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Abstract. In this paper, we study and classify the firing patterns in the
Chay neuronal model by the fast/slow decomposition and the two-parameter
bifurcations analysis. We show that the Chay neuronal model can display com-
plex bursting oscillations, including the “fold/fold” bursting, the “Hopf/Hopf”
bursting and the “Hopf/homoclinic” bursting. Furthermore, dynamical proper-
ties of different firing activities of a neuron are closely related to the bifurcation
structures of the fast subsystem. Our results indicate that the codimension-2
bifurcation points and the related codimension-1 bifurcation curves of the fast-
subsystem can provide crucial information to predict the existence and types
of bursting with changes of parameters.

1. Introduction. Bursting is one of the most important firing activities of neu-
ronal systems. Bursting oscillations that are observed in electrical activities of
neuron membranes can give rise to different patterns of time rhythms and oscil-
lating modes, which play an important role in the neural information processes.
For example, the bursting has more highly robust to noise than to single spike [1];
bursting can encode different stimulus features into distinct spike patterns [2].

Typically, bursting in neurons can be generated from the interplay of fast cur-
rents that are responsible for spiking activity and slow currents that modulate the
activities. The phenomena of bursting are seen in a wide range of neuron and
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endocrine cells, including thalamic neurons, hypothalamic neurons, pyramidal neu-
rons in the neocortex, respiratory neurons in pre-Bötzinger complex, pituitary cells,
and pancreatic β-cells [3]. In 1985, Rinzel recognized a type of bursting that ex-
hibits a transition between a rest state and a spiking state [4]. The transition was
considered to be originated from a slow variation process that modulates the fast
firing activities. Since then the dynamical behavior and classifications of bursting
have been studied experimentally and theoretically [5, 6]. Theoretical studies were
performed mainly by investigating the detailed bifurcation structures of the fast and
slow subsystems. Two important bifurcations of the fast subsystem are associated
with bursting activity in the fast-slow bursting: the bifurcation of an equilibrium
attractor which results to the transition from resting to repetitive spiking, and the
bifurcation of the limit cycle attractor which results to the transition from spiking
to resting. In 2000, a complete topological classification of bursting based on these
two bifurcations was proposed by Izhikevich [7], who gives an overview of different
types of bursting observed either in biological experiments or in theoretical analysis,
or in both.

Bursting oscillations have been widely studied under various conditions, e.g.,
[7, 8, 9, 10, 11]. Shorten and Wall [9] studied the bursting oscillations and mode
transitions in a Hodgkin-Huxley type model, and found a novel “fold cycle/fold
cycle” bursting oscillations in the model. Perc and Marhl [10] investigated different
bursting of point-point types and point-cycle types in some non-excitable cells.
Belykh et al [12] showed four different scenarios for the emergence of bursting. Fan
and Chay [13], Gu et al [14], and Yang et al [15, 16] considered different types of
bursting in the Chay neuronal model by the fast/slow decomposition and bifurcation
analysis.

Since bifurcations of fast subsystems can mark the transitions between active
and quiescent states in bursting rhythms, they play a critical role in determining
which types of bursting can occur in neuronal models. Guckenheimer and Tien [17]
dealt with the relationship among transitions in several bursting models through
bifurcations of reduced subsystems.

Bifurcation analysis can also be used to study other biological systems [18, 19].
In our previous works [15, 16, 20, 21], we have also applied the bifurcation theory
and the fast/slow decomposition to study the generation and transition of bursting
in the Chay and Morris-Lecar models. In these works, we developed a method to
explore the bursting transition through the two-parameter bifurcation of the fast
subsystem in both Chay and Morris-Lecar neuronal models, and discussed bursting
types and transition modes under various bifurcation structures. In this paper, we
consider two cases in the Chay neuronal model: consider the maximum of conduc-
tance of voltage-gated Ca2+ channel g∗I as a control parameter, or consider the leak
conductance g∗L as the control parameter. Both of these two cases have similarly
two-parameter bifurcation structures under different parameter sets. We further
study the relationship between the bursting modes and the bifurcation structure of
the fast subsystem in these two cases. The results show that Chay neuronal models
share similar transition mechanisms of bursting when the two-parameter bifurcation
structures in the corresponding fast subsystems are similar to each other. We note
that this method is able to predict the type of bursting occurred in a chosen set of
parameter values in neuronal models with fast-slow time scales.

