the conditions for their occurrence through
systematic bifurcation analysis~e.g., Refs. 7, 8, and refer-
ences therein!.

In this study, we are concerned with the response of
neurons to a different form of stimulation, namely a white
Gaussian noise current. Gaussian current stimulation has
been used inin vitro experiments that attempt to reproduce
the response of neurons to realistic stimulus. Indeed the in-
puts some neurons in central nervous system, such as neo-
cortical cells, receive can be well approximated by highly
fluctuating aperiodic signals such as the sample path of a
Gaussian process.9

In a seminal study, Bryant and Segundo10 observed that
such stimuli evoke reliable discharge times, in the sense that
when the neuron is stimulated repeatedly with the same
Gaussian sample path, there is little variability in the timing
of action potentials from one trial to another. Bryant and
Segundo performed their experiment using well identified
neurons of the sea slug aplysia. Since then, their observation
has been consistently reproduced in a wide variety of prepa-
rations such as rat muscle spindles subject to Gaussian me-
chanical stimuli,11 rat neocortical neurons,9 aplysia buccal
pacemaker cells,12 and various stages of the visual system of
insects and vertebrates subject to aperiodically fluctuating
light stimuli.13–15

In this study, we perform a numerical analysis of neu-
ronal behavior in response to white Gaussian noise current.
As mentioned above, the geometrical methods of dynamical
system theory have been highly successful in elucidating the
response of neurons to periodic stimuli. Here, we use a dif-
ferent approach, based on random dynamical system~RDS!
theory.16 The random dynamics of systems forced by Gauss-
ian noise can considerably differ from their deterministic
counterpart. Highly illustrative examples of such differences
are the destruction of various bifurcations, such as pitchfork
bifurcation in scalar systems17 and Hopf bifurcation in the
stochastic Brusselator by additive white Gaussian noise,18 or,
the onset of stochastic chaos in the noisy Kramer’s
oscillator.19

Previous studies of random dynamical systems applied
to neuronal models have also revealed that the response of
neuronal models to white Gaussian noise can take on diverse
forms, with for instance the active rotator20 and the
Hodgkin–Huxley model being exempt of dynamic stochastic
bifurcations,21 while, in contrast, the FitzHugh–Nagumo can
switch to a regime of stochastic chaos.22,23

This work is concerned with the random dynamics of the
ML model. This model which was first introduced to account

for electrical activity of the barnacle muscle fibers has, since
then, become a canonical neuronal model because for differ-
ent parameter regimes, it displays two important forms of
neuronal behavior. From the standpoint of the geometrical
theory of dynamical systems, these forms correspond to two
different bifurcation scenarios between a stable equilibrium
point and a stable limit cycle. In the first one, the limit cycle
appears through a saddle-node separatrix-loop bifurcation,
while in the second one it is through a double limit cycle
bifurcation followed by a subcritical Hopf bifurcation. The
main purpose of this work is to analyze the influence of
random perturbations upon these two scenarios. In fact, our
study suggests that additive noise destroys both bifurcation
sequences in the sense of the stochastic bifurcation theory.
However, we also show that the characteristics of the station-
ary stochastic process associated with the stochastic ML
model depend both on the noise intensity and the behavior of
the deterministic system.

This paper is organized as follows: In Sec. II, we intro-
duce the deterministic ML model and review the two types
of behavior it displays. In Sec. III, the stochastic ML model
is described. In Sec. IV, the stochastic approach is explained
and its numerical results are presented. In Sec. V, the RDS
approach is addressed. In Sec. VI, numerical results on the
RDS approach are provided. In Sec. VII, we finally discuss
our results.

II. THE DETERMINISTIC MORRIS–LECAR MODEL

This section presents first the ML model, and then re-
views the dynamics of this model for two different parameter
sets that reproduce the behavior of class I and class II neu-
ronal membranes. These were first described by Rinzel and
Ermentrout,24 and our presentation closely follows theirs.

A. The Morris–Lecar model

The ML model is a mathematical model for the barnacle
muscle fiber.2 The ML model belongs to the vast family of
conductance-based membrane models of which Hodgkin–
Huxley ~HH! model is a well-known archetype.25 The ML
equations represent an electrical circuit equivalent to a cel-
lular membrane crossed by three different transmembranar
currents, referred to, respectively, as the voltage-gated Ca21

current, the voltage-gated delayed-rectifier K1 current and
the leak current.2 Figure 1 shows the equivalent circuit hy-
pothesized for a space-clamped patch of sarcolemma mem-
brane of the barnacle muscle fiber.

The original ML model is a third-order nonlinear system
of a Hodgkin–Huxley form whose variables represent the
voltage and Ca21 and K1 activations. Taking advantage of
the fact that the second variable is much faster than the third
one, Morris and Lecar reduced the original model to a two-
dimensional system by assuming that Ca21 activation
reaches instantaneously its steady state value.2 Our study is
concerned with this reduced version of the model which is
widely referred to as the ML model in the literature. The ML
model is represented by the following second-order system:
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C
dv t

dt
52gCam`~v t!~v t2VCa!2gKwt•~v t2VK!

2gL~v t2VL!1I , ~1a!

dwt

dt
5f

w`~v t!2wt

tw~v t!
, ~1b!

where

m`~v !50.5F11tanhS v2V1

V2
D G , ~2a!

w`~v !50.5F11tanhS v2V3

V4
D G , ~2b!

tw~v !5FcoshS v2V3

2V4
D G21

. ~2c!

The three terms in the right-hand side of Eq.~1a! represent
successively the voltage-gated Ca21 current, the voltage-
gated delayed-rectifier K1 current, and the leak current. In
Eq. ~1!, the variablesv t andwt represent the membrane volt-
age and the activation of delayed rectifier K1 current. The
parametersgCa, gK , andgL are the maximal conductances
associated with the three transmembranar currents, and,VCa,
VK , andVL are the corresponding reversal potentials. Input
current is represented byI . Finally the constantf in Eq. ~1b!
determines the scaling of the rate for K1 channel opening.

The two parameter sets used throughout this study are
the same as those described by Rinzel and Ermentrout.24

Their values are listed in the Appendix. The rational for se-
lecting these two parameter sets is explained in the following
section, which also describes the dynamics of the determin-
istic ML model for these parameter values.

B. Class I and class II membranes

Here, we briefly explain the class I and II excitability we
referred to in this paper. Neuronal membranes generate brief
electrical pulses referred to as action potentials or spikes.
Roughly speaking, a membrane may be excitable or oscillat-

ing. In the former, the membrane potential stabilizes at a
resting state, while in the latter, it undergoes periodic oscil-
lations due to periodic generation of action potentials. An
excitable membrane may also generate action potential if
stimulated by a strong enough input such as a sufficiently
large current pulse. In such a situation, the time interval
separating the onset of the stimulus from the onset of the
action potential is referred to as the spike latency. It repre-
sents the delay between the stimulation and the membrane
response.

Excitable membranes may be transformed into oscillat-
ing ones and vice versa by changing experimental condi-
tions. For instance, in some experimental preparations, an
excitable membrane, that is one that stabilizes at a constant
resting potential, may be rendered oscillating, that is forced
to periodically generate action potentials, through the injec-
tion of a well-adjusted constant direct current.

The separation of membranes into class I and class II is
based upon phenomenological descriptions of excitable and
oscillating regimes, and the transition between the two. In a
systematic study of the response of isolated axons ofCarci-
nus maenasto various amplitudes of rectangular current
stimuli, Hodgkin found that some oscillating axons could be
made to fire with arbitrarily low response frequencies, while
others could not.26 The discharge frequencies of the latter
class of axons lie within a narrow range and were clearly
distinct from zero. Furthermore, the first axons could display
considerable spike latencies, while in the second ones, the
time delay between stimulation and response was not sub-
stantial. Hodgkin referred to the first type of membrane as
class I and to the second type as class II. Hodgkin’s results
are in general agreement with those obtained in other prepa-
rations, such asCancer pagurusaxons27 and decalcified
nerves of frogs and squids.28 For this reason, Hodgkin’s clas-
sification is considered to be representative of the behavior
of a wide variety of neurons.

In the same way as experimental preparations, Hodgkin–
Huxley-type single-neuron models commonly used in theo-
retical neurosciences are also classified into class I or class II
categories. Rinzel and Ermentrout proposed an interpretation
of these membrane classes in terms of the phase portraits and
bifurcation diagrams of the mathematical models.24 Since
they carried their analysis using the ML model, this model
has become the canonical system in which the characteristics
of each class of membrane is investigated. For the sake of
self-containment, we briefly present an analysis of the ML
model in class I and class II regimes, and describe the cor-
responding bifurcation diagrams.

1. Class I

Figure 2~A! is the bifurcation diagram of the ML model
with the class I parameter set. The lines in Fig. 2~A! repre-
sent the steady-state voltagev versusI and the maximum
and minimum voltage for periodic solutions. ForI ,I c

.40 mA/cm2, there are three equilibrium points, the lower
one being a stable node, the middle one a saddle point and
the upper one an unstable focus. ForI .I c , only the unstable
point subsists surrounded by a stable limit cycle. AtI 5I c ,

FIG. 1. Equivalent circuit for a patch of space-clamped barnacle sarco-
lemma. The membrane current can divide into four pathways: one is capaci-
tative, and three are conductive pathways in series with the associated re-
versal potentials, shown as batteries.
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the stable node, the saddle point and the limit cycle collide
and form a saddle-node loop, also referred to as a saddle-
node on an invariant circle.

