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Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many

different modes to encode the expression of biological information, and constitute

the whole process of signal propagation between neurons. Therefore, we focus on

the electrical activities of neurons, which is also causing widespread concern among

neuroscientists. In this paper, we mainly investigate the electrical activities of the

Morris-Lecar (M-L) model with electromagnetic radiation or Gaussian white noise, which

can restore the authenticity of neurons in realistic neural network. First, we explore

dynamical response of the whole system with electromagnetic induction (EMI) and

Gaussian white noise. We find that there are slight differences in the discharge behaviors

via comparing the response of original system with that of improved system, and

electromagnetic induction can transform bursting or spiking state to quiescent state and

vice versa. Furthermore, we research bursting transition mode and the corresponding

periodic solution mechanism for the isolated neuron model with electromagnetic

induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we

analyze the effects of Gaussian white noise on the original system and coupled system,

which is conducive to understand the actual discharge properties of realistic neurons.

Keywords: Morris-Lecar model, electromagnetic induction, Gaussian white noise, electrical activity, bursting,

bifurcation

1. INTRODUCTION

Neural network is composed of a large number of neurons and the connection between neural
networks is through signal propagation between neurons such as chemical or electrical signal.
Neurodynamics researchers really pay much attention to dynamical properties of electrical activity
in neurons or neural networks starting from the establishment of a reliable Hodgkin-Huxley
(Hodgkin and Huxley, 1952) model that is established by describing ion channels in neurons.
Based on the Hodgkin-Huxley model, it is extensively explored that many neurons have ownmodel
of ion channels and even a neuron may have multiple models. For example, the dimensionless
Hindmarsh-Rose (Hindmarsh and Rose, 1984) model is a mathematical model and it has many
firing behaviors of neurons by adjusting system parameters or external forcing stimuli such as
bursting, spiking, quiescent and chaotic states. It can examine transition mode of electrical activity
by using bifurcation analysis (Storace et al., 2008) and its mathematical properties are analyzed
in Liu and Liu (2012) in detail. Although minimized Morris-Lecar model (Morris and Lecar,
1981) is consists of two coupled first-order differential equations, it still has a variety of discharge
activities and describes the nature of the barnacle giant muscle fiber. It is further investigated by
improving the neuron model (Duan et al., 2010; Wang et al., 2011; Upadhyay et al., 2017) or using
theoretical analysis (Tsumoto et al., 2006). In addition to these, a variety of simplified neuronmodel
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(Izhikevich, 2004; Ibarz et al., 2011) have been developed and
used for theoretical and numerical exploration.

With the development of neural dynamics, investigators
propose some ways to deeply research mathematical mechanism
of neuron model. For example, Izhikevich (2000) make a
classification of electrical activity of low-dimensional neurons
using slow-fast dynamics analysis (Rinzel, 1987; Rinzel and
Ermentrout, 1998). And Szmolyan and Wechselberger (2001)
argue that canard theory is used to illustrate mixed-mode
oscillations mechanism in neurons. Based on these ways, some
explorations are more detailed via combining them with other
valid research methods and there is a widely extension in specific
neuron model (Gu et al., 2003, 2012; Wang et al., 2015, 2017;
Lu et al., 2016; Li and Gu, 2017; Zhao and Gu, 2017). Gu and
Pan (2015) determine improved neuron model and use different
ion currents to discuss its bifurcation behaviors. Furthermore,
some experimental works is presented in Gu et al. (2013a, 2014)

FIGURE 1 | Time series of membrane potential under different amplitudes. (A) A1 = 1, (B) A1 = 3, (C) A1 = 5, (D) A1 = 10, the noise intensity is selected as D = 10,

φ = 0.22, k = 0.0025, ω1 = 0.5.

and they further investigate transition mode of electrical activity
using bifurcation analysis. Some authors also examine the effects
of noise on the coherence resonance, stochastic resonance and
firing behavior of the neuron model (Gu et al., 2013b; Jia and Gu,
2015a,b; Wang et al., 2016; Wang and Ma, 2017) in addition to
adding external forcing stimulus to the neuronal system. In fact,
time-varying noise increases the system’s dimensions, which is
also a way to explore dynamical behaviors of neuron model and
it can restore authenticity of neuronal system. Recently, energy-
coded neurons are proposed to understand firing behavior of
neurons as a new perspective and it is discussed in Wang et al.
(2009), which define a Hamilton energy and Song et al. (2015)
suggest that the Hamilton energy may be higher when neuron is
in the spiking states rather than bursting or chaos states. Some
researchers Li et al. (2016) investigate the discharge behaviors
by adding equivalent current to electromagnetic radiation
in neuronal loop. Yi et al. (2012, 2015) show that spiking
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pattern and spiking-frequency of neurons are changed when
neurons are exposed to an electric field. Therefore, the effect
of electromagnetic induction on neurons or neural networks
may need to be considered to set more authentic neuron
model.

