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Determining the response characteristics of neurons to fluctuating noise-like inputs similar to
realistic stimuli is essential for understanding neuronal coding. This study addresses this issue by
providing a random dynamical system analysis of the Morris—Lecar neural model driven by a white
Gaussian noise current. Depending on parameter selections, the deterministic Morris—Lecar model
can be considered as a canonical prototype for widely encountered classes of neuronal membranes,
referred to as class | and class Il membranes. In both the transitions from excitable to oscillating
regimes are associated with different bifurcation scenarios. This work examines how random
perturbations affect these two bifurcation scenarios. It is first numerically shown that the Morris—
Lecar model driven by white Gaussian noise current tends to have a unique stationary distribution
in the phase space. Numerical evaluations also reveal quantitative and qualitative changes in this
distribution in the vicinity of the bifurcations of the deterministic system. However, these changes
notwithstanding, our numerical simulations show that the Lyapunov exponents of the system remain
negative in these parameter regions, indicating that no dynamical stochastic bifurcations take place.
Moreover, our numerical simulations confirm that, regardless of the asymptotic dynamics of the
deterministic system, the random Morris—Lecar model stabilizes at a unique stationary stochastic
process. In terms of random dynamical system theory, our analysis shows that additive noise
destroys the above-mentioned bifurcation sequences that characterize class | and class Il regimes in
the Morris—Lecar model. The interpretation of this result in terms of neuronal coding is that, despite
the differences in the deterministic dynamics of class | and class || membranes, their responses to
noise-like stimuli present a reliable feature. ZD04 American Institute of Physics.

[DOI: 10.1063/1.1756118

A fundamental issue for understanding information cod-
ing in nervous systems is that of neuronal reliability. As
pointed out by Movshon! neural responses to an identi-
cal stimulus in vivo are unreliable from moment to mo-
ment. Identical stimuli delivered to neurons never elicit
precise responses on repeated trials. Recently, neural
variability and its importance for the signal processing
have been most intensively investigated in experimental
and computational neuroscience studies. However, little
has been performed from the theoretical and analytical
points of view. From the standpoint of random dynamical
system theory, we tackled this issue for a simple but re-
alistic neural model, the Morris—Lecar (ML ) equations.
Qualitative difference of response characteristics in the
ML model generates two bifurcation scenarios. We found
that additive stochastic perturbations completely destroy
the bifurcation scenarios. In other words, noise-like
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stimulus does not induce any stochastic dynamical bifur-
cations. Moreover, we found that the ML model evoked
by noise-like stimulus has an asymptotically stable sto-
chastic attractor. This implies that if the ML model is
initiated at a different state point and presented with the
same noise-like input repeatedly, the same response will
be evoked after a transient time. In this sense, the ML-
model response evoked by such noise-like input is reli-
able. These results should help to elucidate neural coding
in actual neural systems.

I. INTRODUCTION

Neurons respond to stimuli by generating sequences of
brief electrical pulses, referred to as action potentials. The
form of action potentials varies little, so that information
concerning the stimulus cannot be readily conveyed by their
shape. Conversely, the timing of these electrical discharges is
stimulus dependent, so that elucidating the neuronal code

bpresent address: Institut Jacques Monod, CNRS, Universites Paris 6, Paf9NSists essentially in determining the relation between some
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stimulation and the discharge train it evokes. This study ad-
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dresses this issue by analyzing the response of a canonidalr electrical activity of the barnacle muscle fibers has, since
membrane model, namely the Morris—Le¢si.) model?’to  then, become a canonical neuronal model because for differ-
white Gaussian noise current stimulation considered as a rent parameter regimes, it displays two important forms of
alistic model for the inputs of some neurainsvivo. neuronal behavior. From the standpoint of the geometrical
The response of neurons to periodic stimuli such as sinutheory of dynamical systems, these forms correspond to two
soidal currents, as well as periodic pulse trains have beedifferent bifurcation scenarios between a stable equilibrium
widely studied®® These have revealed that such stimuli point and a stable limit cycle. In the first one, the limit cycle
evoke diverse firing patterns that are phase locked, quasippears through a saddle-node separatrix-loop bifurcation,
periodic or chaotic. A large number of theoretical analysesvhile in the second one it is through a double limit cycle
have been devoted to characterize these behaviors from tifurcation followed by a subcritical Hopf bifurcation. The
standpoint of the geometrical theory of dynamical systemgnain purpose of this work is to analyze the influence of
and determine the conditions for their occurrence throughiandom perturbations upon these two scenarios. In fact, our
systematic bifurcation analysi®.g., Refs. 7, 8, and refer- study suggests that additive noise destroys both bifurcation
ences therein sequences in the sense of the stochastic bifurcation theory.
In this study, we are concerned with the response oHowever, we also show that the characteristics of the station-
neurons to a different form of stimulation, namely a whiteary stochastic process associated with the stochastic ML
Gaussian noise current. Gaussian current stimulation ha®odel depend both on the noise intensity and the behavior of
been used irin vitro experiments that attempt to reproduce the deterministic system.
the response of neurons to realistic stimulus. Indeed the in- This paper is organized as follows: In Sec. Il, we intro-
puts some neurons in central nervous system, such as ne@dce the deterministic ML model and review the two types
cortical cells, receive can be well approximated by highlyof behavior it displays. In Sec. IlI, the stochastic ML model
fluctuating aperiodic signals such as the sample path of i described. In Sec. 1V, the stochastic approach is explained
Gaussian process. and its numerical results are presented. In Sec. V, the RDS
In a seminal study, Bryant and Seguftiobserved that approach is addressed. In Sec. VI, numerical results on the
such stimuli evoke reliable discharge times, in the sense th&tDS approach are provided. In Sec. VII, we finally discuss
when the neuron is stimulated repeatedly with the sam@ur results.
Gaussian sample path, there is little variability in the timing
of action potentials from one trial to another. Bryant and
Segundo performed their experiment using well identified
neurons of the sea slug aplysia. Since then, their observatiQp THE DETERMINISTIC MORRIS—LECAR MODEL
has been consistently reproduced in a wide variety of prepa-
rations such as rat muscle spindles subject to Gaussian me- Thijs section presents first the ML model, and then re-
chanical stimulf' rat neocortical neurorisaplysia buccal  views the dynamics of this model for two different parameter
pacemaker cell$; and various stages of the visual system ofsets that reproduce the behavior of class | and class Il neu-
insects and vertebrates subject to aperiodically fluctuatingonal membranes. These were first described by Rinzel and

light stimuli.*>~*> Ermentrout® and our presentation closely follows theirs.
In this study, we perform a numerical analysis of neu-

ronal behavior in response to white Gaussian noise currenﬁ' The Morris—Lecar model
As mentioned above, the geometrical methods of dynamical The ML model is a mathematical model for the barnacle
system theory have been highly successful in elucidating thenuscle fibe? The ML model belongs to the vast family of
response of neurons to periodic stimuli. Here, we use a difeonductance-based membrane models of which Hodgkin—
ferent approach, based on random dynamical sysRD5) Huxley (HH) model is a well-known archetyg@.The ML
theory!® The random dynamics of systems forced by Gaussequations represent an electrical circuit equivalent to a cel-
ian noise can considerably differ from their deterministiclular membrane crossed by three different transmembranar
counterpart. Highly illustrative examples of such differencescurrents, referred to, respectively, as the voltage-gatéd Ca
are the destruction of various bifurcations, such as pitchforlcurrent, the voltage-gated delayed-rectifief Kurrent and
bifurcation in scalar systerhsand Hopf bifurcation in the the leak currenf.Figure 1 shows the equivalent circuit hy-
stochastic Brusselator by additive white Gaussian n§ise,  pothesized for a space-clamped patch of sarcolemma mem-
the onset of stochastic chaos in the noisy Kramer'sdorane of the barnacle muscle fiber.
oscillator!® The original ML model is a third-order nonlinear system
Previous studies of random dynamical systems appliedf a Hodgkin—Huxley form whose variables represent the
to neuronal models have also revealed that the response wbltage and C&" and K' activations. Taking advantage of
neuronal models to white Gaussian noise can take on divergke fact that the second variable is much faster than the third
forms, with for instance the active rotatdrand the one, Morris and Lecar reduced the original model to a two-
Hodgkin—Huxley model being exempt of dynamic stochasticdimensional system by assuming that ?Caactivation
bifurcations?! while, in contrast, the FitzHugh—Nagumo can reaches instantaneously its steady state valDar study is
switch to a regime of stochastic chad$? concerned with this reduced version of the model which is
This work is concerned with the random dynamics of thewidely referred to as the ML model in the literature. The ML
ML model. This model which was first introduced to accountmodel is represented by the following second-order system:
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Inside ing. In the former, the membrane potential stabilizes at a

T resting state, while in the latter, it undergoes periodic oscil-
cl 8 8ca %
B VCa -|-

lations due to periodic generation of action potentials. An

excitable membrane may also generate action potential if
stimulated by a strong enough input such as a sufficiently
8k

large current pulse. In such a situation, the time interval
separating the onset of the stimulus from the onset of the
action potential is referred to as the spike latency. It repre-
sents the delay between the stimulation and the membrane

4 % response.

