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Abstract
We studied the effects of non-Markovian power-law voltage dependent conductances on

the generation of action potentials and spiking patterns in a Hodgkin-Huxley model. To

implement slow-adapting power-law dynamics of the gating variables of the potassium, n,

and sodium, m and h, conductances we used fractional derivatives of order η�1. The frac-

tional derivatives were used to solve the kinetic equations of each gate. We systematically

classified the properties of each gate as a function of η. We then tested if the full model

could generate action potentials with the different power-law behaving gates. Finally, we

studied the patterns of action potential that emerged in each case. Our results show the

model produces a wide range of action potential shapes and spiking patterns in response to

constant current stimulation as a function of η. In comparison with the classical model, the

action potential shapes for power-law behaving potassium conductance (n gate) showed a

longer peak and shallow hyperpolarization; for power-law activation of the sodium conduc-

tance (m gate), the action potentials had a sharp rise time; and for power-law inactivation of

the sodium conductance (h gate) the spikes had wider peak that for low values of η repli-

cated pituitary- and cardiac-type action potentials. With all physiological parameters fixed a

wide range of spiking patterns emerged as a function of the value of the constant input cur-

rent and η, such as square wave bursting, mixed mode oscillations, and pseudo-plateau

potentials. Our analyses show that the intrinsic memory trace of the fractional derivative pro-

vides a negative feedback mechanism between the voltage trace and the activity of the

power-law behaving gate variable. As a consequence, power-law behaving conductances

result in an increase in the number of spiking patterns a neuron can generate and, we pro-

pose, expand the computational capacity of the neuron.

Author Summary

There is increasing evidence that the activity of individual membrane ion channels, con-
ductances, and the firing rate of neurons are history dependent. In this work we studied
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how history dependent activation of membrane conductances affect the action potential
activity of the Hodgkin-Huxley model, a widely used model of action potential generation.
In order to implement history dependent activation, we made use of fractional order dif-
ferential equations. This type of history dependent differential equations are increasingly
being used in biomedical sciences to simulate complex phenomena. We use fractional
order derivatives to model the kinetic dynamics of the gate variables for the potassium and
sodium conductances of the Hodgkin-Huxley model. Our results show that power-law
dynamics of the different gate variables result in a wide range of action potential shapes
and spiking patterns, even in the case where the model was stimulated with constant cur-
rent. As a consequence, power-law behaving conductances result in an increase in the
number of spiking patterns a neuron can generate and, we propose, expand the computa-
tional capacity of the neuron.

Introduction
The large majority of conductance based neuronal models assume that the membrane voltage
and conductances follow a Markov process [1, 2]. As such, the value of each of these variables
in the next time point is dependent exclusively on its present state [3]. Increasing evidence
shows that this assumption is not applicable all the time. The distribution of closed states of
single channels [4, 5], the recovery time from inactivation of individual conductances [6, 7],
and the spiking patterns generated over prolonged periods of time [8] show history depen-
dence. If a conductance’s response to a voltage clamp command follows Markov dynamics
then the time adaptation of the conductance is described with an exponential function. In con-
trast, if the adaptation of the conductance is history dependent then its response is usually
described with a power-law. The power-law response could be due to the cumulative effect of
multiple exponential processes with time constants distributed over a wide range of scales [9].
However, power-laws also arise when the fundamental Markovian assumptions break down
with no single time constant describing the behavior of the system and possibly reflecting
strong, allosteric, interactions among internal states of the channels [10]. Under such condi-
tions the transitions between states depend on the history of the activity of the channel. While
many of the studies on power-law dynamics in single neurons have centered on action poten-
tial rates [11–13] and membrane voltage [14–17] little is known of how a power-law behaving
conductance could affect the spike generation properties of a neuron.

The natural mathematical tool to implement history dependent power-law dynamics is the
fractional order differential equation [18]. For processes that show slow adaptation the order of
the fractional derivative (η) is less than 1. The value of the fractional order corresponds to the
power-law exponent of the process being modeled. We recently introduced the fractional leaky
integrate-and-fire model (LIF) [14], which we have used to replicate the firing rate activity of
adapting cortical neurons. We have also developed tools to efficiently integrate such equations
[19]. Other groups have used the fractional derivative of the voltage to study the Hodgkin-
Huxley [15–17] model or to model the power-law firing rate adaptation observed in cortical
and brain stem neurons [12, 13]. Fractional order dynamics is being increasingly used through
computational biology sub-disciplines to model complex systems that show history depen-
dence and power-law dynamics [20].