As reported in Lv and Ma (2016) and Lv et al. (2016), we will
also use magnetic flux to describe the effect of electromagnetic
induction and we further explore electrical activity of neuronal
system when it is exposed to electromagnetic radiation. However,
they present these results without considering noise system
such as Levy noise or phase noise. In this paper, the effect
of electromagnetic radiation is explored on the Morris-Lecar
neuron model and phase noise is also implemented to investigate
resonance mode. Specifically, we change one of them to examine
dynamical behavior of electrical activity when electromagnetic
radiation and noise are added to the original system at the
same time. In addition, we examine bursting transition mode via
presenting one-parameter bifurcation diagram and bi-parameter
bifurcation diagramwhen only adding electromagnetic induction
to the original neuronal system. Finally, we compare the

electrical behavior of isolated neurons with that of coupled
neurons when only adding Gaussian white noise to respective
system.

FIGURE 3 | Bi-parameter bifurcation diagram of suprathreshold spiking. The

number of suprathreshold spiking is presented at the right sides by the colorful

belt and 0 indicates the relatively resting state.

FIGURE 2 | Time series of membrane potential under different feedback coefficient. (A) k = 0.002, (B) k = 0.0025, (C) k = 0.003, (D) k = 0.0035, the noise intensity

is controlled as D = 10, φ = 0.22, A1 = 6, ω1 = 0.5.
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2. MODEL AND METHODS

We use an improvedM-L neuron model, which is reported in the
previous investigation and it is a real biological neuron model
which describes the giant barnacle muscle fiber. As we known,
its dynamical behavior is greatly abundant although the model
contains only calcium ion channel and potassium ion channel.
Two variables are membrane voltage V and activated gating
channel n in the original model. The improved neuron model
contains five first-order differential equations, which is described
as follows:
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(2)

Where ICa, IK , IL, ID, and I are inward calcium current,
potassium current, leakage current, phase noise, and voltage-
dependent feedback current, respectively. The variables V , n,
ϕ represent membrane potential, gate variable for potassium
channel and magnetic flux across membrane during the process
of ion transfer, respectively. I is a feedback current, which is very
sensitive to membrane potential. The function ρ(ϕ) is associated
withmagnetic flux, readers can refer to Bao et al. (2010),Wu et al.
(2016),Wu F. et al. (2017);Wu J. et al. (2017), and Xu et al. (2017)
to obtainmore detailed information. ξ (t) is Gaussian white noise,
ω1, A1 are angular frequency and amplitude for forcing currents,
Q(t) is phase noise. Detailed system parameters are explained
as: membrane capacitance C, maximal conductance gCa, gK , gL,

FIGURE 4 | Time series of membrane potential under different noise intensity D. (A) D = 1, (B) D = 3, (C) D = 5, (D) D = 10, the feedback coefficient is controlled as

k = 0.0025, A1 = 6, φ = 0.22, ω1 = 0.5.
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reversal potential VCa, VK , VL, the other kinetics parameter φ,
ε, V1, V2, V3, V4. Some parameters of electromagnetic radiation
are α, β , k, k1, k2. Readers can refer to Morris and Lecar
(1981) and Ma et al. (2017) to understand the meaning of
these symbols and there are detailed data in Lv et al. (2016).
Specific parameters throughout the paper are given in Table A1.
Furthermore, coefficient variability (abbreviated as CV and
labeled as η) of interspike intervals (ISIs) sequence (Pikovsky and
Kurths, 1997) is presented as the radio of standard deviation(std)
of ISIs sequence to its mean, i.e., η = std(ISIs)/mean(ISIs),
and it indicates the coherence degree. In section 4, we are using
electrical coupling between neurons, i.e., the coupling term is
as follows: Icouple = gc(V1 − V2), where gc represents the

FIGURE 5 | Coefficient variability of ISIs series of membrane potential. The

abscissa is noise intensity D and the ordinate is the CV. Other controllable

parameters are given as k = 0.0025, A1 = 6, φ = 0.22, ω1 = 0.5.

coupling coefficient and V1(2) denote the membrane potential of
one(another) of neuron.

In fact, we are familiar with the M-L model, but we
still have a novel understanding and discovery for the
improved M-L model via adjusting electromagnetic induction
and phase noise. In this paper, we adopt fourth-order
Runge-Kutta algorithm to exhibit numerical solution of the
neuronal system with time step d = 0.01ms in all of
simulation and calculation, and we use MATPLOTLIB software
package in PYTHON for all numerical calculation and graphic
rendering.