L K Excitable membranes may be transformed into oscillat-
ing ones and vice versa by changing experimental condi-
tions. For instance, in some experimental preparations, an

Outside excitable membrane, that is one that stabilizes at a constant

resting potential, may be rendered oscillating, that is forced

FIG. 1. Equivalent circuit for a patch of space-clamped barnacle sarcotg periodically generate action potentials, through the injec-
lemma. The membrane current can divide into four pathways: one is capaci[-lon of a WeII-adjusted constant direct current

tative, and three are conductive pathways in series with the associated re- : . ’ .
versal potentials, shown as batteries. The separation of membranes into class | and class Il is

based upon phenomenological descriptions of excitable and
oscillating regimes, and the transition between the two. In a

du, systematic study of the response of isolated axonSati-

C 4t = ~9cdM=(v0) (V1= Vea = GxWr- (V= V) nus maenago various amplitudes of rectangular current

stimuli, Hodgkin found that some oscillating axons could be

—gL(v =V +I, (18 made to fire with arbitrarily low response frequencies, while

dw,  Wo(u)—w, others could no’Ef The discharge frequencies of the latter
—=—, (1b)  class of axons lie within a narrow range and were clearly
dt Tw(V1) distinct from zero. Furthermore, the first axons could display
where considerable spike latencies, while in the second ones, the
time delay between stimulation and response was not sub-

v—V; : : )

mm(v)zo_g{lﬂam( ” (29)  stantial. Hodgkin referred to the first type of membrane as
\ class | and to the second type as class Il. Hodgkin’s results

(2b) rations, such aCancer pagurusaxong’ and decalcified
nerves of frogs and squid® For this reason, Hodgkin’s clas-

v—Vs\ ]t sification is considered to be representative of the behavior
COS"( 2V, ” (20 of a wide variety of neurons.

In the same way as experimental preparations, Hodgkin—
The three terms in the right-hand side of Efja) represent Hyxley-type single-neuron models commonly used in theo-
successively the voltage-gated ‘Cacurrent, the voltage- retical neurosciences are also classified into class | o class Il
gated delayed-rectifier K current, and the leak current. In categories. Rinzel and Ermentrout proposed an interpretation
Eq. (1), the variables; andw, represent the membrane volt- of these membrane classes in terms of the phase portraits and
age and the aCtivatiOI’l Of delayed I’ectifief‘ Kurrent. The bifurcation diagrams of the mathematical mod’é|§ince
parametergjc,, gk, andg, are the maximal conductances they carried their analysis using the ML model, this model
associated with the three transmembranar currents\ad,  has become the canonical system in which the characteristics
Vi, andV|_ are the corresponding reversal potentials. Inpulof each class of membrane is investigated. For the sake of
current is represented by Finally the constang in Eq. (1b)  self-containment, we briefly present an analysis of the ML

determines the scaling of the rate for Kchannel opening.  model in class | and class Il regimes, and describe the cor-
The two parameter sets used throughout this study argssponding bifurcation diagrams.

the same as those described by Rinzel and Ermerfttout.
Their values are listed in the Appendix. The rational for se-

lecting these two parameter sets is explained in the followindl. Class /
section, which also describes the dynamics of the determin-
istic ML model for these parameter values.

v—Vs are in general agreement with those obtained in other prepa-
Ww(v)zo.ﬁ{lﬂanl’( ”

4

Tw(V)=

Figure 2A) is the bifurcation diagram of the ML model
with the class | parameter set. The lines in FigARrepre-
sent the steady-state voltageversusl and the maximum
and minimum voltage for periodic solutions. FoKI.
Here, we briefly explain the class | and Il excitability we =40 uA/cm?, there are three equilibrium points, the lower
referred to in this paper. Neuronal membranes generate briefne being a stable node, the middle one a saddle point and
electrical pulses referred to as action potentials or spikeghe upper one an unstable focus. Forl ., only the unstable
Roughly speaking, a membrane may be excitable or oscillatpoint subsists surrounded by a stable limit cycle.l Atl .,

B. Class | and class Il membranes
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I (uAlcm ) FIG. 3. (A) Bifurcation diagram of the class Il ML model. The system

) . ) ) possesses a unique equilibrium point for all valued af the parameter
FIG. 2. (A) Bifurcation diagram of the class | ML model. The thick curves yo4ion shown here. The thick curve stands for stable equilibrium points for
stand for stable solutions and the thin curve for unstable ones. Repetltlvp<|H:93_86 (wAlcm?) and the thin curve for unstable ones. Amplitude of
firing occurs for the critical currerit;~40 uA/cm?, where the stable rest gaple periodic solutionglabeled “osc”) is indicated by maximum and
state and saddle coalesce. Branches labeled “osc” respectively represefllinimum values o) over one period fof > 1 ,c=88.29 (uAlcm?). Stabil-

maximum and minimum values ?f in each periodic solution. Abscissa: it of the periodic solutions is also shown as filléstable and unfilled
stimulus current intensity (xA/cm?), ordinate: membrane voltage(mV). (unstablg circles. Abscissa: stimulus current intenslty( uA/cm?), ordi-

(B) Frequency of stable periodi_c solutions_ versh._lsWith i_ncreasing the nate: membrane voltage (mV). (B) Frequency of stable periodic solutions
current intensity, the frequency is monotonically increasing from zero fre'versusl. Frequency is monotone over theparameter range of periodic

quency at the critical current. solutions and the minimum firing frequency has a nonzero value.

the stable node, the saddle point and the limit cycle collidd@ke the system exactly on the stable manifold of the saddle.
and form a saddle-node loop, also referred to as a saddid-his is called the threshold perturbation: For this exact value,
node on an invariant circle. the system does not return to the stable equilibrium, instead

The bifurcation scenario depicted above indicates that converges to the saddle point. The closer the perturbation
the transition to repetitive firing is marked by arbitrarily low @mplitude is to this value and the longer it takes for the
frequency. That is, a class | membrane is observationallpyStem to return to the equilibrium point. This phenomenon
recognized by a continuous response frequency to an inp@ccounts for the long spike latency times, and their depen-
current(F1) curve that shows oscillations arising with arbi- dénce on perturbation amplitude.
trarily low frequencies as shown in Fig(B. This limit
cycle is approximately of constant amplitude, but the period?- €/ass I
depends on the amplitude of the input currerithe Fl curve The bifurcation scheme of the ML model with class Il
thus shows that the class | cell can produce a wide range gfarameter set substantially differs from the one depicted
firing frequencies and that the limit cycle has an infinite pe-above[Fig. 3(A)]. In this case the system possesses a unique
riod whenl=1.. equilibrium point for all values ofl. This equilibrium is

In the excitable regime, the stable manifold of the saddlestable forl<I,=93.86uxA/cm?, and unstable beyond this
point acts as the firing threshold. Depending on theimpoint. The loss of stability occurs through a subcritical Hopf
strength, impulsive perturbations of the stable equilibriumbifurcation. The branch of unstable periodic solutions ap-
can take the system on either side of this manifold. Thos@earing from this bifurcation expand to lower valueslof
that are in the same side as the stable equilibrium producentil |pc=88.29uA/cm? where they collide, at a double
subthreshold responses. The others evoke a discharge, thatdgcle bifurcation, with a branch a stable periodic solutions.
the system returns to the stable equilibrium point along th&he latter branch exists fdr>1pc and until 216.9uA/cm?,
longer heteroclinic connection between the saddle and th&he diagram shows that the system stabilizes at a unique
stable equilibrium. There is a critical perturbation that wouldequilibrium point forl <lpc, while trajectories of all initial
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conditions except the unstable equilibrium stabilize at thea future time depends not only on the initial condition, but
limit cycle for 1=1,,. Between these two values, i.épc  also on the noise realization impinging upon the system. Dif-
<|=<ly, the stable equilibrium and limit cycle coexist and ferent noise realizations lead to different states. Noise real-
the unstable limit cycle separates their respective attractioizations occur with a certain probability. This probability de-
basins. The bifurcation scenario of the class Il ML modeltermines the probability of reaching a certain region of the
accounts for the discontinuous FI curves with the oscillationgphase space at a given time starting from an initial condition.
arising with a nonzero frequency. The response frequencior instance, leX, andX=(Xy,...,X,) be two points in the
range is narrow and largely independent of the curtea$  state space. Starting X, there is a certain transition prob-
plotted in Fig. 3B). ability, denoted byP(t,X,Xg)dx;d%, ...dx,, to reach a
The excitable regimes of the class | and Il ML models small neighborhood oX at timet. The stochastic approach,
also differ in that in the latter there is no true threshold forrather than examining the evolution of the initial condition
the appearance of spikes. In this case, the response of the M{, under the influence of a single noise sample path, studies
model is not an all-or-nothing phenomenon. When a pulsehe changes of the distributid? of solutions starting aX.
stimulus evokes a spike, the amplitude of the spike can deNotably the stochastic approach determines whether the
pend on the size of the pulse stimulus. The delay to a spike igrobability density functioripdf) P(t,X,X,) stabilizes in the
less sensitive to the size of the suprathreshold stimulus thagng run ast— + at a uniquely determined functiqs(X)
in the class | membrane, and spike latency times remaifhdependently from the initial staté,. We refer to such a

bounded. function p, when it exists, as the stationary distribution of
the system. The shape pfdepends on system parameters
Ill. THE STOCHASTIC MORRIS-LECAR MODEL and noise intensity. The shapes pfat different parameter