Here we study the effects of power-law behaving conductances in a biophysical model of
spiking activity, the Hodgkin-Huxley model. We systematically modified the dynamics of the
gating variables of the potassium (n) and sodium (m and h) conductances to generate power-
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law history dependent activity. Our results show the emergence of a wide range of spiking
behaviors in response to constant stimulation as a function of the fractional order in the differ-
ent activation/inactivation variables. In the case of the n gate, the neuron shows reduction of
spiking response and emergence of sub-threshold oscillations. While power-law behavior in
the h gate results in bursting activity and pseudo-plateau potentials. This emergent richness in
spiking activity, while only modeling two conductances, allows to study the effects of power-
law behavior in neuronal activity. Computationally, we suggest that power-law conductance
behavior allows neurons to increase their coding capacity.

Methods
The Hodgkin and Huxley model is [1]

C
dV
dt

¼ �ðgmðV � ElÞ þ gK n
4ðV � EKÞ þ gNam

3hðV � ENaÞÞ þ I ð1Þ

where C is the membrane capacitance; V is the membrane voltage; gm is the passive conduc-
tance; El is the leak reversal potential; gK and gNa are the maximum potassium and sodium con-
ductances, respectively; EK and ENa are their reversal potentials, and I is the input current. The
gating variables n, m, and h are defined by the general equation

dx
dt

¼ axðVÞð1� xÞ � bxðVÞx ð2Þ

where x = [n, m, h], the function α is the forward rate, and β is the backward rate. The gating
variables n and m are known as activation variables while h is an inactivation variable. The
functional forms of n, m, and h are [1]:

anðVÞ ¼
0:1� 0:01ðV � V0Þ

e1�0:1ðVþV0ÞÞ � 1
ð3Þ

bnðVÞ ¼ 0:125e�ðV�V0Þ=80 ð4Þ

amðVÞ ¼
2:5� 0:1ðV � V0Þ
e2:5�0:1ðV�V0ÞÞ � 1

ð5Þ

bmðVÞ ¼ 4e�ðV�V0Þ=18 ð6Þ

ahðVÞ ¼ 0:07e�ðV�V0Þ=20 ð7Þ

bhðVÞ ¼
1

1þ eð3�0:1ðV�V0ÞÞÞ
ð8Þ

In this work we systematically study the effects on the spiking activity of the Hodgkin-Hux-
ley model to the implementation of fractional dynamics on each of the gating variables:

dZx
dtZ

¼ axðVÞð1� xÞ � bxðVÞx ð9Þ

where we use the Caputo definition [21] of the fractional derivative for η<1

dZf
dtZ

¼ 1

Gð1� ZÞ
Z t

0

f 0ðtÞ
ðt � uÞZ du ð10Þ
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where Γ is the Gamma function. The fractional derivative value is the result of integrating the
activity of the function over all past activities weighted by a function that follows a power-law.
The weighted past values are called the memory trace. As opposed to the first derivative, the
fractional derivative provides information over all past activity. We numerically integrate the
fractional derivative using the L1 scheme [22],

dZxðtNÞ
dtZ

� ðdtÞ�Z

Gð2� ZÞ
XN�1

k¼0
xðtkþ1Þ � xðtkÞ�½ðN � kÞ1�Z � ðN � 1� kÞ1�Z� �h i

ð11Þ

where 0<η�1, tk = k dt, N = tN/dt, and dt = 0.001 ms. By combining this equation and the gat-
ing dynamic equation and solving for x at time tN we obtain the equation that we use to inte-
grate the function

xðtNÞ � dtZGð2� ZÞ½axðV ; tN�1Þð1� xðtN�1ÞÞ � bxðV ; tN�1ÞxðtN�1Þ� þ xðtN�1Þ
�
XN�2

k¼0
xðtkþ1Þ � xðtkÞ
� � ðN � kÞ1�Z � ðN � 1� kÞ1�Z� �h i

ð12Þ

Where, again, x = [n, m, h]. The first two components of the right hand side of the equation are
the solution of the classical differential equation. The last component of the equation is the
memory trace. We have recently developed efficient ways to computationally solve these equa-
tions [19]. The memory trace is the last part of Eq 12