The bifurcation scenario depicted above indicates that
the transition to repetitive firing is marked by arbitrarily low
frequency. That is, a class I membrane is observationally
recognized by a continuous response frequency to an input
current ~FI! curve that shows oscillations arising with arbi-
trarily low frequencies as shown in Fig. 2~B!. This limit
cycle is approximately of constant amplitude, but the period
depends on the amplitude of the input currentI . The FI curve
thus shows that the class I cell can produce a wide range of
firing frequencies and that the limit cycle has an infinite pe-
riod whenI 5I c .

In the excitable regime, the stable manifold of the saddle
point acts as the firing threshold. Depending on their
strength, impulsive perturbations of the stable equilibrium
can take the system on either side of this manifold. Those
that are in the same side as the stable equilibrium produce
subthreshold responses. The others evoke a discharge, that is,
the system returns to the stable equilibrium point along the
longer heteroclinic connection between the saddle and the
stable equilibrium. There is a critical perturbation that would

take the system exactly on the stable manifold of the saddle.
This is called the threshold perturbation: For this exact value,
the system does not return to the stable equilibrium, instead
it converges to the saddle point. The closer the perturbation
amplitude is to this value and the longer it takes for the
system to return to the equilibrium point. This phenomenon
accounts for the long spike latency times, and their depen-
dence on perturbation amplitude.

2. Class II

The bifurcation scheme of the ML model with class II
parameter set substantially differs from the one depicted
above@Fig. 3~A!#. In this case the system possesses a unique
equilibrium point for all values ofI . This equilibrium is
stable for I<I H.93.86mA/cm2, and unstable beyond this
point. The loss of stability occurs through a subcritical Hopf
bifurcation. The branch of unstable periodic solutions ap-
pearing from this bifurcation expand to lower values ofI ,
until I DC.88.29mA/cm2 where they collide, at a double
cycle bifurcation, with a branch a stable periodic solutions.
The latter branch exists forI .I DC and until 216.9mA/cm2.
The diagram shows that the system stabilizes at a unique
equilibrium point forI ,I DC, while trajectories of all initial

FIG. 2. ~A! Bifurcation diagram of the class I ML model. The thick curves
stand for stable solutions and the thin curve for unstable ones. Repetitive
firing occurs for the critical currentI c.40mA/cm2, where the stable rest
state and saddle coalesce. Branches labeled ‘‘osc’’ respectively represent
maximum and minimum values ofv in each periodic solution. Abscissa:
stimulus current intensityI (mA/cm2), ordinate: membrane voltagev ~mV!.
~B! Frequency of stable periodic solutions versusI . With increasing the
current intensity, the frequency is monotonically increasing from zero fre-
quency at the critical current.

FIG. 3. ~A! Bifurcation diagram of the class II ML model. The system
possesses a unique equilibrium point for all values ofI in the parameter
region shown here. The thick curve stands for stable equilibrium points for
I ,I H.93.86 (mA/cm2) and the thin curve for unstable ones. Amplitude of
stable periodic solutions~labeled ‘‘osc’’! is indicated by maximum and
minimum values ofv over one period forI .I DC.88.29 (mA/cm2). Stabil-
ity of the periodic solutions is also shown as filled~stable! and unfilled
~unstable! circles. Abscissa: stimulus current intensityI (mA/cm2), ordi-
nate: membrane voltagev ~mV!. ~B! Frequency of stable periodic solutions
versusI . Frequency is monotone over theI parameter range of periodic
solutions and the minimum firing frequency has a nonzero value.
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conditions except the unstable equilibrium stabilize at the
limit cycle for I>I H . Between these two values, i.e.,I DC

<I<I H , the stable equilibrium and limit cycle coexist and
the unstable limit cycle separates their respective attraction
basins. The bifurcation scenario of the class II ML model
accounts for the discontinuous FI curves with the oscillations
arising with a nonzero frequency. The response frequency
range is narrow and largely independent of the currentI as
plotted in Fig. 3~B!.

The excitable regimes of the class I and II ML models
also differ in that in the latter there is no true threshold for
the appearance of spikes. In this case, the response of the ML
model is not an all-or-nothing phenomenon. When a pulse
stimulus evokes a spike, the amplitude of the spike can de-
pend on the size of the pulse stimulus. The delay to a spike is
less sensitive to the size of the suprathreshold stimulus than
in the class I membrane, and spike latency times remain
bounded.

III. THE STOCHASTIC MORRIS–LECAR MODEL

Our purpose in this work is to analyze the influence of
fluctuating noise-like perturbations on class I and class II
regimes of the ML model. Such perturbations are represented
by a white Gaussian noise current added to the membrane
voltage. The dynamics of the ML model subjected to such a
stimulation is described by the following stochastic differen-
tial equations~SDEs!:

Cdv t5@2gCam`~v t!~v t2VCa!2gKwt•~v t2VK!

2gL~v t2VL!1I #dt1sdWt , ~3a!

dwt5f
w`~v t!2wt

tw~v t!
dt, ~3b!

where I is an external current ands is a noise intensity.
Here,Wt represents the standard Wiener process. More pre-
cisely, letV be the space of continuous functionsv:R→R,
F the Borel s-algebra of subsets ofV, and P the Wiener
measure~distribution ofW) on F. Thus, the triplet~V, F, P!
is called a probability space as usual. We denote a given
sample path of the process byWt for eachv and writeWt

5$Wt(v)% (0<t,`).
The analysis of dynamical systems perturbed by noise

can be carried out from different standpoints. Here, we de-
scribe two of them. To avoid ambiguity, we refer to the first
as the stochastic description and to the second as the RDS
theory. Given the novelty of the RDS theory and the fact that
there are only few studies of neuronal models from this
standpoint, we provide in the following section a heuristic
description of the two stochastic and RDS approaches to
clarify the differences between them. Then, we present their
applications to the ML model. Comprehensive treatments of
the stochastic and RDS theories are given by Lasota and
Mackey29 and Arnold.16

IV. THE STOCHASTIC APPROACH

In smooth deterministic systems, the initial condition
uniquely determines the state of the system at any future
time. In systems perturbed by noise, the state of the system at

a future time depends not only on the initial condition, but
also on the noise realization impinging upon the system. Dif-
ferent noise realizations lead to different states. Noise real-
izations occur with a certain probability. This probability de-
termines the probability of reaching a certain region of the
phase space at a given time starting from an initial condition.
For instance, letX0 andX5(x1 ,...,xn) be two points in the
state space. Starting atX0 , there is a certain transition prob-
ability, denoted byP(t,X,X0)dx1dx2 . . . dxn , to reach a
small neighborhood ofX at time t. The stochastic approach,
rather than examining the evolution of the initial condition
X0 under the influence of a single noise sample path, studies
the changes of the distributionP of solutions starting atX0 .
Notably the stochastic approach determines whether the
probability density function~pdf! P(t,X,X0) stabilizes in the
long run ast→1` at a uniquely determined functionr(X)
independently from the initial stateX0 . We refer to such a
function r, when it exists, as the stationary distribution of
the system. The shape ofr depends on system parameters
and noise intensity. The shapes ofr at different parameter
values or different noise intensities may be qualitatively dif-
ferent. The changes from one shape to another are referred to
as phenomenological stochastic bifurcations, shortened as
P-bifurcations.16 Characterizing P-bifurcations is one method
to detect changes in the behavior of noisy systems. In the
remainder of this section, we examine whether such bifurca-
tions occur in the ML model in the class I and class II re-
gimes.

Prior to the determination of P-bifurcations, we need to
discuss the existence and the uniqueness of the stationary
distribution r for the stochastic ML model. While to our
knowledge there are no rigorous proofs of this fact, a number
of formal arguments similar to those presented in Ref. 18,
together with extensive numerical explorations suggest that it
is so. Therefore, henceforth, we assume that all transition
pdfs of the stochastic ML model, whether in class I or class
II regimes, stabilize at a unique stationary distributionr.

Determining whether the stochastic ML presents
P-bifurcations or not is based upon the numerical estimation
of the stationary distributionr. Practically, estimates ofr for
different parameter sets were obtained from numerical simu-
lations as described in the Appendix. We continued the cal-
culation for a sufficiently long time and observed that there
was no clear change of the shape of the densities until the
last time except for a first transient period.

A. The stationary distribution in the class I regime

There are essentially two types of deterministic dynam-
ics in the class I regime. Either, the system is excitable or it
is oscillating. For each type of dynamics, we describe how
the shape of the stationary distributionr changes with the
noise intensity.