3. MULTIPLE DISCHARGE BEHAVIORS
UNDER ELECTROMAGNETIC RADIATION

In this section, we discuss that amplitude A1 is how to adjust
electricity activity via changing the range of forcing amplitude,
and we also examine firing pattern of improved M-L neuron
model by adjusting magnetic flux parameter k. Moreover, we also
calculate coefficient variability of interspike intervals sequence to
explore the coherence degree by altering noise intensity D and
it represents that the smaller the CV value is associated with a
better coherence. Furthermore, we only consider the system with
electromagnetic induction and without Gaussian white noise. In
this process, we find that the effect of electromagnetic field on the
neuronal system is two-sided. The detailed analysis is as follows.

As shown in Figure 1, electrical activity of improved neuron
model can be controlled and adjusted as a random but relatively
stable pattern. Specifically, the system is in a relative resting state
when A1 = 1 and the firing occurs when we increase A1 to 3. We
find that the number of spiking is gradually increased when we

FIGURE 6 | Interspike intervals for time series of membrane potential with the increasing of feedback coefficient k, and no Gaussian white noise is added.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 November 2017 | Volume 11 | Article 107

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Zhan and Liu Responses of Neuron Model under Electromagnetic Radiation

continue to increase amplitude from 3 to 5. It is described that the
amplitude of phase noise makes a positive response to the system
although the range of amplitude is small. Certainly, this process
is reversible. That is to say, we can better adjust the spiking of
neurons by regulating the amplitude so that neuronal model is
more reasonable in the simulation of realistic neural network.

Indeed, multiple patterns of electrical activity are detected
in the improved neuron model by modifying the feedback
coefficient k, which indicates the coupling strength between
magnetic flux and membrane potential. It is found that magnetic
flux has a great effect on the membrane potential so that
multiple modes can be selected with the changing of feedback
coefficient, and time sequence of membrane potential is shown
in Figure 2. We also explain the discharge process in detail. First,
suprathreshold spiking of system is gradually reduced. when
feedback coefficient k = 0.002, the number of suprathreshold
spiking is more than k = 0.0025. It is in a relatively resting
state (subthreshold spiking) when k increase to 0.003. From
above analysis, we can see that firing activity of membrane
potential is more dependent on the feedback coefficient, which
is greatly sensitive in regulating membrane potential. Next, we
will consider their combined effect on neuronal suprathreshold
spiking by calculating bi-parameter bifurcation diagram, which
is shown in Figure 3. It is exhibited on the (k,A1) plane and
presents a detailed suprathreshold change.

The phase noise is induced by differential equations with
Gaussian white noise and it can be grasped by noise intensity D.
Gaussian white noise has a good simulation of noise system in the
real neural network so that discharge activity is more authentic.
Therefore, it is necessary that we will incorporate noise into
neuron model to simulate computation. Figure 4 exhibit time
sequence of membrane potential of dynamical system, which
is an improved neuron model with different noise intensity
D. Especially, it is interesting that multiple oscillation modes
are strengthened with the increasing of noise intensity. From
the diagram, we can see that noise promote the spiking of
neuronal system to some extent but it is two-sided. Its effect
may be more regular on the spiking than changing amplitude
or adjusting feedback coefficient. For the neuronal system,
coefficient variability of ISIs sequence is often used to examine
its coherence degree. Readers can refer to Jia and Gu (2015a) and
Pikovsky and Kurths (1997) to get a more detailed understanding
about the concept of CV. It indicates that the better coherence
depends on the smaller the CV. As shown in Figure 5, it will has
a good coherence in a suitable noise intensity D, and that is to
say, the distance is uniform between spiking and spiking at this
moment. The CV value starts to increase when noise is greater
than that fixed value D = 2. In other words, appropriate noise
may produce a positive response to the neuronal system.

The above discussion is based on adding noise and
electromagnetic field at the same time and then changing
amplitude, feedback coefficient or noise intensity to obtain some
firing behaviors of dynamical system. Next, we will discern
the oscillating mode only adding electromagnetic radiation or
adding Gaussian white noise. The result in Figure 6 convey
that the oscillating behavior can be regulated and adjusted
as an isolated pattern. In other words, appropriate mode can

be selected by adding suitable magnetic flux on membrane
potential. From the diagram, we can see that inverse period-
adding bifurcation is observed with the increasing of feedback
coefficient k and this bifurcation diagram is regular, but it
eventually jumps to resting state. Obviously, we get a lot
of oscillation modes of discharge activity via changing one-
parameter, and it makes us very interested in the adjustment of
bi-parameter.