�
XN�2

k¼0
xðtkþ1Þ � xðtkÞ
� � ðN � kÞ1�Z � ðN � 1� kÞ1�Z� �h i

ð13Þ

The large number of simulations performed for this study were managed using our recently
developed simulator workflow manager (NeuroManager) [23]. In brief, NeuroManager is an
object-oriented application written in MATLAB (Natick, MA) that automates the workflow of
submitting neuroscience simulations. The simulations in this paper were run by NeuroManager
using a heterogeneous set of resources ranging from local UNIX servers (multi-core XEON pro-
cessors), institutional clusters (Cheetah cluster at the UTSA Computational Biology Initiative,
www.cbi.utsa.edu), and national resources (Stampede Cluster at the Texas Advanced Computing
Center, www.tacc.utexas.edu). NeuroManager allows the user to isolate the free parameters of
the simulations and define them as an Input Parameter Vector and organizes the results and
products of each simulation. All code is available at GitHub (https://github.com/SantamariaLab/
PowerLawHH), and the ModelDB database (https://senselab.med.yale.edu/ModelDB accession
number 187600).Unless otherwise indicated the simulations use the following parameter values
assuming 1 cm2 of membrane: C = 1 μF, gNa = 120 mS, gk = 36 mS, gm = 0.3 mS, ENa = 50 mV,
EK = -77 mV, and EL = -54 mV. For all the simulations we used the same initial conditions:
m = 0.0529; h = 0.5960; n = 0.3177; and V0 = -65 mV, which produced a zero change in voltage
in the classic case. To calculate the value of the Mittag-Leffler function (see below) we used the
algorithm developed by I. Podlubny andM. Kacenak (www.mathworks.com/matlabcentral/
fileexchange/8738-mittag-leffler-function).The value of the power-law behaving gate was calcu-
lated using Eq 12 and the value of all other variables in Eq 1 were calculated using a Runge-
Kutta method of 4th order.

Results
Our goal was to determine the effects of power-law activation of membrane conductances on
spiking activity. The natural mathematical way to implement power-law dynamics is by using
fractional order differential equations. We modified a Hodgkin-Huxley model to incorporate
fractional order gating variables. First, we provide a theoretical justification of the model and
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then describe the effects of having fractional order dynamics on the individual gates. The analy-
ses of the gate variables provide a method to determine whether an experimentally measured
conductance is following a power-law process.

Theoretical justification
Traditionally, a single ion channel is described to have an open and closed states. The closed
state can be composed of multiple ‘hidden’ states. Under Markovian assumptions states are
independent and their residence times follow exponential dynamics. To produce power-law
dynamics of the open-close transitions one can assume the existence of a large number of hid-
den states. Under such a model the state of the channel can be described as a diffusion process
over a large number of traps. These types of models are well known to produce anomalous dif-
fusion, a power-law behavior [24] and have been shown to replicate single channel dynamics
[25]. It is also possible that the residence times do not follow exponential dynamics, due to
internal state interactions or temporal correlations [25].

A purely power-law process does not have a mean residence time [26]. This would result in
the absence of a stationary response. Since it is possible to get stationary responses when mea-
suring conductance dynamics, it is necessary to assume that a channel can have a normal and
power-law transitions. As such, we develop our model by expanding the Hodgkin-Huxley gat-
ing dynamics (Eq 2) to have both classical and power-law components

dx
dt

¼ r0½axðVÞð1� xÞ � bxðVÞx� þ
Xm

i¼1
ri
d1�Zi

dt1�Zi
½axðVÞð1� xÞ � bxðVÞx� ð14Þ

The sum on the right hand side of the equation describes multiple gating processes with dif-
ferent fractional order dynamics that describe memory dependent activity. We chose to use the
same reaction rates (αx(V) and βx(V)) for simplicity and then scale them with the factors ri,
i = 0 to m. This is similar to the fractional relaxation equation of [26]. This full model describes
a system that has a finite mean residence time (classical component) with the perturbation
from power-law processes. We can write the same equation in a compact form