The rest of this paper is organized as follows. In Section 2 we give a short descrip-
tion of the model and introduction of our methods. In Section 3, we will show that
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different firing activities occur with the change of parameter g∗I by the fast/slow
decomposition and the two-parameter bifurcation analysis of the fast subsystem.
The transition mechanisms between different firing patterns are also studied. Sec-
tion 4 studies different firing activities with the change of parameter g∗L, and the
relationship between bursting modes and the two-parameter bifurcation structures
of the fast subsystem. Conclusions are given in the Section 5.

2. Model and method.

2.1. Model description. The Chay model was proposed to simulate the firing
patterns of pancreatic β-cells [22], and can also be used to simulate spiking/bursting
and chaos behavior in real neurons.

The three-variable Chay neuronal model consists of the ‘mixed’ Na+ − Ca2+

current, the K+ current, the Ca2+-dependent K+ current, and the leakage current.
Let V to be the membrane potential, n the probability of opening the voltage-
sensitive K+ channel and C the intracellular concentration of Ca2+ ions. The model
equations are given as follows:

dV

dt
= g∗Im

3
∞
h∞(VI − V ) + g∗K,V (VK − V )n4 (1)

+ g∗K,C

C

1 + C
(VK − V ) + g∗L(VL − V ) + I,

dn

dt
=

n∞ − n

τn
, (2)

dC

dt
= ρ[m3

∞
h∞(VC − V )− kCC]. (3)

Here m∞, h∞ and n∞ are gate variables, which have forms y∞ = αy/(αy + βy)
(here y = m,n, h, respectively), with α and β depend on V as follows:

αm = 0.1(25 + V )/(1− e−0.1∗V−2.5),

βm = 4e−(V+50)/18,

αh = 0.07e−0.05V−2.5,

βh = 1/(1 + e−0.1V−2),

αn = 0.01(20 + V )/(1− e−0.1V−2),

βn = 0.125e−(V+30)/80.

The relaxation time of the voltage-gated K+ channel is given by τn = λn(an + bn).
All other parameters are constants, with definitions and default values listed in
Table 1.

Bursting oscillations can be affected by many factors, such as the outward input
current, the ionic currents (typically, that of sodium (Na+), potassium (K+) and
calcium (Ca2+)) through the cell membrane and so on. In this paper, we will study
the effect of both the maximum of conductance of voltage-gated Ca2+ channel g∗I ,
and the leak conductance g∗L on the creation and transition mechanisms of different
bursting oscillations. Throughout this study, we only consider the case without
external stimulus (which means that I = 0).
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Table 1. Model parameter values [20, 22]

Parameter Definition Value

g∗K,V the maximum of conductance of K+ channel 1700pS

g∗K,C the maximum of conductance of Ca2+-sensitive K+ channel 10pS

g∗L leak conductance 7pS

VI Nerst potential for Ca2+ 100mV

VK Nerst potential for K+ -75mV

VL leak current reversal potential -40mV

VC the reversal potential for Ca2+ 215mV

kC rate constant for efflux of intracellular Ca2+ ions 0.183/ms

ρ proportionality constant 0.27

λn relaxation time of the voltage-gated K2+ channel 350ms

2.2. Method.

2.2.1. Fast/slow decomposition. The equations (1)-(3) can be rewritten as following

dV

dt
= f(V, n, C), (4)

dn

dt
= g(V, n), (5)

dC

dt
= ρh(V, n, C), (6)

where ρ is a small parameter, i.e., ρ � 1. The intracellular calcium concentration
C is therefore a slowly changing variable.