Our purpose in this work is to analyze the influence ofvalues or different noise intensities may be qualitatively dif-
fluctuating noise-like perturbations on class | and class Iférént: The changes from one shape to another are referred to

regimes of the ML model. Such perturbations are represented® Phenomenological stochastic bifurcations, shortened as
by a white Gaussian noise current added to the membra,ﬁ;—bifurcation§.6 Characterizing P-bifurcations is one method

voltage. The dynamics of the ML model subjected to such 40 detect changes in the behavior of noisy systems. In the
stimulation is described by the following stochastic differen-rémainder of this section, we examine whether such bifurca-

tial equations SDES: tipns occur in the ML model in the class | and class Il re-
gimes.
Cdv=[—gcdMu(ve) (vi—Vea) = GxWe (0= Vi) Prior to the determination of P-bifurcations, we need to
— g, (v= V) +1]dt+odW,, (39 discuss the existence and the uniqueness of the stationary
distribution p for the stochastic ML model. While to our
o Wa(vg) — Wy knowledge there are no rigorous proofs of this fact, a number
dw=¢ 70(Uy) dt, (3b) of formal arguments similar to those presented in Ref. 18,

together with extensive numerical explorations suggest that it

wherel is an external current and is a noise intensity. . .
) is so. Therefore, henceforth, we assume that all transition
Here, W, represents the standard Wiener process. More pre- ; .
. . ; pdfs of the stochastic ML model, whether in class | or class
cisely, letQ) be the space of continuous functionsR— R,

F the Borel o-algebra of subsets db, and P the Wiener Il regimes, stabilize at a unique stationary distributon

measurddistribution of W) on F. Thus, the tripletQ}, F, P) 'Deterr_nmlng whgther the stochastic ML prgsen.ts
: . . _P-bifurcations or not is based upon the numerical estimation
is called a probability space as usual. We denote a given

sample path of the process Wy, for eachw and write W, of the stationary distributiop. Practically, estimates gf for

W, ()} (0=t<o) t v different parameter sets were obtained from numerical simu-
Tthe analysis of dynamical systems perturbed by noiséations as described in the Appendix. We continued the cal-

can be carried out from different standpoints. Here, we deg:ulation for a sufficiently long time and observed that there

scribe two of them. To avoid ambiguity, we re.fer to t'he first Vas Nno clear change (?f the shgpe of t'he densities untl the

as the stochastic description and to the second as the Rd?t time except for a first transient period.

theory. Given the novelty of the RDS theory and the fact thatA. The stationary distribution in the class | regime

there are only few studies of neuronal models from this : o
: S ) . - There are essentially two types of deterministic dynam-
standpoint, we provide in the following section a heuristic.

description of the two stochastic and RDS approaches tbcs N f[he.class | regime. Either, the sy;tem IS exmtgble or it
. : Is oscillating. For each type of dynamics, we describe how
clarify the differences between them. Then, we present theif . L ;
R : he shape of the stationary distributipnchanges with the
applications to the ML model. Comprehensive treatments o} o .
. - . noise intensity.
the stochastic and RDS theories are given by Lasota and . .
9 16 When the ML model is excitabley takes on a shape
Mackey® and Arnold? R .
close to a Gaussian distribution centered on the stable equi-
librium point at low noise intensitiegpanel Al in Fig. 4.
This indicates that the influence of weak perturbations is
In smooth deterministic systems, the initial condition mainly to induce small perturbations in the vicinity of the
uniquely determines the state of the system at any futuretable equilibrium point. However, this does not preclude

time. In systems perturbed by noise, the state of the system atcasional large noise induced excursions that take the sys-

IV. THE STOCHASTIC APPROACH
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FIG. 4. Stationary distributions of the class | ML model in the excitdb#umn panels Aand oscillatory(column panels Bregimes near the saddle-node
separatrix-loop bifurcation point {(=40) for three different values of noise intensity in row panels 1, 2, and 3. Param@tgis= 39.0 (uA/cm?) and (B)

I =45.0 (uAlcm?). 1 64=0.5, 20,=23.0, and 30y="7.0. The stationary distribution emerged as the three-dimensional histograms of the final position of all
points in thev-w phase plane and normalized by the total number. The Heun scheme was used for the numerical calculati8) ofitEc time step of
At=0.001. The numerical calculation was carried out fot tiie units after discarding the first 4@me units. More detailed explanation for the numerical
calculation is described in the Appendix.

tem beyond the firing thresholdhe stable manifold of the a ring like form going over the heteroclinic connections from
saddle point At low noise levels, such escapes are ex-the saddle point to the stable equilibrium point. At low noise
tremely rare and they occur in general through the saddléevels, this ring is hardly visible, however, as the noise in-
point. So, besides the Gaussian-type peak centered on thensity is increased, it becomes more prominent, as, simulta-
stable equilibrium, the stationary distributiprpresents also neously, the peak of the Gaussian-type peak decreases and its
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width increasegpanel A2 in Fig. 4. Further increase in the the class | regime. When the current and noise intensities are
noise intensity magnifies these effegtanel A3 in Fig. 4, as  set to be bifurcation parameters and others are fixed, station-
both the dampened peak and the ring expand to wider reary distributions of the class Il ML model could basically be
gions as a consequence of wider noise induced fluctuatiorfermed from one of(i) a peak around the equilibrium point,
in the phase space. (ii) a surrounding ring reflecting the spike trajectory(ion a
When the ML model is oscillating, the low-noise station- composite of both as well as those of the class | ML model.
ary distribution takes on a ring-like shape over the limitin the presence of noise, however, there is no bistability in
cycle. At each cross section of the cycle, it has a Gaussiathe sense that in all cases, i.e., excitable, bistable, and oscil-
like form. However, the ring is not uniformly distributed lating, the system admits a unique stationary distribution. In
along the cycle. It displays peaks and trougpanel B1 in  the case of the class | ML model, we have already argued
Fig. 4). The peaks represent the regions in which the dynamthat there was no evidence of P-bifurcations in the parameter
ics along the cycle is slow, and, conversely, the troughs reranges that we explored. For the class Il ML model, the
flect the faster dynamics. As the noise intensity is increasedituation is more complex owing to the bistable regime. The
the differences between these tend to decrease, while, at th@merical explorations we have performed do not rule out
same time, the ring-like distribution widens and spreads furthe occurrence of P-bifurcations. In the following, we depict
ther away from the vicinity of the limit cyclépanel B3 in  some of the typical shapes of the stationary distribution we
Fig. 4. observed in the individual regimes of the class Il ML model.
The above descriptions suggest that, whether in the ex-  As stated above, the main similarity between the class |
citable or oscillating range, increasing the noise intensityand class Il ML models is that both exhibit excitatory and
while producing quantitative changes in the stationary distrioscillatory regimes. Therefore, the shapes of the stationary
butions, does not lead to any qualitative change. In othegistributionsp of the class Il stochastic ML model outside of
words, based upon the numerical explorations, one cannhe transition rangéthe bistable regime that is, in the ex-
conclude that there is a noise induced P-bifurcation in theitable and oscillating regimes, are reminiscent of those in
system. the class | mode(see panels A and B in Fig. 4 and compare
Similarly, it is possible to compare, at a fixed noise in-jth panels A and B in Fig. b Indeed, the distributiop has
tensity, the shapes of the stationary distributignfor the 3 peak and a surrounding ring-like hump. In the excitable
excitable and oscillating class | ML model. Clearly, at largeregime, the latter becomes visible only at sufficiently large
noise intensities, the shapes pfare qualitatively similar nojse intensities. In the oscillating regime, the ring is on the

(compare panels A3 and B3 in Fig). Ahe low-noise densi- action potential trajectories and the peak represents the re-
ties are qualitatively similar to the large-noise densities. Ingion where the dynamics is slower.

other words, there are no P-bifurcations in the stochastic |n the pistable regime, the situation is more complex.

class | ML model, as one moves from the excitable to thepne reason is the existence of metastable distributions at low
oscillating range. Heuristically, this absence of P-bifurcationgypjse |evels. Indeed, at low noise levels, hopping between
can be accounted for by considering that P-bifurcations argne stable equilibrium point and the stable limit cycle and
sometimes characterized as %Elanges in the number of peafige versa may not occur within the simulation time. In such
of the stationary distributiop,™ and that these peaks are ¢ases, simulations started at an initial condition close to the
indicators of regions in which the stochastic system spendsi;pe equilibrium point produce distributions that are
most of its time. In the excitable range, the peak is situated at 4 ,ssian-like and centered at the equilibrigpanel A1 in

the stable equilibrium point. At the saddle-node loop bifur-gig g while those initiated in the vicinity of the limit cycle
cation from excitable to oscillating regimes, the peak is at thga54 to a ring-like distributior{panel B1 in Fig. & such as
saddle-node, where the dynamics are slowed down. Beyongle one in the oscillating regime. However, the stationary

the bifurcation, in the oscillating regime, the dynamics alonggjstripution is unique and independent from the initial distri-
the limit cycle is slowed down in the phase space region neajtion of points. Furthermore, due to noise induced hopping,
to the former location of the saddle-node. Therefore, the stasne expects the stationary distribution to have both a peak
tionary distributionp in the oscillating regime also presents a 5.5.nd the equilibrium and a ring on the stable limit cycle.

marked peak similar to the one observed in the excitablgherefore the distributions obtained numerically are not the

regime. In conclusion, despite the bifurcation of the deter‘stationary one, but metastable ones. They end up converging

ministic system, the shape of the stationary distribution oy the ynique stationary distribution. However, the duration
the stochastic system does not undergo any qualitativgs this process tends to infinity as the noise intensity is de-

change. creased, so that practically, it is not possible to obtain the
stationary distribution at arbitrarily low noise levels from
numerical simulations of solution sample paths.