dx
dt

¼
Xm

i¼0
ri
d1�Zi

dt1�Zi
½axðVÞð1� xÞ � bxðVÞx� ð15Þ

We define η0 = 1 and r0 = 1 so in the case whenm = 0 the model reduces to Eq 2. Form = 1
the system models a mixture of the classical and a single fractional order process. In our case,
we assume that the rate of transition of the classical model is much smaller than the rate of the
fractional model (r0 � r1). This means that the fractional dynamics occur much faster than the
classical process. Thus we can approximate the dynamics as (r1!1)

dx
dt

� d1�Z

dt1�Z
½axðVÞð1� xÞ � bxðVÞx� ð16Þ

Re-arranging the fractional order operator yields our model

d�1þZ

dt�1þZ

dx
dt

¼ ½axðVÞð1� xÞ � bxðVÞx� ð17Þ

dZx
dtZ

¼ ½axðVÞð1� xÞ � bxðVÞx� ð18Þ

The solution of this linear fractional differential equation can be obtained using the Laplace
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transform technique (see also [15])

L
dZx
dtZ

� �
¼ L

x1ðVÞ � x
txðVÞ

� �
ð19Þ

Where x1(V) = αx(V)/(αx(V)+βx(V)), τx(V) = 1/(αx(V)+βx(V)). Resulting in:

sZgXðsÞ � sZ�1xð0Þ ¼ x1ðVÞ
txðVÞs

�
gXðsÞ
txðVÞ

ð20Þ

Where gXðsÞ is the Laplace transform of x and s the Laplace space variable. Re-arranging

gXðsÞ ¼ x1ðVÞ
txðVÞs sZ þ 1=tx ðVÞ

� 	þ sZ�1xð0Þ
sZ þ 1=tx

ðVÞ
ð21Þ

Using the method of partial fractions and re-arranging:

gXðsÞ ¼ x1ðVÞ
s

þ ½xð0Þ � x1ðVÞ�
sZ�1

sZ þ 1=tx ðVÞ
ð22Þ

Note that the inverse Laplace transform of

L�1 sZ�1

sZ � 1=tx ðVÞ

 !
¼
X1

n¼0

zn

GðZnþ 1Þ ¼ EZðzÞ ð23Þ

Eη is the Mittag-Leffler function or the generalized exponential function [27]. Therefore, taking
the inverse Laplace transform of the entire equation results in [17]

xðtÞ ¼ x1ðVÞ þ ½xð0Þ � x1ðVÞ�EZ � tZ

txðVÞ
� �� �

ð24Þ

Characterizing power-law behavior in individual gating variables
We characterized the response of each one of the power-law behaving activation gates (Eq 18
with x = [n, m, h]) to fixed voltage step commands. The simulations consisted of a period of 20
to 30 ms at a voltage V = 0 followed by the target voltage for up to 100 ms, with target voltages
varying from -100 to 120 mV. For a given value of the input voltage command we varied η
from 0.2 to 1.0. We compared the results of the numerical (Eq 12, Fig 1A dotted line) and ana-
lytical (Eq 24, Fig 1A solid line) solutions for all the traces, values of η, and voltage commands.
The average mean squared error (m.s.e.) between the numerical and analytical solutions for the
n gate was 8.2x10-7, for the m gate was 2.7x10-4, and for the h gate was 9.2x10-7. The relatively
higher m.s.e. in the m gate traces could be due to the very fast kinetics of this variable which
results in deviations from the analytical solution at very short periods of time. In fact, the simu-
lations were unstable for the power-law m gate for values of η�0.2, even when using time steps
as small as 10−5 ms. In any case, for the large majority of cases our numerical integrations are
well matched by the analytical solutions.

In order to quantify the effect of power-law dynamics on each gate we calculated the instan-
taneous long term response function (xZ1, with x = [n, m, h], see definition in explanation of Eq
19). The values of xZ1 were obtained from the responses of the respective gates to all combina-
tions of voltage commands and values of η. Specifically, to calculate xZ1 we measured the value
of the power-law behaving gates at t = 90 ms for the n gate, 40 ms for the m gate, and 110 ms
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PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004776 March 3, 2016 6 / 23



for the h gate. These times were chosen because the value of the traces changed by less than
0.01% from the previous millisecond. For η = 1 the n, m, and h gates reproduced the classic
Hodgkin-Huxley sigmoidal functions (Fig 1B). However, as the value of η decreases the slope
at the inflection point of the n and h gates become shallower, but not for the m gate (arrows in
Fig 1B). Comparing the values of xZ1 using our numerical (dotted) and analytical (solid) models
shows a very good match. Therefore, power-law dynamics affects the long term response of the
n and h gates but has little effect on the fast activating m gate.