The fast/slow decomposition was introduced by Rinzel [4] to analyze bursting
of form (4)-(6). Since ρ is a small parameter, we can analyze the bursting by
separately considering the fast behavior of (V, n) subsystem of equations (4)-(5)
which is modulated by the slowly changing parameter C. The equation (6) is a
slow subsystem and therefore the slow variable C can be considered as the slowly
changing parameter of the fast subsystem.

2.2.2. Bifurcation analysis. Consider an autonomous system of ordinary differential
equations (ODEs):

ẋ = f(x, λ), x ∈ IRn, λ ∈ IRp, (7)

where f is a smooth function. A bifurcation occurs at a parameter λ0 if there are
parameter values λ that are arbitrarily close to λ0 but the corresponding dynamics
topologically inequivalent from those of λ0. The codimension of bifurcation in
system (7) is defined as the difference between the dimension of the parameter space
and the dimension of the corresponding bifurcation boundary [23]. Equivalently, the
codimension is the number of independent conditions to determine the bifurcation.
The codimension of a certain bifurcation is the same in all generic systems depending
on a sufficient number of parameters. In this paper, the model system was solved
by using a stiff system solver in the numerical package XPPAUT (5.9) [24]. The
bifurcation diagrams were computed by AUTO as incorporated in XPPAUT.
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3. Bursting with the change of parameter g∗I .

3.1. Two-parameter bifurcation in the Chay model. Since ρ is small, the
intracellular calcium concentration is often considered as a slow variable in the
Chay model from equation (3), which controls the dynamics of the fast subsystem
(1)-(2).

Fig. 1 shows the Hopf and fold bifurcation curves of the fast subsystem (1)-(2) in
two-parameter (C, g∗I )-plane. The curves in Fig. 1 represent the supercritical Hopf
bifurcation (the black curve suph) and the fold bifurcation (the blue curves f1 and
f2) of the equilibrium points of the fast subsystem. The codimension-2 bifurcations
include the cusp bifurcation (CP) and the Bogdanov-Takens bifurcation (BT).

3.1.1. Codimension-two cusp bifurcation. Fig. 1 shows that the two fold bifurcation
branches f1 and f2 terminate at the cusp point CP at g∗I = 970.6952 pS; This implies
that when (g∗I , C) crosses through the cusp point from inside to outside, three
equilibrium points of the fast-subsystem (1)-(2) will coalesce into one equilibrium
point.

When (g∗I , C) takes value from either f1 or f2, the fast subsystem possesses an
equilibrium state of which the coefficient matrix of the linearized system has one
simple zero eigenvalue λ1 = 0 and the other eigenvalue λ2 with nonzero real part.
Therefore, the restriction of equations (1)-(2) to the center manifold has the normal
form [23]

ξ̇ = a ξ2 +O(|ξ|3), ξ ∈ IR1. (8)

At the cusp point CP the eigenvalues are λ1 = 7.3648 × 10−5 ≈ 0 and λ2 =
−49.7367 < 0 by CONTENT ([25], a software package for numerical bifurcation
analysis of ODEs) in which λ1 = 0 is still the only eigenvalue on the imaginary axis,
but the normal form coefficient a in equation (8) vanishes: a = 0 [23, 25]. Therefore,
at the cusp point, the restricted equations of (1)-(2) to the one-dimensional center
manifold has the form

ξ̇ = c ξ3 +O(|ξ|4), ξ ∈ IR1.

In this particular case, we have c = −0.1162 ( by CONTENT [25]).
From the above discussion, the equations of (1)-(2) near CP is locally topologi-

cally equivalent to the normal form [23]:
{

ξ̇ = β1 + β2 ξ + σ ξ3,
η̇ = −η,

where σ = sign(c) = −1 and η ∈ IR1, β1, β2 ∈ IR. Therefore, three equilibrium
points collide into one point at the cusp point CP, and the projection of the tran-
sition set in the parameter plane forms a semicubic parabola.