To avoid this problem that is proper to the bistable re-

In this section, we describe stationary distribution prop-gime, we systematically computed the distribution for two
erties of the class Il ML model, focusing on the similarity initial conditions, one on the equilibrium and the other on the
and difference between the two classes. In the class Il restable limit cycle. Only when both led to visually indistin-
gime, the transition from the excitable state to the oscillatingguishable results, we considered them to represent a proper
regime goes through a bistable regime, with coexisting stablaumerical estimate of the stationary distribution of the sys-
equilibrium point and stable limit cycle, while it does not in tem. The rows in Fig. 6 represent numerical estimates of

B. The stationary distribution in the class Il regime
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FIG. 5. Stationary distributions of the class Il ML model in the excitable reditokimn panels Anear the double-cycle bifurcation poirliyc=288.29) and
oscillatory regimescolumn panels Bnear Hopf bifurcation pointl;=93.86) for three different values of noise intensity in row panels 1, 2, and 3.
Parameters(A) 1=88.2 (uA/cm?) and(B) | =94.0 (wAlcm?). (1) 0x=0.2, (2) 0x=0.5, and(3) oy=1.0.

distributions obtained for fixed parameter sets but starting As mentioned above, typical stationary distributions in
from the two different initial conditions situated on the equi- the bistable regime present a peak on the stable equilibrium
librium point and on the stable limit cycle. Besides the firstpoint and ring on the stable limit cycle. This ring itself is not
row where the two distributions are clearly different, the oth-uniform, and has a maximal value at the range where the
ers are similar. cycle is slow. Therefore, we expect the stationary distribution
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FIG. 6. Stationary distributions of the class Il ML model in the bistable regime. The initial conditions were on the equilibriurit@loimn panels Aand
the stable limit cyclglcolumn panels Bfor three different values of noise intensity in row panels 1, 2, and 3. In order to make small changes visible the
logarithmic scale (log(*2)) on the vertical axis was used. Parametéfs: and (B) | =88.3 (uA/lcm?). (1) 0p=0.0001,(2) 0,=0.3, and(3) 0,=0.8.

to display distinct maxima, one associated with the peak aspent by the system in tight vicinities of the equilibrium and
the equilibrium, and one associated with the maximal valughe stable limit cycle is of the same magnitude as that spent
around the ringpanels A2 and B2 in Fig.)6 going from one to the other as well as exploring wider re-
The distinction between the separate peaks is not pogjions of the phase space. The panels on the third row of Fig.
sible when the noise intensity becomes large. Indeed, in thi§ illustrate this phenomenon. In summary, the numerical es-
situation, noise induced hopping becomes frequent. The timémates suggest that distinct maxima of the stationary distri-
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bution merge as the noise is increased. Such a change in tdgnamical systems. The random selection of the noise real-
shape of the stationary distribution may be reminiscent of azation is in fact interpreted as the random selection of one
P-bifurcation. system from this family. The noise realization can take on a
A similar merging of the maxima occurs at either end ofvariety of forms, so that it may seem an impossible task to
the bistable regime, that is, at the double cycle and at thanalyze all systems within the family. However, remarkably,
subcritical Hopf bifurcation. In the double cycle bifurcation, under wide conditions, for almost all noise realizations, the
it is the maximum associated with the ring that approacheslynamics of the nonautonomous systems within the family
the hump over the equilibrium point, while, in the subcritical will strongly resemble one another. This similarity makes it
Hopf bifurcation, it is the peak associated to the equilibriumpossible to describe typical dynamics for the family. In the
point that moves on the limit cycle. These changes can b#&llowing paragraphs, we provide a brief outline of RDSs
observed as long as the noise intensity is too large. They magnd introduce key concepts that are used in our study. For a
also be indicative of the occurrence of P-bifurcations in thecomprehensive treatment please refer to Arrbld.
model. In contrast to the one-point notion, an ordinary differen-
The examples shown in Fig. 6 depict the complicatedtial equation(ODE) dx/dt=f(x) can generally generate a
changes observed in the stationary distributions in thelynamical system, namely, a flow(t));. for eachx in an
bistable regime. These changes might be related to-dimensional spacB". Briefly, a family (¢(t)),.p of self-
P-bifurcations. However, to our knowledge, there are no genmappings of a space is called a flow if it satisfieg)=id
eral and universally applicable analytical tools available thatnd ¢(t+s)=¢(t)°¢(s) for all s,teR, where- denotes
would permit us to confirm or invalidate this. Our aim in this composition. The flow describes not just the one-point mo-
paper is not to show an occurrence of the P-bifurcation, bution, but also the simultaneous motion of arbitrarily many
to describe the qualitative difference between the class | anpoints. In other words, the flow “remembers” not only all
Il regimes. This is clearly fulfilled with our analysis which individual one-point motions, but also does the simultaneous
establishes thdt) the stationary distributions in the excitable motion of arbitrarily many points. The concept of the flow
and oscillating regimes of class | and Il ML models are fairly plays a central role in the analysis of deterministic dynamical
similar (ii) yet, there are marked differences in the shapes ofystems. This concept is also able to extend to a stochastic
these distributions and their dependence on model paranversion. In the RDS theory, the cocycle extends the concept
eters and noise intensities, in the range of transition fronof the flow to the case of systems undergoing random per-
excitability to oscillations. turbations. For example, the stochastic processes are ob-
tained by solving arbitrarily many copies of E@) with an
identical Wiener process realization, but with all different
V. THE RDS APPROACH initial conditions. This object is called a stochastic flow, and

A method which is based only on the information obtain-€SPecially if, for eachxeR", steR, and all e,
able from probability distributions of the solutioh att=0  ®s{®,X) is a solution of a stochastic differential equation
of a set of stochastic differential equations emanating fronfit ime t in the interval[s,] with an initial pointx at
one arbitrary poink, is called a one-point methddAs we ~ ime s<t, it is called a two-parameter flow ¢((w))
have already addressed, for example, a stationary distributiofF (#s{@;)). In the case, we also have the two-parameter
is a one-point object. Moreover, a notion obtained from the!OW Property: for all 0<s<r<t and allw € Q,
joint distribution of a pair of two pointX andY at which the
two solutions are simultaneously found at titnéor the cor-
responding initial pointXy and Y, (Xq# Yy) is referred to  where o means composition. The construction of a flow
as a two-point notion. Similarly, a multiple-point notion or, (¢s)s<; from a stochastic differential equation is a big
even more, an infinite-point notion can be defined. In theprogress because,(w) can now be differentiated with re-
above sense, roughly speaking, the stochastic description $pect tox, namely,¢; is a diffeomorphism, and its geometry
based on the one-point notion while the RDS theory on aan be analyzed. For more precise conditions and the general
different approach, i.e., the multiple-point notion, as we will theory of stochastic flows we refer the reader to the book by
explain in more detail below. Kunita2 A stochastic flowe, is still a static object and not

The RDS theory considers noisy systems from a differyet a (random dynamical system. That is, for eaeh the
ent standpoint. That is, the RDS theory analyzes the dynanfamily (¢(w))o<s<; Of diffeomorphisms ofR", wheren is
ics of different initial conditions under the same noise real-an integer, is a deterministic two-parameter flow in the sense
ization. Roughly speaking, the stochastic approach considetbat w is frozen. At this point, however, the flows for differ-
the dynamics of an initial conditiofi.e., the one-point no- entw’s are not related to each other. Such a relation appears
tion) under all possible noise realizations, while, RDS takesvhen we try to suppress one time argument in the two-
on the evolution of all initial conditionsi.e., the multiple- parameter flow property of Ed4) by puttings=0. To do
point notion under one noise realization. In this way, for this, we need to describe the driving Wiener process as a
each noise realization, RDS studies the dynamics of a nordynamical system. In other words, before we proceed to the
autonomous dynamical system. In principle, we have agxplanation of the cocycle, a metric dynamical system which
many dynamical systems as noise realizations: to each noiseodels the white noise is needed because an RDS or a co-
realization there corresponds a different nonautonomous dyycle consists of two basic ingredients: a model of the noise
namical system. We thus have a family of non-autonomousnd a model of the system which is perturbed by the noise.

Psd0,X)=idgn,  @s(w)=@(w)opg(w), (4)
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Let (W,);.r be the standard Wiener processHnwith
Wy=0. Put Q={w|weC(R),w(0)=0}, F the Borel
o-algebra of(), P the (Wienep measure orF generated by
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mination of random invariant measures. lkebe an RDS. A
random probability measuke— u,, on (RY,8Y) is said to be
invariant underp if for all te R

W. The shift on() is defined asfiw(S):=w(t+5s)— w(t).
Then 6 is an ergodic metric dynamical system on the triplet
(Q,FP), and W,(w) = w(t) is Brownian motion. Next, we
define a cocycle which models the system perturbed by th
white noise. Let Q,F,P,(6)(.r) be a metric dynamical
systems defined above. Let

®

where P-a.s. denotes P almost surely. The concept of a sta-
ionary measure given by E7) is older and more restric-
tive than that of an invariant measure for the Rp$ener-

ated by the corresponding SDE. However, there exists a one-
to-one correspondence between the stationary measarel

e(t,o)pu,=pg, F-as.,

PIRXQAXRI=RY (0, X)—~¢(t,0,X) (3 4 special random invariant measure, denotegkpyreferred
to as Markov invariant measures
be a mapping with the following properties:
(l) (P(O,w):idugn, pHMw::tILnl go(t,ﬂ,tw)p, /,Lpr==E[ILL], (9)
(i) foralls,teR and allwe(, ]
o(t+5,0)=olt, Ouw)oo(S,w), 6) whereE[ - ] represents an expectation operator.