A hallmark of a power-law process is that the temporal response of the system cannot be
characterized with a single time constant. To illustrate this property we fitted a dual-exponen-
tial process to the temporal response of each power-law gate over time windows of up to 100
ms. This fitting process resulted in the calculation of a fast and slow time constant (tZx , x = [n,
m, h], see explanation of Eq 19 for a definition). For all the gates when η = 1 the tZx were identi-
cal for the fast and slow time constants and to the classic Hodgkin-Huxley model. For the n
and h gates as η decreases the fast time constant accelerates while the slow time constant slows
down, consistent with power-law dynamics. In comparison, the effect of the fractional order
derivative on the m gate was fitted with a single exponential process that decreased with lower

Fig 1. Power-law dynamics of individual Hodgkin-Huxley gating variables. (A) The response of the individual gating variables (n, m, and h) using the
analytical (solid) and numerical (dotted) solutions to an identical voltage command (30 mV for n, -55 mV for m, -70 mV for h) with different values of the
fraction order derivative (η). (B) The long term response of the individual gates (xZ1, x =m,n or h) for all the voltages and values of η for the analytical and
numerical solutions. The arrow points to the inflection point of the sigmoidal curve. Form0:2

1 some numerical solutions were unstable. (C) For the n and h
gates we fitted a dual exponential process to the temporal response to voltage commands for all values of η resulting in a fast and slow time constant (tZx,
x = m, n, or h). We fitted a single time constant to the m gate.

doi:10.1371/journal.pcbi.1004776.g001
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values of η. This suggested that the fast m gate kinetics were only affected over very short peri-
ods of time. In summary, power-law dynamics have a strong effect on tZx and x

Z
1 for the n and

h gates, while only having an effect on the fast time constant of the m gate.

Effects of power-law gating variables on single action potentials
The shapes of the kinetic curves for each of the gate variables as a function of η do not allow to
predict whether the complete Hodgkin-Huxley model could produce spikes. In order to test
this hypothesis we implemented a full Hodgkin-Huxley model in which a gating variable is
governed by fractional dynamics while the other two remained normal. In all simulations we
injected a constant current step, from 1 to 24 nA, for 500 ms. We found that action potentials
were generated for all values of η for each one of the power-law dynamic gates. As is well
known, the classical Hodgkin-Huxley model can respond with a single spike before it generates
a sustained train of action potentials, with this first shape of the spike being slightly different
than the rest [28]. For this reason, we characterized the second generated spike at the minimum
input current to elicit spiking for the different values of η for each of the activation gates (Fig
2A). In the case of power-law n as η decreased the width at half-height of the action potential
broadened, from 1.18 ms for η = 1.0 to 1.86 ms for η = 0.2. There was also a decrease in the
minimum value of the repolarization. A similar analysis for the m gate shows that for lower val-
ues of η the action potential narrows (Fig 2A, m gate). The effect of power-law behavior on the
h gate shows a strong effect on the repolarization phase of the action potential (Fig 2A, h gate).
As the value of η decreases the spike width increases. For η = 0.2 the voltage seems to reach a
fixed steady state, known as depolarization block. However, as we will show later, this is not the
case. Instead, the spiking activity transitions to a pseudo-plateau action potential. Using the
same data we calculated the current threshold to generate at least one action potential (Fig 2B).
This analysis shows that for power-law dynamics in the n gate the current threshold initially
increases and then decreases as a function of decreasing η. In contrast, for both power-law
dynamic m and h, the current threshold increases. Overall, this analysis shows that fractional
order dynamics of the individual gating variables results in the generation of action potentials.
Depending on the gate being modified the current threshold of the action potential changes
with respect to the classic Hodgkin-Huxley model.