When the ML model is excitable,r takes on a shape
close to a Gaussian distribution centered on the stable equi-
librium point at low noise intensities~panel A1 in Fig. 4!.
This indicates that the influence of weak perturbations is
mainly to induce small perturbations in the vicinity of the
stable equilibrium point. However, this does not preclude
occasional large noise induced excursions that take the sys-
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tem beyond the firing threshold~the stable manifold of the
saddle point!. At low noise levels, such escapes are ex-
tremely rare and they occur in general through the saddle
point. So, besides the Gaussian-type peak centered on the
stable equilibrium, the stationary distributionr presents also

a ring like form going over the heteroclinic connections from
the saddle point to the stable equilibrium point. At low noise
levels, this ring is hardly visible, however, as the noise in-
tensity is increased, it becomes more prominent, as, simulta-
neously, the peak of the Gaussian-type peak decreases and its

FIG. 4. Stationary distributions of the class I ML model in the excitable~column panels A! and oscillatory~column panels B! regimes near the saddle-node
separatrix-loop bifurcation point (I c.40) for three different values of noise intensity in row panels 1, 2, and 3. Parameters:~A! I 539.0 (mA/cm2) and ~B!
I 545.0 (mA/cm2). 1 s050.5, 2s053.0, and 3s057.0. The stationary distribution emerged as the three-dimensional histograms of the final position of all
points in thev-w phase plane and normalized by the total number. The Heun scheme was used for the numerical calculation of Eq.~3! with a time step of
Dt50.001. The numerical calculation was carried out for 109 time units after discarding the first 104 time units. More detailed explanation for the numerical
calculation is described in the Appendix.
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width increases~panel A2 in Fig. 4!. Further increase in the
noise intensity magnifies these effects~panel A3 in Fig. 4!, as
both the dampened peak and the ring expand to wider re-
gions as a consequence of wider noise induced fluctuations
in the phase space.

When the ML model is oscillating, the low-noise station-
ary distribution takes on a ring-like shape over the limit
cycle. At each cross section of the cycle, it has a Gaussian
like form. However, the ring is not uniformly distributed
along the cycle. It displays peaks and troughs~panel B1 in
Fig. 4!. The peaks represent the regions in which the dynam-
ics along the cycle is slow, and, conversely, the troughs re-
flect the faster dynamics. As the noise intensity is increased,
the differences between these tend to decrease, while, at the
same time, the ring-like distribution widens and spreads fur-
ther away from the vicinity of the limit cycle~panel B3 in
Fig. 4!.

The above descriptions suggest that, whether in the ex-
citable or oscillating range, increasing the noise intensity,
while producing quantitative changes in the stationary distri-
butions, does not lead to any qualitative change. In other
words, based upon the numerical explorations, one cannot
conclude that there is a noise induced P-bifurcation in the
system.

Similarly, it is possible to compare, at a fixed noise in-
tensity, the shapes of the stationary distributionsr for the
excitable and oscillating class I ML model. Clearly, at large
noise intensities, the shapes ofr are qualitatively similar
~compare panels A3 and B3 in Fig. 4!. The low-noise densi-
ties are qualitatively similar to the large-noise densities. In
other words, there are no P-bifurcations in the stochastic
class I ML model, as one moves from the excitable to the
oscillating range. Heuristically, this absence of P-bifurcations
can be accounted for by considering that P-bifurcations are
sometimes characterized as changes in the number of peaks
of the stationary distributionr,30 and that these peaks are
indicators of regions in which the stochastic system spends
most of its time. In the excitable range, the peak is situated at
the stable equilibrium point. At the saddle-node loop bifur-
cation from excitable to oscillating regimes, the peak is at the
saddle-node, where the dynamics are slowed down. Beyond
the bifurcation, in the oscillating regime, the dynamics along
the limit cycle is slowed down in the phase space region near
to the former location of the saddle-node. Therefore, the sta-
tionary distributionr in the oscillating regime also presents a
marked peak similar to the one observed in the excitable
regime. In conclusion, despite the bifurcation of the deter-
ministic system, the shape of the stationary distribution of
the stochastic system does not undergo any qualitative
change.

B. The stationary distribution in the class II regime

In this section, we describe stationary distribution prop-
erties of the class II ML model, focusing on the similarity
and difference between the two classes. In the class II re-
gime, the transition from the excitable state to the oscillating
regime goes through a bistable regime, with coexisting stable
equilibrium point and stable limit cycle, while it does not in

the class I regime. When the current and noise intensities are
set to be bifurcation parameters and others are fixed, station-
ary distributions of the class II ML model could basically be
formed from one of~i! a peak around the equilibrium point,
~ii ! a surrounding ring reflecting the spike trajectory, or~iii ! a
composite of both as well as those of the class I ML model.
In the presence of noise, however, there is no bistability in
the sense that in all cases, i.e., excitable, bistable, and oscil-
lating, the system admits a unique stationary distribution. In
the case of the class I ML model, we have already argued
that there was no evidence of P-bifurcations in the parameter
ranges that we explored. For the class II ML model, the
situation is more complex owing to the bistable regime. The
numerical explorations we have performed do not rule out
the occurrence of P-bifurcations. In the following, we depict
some of the typical shapes of the stationary distribution we
observed in the individual regimes of the class II ML model.

As stated above, the main similarity between the class I
and class II ML models is that both exhibit excitatory and
oscillatory regimes. Therefore, the shapes of the stationary
distributionsr of the class II stochastic ML model outside of
the transition range~the bistable regime!, that is, in the ex-
citable and oscillating regimes, are reminiscent of those in
the class I model~see panels A and B in Fig. 4 and compare
with panels A and B in Fig. 5!. Indeed, the distributionr has
a peak and a surrounding ring-like hump. In the excitable
regime, the latter becomes visible only at sufficiently large
noise intensities. In the oscillating regime, the ring is on the
action potential trajectories and the peak represents the re-
gion where the dynamics is slower.

In the bistable regime, the situation is more complex.
One reason is the existence of metastable distributions at low
noise levels. Indeed, at low noise levels, hopping between
the stable equilibrium point and the stable limit cycle and
vice versa may not occur within the simulation time. In such
cases, simulations started at an initial condition close to the
stable equilibrium point produce distributions that are
Gaussian-like and centered at the equilibrium~panel A1 in
Fig. 6!, while those initiated in the vicinity of the limit cycle
lead to a ring-like distribution~panel B1 in Fig. 6! such as
the one in the oscillating regime. However, the stationary
distribution is unique and independent from the initial distri-
bution of points. Furthermore, due to noise induced hopping,
one expects the stationary distribution to have both a peak
around the equilibrium and a ring on the stable limit cycle.
Therefore the distributions obtained numerically are not the
stationary one, but metastable ones. They end up converging
to the unique stationary distribution. However, the duration
of this process tends to infinity as the noise intensity is de-
creased, so that practically, it is not possible to obtain the
stationary distribution at arbitrarily low noise levels from
numerical simulations of solution sample paths.

To avoid this problem that is proper to the bistable re-
gime, we systematically computed the distribution for two
initial conditions, one on the equilibrium and the other on the
stable limit cycle. Only when both led to visually indistin-
guishable results, we considered them to represent a proper
numerical estimate of the stationary distribution of the sys-
tem. The rows in Fig. 6 represent numerical estimates of
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distributions obtained for fixed parameter sets but starting
from the two different initial conditions situated on the equi-
librium point and on the stable limit cycle. Besides the first
row where the two distributions are clearly different, the oth-
ers are similar.

As mentioned above, typical stationary distributions in
the bistable regime present a peak on the stable equilibrium
point and ring on the stable limit cycle. This ring itself is not
uniform, and has a maximal value at the range where the
cycle is slow. Therefore, we expect the stationary distribution

FIG. 5. Stationary distributions of the class II ML model in the excitable regime~column panels A! near the double-cycle bifurcation point (I DC.88.29) and
oscillatory regimes~column panels B! near Hopf bifurcation point (I H.93.86) for three different values of noise intensity in row panels 1, 2, and 3.
Parameters:~A! I 588.2 (mA/cm2) and ~B! I 594.0 (mA/cm2). ~1! s050.2, ~2! s050.5, and~3! s051.0.
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to display distinct maxima, one associated with the peak at
the equilibrium, and one associated with the maximal value
around the ring~panels A2 and B2 in Fig. 6!.

The distinction between the separate peaks is not pos-
sible when the noise intensity becomes large. Indeed, in this
situation, noise induced hopping becomes frequent. The time

spent by the system in tight vicinities of the equilibrium and
the stable limit cycle is of the same magnitude as that spent
going from one to the other as well as exploring wider re-
gions of the phase space. The panels on the third row of Fig.
6 illustrate this phenomenon. In summary, the numerical es-
timates suggest that distinct maxima of the stationary distri-

FIG. 6. Stationary distributions of the class II ML model in the bistable regime. The initial conditions were on the equilibrium point~column panels A! and
the stable limit cycle~column panels B! for three different values of noise intensity in row panels 1, 2, and 3. In order to make small changes visible the
logarithmic scale (log(11z)) on the vertical axis was used. Parameters:~A! and ~B! I 588.3 (mA/cm2). ~1! s050.0001,~2! s050.3, and~3! s050.8.
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bution merge as the noise is increased. Such a change in the
shape of the stationary distribution may be reminiscent of a
P-bifurcation.