In deterministic dynamical systems, the local stability of
equilibria is assessed through the spectral theory of matrices,
which provides us with eigenvalues and eigenspaces. Briefly,
in studies of the so-called local theory, stability of the deter-

One of the basic objects of interests in dynamical sysMinistic dynamical systenp generated by an ODEX/dt
tems is an invariant measure. For instance, the analysis of the f (X) With f(0)=0 in a neighborhood of 0 is based on the
long term dynamics of deterministic systems goes througl§iMPle fact that the dynamics of the linearized dynamical
the determination of equilibria, limit cycles, etc. In other SYStem ®(1)= (9/x) ¢(t,X)[x=o, i€, the linear ODE
words, the long term analysis examines structures that rélv/dt=Df(0)v, is completely determined by the computa-

main invariant under the deterministic flow. An invariant ion Of eigenvalues of the Jacobian matid(0). In the
measurep for the flow ¢ generated by an ODEIx/dt RDS theory, it is known that there indeed exists a stochastic

=f(x) is defined bye(t)p=p for all te R. Notice that ifp version of spectral th_eory for the Iinea_rizatimo(t,w,x) of
is a measure ang a measurable mapping, them, the im- a cocycleg, but not just at a fixed point, but for a general
age of p under ¢, is the measure defined byp(-) reference solution under @invariant measure.. The mul-

—p(¢X(-)). In addition, the infinitesimal form of the in- tiPlicative ergodic theorem proved by Oseled¢1969>
variant measure isiouville’s equationdiv(pf )=0. provides us with exactly the right kind of objects which one

Since the stochastic analog of the Liouville’s equation ish€€ds forlocal theory in RDSs. Moreover, the theorem is the
the Fokker—Planck equation, it seems quite natural to defin@@sis for studying the long-term behavior of deterministic
an invariant measure of an SDE as one which solves thBonlinear systems by means of the exponential growth rates,
Fokker—Planck equation* p=0, whereL* is an operator of namely, Lyapunov exponents, of the solution the variational
the Fokker—Planck equation of the corresponding SDE. ifequation(linearization. For an RDS, the local stability of
the RDS theory, this is actually the point of view called grandom invariant measures is thus determined by their asso-

stationary measure rather than an invariant measure. The sd&ted Lyapunov exponer;;é. Based on the multiplicative.er-
tionary measure plays a prominent role in applications, pedodic theorem of Oseledetsthese are defined as follows:

cause it is the one that is in general practically observable. In

wheree denotes composition of mappings.

The second is called a cocycle property. Note thét, w)x
= ¢or(@,X) (t=0).

1

the context, a probability measupeon (RY,89), where3¢ )\(w,x,v):=IimTIogHDcp(t,w,x)v||, (10)
is the Borel sets iRY, is called stationary for an SDE if it is toe
invariant underP(t,x,-) and satisfies the relation for p£0.
Dynamical stochastic bifurcations, denoted by

D-bifurcations, are generally defined as qualitative changes
in the stochastic phase portraits associated with the cocycle.
Similarly to the case of deterministic dynamical systems
where P(t,x,-) is a transition probability, i.e.P(t,x,B) whereby sign changes dfeal parts of eigenvalues of the
=P{X; e B|Xo=x}, which is related with a Markov process Jacobian matrix at an equilibrium characterize local bifurca-
X; generated by the SDE. The stationary measure is clearly #ons, local D-bifurcations are associated with sign changes
one-point object. The valug(B) gives the proportion of of Lyapunov exponents.
time a solutionX; of the SDE with a initial valuex spends in The implication of the above considerations for the ML
the setB. model is that, practically, the analysis of the random dynam-
In the RDS theory, however, there exists a second poses of the system requires mainly the numerical estimation of
sibility to extend the deterministic definition which seems tothe Lyapunov exponents of the system. Notably, one is con-
be equally natural, but more general. The RDS analysis thuserned with potential sign changes of the exponents in the
follows another approach, as it is concerned with the detervicinity of the bifurcations of the deterministic system.

p(')=fRnP(t,x,-)p(dx) for all t>0, (7)
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VI. NUMERICAL RESULTS ON THE RDS APPROACH zero. The upper panéd) in Fig. 7(A) where Lyapunov ex-

IQonents of the class | ML model at different values! afre

The Gaussian white noise input acts as an additive pe ted inst th se intensity illustrates thi
turbation to the ML model, in the sense that it leaves ng cPresented against the noise in ensty fllustrates this
oint. At the two lower values df, namelyl =30 and 38.5,

solution of the deterministic system invariant. As argued byf hich th tem i itable. the leadi t tend
Arnold et al,'8 this makes it impossible to directly apply the tort\k/‘v 'g ‘ € ;ystgm 'T exclta g’ Tf? eat\ll\r;g exlponen ends
analytical methods of stochastic bifurcation theory. In such© (€ deterministic value as,—9. 1hese wo vajues corre-

cases, one needs to carry out careful numerical analysis 3pond to the largest eigenvalue of the Jacobian matrix evalu-

the dynamics of the system. This is the approach that Wg{ted at the stable equilibrium point. For the two larger values

adopted. The tools used in the numerical exploration on I,tﬂamely|=4(t) a}[ndj?, for which the S¥S(tjem is oscillat-
RDSs are essentially the estimation of Lyapunov exponent§r,]g’_|_he exponents etq ¢ 0 ze(rjc_),tas e>ép|ec ed. tensiti
rotation numbers and the pullback and backwards randorHep € exponents at intermediate and large noise Intensities

attractors. We describe these for the ML model in the follow-, gnd on the dy“a”.“cs of the _determ|n|st_|c system. When
ing sections. is fixed in the excitable regime and increases, the

Lyapunov exponents first increase, then have a certain maxi-
A. Lyapunov exponents mum value at some noise intensity, and decrdasg., a
As mentioned above, sign changes in Lyapunov expoSurve labeled with =38.5 in Fig. TAa)]. Throughout, the
nents associated with random invariant measures are indic§XPOnent remains negative. In the oscillatory regime, with
tors of D-bifurcations. In this section, we report how the INCr€asing noise intensity, the Lyapunov exponents mono-
Lyapunov exponents of the ML model in the class | and clasdonically decrease. The same holds at the critical value at

Il regimes vary with the constant current and the noise inwhich the deterministic system undergoes the saddle-node

tensity. loop bifurcation. The main difference between the leading

The stochastic ML model possesses two Lyapunov ex-yapunov exponent in the oscillating regime and at the bi-
ponents\ ;=\, which are exponential growth rates of a so- furcation point is observed in the slope of the curvesgt
lution of the linearizatior{variation equationcorresponding = 0- IN the oscillating regime, the slope is zero, while, at the
to Eq. (3). The leading Lyapunov exponeht can actually bifurcation point, it takes on a negative value.

be calculated as the following exponential growth rate: Despite the differences in the shapes of the curves rep-
resenting the leading Lyapunov exponent against the noise

intensity for different values of, one observation common

to all the cases is that the exponent is negative forogll
>0. This is clearly apparent when the Lyapunov exponents
whereV(t) = (v{,W;) is a solution of the variation equation g, represented if-o parameter spacgFig. 7(Ab)]. The
associated With _Eq(3) for_ any determin_istic initial values_ absence of sign changes in the leading Lyapunov exponent
except the origin. Practically, we estimated the leadings,ggests that there are no D-bifurcations in the class | sto-
Lyapunov exponent by the method described in the Appenghastic ML model, or, in other words, that additive noise

dix. o . _destroys the bifurcation of the deterministic system.
As for the deterministic dynamics and for the stochastic

analysis, we describe successively the Lyapunov exponents cjass jf regime
in the class | and then in the class Il regimes.