3.1.2. Codimension-two Bogdanov-Takens bifurcation. The Hopf bifurcation curve
suph connects the right fold bifurcation curve f1 at the Bogdanov-Takens (BT)
bifurcation point, which is a codimension-two bifurcation point. This point is given
by g∗I = 1812.0579 pS. At this BT point, we have a pair of eigenvalues with zero
real parts λ1,2 = −2.2545×10−6±0.0166i of the coefficient matrix of the linearized
system of the fast subsystem. The equation in system (1)-(2) near BT is locally
topologically equivalent to the normal form

{

η̇1 = η2,
η̇2 = β1 + β2η1 + η21 + sη1η2,

where s = sign(ab) = −1 (here a = 322.778, b = −2.6363 by CONTENT [25]).
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Figure 1. Two-parameter bifurcation diagram of equations (1)-
(2) with respect to the slow variable C and the parameter g∗I is plot-
ted in the (C, g∗I )-plane. All parameter values are taken from Table
1. The curves in the diagram respect the supercritical Hopf bifur-
cation (the black curve suph ) and the fold bifurcation (the blue
curves f1 and f2) of the fast subsystem (1)-(2). The codimension-2
bifurcations of the fast subsystem (1)-(2) are marked by the black
points with labels, where CP refers to the cusp bifurcation and BT
refers to the Bogdanov-Takens bifurcation.

3.2. Different types of bursting. Fig. 1 implies that when g∗I increases from
500 pS to 2500 pS, the Chay neuronal model can exhibit different types of bursting
as follows.

When g∗I = 1500 pS, the system shows the “fold/fold” point-point hysteresis loop
bursting, as illustrated in Fig. 2(a). Fig. 2(b) shows the fast/slow decomposition
and bifurcation analysis for the “fold/fold” bursting via point-point hysteresis loop
in the (C, V )-plane. In this case, the equilibrium points of the fast subsystem
with respect to the parameter C form a Z-shaped bifurcation curves with two fold
bifurcation points (LP1 andLP2). The fast subsystem exhibits bistability as shown
in Fig. 2(b) between the stable node states on the lower branch and the stable focus
states on the upper branch of the Z-shaped curve. The quiescent state disappears via
a fold bifurcation at LP1 and the firing state disappears via another fold bifurcation
at LP2 in the fast subsystem. Thus, the model is capable of “fold/fold” point-point
hysteresis loop bursting. From Fig. 1, two fold bifurcations f1 and f2 coexist in
the region above the point CP where two fold bifurcations coalesce and disappear.
Hence, the codimension-2 cusp bifurcation of the fast subsystem is essential to this
“fold/fold” type bursting.

Fig.1 shows that two supercritical Hopf bifurcations occur as g∗I increases. When
g∗I = 1770 pS, the model exhibits the “Hopf/Hopf” bursting via the “fold/fold”
hysteresis loop, as shown in Fig. 3(a). Fig. 3(b) is the fast/slow decomposition
and bifurcation analysis for the “Hopf/Hopf” bursting via the “fold/fold” hysteresis
loop in the (C, V )-plane of the fast subsystem. Similar to Fig. 2(b), the equilibrium
points of the fast subsystem with respect to the parameter C form a Z-shaped bi-
furcation curves with two fold bifurcation points (LP1 andLP2) and there are two
Hopf bifurcation points (H1 andH2). The lower rest states transit to the upper rest
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Figure 2. “Fold/fold” bursting via point-point hysteresis loop in
the Chay model (1)-(3) when g∗I = 1500 pS. Other parameter values
are the same as in Fig. 1: (a) time course of the membrane poten-
tial; (b) fast/slow decomposition and bifurcation analysis. Bursting
solution is superimposed on the bifurcation diagram of the (C, V )-
plane of the fast subsystem when C acts as the bifurcation param-
eter. Thick solid (dashed) lines indicate stable (unstable) states.
LP1 and LP2 refer to the saddle-node bifurcation. Direction of the
bursting solution is determined by its position related to the C-
nullcline (dC/dt = 0 shown by the dashed-dot line) which is shown
by arrows.