A similar merging of the maxima occurs at either end of
the bistable regime, that is, at the double cycle and at the
subcritical Hopf bifurcation. In the double cycle bifurcation,
it is the maximum associated with the ring that approaches
the hump over the equilibrium point, while, in the subcritical
Hopf bifurcation, it is the peak associated to the equilibrium
point that moves on the limit cycle. These changes can be
observed as long as the noise intensity is too large. They may
also be indicative of the occurrence of P-bifurcations in the
model.

The examples shown in Fig. 6 depict the complicated
changes observed in the stationary distributions in the
bistable regime. These changes might be related to
P-bifurcations. However, to our knowledge, there are no gen-
eral and universally applicable analytical tools available that
would permit us to confirm or invalidate this. Our aim in this
paper is not to show an occurrence of the P-bifurcation, but
to describe the qualitative difference between the class I and
II regimes. This is clearly fulfilled with our analysis which
establishes that~i! the stationary distributions in the excitable
and oscillating regimes of class I and II ML models are fairly
similar ~ii ! yet, there are marked differences in the shapes of
these distributions and their dependence on model param-
eters and noise intensities, in the range of transition from
excitability to oscillations.

V. THE RDS APPROACH

A method which is based only on the information obtain-
able from probability distributions of the solutionX at t>0
of a set of stochastic differential equations emanating from
one arbitrary pointX0 is called a one-point method.31 As we
have already addressed, for example, a stationary distribution
is a one-point object. Moreover, a notion obtained from the
joint distribution of a pair of two pointsX andY at which the
two solutions are simultaneously found at timet for the cor-
responding initial pointsX0 andY0 (X0ÞY0) is referred to
as a two-point notion. Similarly, a multiple-point notion or,
even more, an infinite-point notion can be defined. In the
above sense, roughly speaking, the stochastic description is
based on the one-point notion while the RDS theory on a
different approach, i.e., the multiple-point notion, as we will
explain in more detail below.

The RDS theory considers noisy systems from a differ-
ent standpoint. That is, the RDS theory analyzes the dynam-
ics of different initial conditions under the same noise real-
ization. Roughly speaking, the stochastic approach considers
the dynamics of an initial condition~i.e., the one-point no-
tion! under all possible noise realizations, while, RDS takes
on the evolution of all initial conditions~i.e., the multiple-
point notion! under one noise realization. In this way, for
each noise realization, RDS studies the dynamics of a non-
autonomous dynamical system. In principle, we have as
many dynamical systems as noise realizations: to each noise
realization there corresponds a different nonautonomous dy-
namical system. We thus have a family of non-autonomous

dynamical systems. The random selection of the noise real-
ization is in fact interpreted as the random selection of one
system from this family. The noise realization can take on a
variety of forms, so that it may seem an impossible task to
analyze all systems within the family. However, remarkably,
under wide conditions, for almost all noise realizations, the
dynamics of the nonautonomous systems within the family
will strongly resemble one another. This similarity makes it
possible to describe typical dynamics for the family. In the
following paragraphs, we provide a brief outline of RDSs
and introduce key concepts that are used in our study. For a
comprehensive treatment please refer to Arnold.16

In contrast to the one-point notion, an ordinary differen-
tial equation~ODE! dx/dt5 f (x) can generally generate a
dynamical system, namely, a flow (w(t)) tPR for eachx in an
n-dimensional spaceRn. Briefly, a family (w(t)) tPR of self-
mappings of a space is called a flow if it satisfiesw(0)5 id
and w(t1s)5w(t)+w(s) for all s,tPR, where + denotes
composition. The flow describes not just the one-point mo-
tion, but also the simultaneous motion of arbitrarily many
points. In other words, the flow ‘‘remembers’’ not only all
individual one-point motions, but also does the simultaneous
motion of arbitrarily many points. The concept of the flow
plays a central role in the analysis of deterministic dynamical
systems. This concept is also able to extend to a stochastic
version. In the RDS theory, the cocycle extends the concept
of the flow to the case of systems undergoing random per-
turbations. For example, the stochastic processes are ob-
tained by solving arbitrarily many copies of Eq.~3! with an
identical Wiener process realization, but with all different
initial conditions. This object is called a stochastic flow, and
especially if, for eachxPRn, s,tPR, and all vPV,
wst(v,x) is a solution of a stochastic differential equation
at time t in the interval @s,`# with an initial point x at
time s,t, it is called a two-parameter flow (wst(v))
ª(wst(v,•)). In the case, we also have the two-parameter
flow property: for all 0<s<r<t and allvPV,

wss~v,x!5 idRn, wst~v!5w rt~v!+wsr~v!, ~4!

where + means composition. The construction of a flow
(wst)s<t from a stochastic differential equation is a big
progress becausewst(v) can now be differentiated with re-
spect tox, namely,wst is a diffeomorphism, and its geometry
can be analyzed. For more precise conditions and the general
theory of stochastic flows we refer the reader to the book by
Kunita.32 A stochastic flowwst is still a static object and not
yet a ~random! dynamical system. That is, for eachv the
family (w(v))0<s<t of diffeomorphisms ofRn, wheren is
an integer, is a deterministic two-parameter flow in the sense
that v is frozen. At this point, however, the flows for differ-
ent v’s are not related to each other. Such a relation appears
when we try to suppress one time argument in the two-
parameter flow property of Eq.~4! by putting s50. To do
this, we need to describe the driving Wiener process as a
dynamical system. In other words, before we proceed to the
explanation of the cocycle, a metric dynamical system which
models the white noise is needed because an RDS or a co-
cycle consists of two basic ingredients: a model of the noise
and a model of the system which is perturbed by the noise.
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Let (Wt) tPR be the standard Wiener process inR with
W050. Put V5$vuvPC(R),v(0)50%, F the Borel
s-algebra ofV, P the ~Wiener! measure onF generated by
W. The shift onV is defined asu tv(s)ªv(t1s)2v(t).
Thenu is an ergodic metric dynamical system on the triplet
~V,F,P!, and Wt(v)5v(t) is Brownian motion. Next, we
define a cocycle which models the system perturbed by the
white noise. Let (V,F,P,(u t) tPR) be a metric dynamical
systems defined above. Let

w:R3V3Rn→Rn, ~ t,v,x!°w~ t,v,x! ~5!

be a mapping with the following properties:

~i! w(0,v)5 idRn,
~ii ! for all s,tPR and allvPV,

w~t1s,v!5w~t,usv!+w~s,v!, ~6!

where+ denotes composition of mappings.

The second is called a cocycle property. Note thatw(t,v)x
5w0t(v,x) (t>0).

One of the basic objects of interests in dynamical sys-
tems is an invariant measure. For instance, the analysis of the
long term dynamics of deterministic systems goes through
the determination of equilibria, limit cycles, etc. In other
words, the long term analysis examines structures that re-
main invariant under the deterministic flow. An invariant
measurer for the flow w generated by an ODEdx/dt
5 f (x) is defined byw(t)r5r for all tPR. Notice that ifr
is a measure andw a measurable mapping, thenwr, the im-
age of r under w, is the measure defined bywr(•)
5r(w21(•)). In addition, the infinitesimal form of the in-
variant measure isLiouville’s equationdiv(r f )50.

Since the stochastic analog of the Liouville’s equation is
the Fokker–Planck equation, it seems quite natural to define
an invariant measure of an SDE as one which solves the
Fokker–Planck equationL* r50, whereL* is an operator of
the Fokker–Planck equation of the corresponding SDE. In
the RDS theory, this is actually the point of view called a
stationary measure rather than an invariant measure. The sta-
tionary measure plays a prominent role in applications, be-
cause it is the one that is in general practically observable. In
the context, a probability measurer on (Rd,B d), whereB d

is the Borel sets inRd, is called stationary for an SDE if it is
invariant underP(t,x,•) and satisfies the relation

r~• !5E
Rn

P~ t,x,• !r~dx! for all t.0, ~7!

where P(t,x,•) is a transition probability, i.e.,P(t,x,B)
5P$XtPBuX05x%, which is related with a Markov process
Xt generated by the SDE. The stationary measure is clearly a
one-point object. The valuer(B) gives the proportion of
time a solutionXt of the SDE with a initial valuex spends in
the setB.