1
M= lim < log V()] 1y
t

— 0

In the class Il regime, the Lyapunov exponents of deter-
ministic ML model in the excitable range are both to the
Before discussing the Lyapunov exponents of the sto{negative real part of the pair of complex conjugate eigen-
chastic ML model, it is appropriate to discuss how thesevalues of the Jacobian matrix of the system at the equilib-
guantities vary in the deterministic excitable and oscillatingrium point. In the oscillating range, similarly to the class |
ranges, and the transition between the two. regime, the exponents equal the Floquet eigenvalues of the
In the excitable range, the Lyapunov exponents of thdimit cycle, so that the leading one is zero and the second one
ML model equal the eigenvalues of the Jacobian matrixis negative. In the transition range, the system is bistable, so
evaluated at the stable equilibrium point. Therefore, they ar¢hat it possesses two pairs of Lyapunov exponents, one asso-
both negative, and the leading exponent tends to zero as thlated with the stable equilibrium point and the other with
parametet approaches the critical value at which the saddlethe stable limit cycle.
node loop bifurcation occurs. At this critical point, the lead- In the same way as for the class | ML model, in the
ing exponent vanishes while the second exponent remairexcitable and oscillating regimes, the leading Lyapunov ex-
negative. Beyond the bifurcation point, i.e., in the oscillatingponent of the system tends to the deterministic @uas
range, the Lyapunov exponents equal the Floquet eigenvaly— 0. In the bistable range, the stochastic system, unlike
ues of the stable limit cycle. Therefore, the leading exponenthe deterministic one, has only a single pair of Lyapunov
remains zero, reflecting the neutral stability of the limit cycleexponents. At low noise levels, these exponents tend those of
to perturbations along the cycle. Conversely, the second exhe equilibrium when the system is near the double cycle
ponent is negative reflecting the stability of the cycle againsbifurcation, and conversely to those of the limit cycle, when
transversal perturbations. the system is near the subcritical Hopf bifurcation. This ob-
The exponents of the stochastic ML model tend to thoseservation is in agreement with that of the stationary distribu-
of the deterministic system as the noise intensity approachdé®n p reported previously. Indeed, even though in the

1. Class | regime
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FIG. 7. Leading Lyapunov exponents of the stochastic ML mogk). The class | ML model(a) Mean values and standard deviations of the leading
Lyapunov exponents are shown against noise intensity for four different current vi#a@6,(38.5, 40, and 5@ A/cm?). The former two are in the excitable
regime and the latter the oscillatory regime. The Lyapunov exponents were calculated for 20 different noise realizations each time with tle@sityise int
oo(=o/C) ranging from 0 to 8 with a step of 0.8h) Averaged leading Lyapunov exponeitson the parameter plaries,. The Lyapunov exponents were
calculated in the same way as p@x (B) The class Il ML model(a) Mean values and standard deviations of the leading Lyapunov exponents against noise
intensity for four different current values € 80, 86, 96, and 10@.A/cm?). The former two are in the excitable regime and the latter two in the oscillatory
regime. The Lyapunov exponents were calculated as the same way as @olwitinthe noise intensity, ranging from 0 to 8 with a step of 0.8) Averaged
leading Lyapunov exponents; on the parameter plareoy.

bistable range the system hops from the vicinity of the equidl ML model is similar to that in the class | ML model. More
librium to that of the stable limit cycle, and vice versa, the precisely, in the oscillating regime, the leading exponent de-
relative times spend in the two neighborhoods strongly deereases monotonically as the noise intensity is increased,
pend on system parameters. Close to the double cycle bifuwhile, in the excitable regime, the Lyapunov exponent pre-
cation, the system is mainly confined to the neighborhood ofents a hump at some intermediate noise level. Overall, as
the equilibrium, while close to the subcritical Hopf bifurca- shown in Fig. 7Bb), the Lyapunov exponents are always
tion, the opposite holds, that is, the system remains mostly inegative in anl-o parameter space. Consequently, in the
the neighborhood of the limit cycle. This asymmetry ac-same way as in the class | regime, there are no
counts for the differences in the low noise evolutions of theD-bifurcations in this system: additive noise destroys the bi-
Lyapunov exponents at either end of the bistable range. furcations(both the double cycle and the subcritical Hopf
The low noise estimation of the Lyapunov exponents isbifurcationg of the deterministic system.
hindered by the metastable regimes in the same way as the
estimation of the stationary distributign To make sure that
the estimates corresponded to the regime once the metastat%'e
transients have ended, the Lyapunov exponents were esti- Our analysis of the D-bifurcations of the ML model was
mated from an initial condition at the equilibrium and an- based upon the computation of the Lyapunov exponents. In-
other one situated on the limit cycle. deed a sign change in the Lyapunov exponents of the system
Figure 1B) shows the Lyapunov exponents of the classis an indicator of a qualitative change in the Markov invari-
[ ML model. As shown in Fig. {Ba), for four fixed current ant measure. We detected no such sign changes and therefore
intensities in the excitable and oscillatory regimes, the teneoncluded that no D-bifurcations take place in the ML
dency of the changes of the Lyapunov exponents in the clagaodel, whether of class | or class Il. In this section, we

The attractor of the stochastic ML model
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continue this analysis by computing the support of the Mar{Fig. 8 A3)]. With t’ further back in time, the points cluster
kov random invariant measure. The numerical investigationn either the vicinity of the equilibrium point or parts of a
reveal that it is in fact reduced to a single point. loop around it as shown in Fig(B3), and eventually they all
The fundamental relation in the computation of the sup-collapse into a single tight group where they cannot be visu-
port of the Markov random invariant measure is E9).that  ally distinguished from one another. This tight group can be
establishes the relation between the stationary distribytion assimilated to a single point. It remains invariant under pull-
and the Markov random invariant measure. Notably, the lefting further back the time. In this way, it represents the nu-
hand relation in Eq(9) shows how one can derive the ran- merical estimate of the s#&(w) and shows that this set is
dom invariant measure from the stationary distribution. Thiscomposed of a single point, that we denote by
procedure is referred to as the pullback method. Indeed, w* (w),w* (w)). In fact @* (6,0),Ww* (6;0)) is a stationary
consists in initiating the system with points distributed ac-stochastic process, that is referred to as a stochastic equilib-
cording to the distributiorp at some timeg=t’<0 “in the rium point2® From the limit(12), we derive that for almost
past,” and letting it evolve to the present tire O under the  all noise sample path, the trajectories of initial conditions,
influence of the noise realizatian The outcome at=0isa  except for possibly a set of measure zero, tend to this unique
measure that is randofne., it depends on the noise realiza- stationary stochastic process.
tion) and that depends on the start tirle As the initial Even though the possibly nonempty set of initial condi-
starting timet’ is pulled back in time towards-«, this  tions whose trajectories do not converge to the stochastic
random measure tends to the Markov random invariant measquilibrium point has measure zero, it can bear some influ-
sure(in the sense of weak convergence ence on the dynamics of the system. The excitable class | and
We denote byA(w) the support of Markov random in-  class II ML models illustrate this point. In the former, trajec-
variant measure. This notation emphasizes the fact that th@ries initiated on the zero-measure closure of the stable
setA(w) is in fact a random set, and to different noise real-manifold of the saddle point do not converge to the stable
izationsw and " may correspond different sef(w) and  equilibrium point. Conversely, in the latter, that is the excit-
A(o'). The fact that the Lyapunov exponents of the systenyple class II ML model, all trajectories, with no exception,
are negative imposes th@j for almost allw, A(w) is com-  converge to the stable equilibrium point which is globally
posed of finite numbenm of points, withn being independent  asymptotically stable. Clearly, it is the difference of the dy-
of w, and furthermore tha(ii) except for possibly aw de-  namics on a set of measure zero that permits the separation
pendent set of initial conditions of Lebesgue measure zergyf class | and class Il systems. The issue here is whether this
trajectories of initial conditionsc approachA in the sense (jfference persists in the stochastic models. More precisely,
that, for almost alko,*! there is a difference between the basins of attraction of the
. . _ stable equilibria of the deterministic excitable class | and
tﬂTx diste(t,w.x),A(60)]=0, 12 ass Il ML models, and the corresponding stochastic ML
models may inherit this difference. Such a difference in
where digte(t,w,X),A(6,w)] denotes the distance between terms of the dynamics on a set of measure zero would not
{o(t,w,xX)} and A(6,0) and equals the minimum of the  bear any influence on the previous results concerning the
distances between the poigi(t,o,x) and then points in  estimation of the Lyapunov exponents, rotation numbers or
A(6,w). In this way, the random sét(w) plays the role of the support of the Markov invariant measure. However, in
an attracting set for the system. the deterministic case, this difference lies at the basis of the
Practically, using the pullback method, we estimated thelistinction between class | and class Il membranes, so that it
attracting sefA(w) for the stochastic ML model in different could be of biological interest to investigate whether it is
regimes and for different parameter values. In all cases walso present in the stochastic ML model.
obtained thatA(w) was reduced to a single point, that iis, The origin of the difference between the excitable class |
=1. Figure 8 illustrates one example of the derivation ofand class Il membranes lies in the fact that the latter pos-
A(w). It represents different stages of the pullback procesesses a single equilibrium point while the former possesses
dure for the class Il ML model in the oscillatory regime with three equilibria, two of which are unstable. Our investiga-
a noise intensityy=2.0. The initial conditions of the pull- tions have indicated that whether in class | or class Il re-
back are spread according to a regular rectangular grid on thgimes, and irrespective of the deterministic dynamics, the
plane[Fig. 8 Al)] rather following the stationary distribution stochastic ML model possesses always a single stable sto-
p. As the initial time att=t" runs back to the negative di- chastic equilibrium. However, these investigations focused
rection, the formation of all points shrinks to a narroweron the Markov random invariant measure, and the system
region att=0 in the phase space. In the figure, the regionmay possess non-Markov random invariant measures. These
where each state point is scattered forms a loop and includegould play a role similar to that of the saddle and unstable
a vicinity of the deterministic equilibrium point and the ring- source equilibrium points in the deterministic system. The
like spike trajectory. As the initial time is progressively mov- issue is to determine whether such random invariant mea-
ing back in time, the region becomes a formation consistingures exist in the stochastic ML model.
of a thinner loop and concentrated points around the equilib- The numerical determination of the equilibria of deter-
rium point as shown in Figs.(82) and §B2). As the initial  ministic systems can be readily done by computing the zeros
time is moved even further back in time, the set of pointsof the corresponding vector field. However, for stochastic
forms a formation of some arcs and a concentrated regiosystems with additive noise such as the stochastic ML model,
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FIG. 8. Pullbacks of the stochastic class Il ML model in the oscillatory regimé$@8.4 (uA/cm?). For o=2.0 snapshots of the state pointstat0 are
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526 Chaos, Vol. 14, No. 3, 2004 T. Tateno and K. Pakdaman

there is no such simple procedure. Besides the pullbackumbers associated with the system provides information on
method that yields the support of the Markov invariant meamoise-induced changes that are not necessarily associated
sure, there are no systematic methods to directly computeith D-bifurcations. Such information cannot be gleaned
random invariant measures. Arnolet al® have used a from the Lyapunov exponents of the system. In this sense,
method to overcome this. This consists in analyzing the timethe rotation numbers provide complementary information on
reversed system. If for almost all, the time-reversed trajec- the dynamics of the noisy system.