We calculate bi-parameter bifurcation diagram and show it in
Figure 7. In Figure 7A, where the abscissa represents the reversal
potential VK whose value is taken from −96 to −80, and the
ordinate denotes the feedback coefficient kwhose value is selected
from 0 to 0.0015.Moreover, the color scale bar indicates a gradual
process, which represents the number of spiking per burst from

FIGURE 7 | Spiking-counting diagram as the change of bi-parameter. The

number of spiking per bursting is exhibited at the right sides by the colorful

belt. And no Gaussian white noise is considered. (A) (k,VK ) plane; the number

0 indicates quiescent condition and the number 1 represents tonic spiking

whilst the number 2–45 denotes regular bursting; (B) (k,gCa) plane; similarly,

the number 0 indicates quiescent condition and the number 1 represents tonic

spiking; the number 2–69 denotes regular bursting whilst the number 70

indicates chaotic states.
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the regular bursting to the chaotic bursting. Examining the
Figure 7A, we can see that the number of spiking per burst
will continue to increase with the changing of bi-parameter
until it reaches chaos in a small range of lower right corner.
In addition, the spiking phenomenon can occur between two
resting state. As shown in Figure 7B, we exhibit bi-parameter
bifurcation diagram in the (k, gCa) plane, where the abscissa
indicates themaximal conductance gCa whose value is taken from
3.3 to 5.3, and the ordinate represents the feedback coefficient
k whose value is selected from 0 to 0.0015. We can see that
triangular area on the left side of the diagram and trapezoidal
area on the right are two resting states. And it is obvious that the
spiking go through the transition process from regular bursting
to chaotic bursting and then to regular bursting by adjusting
these two parameters. The electrical activity is very sensitive to bi-
parameter because most bursting modes have only narrow strip
areas.

By comparing Figure 7A with Figure 7B, it is easy to see that
these two parameters have a great influence on the discharge
activity. For the same feedback coefficient interval, if we change
the reversal potential VK at the same time, we will get a
continuous spike-adding mode. But if we transform the maximal

conductance gCa, we will see that electrical activity will return
to period bursting via chaotic bursting. The principle is hidden
behind a large number of patterns, and it can be well discerned
by simulating the neuronal system.

4. SENSITIVITY OF COUPLED NEURONS

In this section, we will discuss dynamical response of an isolated

neuron and two coupled neurons. These two systems are exposed

to Gaussian white noise, and they have many different responses

to the noise system. In addition, we examine how the noise affects

coupled neuronal system and compare the discharge activity of
coupling neuronal system with that of original coupling system
without noise. Furthermore, we may find some new phenomena
by comparing electrical mode of isolated neurons with that
of coupled neurons under noise, and we also present a new
perspective to explore neurons responding to noise. They are
analyzed as follows.

It is inevitable that many realistic neuron system will be

exposed to noisy environment and we find that the effect has two-
sided. Therefore, we will explore neuronal system by adding the

FIGURE 8 | Time series of membrane potential under different reversal potential VK . (A) VK = −96, (B) VK = −92, (C) VK = −88, (D) VK = −84, and no noise is

introduced.
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noise to neuronmodel without adding electromagnetic radiation.
Figure 8 indicates time series of membrane potential without
adding noise, and it is tonic spiking or regular bursting. Figure 9
represents time series of membrane potential after adding noise
system and corresponding to Figure 8, respectively. Observing
the diagram, we can discern that noise is very sensitive to
the tonic spiking and its response is more intense than the
regular bursting. In detail, electrical activity of tonic spiking
is greatly disturbed and period-2 bursting is also disrupted. In
addition, regular period-4 bursting and square wave busting
have also slight perturbation and become irregular discharge
mode. In general, the more the number of spiking per burst
means that the mode is relatively more stable when adding
noise to system. Moreover, bursting may be increased during
the same time period when Gaussian white noise is introduced
into the neuron system whilst the number of spiking per
burst will also be fluctuant and most of them is increased.
Furthermore, we can see that noise has a little control over
the firing state of neuron but it may has a great effect on
bistable state (down resting state and upper steady state). As
we known, bursting may mean more neural information than
spiking. To sum up, we may be able to infer that the more
complex discharge activity is better anti-interference than tonic

spiking, and this may be associated with the robustness of neural
networks.