In the RDS theory, however, there exists a second pos-
sibility to extend the deterministic definition which seems to
be equally natural, but more general. The RDS analysis thus
follows another approach, as it is concerned with the deter-

mination of random invariant measures. Letw be an RDS. A
random probability measurev°mv on (Rd,B d) is said to be
invariant underw if for all tPR

w~ t,v!mv5mu tv
P-a.s., ~8!

where P-a.s. denotes P almost surely. The concept of a sta-
tionary measure given by Eq.~7! is older and more restric-
tive than that of an invariant measure for the RDSw gener-
ated by the corresponding SDE. However, there exists a one-
to-one correspondence between the stationary measurer, and
a special random invariant measure, denoted bymv referred
to as Markov invariant measures

r°mvª lim
t→`

w~ t,u2tv!r, mv°rªE@m#, ~9!

whereE@•# represents an expectation operator.
In deterministic dynamical systems, the local stability of

equilibria is assessed through the spectral theory of matrices,
which provides us with eigenvalues and eigenspaces. Briefly,
in studies of the so-called local theory, stability of the deter-
ministic dynamical systemw generated by an ODEdx/dt
5 f (x) with f (0)50 in a neighborhood of 0 is based on the
simple fact that the dynamics of the linearized dynamical
system F(t)5 (]/]x) w(t,x)ux50 , i.e., the linear ODE
dv/dt5D f (0)v, is completely determined by the computa-
tion of eigenvalues of the Jacobian matrixD f (0). In the
RDS theory, it is known that there indeed exists a stochastic
version of spectral theory for the linearizationDw(t,v,x) of
a cocyclew, but not just at a fixed point, but for a general
reference solution under aw-invariant measurem. The mul-
tiplicative ergodic theorem proved by Oseledets~1968!33

provides us with exactly the right kind of objects which one
needs for local theory in RDSs. Moreover, the theorem is the
basis for studying the long-term behavior of deterministic
nonlinear systems by means of the exponential growth rates,
namely, Lyapunov exponents, of the solution the variational
equation~linearization!. For an RDS, the local stability of
random invariant measures is thus determined by their asso-
ciated Lyapunov exponents. Based on the multiplicative er-
godic theorem of Oseledets,33 these are defined as follows:

l~v,x,v !ª lim
t→`

1

t
logiDw~ t,v,x!vi , ~10!

for vÞ0.
Dynamical stochastic bifurcations, denoted by

D-bifurcations, are generally defined as qualitative changes
in the stochastic phase portraits associated with the cocycle.
Similarly to the case of deterministic dynamical systems
whereby sign changes of~real parts of! eigenvalues of the
Jacobian matrix at an equilibrium characterize local bifurca-
tions, local D-bifurcations are associated with sign changes
of Lyapunov exponents.

The implication of the above considerations for the ML
model is that, practically, the analysis of the random dynam-
ics of the system requires mainly the numerical estimation of
the Lyapunov exponents of the system. Notably, one is con-
cerned with potential sign changes of the exponents in the
vicinity of the bifurcations of the deterministic system.

521Chaos, Vol. 14, No. 3, 2004 Random dynamics of the ML neural model



VI. NUMERICAL RESULTS ON THE RDS APPROACH

The Gaussian white noise input acts as an additive per-
turbation to the ML model, in the sense that it leaves no
solution of the deterministic system invariant. As argued by
Arnold et al.,18 this makes it impossible to directly apply the
analytical methods of stochastic bifurcation theory. In such
cases, one needs to carry out careful numerical analysis of
the dynamics of the system. This is the approach that we
adopted. The tools used in the numerical exploration of
RDSs are essentially the estimation of Lyapunov exponents,
rotation numbers and the pullback and backwards random
attractors. We describe these for the ML model in the follow-
ing sections.

A. Lyapunov exponents

As mentioned above, sign changes in Lyapunov expo-
nents associated with random invariant measures are indica-
tors of D-bifurcations. In this section, we report how the
Lyapunov exponents of the ML model in the class I and class
II regimes vary with the constant current and the noise in-
tensity.

The stochastic ML model possesses two Lyapunov ex-
ponentsl1>l2 which are exponential growth rates of a so-
lution of the linearization~variation equation! corresponding
to Eq. ~3!. The leading Lyapunov exponentl1 can actually
be calculated as the following exponential growth rate:

l15 lim
t→`

1

t
logiV~ t !i , ~11!

whereV(t)5(v t ,wt) is a solution of the variation equation
associated with Eq.~3! for any deterministic initial values
except the origin. Practically, we estimated the leading
Lyapunov exponent by the method described in the Appen-
dix.

As for the deterministic dynamics and for the stochastic
analysis, we describe successively the Lyapunov exponents
in the class I and then in the class II regimes.

1. Class I regime

Before discussing the Lyapunov exponents of the sto-
chastic ML model, it is appropriate to discuss how these
quantities vary in the deterministic excitable and oscillating
ranges, and the transition between the two.

In the excitable range, the Lyapunov exponents of the
ML model equal the eigenvalues of the Jacobian matrix
evaluated at the stable equilibrium point. Therefore, they are
both negative, and the leading exponent tends to zero as the
parameterI approaches the critical value at which the saddle-
node loop bifurcation occurs. At this critical point, the lead-
ing exponent vanishes while the second exponent remains
negative. Beyond the bifurcation point, i.e., in the oscillating
range, the Lyapunov exponents equal the Floquet eigenval-
ues of the stable limit cycle. Therefore, the leading exponent
remains zero, reflecting the neutral stability of the limit cycle
to perturbations along the cycle. Conversely, the second ex-
ponent is negative reflecting the stability of the cycle against
transversal perturbations.

The exponents of the stochastic ML model tend to those
of the deterministic system as the noise intensity approaches

zero. The upper panel~a! in Fig. 7~A! where Lyapunov ex-
ponents of the class I ML model at different values ofI are
represented against the noise intensitys0 illustrates this
point. At the two lower values ofI , namelyI 530 and 38.5,
for which the system is excitable, the leading exponent tends
to the deterministic value ass0→0. These two values corre-
spond to the largest eigenvalue of the Jacobian matrix evalu-
ated at the stable equilibrium point. For the two larger values
of I , namelyI 540 and 50, for which the system is oscillat-
ing, the exponents tend to zero, as expected.

The exponents at intermediate and large noise intensities
depend on the dynamics of the deterministic system. WhenI
is fixed in the excitable regime ands increases, the
Lyapunov exponents first increase, then have a certain maxi-
mum value at some noise intensity, and decrease@e.g., a
curve labeled withI 538.5 in Fig. 7~Aa!#. Throughout, the
exponent remains negative. In the oscillatory regime, with
increasing noise intensity, the Lyapunov exponents mono-
tonically decrease. The same holds at the critical value at
which the deterministic system undergoes the saddle-node
loop bifurcation. The main difference between the leading
Lyapunov exponent in the oscillating regime and at the bi-
furcation point is observed in the slope of the curve ats0

50. In the oscillating regime, the slope is zero, while, at the
bifurcation point, it takes on a negative value.

Despite the differences in the shapes of the curves rep-
resenting the leading Lyapunov exponent against the noise
intensity for different values ofI , one observation common
to all the cases is that the exponent is negative for alls0

.0. This is clearly apparent when the Lyapunov exponents
are represented inI -s parameter space@Fig. 7~Ab!#. The
absence of sign changes in the leading Lyapunov exponent
suggests that there are no D-bifurcations in the class I sto-
chastic ML model, or, in other words, that additive noise
destroys the bifurcation of the deterministic system.

2. Class II regime

In the class II regime, the Lyapunov exponents of deter-
ministic ML model in the excitable range are both to the
~negative! real part of the pair of complex conjugate eigen-
values of the Jacobian matrix of the system at the equilib-
rium point. In the oscillating range, similarly to the class I
regime, the exponents equal the Floquet eigenvalues of the
limit cycle, so that the leading one is zero and the second one
is negative. In the transition range, the system is bistable, so
that it possesses two pairs of Lyapunov exponents, one asso-
ciated with the stable equilibrium point and the other with
the stable limit cycle.

In the same way as for the class I ML model, in the
excitable and oscillating regimes, the leading Lyapunov ex-
ponent of the system tends to the deterministic value~s! as
s0→0. In the bistable range, the stochastic system, unlike
the deterministic one, has only a single pair of Lyapunov
exponents. At low noise levels, these exponents tend those of
the equilibrium when the system is near the double cycle
bifurcation, and conversely to those of the limit cycle, when
the system is near the subcritical Hopf bifurcation. This ob-
servation is in agreement with that of the stationary distribu-
tion r reported previously. Indeed, even though in the
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bistable range the system hops from the vicinity of the equi-
librium to that of the stable limit cycle, and vice versa, the
relative times spend in the two neighborhoods strongly de-
pend on system parameters. Close to the double cycle bifur-
cation, the system is mainly confined to the neighborhood of
the equilibrium, while close to the subcritical Hopf bifurca-
tion, the opposite holds, that is, the system remains mostly in
the neighborhood of the limit cycle. This asymmetry ac-
counts for the differences in the low noise evolutions of the
Lyapunov exponents at either end of the bistable range.

The low noise estimation of the Lyapunov exponents is
hindered by the metastable regimes in the same way as the
estimation of the stationary distributionr. To make sure that
the estimates corresponded to the regime once the metastable
transients have ended, the Lyapunov exponents were esti-
mated from an initial condition at the equilibrium and an-
other one situated on the limit cycle.

Figure 7~B! shows the Lyapunov exponents of the class
II ML model. As shown in Fig. 7~Ba!, for four fixed current
intensities in the excitable and oscillatory regimes, the ten-
dency of the changes of the Lyapunov exponents in the class

II ML model is similar to that in the class I ML model. More
precisely, in the oscillating regime, the leading exponent de-
creases monotonically as the noise intensity is increased,
while, in the excitable regime, the Lyapunov exponent pre-
sents a hump at some intermediate noise level. Overall, as
shown in Fig. 7~Bb!, the Lyapunov exponents are always
negative in anI -s parameter space. Consequently, in the
same way as in the class I regime, there are no
D-bifurcations in this system: additive noise destroys the bi-
furcations ~both the double cycle and the subcritical Hopf
bifurcations! of the deterministic system.