states via the fold bifurcation at LP1. The dynamics as the upper rest state branch
shows small decaying oscillation in bursting, which results to the convergence of
the trajectory to the stable focus. The up-state disappears and repetitive spiking
corresponding to the stable limit cycle appears via the Hopf bifurcation at H1. The
spiking state experiences several increasing spikes, and then decreases via another
Hopf bifurcation at H2. Thus, we obtain a transition between periodic spiking and
quiescence via the supercritical Hopf bifurcation. The bifurcations are observed
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Figure 3. Bifurcation diagram of the “Hopf/Hopf” bursting via
the “fold/fold” hysteresis loop when g∗I = 1770 pS. Notations are
the same as in Fig. 2. H1 and H2 refer to the Hopf bifurcation
(supercritical). The red lines between H1 and H2 represent the
maximum and minimum values of V for the limit cycles.
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from down-state to up-state and from up-state to down-state via the fold bifurca-
tions at LP1 and LP2, respectively. Therefore, we conclude that the model exhibits
the “Hopf/Hopf” bursting via the “fold/fold” hysteresis loop.

As g∗I increases further, the “Hopf/homoclinic” bursting via “fold/homoclinic”
hysteresis loop can be obtained by setting g∗I = 1800 pS, as shown in Fig. 4(a).
Fig. 4(b) presents the fast/slow decomposition and the bifurcation analysis for
the “Hopf/Homoclinic” bursting via the “fold/homoclinic” hysteresis loop in the
(C, V )-plane. The quiescent state disappears via the supercritical Hopf bifurcation,
and the periodic spiking disappears via the homoclinic bifurcation (HC).
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Figure 4. Bifurcation diagram of the “Hopf/homoclinic” burst-
ing via the “fold/homoclinic” hysteresis loop when g∗I = 1800 pS.
Notations are the same as that in Fig. 2

From the above discussion, for different values of the parameter g∗I , the Chay
model can exhibit different firing patterns, such as the “fold/fold” bursting, the
“Hopf/Hopf” bursting via the “fold/fold” hysteresis loop and the “Hopf/homoclinic”
bursting via the “fold/homoclinic” hysteresis loop. The “Hopf/Hopf” bursting via
the “fold/fold” hysteresis loop looks like the “Hopf/homoclinic” type and then can
be considered as the intermediate state between the ‘fold/fold” bursting and the
“Hopf/homoclinic” bursting.

4. Bursting with the change of parameter g∗L. In this section, we choose the
leak conductance g∗L as an inherent bifurcation parameter to investigate the influ-
ence of the leak conductance of the current on both the two-parameter bifurcation
structure and the firing patterns.

We take g∗I = 1800 pS (and other parameters are the same as those as given in
Fig. 1), and apply the two-parameter bifurcation analysis of the fast subsystem
(1)-(2) with respect to C and g∗L. The result is shown in Fig. 5. The curves in Fig.
5 show the supercritical Hopf bifurcation (suph) and the fold bifurcation (f1 and f2)
of the equilibrium points of the fast subsystem, respectively. The cusp bifurcation
CP and the Bogdanov-Takens bifurcation are two codimension-2 bifurcations.

Fig. 5 shows that when g∗L = 5 pS, there are two fold bifurcations (located in f1
and f2) and one Hopf bifurcation (located in suph) for the fast subsystem. The fast
subsystem exhibits bistability between the stable node state on the lower branch
and the stable limit cycle state on the upper branch of the Z-shaped curve as shown
in Fig. 6(b). In this case, we have a bursting of the “Hopf/homoclinic” bursting
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Figure 5. The two-parameter bifurcation diagram of equations
(1)-(2) with respect to the slow variable C and the parameter g∗L
is plotted in the (C, g∗L)-plane, where g∗I = 1800 pS.

via the “fold/homoclinic” hysteresis loop, as shown in Fig. 6. This type of bursting
is the same as that in Fig. 4.
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Figure 6. Bifurcation diagram when g∗I = 1800 pS and g∗L = 5 pS.