In fact, we have explored multiple modes of discharge
activity in coupled neuron system by changing reversal potential
and adding Gaussian white noise to system and it has more
patterns than in an isolated neuron. Therefore, we are interested
in the coupling system with noise. Figure 10 represents time
series of membrane potential without adding noise, which
are tonic spiking, regular bursting and irregular bursting.
Figure 11 exhibits time series of membrane potential under
noise and corresponding to Figure 10, respectively. Comparing
two diagram, we find that the effect of noise on the spiking is
greater than bursting and this is consistent with our analysis
of single neurons. In noise system, there is a bursting that
appears in the tonic spiking and period-2 bursting become
many irregular bursting (the number of spiking per burst is
not less than two). Moreover, it is also disrupted that bursting
alternately appears in Figure 10C and it becomes unstable
bursting mode. Furthermore, the change once again confirms
that the effect of noise on bistable state is stronger than firing
state as shown in Figure 10D. In addition, the effect of noise
on down resting state of coupled system is obviously greater
than that of upper steady state, but this feature is not obvious

FIGURE 9 | Time sequences of membrane potential under different reversal potential VK . (A) VK = −96, (B) VK = −92, (C) VK = −88, (D) VK = −84, and Gaussian

white noise is considered.
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FIGURE 10 | Time series of membrane potential of coupled neurons under different reversal potential VK . (A) VK = −92, (B) VK = −88, (C) VK = −84, (D)

VK = −76, and adding Gaussian white noise.

in an isolated neuron model. These are new phenomena and
not present in a single neuron. It is not the same as in an
isolated neuron that the noise does not increase the number
of bursting during the same time (Contrast Figure 10C and
Figure 11C), but the main effect of noise on the bistable state
is retained. Therefore, we may be able to suggest that the
exploration of neural network under noise requires a long-
term process to achieve an in-depth level and this process is
valuable.

5. CONCLUSIONS

Tonic spiking and bursting are effective coding of signals
between neurons and abundant discharge activity patterns are
accompanied by complex signal propagation. The effects of
electromagnetic radiation and noise on discharge activity of

system are two-sided and it has been investigated by some
researchers and their co-workers (Lv et al., 2016; Ma et al.,
2017). Therefore, we are more interested in electrical activity
of system with electromagnetic induction or noise and hope
that it is controllable. In this paper, we have explored transition
of electrical activity in an improved Morris-Lecar neuron
model, which contains electromagnetic radiation and noise.
Additionally, electromagnetic radiation is expressed through the
magnetic flux and noise obeys normal distribution. By comparing
the simulation of the system, we have found that there is a
great change in discharge activity until external forcing stimulus
is removed from system and dynamical response will be more
sensitive by adjusting more bifurcation parameters. One of
these, we have calculated transition of discharge activity with
the changing of the feedback coefficient k. In addition, we
have examined the effect of noise intensity D on coherence
of electrical activity via describing the changes of coefficient
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FIGURE 11 | Time series of membrane potential of coupled neurons under different reversal potential VK . (A) VK = −92, (B) VK = −88, (C) VK = −84, (D)

VK = −76, and Gaussian white noise is considered.

variability. Furthermore, we have drew interspike intervals
sequence diagram and bi-parameters bifurcation diagram to
argue the effect of electromagnetic induction on the fluctuation
of membrane potential. Finally, we have compared the response
of noise on the electrical activity of isolated neurons with that of
coupled neurons. From the above, we know that electromagnetic
induction and noise can arouse different dynamical behaviors of
neuronal systems. Logically, we will try to illustrate their impact
on the biological meaning of real neurons. In fact, move of
charged ions involves a small and easily overlooked magnetic
field during the process of ion transmembrane movement. But
it may be that accumulation of these small induced currents
produces qualitative change in a single neuron or even in a
neural network. Certainly, the effect of noise on the neuronal
system is also often explored, since many realistic neural network
are in a noisy environment. Therefore, we may be able to
consider incorporating the magnetic flux into real neuron system

because of its impact on discharge activity and noise can
not be ignored. According to the simulation of the improved
neurons, external bifurcation parameters can change firingmode,
which may mean that neurons can select appropriate electrical
behaviors due to its self-adaption that frequently appears in
neural networks.
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APPENDIX

TABLE A1 | Fixed parameter values are used in the calculation.

Definition Parameter values

Reversal potentials (mv) VCa = 120, VK = −84, VL = −60

Maximal conductance (ms/cm2) gCa = 1.0, gK = 8.0, gL = 2.0

Gating variable parameters (mv) V1 = −1.2, V2 = 18, V3 = 12,

V4 = 17.4, V0 = −26

Other dynamical parameters C = 20µf/cm2, φ = 0.23, ε = 0.001

Electromagnetic induction parameters α = 0.1, β = 0.02, k = 0.0025,

k1 = 0.9,

k2 = 0.5, ω1 = 0.5, A1 = 6, D = 10
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