B. The attractor of the stochastic ML model

Our analysis of the D-bifurcations of the ML model was
based upon the computation of the Lyapunov exponents. In-
deed a sign change in the Lyapunov exponents of the system
is an indicator of a qualitative change in the Markov invari-
ant measure. We detected no such sign changes and therefore
concluded that no D-bifurcations take place in the ML
model, whether of class I or class II. In this section, we

FIG. 7. Leading Lyapunov exponents of the stochastic ML model.~A! The class I ML model.~a! Mean values and standard deviations of the leading
Lyapunov exponents are shown against noise intensity for four different current values (I 530, 38.5, 40, and 50mA/cm2). The former two are in the excitable
regime and the latter the oscillatory regime. The Lyapunov exponents were calculated for 20 different noise realizations each time with the noise intensity
s0(5s/C) ranging from 0 to 8 with a step of 0.5.~b! Averaged leading Lyapunov exponentsl1 on the parameter planeI -s0 . The Lyapunov exponents were
calculated in the same way as part~a!. ~B! The class II ML model.~a! Mean values and standard deviations of the leading Lyapunov exponents against noise
intensity for four different current values (I 580, 86, 96, and 100mA/cm2). The former two are in the excitable regime and the latter two in the oscillatory
regime. The Lyapunov exponents were calculated as the same way as columnA with the noise intensitys0 ranging from 0 to 8 with a step of 0.5.~b! Averaged
leading Lyapunov exponentsl1 on the parameter planeI -s0 .
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continue this analysis by computing the support of the Mar-
kov random invariant measure. The numerical investigations
reveal that it is in fact reduced to a single point.

The fundamental relation in the computation of the sup-
port of the Markov random invariant measure is Eq.~9! that
establishes the relation between the stationary distributionr
and the Markov random invariant measure. Notably, the left-
hand relation in Eq.~9! shows how one can derive the ran-
dom invariant measure from the stationary distribution. This
procedure is referred to as the pullback method. Indeed, it
consists in initiating the system with points distributed ac-
cording to the distributionr at some timet5t8,0 ‘‘in the
past,’’ and letting it evolve to the present timet50 under the
influence of the noise realizationv. The outcome att50 is a
measure that is random~i.e., it depends on the noise realiza-
tion! and that depends on the start timet8. As the initial
starting time t8 is pulled back in time towards2`, this
random measure tends to the Markov random invariant mea-
sure~in the sense of weak convergence!.16

We denote byA(v) the support of Markov random in-
variant measure. This notation emphasizes the fact that the
setA(v) is in fact a random set, and to different noise real-
izationsv and v8 may correspond different setsA(v) and
A(v8). The fact that the Lyapunov exponents of the system
are negative imposes that~i! for almost allv, A(v) is com-
posed of finite numbern of points, withn being independent
of v, and furthermore that~ii ! except for possibly anv de-
pendent set of initial conditions of Lebesgue measure zero,
trajectories of initial conditionsx approachA in the sense
that, for almost allv,34

lim
t→1`

dist@w~ t,v,x!,A~u tv!#50, ~12!

where dist@w(t,v,x),A(u tv)# denotes the distance between
$w(t,v,x)% and A(u tv) and equals the minimum of then
distances between the pointw(t,v,x) and then points in
A(u tv). In this way, the random setA(v) plays the role of
an attracting set for the system.

Practically, using the pullback method, we estimated the
attracting setA(v) for the stochastic ML model in different
regimes and for different parameter values. In all cases we
obtained thatA(v) was reduced to a single point, that is,n
51. Figure 8 illustrates one example of the derivation of
A(v). It represents different stages of the pullback proce-
dure for the class II ML model in the oscillatory regime with
a noise intensitys52.0. The initial conditions of the pull-
back are spread according to a regular rectangular grid on the
plane@Fig. 8~A1!# rather following the stationary distribution
r. As the initial time att5t8 runs back to the negative di-
rection, the formation of all points shrinks to a narrower
region att50 in the phase space. In the figure, the region
where each state point is scattered forms a loop and includes
a vicinity of the deterministic equilibrium point and the ring-
like spike trajectory. As the initial time is progressively mov-
ing back in time, the region becomes a formation consisting
of a thinner loop and concentrated points around the equilib-
rium point as shown in Figs. 8~A2! and 8~B2!. As the initial
time is moved even further back in time, the set of points
forms a formation of some arcs and a concentrated region

@Fig. 8~A3!#. With t8 further back in time, the points cluster
in either the vicinity of the equilibrium point or parts of a
loop around it as shown in Fig. 8~B3!, and eventually they all
collapse into a single tight group where they cannot be visu-
ally distinguished from one another. This tight group can be
assimilated to a single point. It remains invariant under pull-
ing further back the time. In this way, it represents the nu-
merical estimate of the setA(v) and shows that this set is
composed of a single point, that we denote by
(v* (v),w* (v)). In fact (v* (u tv),w* (u tv)) is a stationary
stochastic process, that is referred to as a stochastic equilib-
rium point.16 From the limit ~12!, we derive that for almost
all noise sample pathv, the trajectories of initial conditions,
except for possibly a set of measure zero, tend to this unique
stationary stochastic process.

Even though the possibly nonempty set of initial condi-
tions whose trajectories do not converge to the stochastic
equilibrium point has measure zero, it can bear some influ-
ence on the dynamics of the system. The excitable class I and
class II ML models illustrate this point. In the former, trajec-
tories initiated on the zero-measure closure of the stable
manifold of the saddle point do not converge to the stable
equilibrium point. Conversely, in the latter, that is the excit-
able class II ML model, all trajectories, with no exception,
converge to the stable equilibrium point which is globally
asymptotically stable. Clearly, it is the difference of the dy-
namics on a set of measure zero that permits the separation
of class I and class II systems. The issue here is whether this
difference persists in the stochastic models. More precisely,
there is a difference between the basins of attraction of the
stable equilibria of the deterministic excitable class I and
class II ML models, and the corresponding stochastic ML
models may inherit this difference. Such a difference in
terms of the dynamics on a set of measure zero would not
bear any influence on the previous results concerning the
estimation of the Lyapunov exponents, rotation numbers or
the support of the Markov invariant measure. However, in
the deterministic case, this difference lies at the basis of the
distinction between class I and class II membranes, so that it
could be of biological interest to investigate whether it is
also present in the stochastic ML model.

The origin of the difference between the excitable class I
and class II membranes lies in the fact that the latter pos-
sesses a single equilibrium point while the former possesses
three equilibria, two of which are unstable. Our investiga-
tions have indicated that whether in class I or class II re-
gimes, and irrespective of the deterministic dynamics, the
stochastic ML model possesses always a single stable sto-
chastic equilibrium. However, these investigations focused
on the Markov random invariant measure, and the system
may possess non-Markov random invariant measures. These
would play a role similar to that of the saddle and unstable
source equilibrium points in the deterministic system. The
issue is to determine whether such random invariant mea-
sures exist in the stochastic ML model.

The numerical determination of the equilibria of deter-
ministic systems can be readily done by computing the zeros
of the corresponding vector field. However, for stochastic
systems with additive noise such as the stochastic ML model,
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FIG. 8. Pullbacks of the stochastic class II ML model in the oscillatory regime forI 588.4 (mA/cm2). For s52.0 snapshots of the state points att50 are
illustrated in the phase space for a starting grid of 2500 initial conditions regularly positioned in rectangular grids att850 ms ~A1!, at t85220 ms~B1!,
t85230 ms~A2!, t852200 ms~B2!, t852450 ms~A3!, andt852700 ms~B3!.
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there is no such simple procedure. Besides the pullback
method that yields the support of the Markov invariant mea-
sure, there are no systematic methods to directly compute
random invariant measures. Arnoldet al.18 have used a
method to overcome this. This consists in analyzing the time-
reversed system. If for almost allv, the time-reversed trajec-
tories of initial conditions except possibly on a set of mea-
sure zero become unbounded, then one can argue that the
time-reversed system does not possess any Markov random
invariant measure. This procedure rules out the existence of
random invariant measures that would play a role similar to
an unstable source~node or focus! in the time-forward sys-
tem. While it does not necessarily bear any indication on the
existence of saddles, it provides extra information on the
stochastic phase portrait of the system. We applied the time
reversed procedure to the stochastic ML system. We initiated
trajectories on a regular rectangular grid, and for each com-
puted the time-reversed trajectory under the influence of the
same noise sample path. We assumed that a solution would
eventually become unbounded if the modulus of its voltagev
became larger than a certain bound. Numerical simulations
were performed in different regimes and with different noise
intensities. In all cases, all computed trajectories went even-
tually out of the computation bound. From this result, we
suggest that the time-reversed stochastic ML model does not
possess any Markov random invariant measure.

The numerical explorations reported above suggest that
there are no random invariant measures ‘‘stable with respect
to the future.’’ The case of saddle random invariant measures
remains open. However, we conjecture that they do not exist
in the parameter ranges that were explored numerically. In
other words, we suggest that for almost all noise realizations
the stochastic equilibrium of the ML model attracts trajecto-
ries ofall initial conditions. In this sense, we argue that noise
destroys the bifurcation scenario of the class I and class II
regimes, and furthermore that there is no difference in terms
of the asymptotic random dynamics of the two regimes.