We performed a phase plane study of the action potentials generated at the current thresh-
old. The phase plane analysis is commonly used in experimental work to determine changes in
intrinsic excitability [29, 30]. In the case of implementing power-law dynamics in the n gate the
overall trajectory of the action potential remains intact with the largest change being the repolar-
ization phase (Fig 2C, n gate). A similar analysis when the m gate has power-law dynamic
shows that the speed of the action potential increases as a function of η [30, 31] (Fig 2C, m gate).
Similar to the n gate, the effect of power-law dynamics on the h gate affects the repolarization
phase of the action potentials (Fig 2C, h gate). Phase plane plots are also used in experimental
work to determine the voltage threshold by determining the voltage when the speed of the volt-
age crosses a determined value [30]. In our case we determined the voltage threshold as the
value of the voltage when dv/dt>20 mV/ms. This analysis shows that when n has power-law
dynamics the voltage threshold increases up to 2.14 mV. In contrast, when the power-law
dynamics is in the m gate the threshold decreases by 1.68 mV. As expected from its kinetic prop-
erties, power-law dynamics in the h gate has no effect on the voltage threshold (Fig 2D).

The overall analysis of single action potentials shows that spikes can be generated with a
wide range of values of η. Whenever an action potential is generated the amplitude is similar to
the classical Hodgkin-Huxley model. The types of action potentials generated in all cases
resemble various types of spikes reported in the literature [29, 32–35], including those from
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non-neuronal cells [36–38]. Thus, conductances with power-law properties can generate a
wide range of action potentials shapes observed in multiple cell types.

Effects of power-law gating variables on persistent spiking activity
After analyzing the effects of power-law dynamics on individual gates and on the shape of sin-
gle action potentials we characterized the spiking patterns that emerge from this process. For

Fig 2. The effect of power-law behaving Hodgkin-Huxley gating variables on the shape and properties
of the action potential. (A) Action potential shapes generated with the minimum input current as a function
of the order of the fractional derivative (η) for the respective gate. (B) The action potential current threshold as
a function of input current and η. (C) Phase plot of the action potentials generated at minimum input current
as function of η. The red squares indicate the crossing of threshold detection (dv/dt > 20 mV/ms). (D) The
voltage threshold calculated from the phase plots in C.

doi:10.1371/journal.pcbi.1004776.g002
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this purpose we simulated the response of the full model to constant current injection for peri-
ods of time between 1,500 to 3,000 ms. For the different combinations of values of η and
injected current the model showed multiple spiking patterns. For example, for a constant input
current of 18 nA we varied the power-law dynamics of the n gate while keeping the m and h
gates normal. For η = 1.0 the model generated the typical repetitive spiking pattern with a con-
stant firing rate of 84 Hz (Fig 3A). For a value of η = 0.8 the number of spikes decreased by
almost half and resulted in an average firing rate of 43 Hz. However, the spiking pattern

Fig 3. Action potential spiking patterns due to power-law conductances in response to constant current input. (A-D) Spiking patterns generated with
power-law behaving n gate. (E-G) Spiking patterns generated with power-law behaving h gate. Each set of simulations done with identical input current and
varying the order of the fractional derivative (η).

doi:10.1371/journal.pcbi.1004776.g003
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transitioned from repetitive to increasing inter-spike intervals (Fig 3B). For η = 0.6 the firing
rate dropped to 13 Hz with sub-threshold oscillation between each spike (Fig 3C). Further
decrease to η = 0.4 also showed sub-threshold oscillations and an increasing inter-spike interval
with an average firing rate of 28 Hz (Fig 3D). Another example shows that the effect of power-
law dynamics on the h gate also changes the spiking patterns generated by the model in
response to constant input. In this case, for a fixed input current of 11 nA and values of η� 0.6
the model generates bursts of action potential and sub-threshold oscillations (Fig 3E–3G).
These examples show that the power-law behaving conductances results in complex spiking
patterns that evolve over time.