In Fig. 5, a codimension-2 Bogdanov-Takens bifurcation occurs at g∗L = 6.4676
pS. This BT point is the origin of the homoclinic bifurcation curve [23]. which
brings up a “Hopf/homoclinic” bursting.

Fig. 7 (b) shows the fast/slow decomposition and the bifurcation analysis for
the “Hopf/Hopf” bursting via the “fold/fold” hysteresis loop for g∗L = 9 pS, which
is similar to that in Fig. 3. The fast subsystem undergoes two Hopf bifurcations
and two fold bifurcations.

When g∗L = 10 pS, the fast subsystem undergoes two fold bifurcations. The
neuron exhibits the bursting of the “fold/fold” type as shown in Fig. 8, which is
the same as that in Fig. 2.

As g∗L further increases, the Hopf bifurcation may disappears and then two fold
bifurcations f1 and f2 come to the same point CP (g∗L = 26.8226 pS), which is a
codimension-2 cusp bifurcation, as shown in Fig. 5.

The above discussions show that the Chay neuronal model has three types of
bursting near the codim-2 BT bifurcation, including the “Hopf/homoclinic” burst-
ing via the “fold/homoclinic” hysteresis loop, the “Hopf/Hopf” bursting via the
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Figure 7. Bifurcation diagram when g∗I = 1800 pS and g∗L = 9 pS.
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Figure 8. Bifurcation diagram when g∗I = 1800 pS and g∗L = 10 pS.

“fold/fold” hysteresis loop and the “fold/fold” bursting. These three types of burst-
ing also occur when the parameter g∗I is changed. The two-parameter bifurcation
structure of the fast subsystem are similar when either g∗I or g∗L is considered as the
control parameter. The two-parameter bifurcation structure of the fast subsystem,
especially the relative position of the Hopf bifurcation curves and the fold bifurca-
tion curves, play a key role in determining the types of bursting that are occur in
the model.

5. Conclusion. In this paper, bursting oscillations in the Chay neuronal model
were studied by the fast/slow decomposition and the two-parameter bifurcation
analysis. Different kinds of bursting modes were studied for several chosen set of
parameter values. In particular, bursting near the codimension-2 bifurcation points
were investigated by the multiple time scale and the two-parameter bifurcation
analysis.

Among the cases discussed in Section 3 and Section 4, the fast subsystem un-
dergoes a codimension-2 cusp and a Bogdanov-Takens bifurcations, as shown in
Fig. 1 and Fig. 5, respectively. Furthermore, the Hopf bifurcation curve locates
in the region which is enclosed by two fold bifurcation curves f1 and f2. The
relative position of the Hopf bifurcation curves and the fold bifurcation curves in
Fig. 1 are similar to that in Fig. 5. In brief, the bifurcation structures near the
codimension-2 cusp bifurcation and Bogdanov-Takens bifurcation as discussed in
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Section 3 are very similar to those in Section 4. Therefore, the transition mecha-
nisms between different electrical firing activities in both cases are similar. When
either the parameter g∗I increases or g∗L decreases, the Chay model is able to exhibit
three types of bursting, which include the “fold/fold” bursting, the “Hopf/Hopf”
bursting via the “fold/fold” hysteresis loop and the “Hopf/homoclinic” bursting via
the “fold/homoclinic” hysteresis loop.

From discussions in this paper, the relative position of the codimension-1 bi-
furcation curves and the codimension-2 bifurcation points of the fast subsystem
can give additional information to determine possible types of bursting in the Chay
neuronal model. Therefore, the bifurcation structures of the fast subsystem can pro-
vide crucial information for the bursting patterns in neuronal models under given
parametric conditions.
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