C. Rotation numbers

The systematic numerical estimations of the Lyapunov
exponents of the ML model in either class I or class II re-
gimes reveal that, despite the bifurcations of the determinis-
tic system, no D-bifurcations take place in the random sys-
tem. Further analysis indicates that in fact in all explored
situations, for almost all noise realizations, all trajectories
eventually stabilizes at a uniquely defined stationary stochas-
tic process. This indicates that from the RDS standpoint
noise obliterates the differences that exist between the differ-
ent regimes of the deterministic system. Despite this effect of
noise, noise-induced changes are present in the system. In-
deed, the stochastic equilibrium, unlike deterministic equilib-
ria, displays dynamics. The stochastic equilibrium is a sta-
tionary stochastic process. The second relation in Eq.~9! in
generalshows that its distribution at a fixed time is given by
the stationary distributionr, and can therefore undergo
P-bifurcations. In this section, we investigate the changes in
this stationary stochastic process with a different tool,
namely the rotation number. The computation of the rotation

numbers associated with the system provides information on
noise-induced changes that are not necessarily associated
with D-bifurcations. Such information cannot be gleaned
from the Lyapunov exponents of the system. In this sense,
the rotation numbers provide complementary information on
the dynamics of the noisy system.

Rotation numbers are defined as

g5 lim
t→`

1

t
arctan

wt

v t
, ~13!

where (v t ,wt) is a solution of the variation equation associ-
ated with Eq.~3! for any deterministic initial values except
the origin.

To clarify the interpretation of the rotation number and
the origin of its denomination, it is helpful to first consider
two deterministic situations. For a deterministic system sta-
bilizing at an equilibrium point, the rotation number equals
the imaginary part of the eigenvalues of the Jacobian matrix
at the equilibrium. Conversely, when the deterministic sys-
tem stabilizes at a limit cycle, the rotation number is the
average angular velocity of the movement along the cycle.

With these interpretations in hand, we see that we have a
clear difference between rotation numbers of deterministic
class I and class II membranes. For class I membranes, the
rotation number is zero in the excitable regime, and then
increases continuously from zero after the transition from
excitable to oscillating regimes. In this sense, the rotation
number follows the evolution of the firing rate of the deter-
ministic class I membrane. In class II membranes, the situa-
tion in the oscillating regime is similar to that of the class I
membrane: the rotation number reflects the firing rate of sys-
tem. However, in the excitable regime, the situation is differ-
ent. The rotation number takes on a non zero value equal to
the imaginary part of the complex conjugate eigenvalues of
the Jacobian matrix. Finally, in the bistable range, we have
two rotation numbers, one associated with the imaginary part
of the eigenvalue of the Jacobian matrix at the stable equi-
librium and the other related to the firing rate on the stable
limit cycle.

The addition of noise alters the picture depicted above in
several ways. In the stochastic ML model, the rotation num-
ber is uniquely defined, and its value does not depend on the
choice of the initial condition. Furthermore, the value is the
same for almost all noise sample paths. In this sense, we can
discuss aboutthe rotation number of the stochastic ML
model. In the following we discuss the dependence of the
rotation number on noise intensity in the different regimes
and membrane classes.

The influence of noise on the rotation number in the
oscillating regime is consistent with noise-induced changes
in the firing rate of the system. In both class I and class II
regimes, noise accelerates the firing rate of the ML model.
Concurrently, the rotation number increases with the noise
intensitys.

In the excitable regime, the situation is more complex.
At low noise intensities, when action potentials are rare, the
rotation number is an indicator of the rate of subthreshold
noise induced oscillations. At low noise intensities, the rota-
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tion number is close to zero in the class I ML model and
close to a nonzero value~the imaginary part of the eigenval-
ues of the Jacobian matrix at the equilibrium! in the class II
ML model. This is consistent with the value of the rotation
number obtained in the deterministic regime. At large noise
intensities, the situation becomes different, as noise-induced
firing becomes frequent, and in fact, predominant as com-
pared with subthreshold oscillations. In this case, the rotation
number becomes an indicator of the rate of noise induced
firings. This difference in the interpretations of the low and
large noise limits of the rotation number are visible in Fig. 9.
The transition between the two extremes is progressive and
smooth but takes place within a narrow range of noise inten-
sities. In this intermediate range of noise, the rotation num-
ber reflects the rates of both subthreshold and suprathreshold
fluctuations.

These observations on the rotation number in the excit-
able regime are consistent with the quantitative changes of
the stationary distribution reported in Sec. IV. The noise
range where the rotation number is close to its deterministic
value corresponds to the range where the stationary distribu-
tion takes on a Gaussian-type shape with a sharp peak cen-

tered on the equilibrium point. As the ring-like hump of the
stationary distribution grows, the peak height decreases and
the peak width increases, the rotation number moves away
from the deterministic value towards the mean firing rate.

In the class I ML model, as one moves closer to the
bifurcation separating the excitable and oscillating regimes,
the range of noise where the rotation number remains close
to zero ~its deterministic value! before moving towards the
firing rate, decreases@cf. curves labeled withI 530 and I
538.5 in panel~a! and a 3D representation in panel~b! in
Fig. 9~A!#. This is consistent with the fact that noise induced
firing is all the more frequent if the system is close to the
bifurcation. At the bifurcation point, even weak noise in-
duced fluctuations can lead to the generation of action poten-
tials, as the system no longer possesses a firing threshold@a
curve labeled withI 540 in panel~a! in Fig. 9~A!#. Hence,
the rotation number, while starting at zero noise level, as in
the excitable regime, moves along the firing rate as the noise
is increased, as in the oscillating regime. In this sense, the
noise-dependence of the rotation number at the bifurcation
point is intermediate between the excitable and oscillating
regimes.

FIG. 9. Rotation numbers of the stochastic ML model.~A! The class I ML model.~a! Mean values and standard deviations of rotation numbers are shown
against noise intensity for four different current values (I 530, 38.5, 40, and 50mA/cm2). The former two are in the excitable regime and the latter the
oscillatory regime. The rotation numbers were calculated for 20 different noise realizations each time with the noise intensitys0(5s/C) ranging from 0 to
8 with a step of 0.5.~b! The rotation numbersg on the parameter planeI -s0 . The rotation numbers were calculated in the same way as part~a!. ~B! The class
II ML model. ~a! Mean values and standard deviations of rotation numbers against noise intensity for four different current values (I 580, 86, 96, and
100mA/cm2). The former two are in the excitable regime and the latter the oscillatory regime.~b! Average rotation numbersg on the parameter planeI –s0 .
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The changes in the rotation number of the class II ML
model, in the transition from excitable to oscillating regimes
are more complex than those of the class I ML model. How-
ever, they are consistent with the changes in the stationary
distribution. At low noise levels, the rotation number is close
to some average of the two rotation numbers of the deter-
ministic system associated to the stable equilibrium and the
stable limit cycle. Roughly speaking, the contribution of
each deterministic rotation number to the stochastic rotation
number is weighted by the relative time the system spends
near the corresponding attracting set~namely the stable equi-
librium and the stable limit cycle!. Thus, in the parameter
and noise intensity ranges where the stationary distribution is
either strongly and almost exclusively concentrated on the
stable equilibrium point or on the limit cycle, the rotation
number is close to one of the deterministic rotation numbers
and reflects either the rate of subthreshold or suprathreshold
oscillations. These two situations occur near either end of the
bistable regime and mainly at weak noise intensities. There-
fore, at low noise levels, there are no sharp changes in rota-
tion number as one moves from either the excitable or the
oscillating regimes into the bistable regime. The transition
from rotation numbers close to the imaginary part of the
eigenvalue of the Jacobian matrix at the stable equilibrium,
to those close to the firing rate of the system on the stable
limit cycle, occurs within the bistable regime, concurrently
with the change in the shape of the stationary distribution,
from those mainly centered on the equilibrium point to those
mainly centered on the limit cycle.

The above considerations hold as long as the noise in-
tensity is such that a distinction can be made between sub
and suprathreshold noise induced fluctuations. At larger
noise levels, beyond the feasible qualitative density change
occurring in the bistable regime at which the peak on the
equilibrium merges with the ring-like hump on the limit
cycle no such distinction can be made. In this noise range,
the rotation number reflects the overall rate of fluctuations in
the system, with no particular distinction between sub and
suprathreshold dynamics.

In summary, the changes in the rotation number of the
models reflect those of the stationary distributions. In the
class I regime no P-bifurcations take place, and the changes
in the rotation number of the stochastic ML model as one
moves from excitable to oscillating regimes follow the quan-
titative changes in the stationary distribution. In the class II
regime, where there is the possibility that the system under-
goes a P-bifurcation, the changes in the rotation number re-
flect this phenomenon. This major difference between the
stochastic class I and class II membranes is illustrated by the
two bottom panels in Fig. 9 that show 3D representations of
the rotation number for the class I~left panel! and class II
~right panel! models for values of the currentI and noise
intensity s. The difference between the two forms at low
noise levels, as one moves from excitable to oscillating re-
gimes is clearly visible. While in both the transition is
smooth at large noise levels, in the right panel, it is actually
abrupt at low noise levels, giving the impression that it is
discontinuous.