tories of initial conditions except possibly on a set of mea-  Rotation humbers are defined as

sure zero become unbounded, then one can argue that the

time-reversed system does not possess any Markov random 1 W,

invariant measure. This procedure rules out the existence of ¥~ I'an arctan;, (13
random invariant measures that would play a role similar to

an unstable sourcgode or focusin the time-forward sys- \yhere ¢, ,w,) is a solution of the variation equation associ-

tem. While it does not necessarily bear any indication on the;ie with Eq.(3) for any deterministic initial values except
existence of saddles, it provides extra information on thgq origin.

stochastic phase portrait of the system. We applied the time 14 ¢|arify the interpretation of the rotation number and
reversed procedure to the stochastic ML system. We initiateghe qrigin of its denomination, it is helpful to first consider

trajectories on a regular rectangular grid, and for each comyyq geterministic situations. For a deterministic system sta-
puted the time-reversed trajectory under the influence of thBiIizing at an equilibrium point, the rotation number equals

same noise sample path. We assumed that a solution Woulle jmaginary part of the eigenvalues of the Jacobian matrix
eventually become unbounded if the modulus of its voltage ¢ the equilibrium. Conversely, when the deterministic sys-
became larger than a certain bound. Numerical simulationg,, stabilizes at a limit cycle, the rotation number is the

were performed in different regimes and with different ”Oiseaverage angular velocity of the movement along the cycle.

intensities. In all cases, all computed trajectories went even-  \niih these interpretations in hand, we see that we have a
tually out of the computation bound. From this result, wegjeay gifference between rotation numbers of deterministic
suggest that the time-reversed stochastic ML model does n@j,ss | and class 1l membranes. For class | membranes, the
possess any Markov random invariant measure. rotation number is zero in the excitable regime, and then

The numerical explorations reported above suggest thafcreases continuously from zero after the transition from
there are no random invariant measures “stable with respeely itaple to oscillating regimes. In this sense, the rotation
to the future.” The case of saddle random invariant measure§ mper follows the evolution of the firing rate of the deter-
remains open. However, we conjecture that they do not exisfyinistic class | membrane. In class Il membranes, the situa-
in the parameter ranges that were explored numerically. I§ion i the oscillating regime is similar to that of the class |
other words, we suggest that for almost all noise realizationg,emprane: the rotation number reflects the firing rate of sys-
the stochastic equilibrium of the ML model attracts trajecto-oy, However, in the excitable regime, the situation is differ-
ries ofall initial conditions In this sense, we argue that noise ¢t The rotation number takes on a non zero value equal to
des_troys the bifurcation scenario of _the cla_lss I and_class e imaginary part of the complex conjugate eigenvalues of
regimes, and furthermore that there is no difference in termg, o jacobian matrix. Finally, in the bistable range, we have
of the asymptotic random dynamics of the two regimes. 4 rotation numbers, one associated with the imaginary part
of the eigenvalue of the Jacobian matrix at the stable equi-
librium and the other related to the firing rate on the stable
limit cycle.

The systematic numerical estimations of the Lyapunov ~ The addition of noise alters the picture depicted above in
exponents of the ML model in either class | or class Il re-several ways. In the stochastic ML model, the rotation num-
gimes reveal that, despite the bifurcations of the determinisber is uniquely defined, and its value does not depend on the
tic system, no D-bifurcations take place in the random sysehoice of the initial condition. Furthermore, the value is the
tem. Further analysis indicates that in fact in all exploredsame for almost all noise sample paths. In this sense, we can
situations, for almost all noise realizations, all trajectoriesdiscuss abouthe rotation number of the stochastic ML
eventually stabilizes at a uniquely defined stationary stochasnodel. In the following we discuss the dependence of the
tic process. This indicates that from the RDS standpointotation number on noise intensity in the different regimes
noise obliterates the differences that exist between the diffeand membrane classes.
ent regimes of the deterministic system. Despite this effect of The influence of noise on the rotation number in the
noise, noise-induced changes are present in the system. lascillating regime is consistent with noise-induced changes
deed, the stochastic equilibrium, unlike deterministic equilib-in the firing rate of the system. In both class | and class Il
ria, displays dynamics. The stochastic equilibrium is a staregimes, noise accelerates the firing rate of the ML model.
tionary stochastic process. The second relation in(Bgin ~ Concurrently, the rotation number increases with the noise
generalshows that its distribution at a fixed time is given by intensity o.
the stationary distributiorp, and can therefore undergo In the excitable regime, the situation is more complex.
P-bifurcations. In this section, we investigate the changes i\t low noise intensities, when action potentials are rare, the
this stationary stochastic process with a different toolrotation number is an indicator of the rate of subthreshold
namely the rotation number. The computation of the rotatiomoise induced oscillations. At low noise intensities, the rota-

t—

C. Rotation numbers
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FIG. 9. Rotation numbers of the stochastic ML modél) The class | ML model(a) Mean values and standard deviations of rotation numbers are shown
against noise intensity for four different current valués- 80, 38.5, 40, and 5@A/cm?). The former two are in the excitable regime and the latter the
oscillatory regime. The rotation numbers were calculated for 20 different noise realizations each time with the noise énjensityfC) ranging from 0 to

8 with a step of 0.5(b) The rotation numberg on the parameter plariec,. The rotation numbers were calculated in the same way asg)a(B) The class

Il ML model. (a) Mean values and standard deviations of rotation numbers against noise intensity for four different currentlwvafges86, 96, and
100w Alcn?). The former two are in the excitable regime and the latter the oscillatory re¢in@verage rotation numbergon the parameter plare-oy .

tion number is close to zero in the class | ML model andtered on the equilibrium point. As the ring-like hump of the
close to a nonzero valughe imaginary part of the eigenval- stationary distribution grows, the peak height decreases and
ues of the Jacobian matrix at the equilibrium the class Il  the peak width increases, the rotation number moves away
ML model. This is consistent with the value of the rotation from the deterministic value towards the mean firing rate.
number obtained in the deterministic regime. At large noise In the class | ML model, as one moves closer to the
intensities, the situation becomes different, as noise-induceblifurcation separating the excitable and oscillating regimes,
firing becomes frequent, and in fact, predominant as comthe range of noise where the rotation number remains close
pared with subthreshold oscillations. In this case, the rotatioto zero (its deterministic valugbefore moving towards the
number becomes an indicator of the rate of noise inducefiring rate, decreaself. curves labeled witH =30 and|
firings. This difference in the interpretations of the low and=38.5 in panel(a) and a 3D representation in pan@) in
large noise limits of the rotation number are visible in Fig. 9.Fig. AA)]. This is consistent with the fact that noise induced
The transition between the two extremes is progressive anfifing is all the more frequent if the system is close to the
smooth but takes place within a narrow range of noise intenbifurcation. At the bifurcation point, even weak noise in-
sities. In this intermediate range of noise, the rotation numduced fluctuations can lead to the generation of action poten-
ber reflects the rates of both subthreshold and suprathreshdiidls, as the system no longer possesses a firing thregaold
fluctuations. curve labeled witH =40 in panel(a) in Fig. 9AA)]. Hence,

These observations on the rotation number in the excitthe rotation number, while starting at zero noise level, as in
able regime are consistent with the quantitative changes dhe excitable regime, moves along the firing rate as the noise
the stationary distribution reported in Sec. IV. The noiseis increased, as in the oscillating regime. In this sense, the
range where the rotation number is close to its deterministinoise-dependence of the rotation number at the bifurcation
value corresponds to the range where the stationary distribyoint is intermediate between the excitable and oscillating
tion takes on a Gaussian-type shape with a sharp peak ceregimes.
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The changes in the rotation number of the class 1l MLVII. DISCUSSION
model, in the transition from excitable to oscillating regimes
are more complex than those of the class | ML model. How-  This work presented a systematic analysis of a stochastic
ever, they are consistent with the changes in the stationarfyeuron model from the RDS theory standpoint. Studying the
distribution. At low noise levels, the rotation number is closeinfluence of noise on neuronal behavior has a long hisfory.
to some average of the two rotation numbers of the detetlowever, those concerned with RDS analysis of neuronal
ministic system associated to the stable equilibrium and théesponse to noise like sample paths are sc&rééOur work
stable limit cycle. Roughly speaking, the contribution of presented the first RDS analysis of the ML membrane model.
each deterministic rotation number to the stochastic rotatio? this section, we discuss our results from the RDS and
number is weighted by the relative time the system spendgeuroscience standpoints.
near the corresponding attracting éeamely the stable equi-  1he RDS analysis of the influence of random perturba-
librium and the stable limit cycle Thus, in the parameter tons on deterministic bifurcations, and more generally that
and noise intensity ranges where the stationary distribution i§f Stochastic D-bifurcations is an active field of investiga-