VII. DISCUSSION

This work presented a systematic analysis of a stochastic
neuron model from the RDS theory standpoint. Studying the
influence of noise on neuronal behavior has a long history.35

However, those concerned with RDS analysis of neuronal
response to noise like sample paths are scarce.20–23Our work
presented the first RDS analysis of the ML membrane model.
In this section, we discuss our results from the RDS and
neuroscience standpoints.

The RDS analysis of the influence of random perturba-
tions on deterministic bifurcations, and more generally that
of stochastic D-bifurcations is an active field of investiga-
tion. As argued by Arnold,16 this field has yet to reach its full
development. Careful and systematic numerical explorations
are instrumental in further developing this theory. This is all
the more important in the case of systems perturbed by ad-
ditive noise because for these it is not possible to readily
apply the analytical methods of the RDS theory. In this re-
spect, our study pursues others such as the one concerned
with the Brusselator,18 that have performed numerical analy-
ses of randomly perturbed bifurcations.

The contribution of our numerical analysis to the RDS
theory resides in the exploration of the influence of noise on
two distinct bifurcation scenarios in the ML equations. The
first scenario was that of the saddle node loop bifurcation
separating the excitable and oscillating regimes in the class I
ML model. We reported that noise destroys this bifurcation
in the sense that the stochastic ML model possesses a unique
stochastic equilibrium that attracts all trajectories. To our
knowledge, this was the first analysis of the influence of
additive noise on a saddle loop bifurcation. The second sce-
nario was that of a double cycle bifurcation followed by a
subcritical Hopf bifurcation. We had previously studied the
influence of noise on this scenario in the FitzHugh–Nagumo
~FHN! model.22,23Similarly to that study, we found here that
low noise intensities destroy the bifurcation sequence. How-
ever, at larger noise intensities, the random dynamics of the
class II ML and the FHN differ from one another. As re-
ported in this work, the leading Lyapunov exponent of the
ML model remains negative at all noise intensities. Con-
versely, the leading Lyapunov exponent of the FHN model is
positive for some intermediate noise range indicating the
presence of stochastic chaos. We attributed the occurrence of
stochastic chaos in the FHN model to the existence of
canard-like solutions. The influence of such solutions in the
ML model is less marked thereby accounting for the differ-
ence between the two models.

Our work presented the RDS from a practical standpoint,
as a means to investigate a biologically motivated problem.
More precisely, we tackled the issue of neuronal reliability in
response to noise-like realistic stimuli with the help of the
RDS theory. While this problem has been fundamental for
elucidating the neuronal code,1 there have been few theoret-
ical studies. This is where the contribution of this work lies.

As explained in Sec. II, experimental studies have led to
the classification of membranes into class I and class II cat-
egories based upon their different response characteristics to
various stimuli. Using the ML model, which is a widely used
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prototype for both classes, we examined the response of
these to noise-like realistic stimuli. By examining the sign of
the Lyapunov exponent, we have shown that modifying ei-
ther the mean stimulusI or the intensity of the noise-like
stimulus does not induce any dynamic stochastic bifurcation.
From the standpoint of neuronal coding, this asymptotic sta-
bility of the stochastic attractor implies that to each noise-
like input realization, there corresponds a unique asymptotic
response. This means that if the ML model is initiated at a
different state point and presented with the same input real-
ization repeatedly, the same response will be evoked after a
transient time. In this sense, the response evoked by such
noise-like input is reliable.

These observations lead to our main conclusion which is
that, as far as discharge time reliability is concerned, there is
no difference between class I and class II ML models. De-
spite the differences in the deterministic regimes, in the re-
sponses to single and step currents, the ML model has the
same asymptotic random dynamics in all regimes. Further-
more, this asymptotic behavior corresponds to reliable firing:
the sequence of discharge times~after possibly some tran-
sient has elapsed! does not depend on the initial conditions.
It corresponds to the stable stochastic equilibrium point.

The reliability notwithstanding, to different noise sample
paths and to different parameter sets, there correspond differ-
ent stochastic equilibria. It is in this latter aspect that the
differences between the class I and class II ML models affect
the response of the system to noise-like stimuli. Indeed, un-
like deterministic equilibria, stochastic equilibria are them-
selves dynamical objects. Stochastic equilibria are stationary
stochastic processes. The characteristics of these processes
such as, say, their distribution can depend on model param-
eters. Our study revealed that as far as the stationary distri-
bution and the rotation numbers are concerned, there are dif-
ferences between the stochastic equilibrium of class I and
class II ML models. In terms of neuronal coding, this result
suggests that while both class I and class II membranes may
be reliable, they may be sensitive to different stimulus char-
acteristics and therefore use different ‘‘codes.’’

Based on spike characteristics and on response patterns
during sustained applied currents, neural membranes can in
general be classified into the two classes. The fact is well-
known for a variety of neural preparations while little has
been examined about those in the central nervous system like
cortical neurons. Neocortical neurons are generally classified
into three electrophysiological types: regular-spiking~RS!,
fast-spiking~FS!, and intrinsically bursting.36 Recently, Rob-
inson reported that in the somatosensory cortex, the RS and
FS types, respectively, show class I and II threshold
behavior.37 In addition, when applied currents are not enough
to evoke a sustained spike generation, FS cells typically
show subthreshold oscillations while RS cells do not. This
implies that the characteristics investigated in this study
could influence neural coding by modulating discharge time
variability in actual neural systems such as neocortical cir-
cuits.

General considerations: In this study, we assumed that
all transition pdfs of the stochastic ML model, whether in
class I or class II regimes, stabilize at a unique stationary

distribution. However, before the determination of
P-bifurcations, we essentially needed to discuss the existence
and the uniqueness of the stationary distribution for the sto-
chastic ML model. As far as we know, there are no rigorous
proofs of this fact and they are still open problems, while
such an exceptional attempt was performed in Ref. 19. With
respect to P-bifurcation, in addition, to search for shape
changes of the stationary densities is actually a hard task to
carry out without analytical solutions of the Fokker–Planck
equation. Moreover, our methods in this study mainly re-
sorted to the numerical calculations. The reason is that since
the Gaussian white noise input acts as an additive perturba-
tion to the ML model, it leaves no solution of the determin-
istic system invariant. As argued by Arnoldet al.,18 this
makes it impossible to directly apply the analytical methods
of the stochastic bifurcation theory.
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APPENDIX

1. Parameters

Parameter values of the ML equations that we used are
the same as those of the model described by Rinzel and
Ermentrout.24 The parameter values for the class I membrane
model are:VK5284 mV, VL5260 mV, VCa5120 mV,
C520 mF/cm2, gL52.0 mS/cm2, gCa54.0 mS/cm2, gK

58 mS/cm2, V1521.2 mV, V2518 mV, V3512 mV, V4

517.4 mV, and f50.067. For the class II membrane
model, they are the same described above exceptV3

52 mV, V4530 mV, gCa54.4 mS/cm2, andf50.04.

2. Bifurcation diagrams

The bifurcation diagrams in Figs. 2 and 3 were con-
structed withAUTO ~Ref. 7! as a component ofXPPAUT soft-
ware. More detailed information about theXPPAUT software
can be found in Ref. 38.

3. Numerical integrals

In order to obtain an accurate approximation, the for-
ward improved Euler or Heun method was used for the nu-
merical integration of Eq.~3! with a time step ofDt
50.001. The method gives a higher order discretization error
than the simple Euler method explained in Ref. 39. When-
ever much higher accuracy was needed we lowered the time
step. However, we mainly used a fixed time unit ofDt
50.001 through all of the numerical analysis presented here.
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4. Stationary distributions

For the stationary distribution 2003140 points situated
on a grid $(v,w)u2100<v<100,0<w<1% in the v-w
phase plane were let iterate for the numerical calculation of
Eq. ~3! with a time step ofDt50.001. The numerical calcu-
lation was carried out for 109 time units after discarding the
first 104 time units. If a higher spatial resolution is needed,
6003420 points on the grid were used for the distribution.
Points were subjected to stimuli with the sameI 0 ands. The
stationary distribution emerged as the three-dimensional his-
tograms of the final position of all points in the phase plane
after normalization.

5. Lyapunov exponents and rotation numbers

The leading Lyapunov exponents of the system were es-
timated using the algorithm described in Ref. 39. They were
calculated from an individual trajectory on the basis that the
system under study is ergodic. The simulation run for a pe-
riod long enough to insure convergence. Actually, the simu-
lation time was 109 time units after a result of the first 10 000
time units was discarded. To estimate rotation numbers, we
first calculated each angle of the successive two positions of
the state point on the individual trajectory in the phase plane
and accumulated the angles during the simulation time. The
rotation number was finally obtained after dividing the angle
by the simulation period. The mean and standard deviation
out of 20 trials were used to neglect variation due to different
realizations.

6. Pullbacks

For the pullbacks of panels in Fig. 8, a starting grid of
2500 points regularly positioned in the phase space was used
as initial conditions. All trials evolved under the same input
noise realization.
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