6 . . .
either strongly and almost exclusively concentrated on th&iOn- As argued by Armold? this field has yet to reach its full
stable equilibrium point or on the limit cycle, the rotation d€velopment. Careful and systematic numerical explorations
number is close to one of the deterministic rotation number&r€ instrumental in further developing this theory. This is all

and reflects either the rate of subthreshold or suprathresholfi® MOre important in the case of systems perturbed by ad-

oscillations. These two situations occur near either end of thg't'vle nh0|se blecguTe forhtgesef 'th's not p?]SS'ble to rrfeadﬂy
bistable regime and mainly at weak noise intensities. There2PPY the analytical methods of the RDS theory. In this re-

fore, at low noise levels, there are no sharp changes in rota?—PeCt’ our study pursues others such as the one concerned
tion number as one moves from either the excitable or thg\”th the Brusselatof; that have performed numerical analy-

oscillating regimes into the bistable regime. The transitionses_?;éa::r?trrr_]tl)y tp:r:ugfbgdrbr']fur:f;t_'g:fénal sis 1o the RDS
from rotation numbers close to the imaginary part of the foutl ur-numert ysl

. . . ... theory resides in the exploration of the influence of noise on
eigenvalue of the Jacobian matrix at the stable equilibrium - . . L .
. fwo distinct bifurcation scenarios in the ML equations. The
to those close to the firing rate of the system on the stabl

. - . . irst scenario was that of the saddle node loop bifurcation
limit cycle, occurs within the bistable regime, concurrently

with the change in the shape of the stationary distributionseparatmg the excitable and oscillating regimes in the class |

from those mainly centered on the equilibrium point to thoseML model. We reported that noise destroys this bifurcation
. y T q P in the sense that the stochastic ML model possesses a unique
mainly centered on the limit cycle.

. stochastic equilibrium that attracts all trajectories. To our

The above considerations hold as long as the noise Irknowledge, this was the first analysis of the influence of

tensity is such that a distinction can be made between suly i e nojse on a saddle loop bifurcation. The second sce-

and suprathreshold noise induced fluctuations. At largeﬁario was that of a double cycle bifurcation followed by a

noise !eve_ls, beyond the fea_sible qualit_ative density Changgubcritical Hopf bifurcation. We had previously studied the
occurring in the bistable regime at which the peak on th€yg,ence of noise on this scenario in the FitzHugh—Nagumo
equilibrium merges with the ring-like hump on the limit (gpN) model?223 Similarly to that study, we found here that
cycle no such distinction can be made. In this noise rangqq,y nojse intensities destroy the bifurcation sequence. How-
the rotation number reflects the overall rate of fluctuations INover, at larger noise intensities, the random dynamics of the
the system, with no particular distinction between sub andiass 1| ML and the FHN differ from one another. As re-
suprathreshold dynamics. _ ported in this work, the leading Lyapunov exponent of the
In summary, the changes in the rotation number of the model remains negative at all noise intensities. Con-
models reflect those of the stationary distributions. In theersely, the leading Lyapunov exponent of the FHN model is
class | regime no P-bifurcations take place, and the changgsysitive for some intermediate noise range indicating the
in the rotation number of the stochastic ML model as onepresence of stochastic chaos. We attributed the occurrence of
moves from excitable to oscillating regimes follow the quan-stochastic chaos in the FHN model to the existence of
titative changes in the stationary distribution. In the class llcanard-like solutions. The influence of such solutions in the
regime, where there is the possibility that the system undenvL model is less marked thereby accounting for the differ-
goes a P-bifurcation, the changes in the rotation number reance between the two models.
flect this phenomenon. This major difference between the  Our work presented the RDS from a practical standpoint,
stochastic class | and class Il membranes is illustrated by thgs a means to investigate a biologically motivated problem.
two bottom panels in Fig. 9 that show 3D representations oflore precisely, we tackled the issue of neuronal reliability in
the rotation number for the class(left pane) and class Il response to noise-like realistic stimuli with the help of the
(right pane] models for values of the curremtand noise RDS theory. While this problem has been fundamental for
intensity . The difference between the two forms at low elucidating the neuronal codehere have been few theoret-
noise levels, as one moves from excitable to oscillating reical studies. This is where the contribution of this work lies.
gimes is clearly visible. While in both the transition is As explained in Sec. Il, experimental studies have led to
smooth at large noise levels, in the right panel, it is actuallythe classification of membranes into class | and class Il cat-
abrupt at low noise levels, giving the impression that it isegories based upon their different response characteristics to
discontinuous. various stimuli. Using the ML model, which is a widely used
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prototype for both classes, we examined the response dafistribution. However, before the determination of
these to noise-like realistic stimuli. By examining the sign of P-bifurcations, we essentially needed to discuss the existence
the Lyapunov exponent, we have shown that modifying ei-and the uniqueness of the stationary distribution for the sto-
ther the mean stimulub or the intensity of the noise-like chastic ML model. As far as we know, there are no rigorous
stimulus does not induce any dynamic stochastic bifurcationproofs of this fact and they are still open problems, while
From the standpoint of neuronal coding, this asymptotic stasuch an exceptional attempt was performed in Ref. 19. With
bility of the stochastic attractor implies that to each noise+espect to P-bifurcation, in addition, to search for shape
like input realization, there corresponds a unique asymptotichanges of the stationary densities is actually a hard task to
response. This means that if the ML model is initiated at acarry out without analytical solutions of the Fokker—Planck
different state point and presented with the same input reakquation. Moreover, our methods in this study mainly re-
ization repeatedly, the same response will be evoked after gorted to the numerical calculations. The reason is that since
transient time. In this sense, the response evoked by sudhe Gaussian white noise input acts as an additive perturba-
noise-like input is reliable. tion to the ML model, it leaves no solution of the determin-
These observations lead to our main conclusion which igstic system invariant. As argued by Arnokt al,'® this
that, as far as discharge time reliability is concerned, there ig1akes it impossible to directly apply the analytical methods
no difference between class | and class Il ML models. Deof the stochastic bifurcation theory.
spite the differences in the deterministic regimes, in the re-
sponses to single and step currents, the ML model has the
same asymptotic random dynamics in all regimes. Furthel’-A‘CKNOWLEDGMENTS
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the response of the system to noise-like stimuli. Indeed, un-

like deterministic equilibria, stochastic equilibria are them-

selves dynamical objects. Stochastic equilibria are stationarfPPENDIX

stochastic processes. The characteristics of these processearameters

such as, say, their distribution can depend on model param- )

eters. Our study revealed that as far as the stationary distri- Parameter values of the ML equations that we used are

bution and the rotation numbers are concerned, there are dif?€ Same as those of the model described by Rinzel and

ferences between the stochastic equilibrium of class | anffrmentrout* The parameter values for the class | membrane
class Il ML models. In terms of neuronal coding, this resultModel are:Vg=—84 mV, V ==60 mV, V¢,;=120 mV,
suggests that while both class I and class Il membranes mdy ~ 20 uFlen?, gy =2.0 uSlen?, ge,=4.0 uSlen?, gy

be reliable, they may be sensitive to different stimulus char= 8 #S/C?, Vi=—1.2mV, V,=18 mV, Vz=12mV, V,
acteristics and therefore use different “codes.” =17.4mV, and $=0.067. For the class Il membrane

Based on spike characteristics and on response patterH%Odel’ they are the same described above exoépt

during sustained applied currents, neural membranes can in2 MV: V4=30 MV, gc,=4.4 pSlent, and¢=0.04.

general be classified into the two classes. The fact is well-

known for a variety of neurgl preparations while little ha?z, Bifurcation diagrams

been examined about those in the central nervous system like

cortical neurons. Neocortical neurons are generally classified The bifurcation diagrams in Figs. 2 and 3 were con-

into three electrophysiological types: regular-spikifRs),  structed withauTto (Ref. 7) as a component ofPPAUT soft-

fast-spiking(FS), and intrinsically bursting® Recently, Rob-  ware. More detailed information about tlkePAUT software

inson reported that in the somatosensory cortex, the RS arfd@n be found in Ref. 38.

FS types, respectively, show class | and Il threshold

behavior’ In addition, when applied currents are not enough -

to evoke a sustained spike generation, FS cells typicall):/’" Numerical integrals

show subthreshold oscillations while RS cells do not. This  In order to obtain an accurate approximation, the for-

implies that the characteristics investigated in this studyward improved Euler or Heun method was used for the nu-

could influence neural coding by modulating discharge timemerical integration of Eq.(3) with a time step ofAt

variability in actual neural systems such as neocortical cir=0.001. The method gives a higher order discretization error

cuits. than the simple Euler method explained in Ref. 39. When-
General considerationdn this study, we assumed that ever much higher accuracy was needed we lowered the time

all transition pdfs of the stochastic ML model, whether in step. However, we mainly used a fixed time unit &f

class | or class Il regimes, stabilize at a unique stationary=0.001 through all of the numerical analysis presented here.
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