We classified the spiking patterns generated by the effect of implementing power-law
dynamics in individual gates. Since the models could produce non-stationary patterns we
decided to classify the spiking activity based on their short (<500 ms) and long term (>1000
ms) responses. We classified the spiking responses as: resting state (RS), no spikes or only one
spike at the onset of the stimulus; tonic spiking (TS, Fig 4A); phasic spiking (PS), a few spikes

Fig 4. Action potential patterns generated by a Hodgkin-Huxleymodel modified with power-law
behaving n (A-C) and h (D-F) gates. Each panel has the information of the current input (I) and value used
for the respective fractional order derivative (η).

doi:10.1371/journal.pcbi.1004776.g004
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within the first 500 ms (Fig 4B); mixed-mode oscillations (MMO), single spikes surrounded by
sub-threshold oscillations (Fig 4C); square-wave bursting (SWB), a group of spikes surrounded
by sub-threshold oscillations (Fig 4D); and pseudo-plateau bursting (PPB), long lasting spikes
more commonly seen in non-neuronal cells (Fig 4E and 4F) [36–38].

We manually classified the spiking patterns generated by the model for a range of input cur-
rents from 0–20 nA and η = 0.2–1.0. We then produced a spiking pattern phase transition dia-
gram for each of the power-law behaving gating variables (Fig 5). In the case of modeling
power-law activation of the potassium channel the phase diagram shows that the spiking activ-
ity transitions from RS! PS!MMO! TS for η = 0.3–0.8 (Fig 5A). In all cases, when large
input current is applied to the model, this overcomes the dynamics imposed by the fractional
derivative and recovers the repetitive firing of the Hodgkin-Huxley model.

The same analysis applied to the activation and inactivation variables of the sodium channel
results in very different behaviors. The spiking activity of the model to fractional dynamics of
the activation variable, m, results in increased threshold as η decreases. After the threshold is
crossed tonic spiking results for the duration of the simulation (Fig 5B). When power-law
dynamics is applied to the inactivation variable, h, there are multiple spiking patterns that
emerge. After the spiking threshold is crossed and for values of η<0.8 the system presents
SWB and PPB (Fig 5C). For very strong input the neuron spikes regularly (TS) except for val-
ues of η� 0.2.

In summary, the presence of power-law activation dynamics results in an increase in the
diversity of spiking patterns, from tonic spiking to mixed mode oscillations and bursting.

Attractors due to power-law gate dynamics produce spiking diversity
The numerical solution of the fractional derivative (Eq 12) can be described as a negative feed-
back mechanism to the value of the gate being computed. The value of the gate at time t is
equal to the normal integration of the equation of differences plus a factor that is called the
memory trace (Eq 13). When the power-law dynamics of a gate is integrated into the entire
Hodgkin-Huxley model then the memory trace acts as a balance between gate activation and
action potential generation. To illustrate this point we analyzed the membrane voltage, gate
values, and memory traces of several simulations when they generated different spiking
patterns.

As shown before, the MMO patterns are obtained when implementing power-law dynamics
in the n gate. We compared the voltage trace of the power-law n, with η = 0.7, (Fig 6A, black
line) and classic (Fig 6A, gray line) models under the same current input conditions. This
shows that the sub-threshold oscillations are not just a process in which the action potential
threshold of the classic model is not reached, but that affects the underlying firing rate and
spike shape (Fig 6A, right). The memory trace of the n gate shows a negative contribution to
the activation of the gate during the action potential depolarization and positive during the
repolarization phase (Fig 6B). The negative feedback effect during the generation of the action
potential results in a peak value of n smaller than in the classic Hodgkin-Huxley (Fig 6C). As a
result the dynamics of the normally activated m and h gates are also modified (Fig 6D and 6E).
As shown in Fig 1, the time constant of the potassium conductance decreases over short peri-
ods of time. This is due to the positive feedback contribution of the memory trace as the action
potential repolarizes. Then this conductance compensates faster for the influx of sodium cur-
rent, thus blocking the generation of an action potential, instead, producing a sub-threshold
oscillation. As the effect of the memory trace vanishes on the n gate then the two currents
behave closer to the classical case and an action potential is produced. This dynamics is better
understood with a phase plane of the currents involved (Fig 6F–6H). We plotted the value of
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Fig 5. Phase transition diagrams of the spiking patterns generated by the Hodgkin-Huxleymodel with
power-law behaving conductances. The power-law dynamics was implemented with a fractional order
derivative of order η for the respective gating variables. (A) Potassium conductance activation n gate. (B)
Sodium conductance activation m gate. (C) Sodium conductance inactivation h gate. RS, resting state; PS,
phasic spiking; MMO, mixed-mode oscillations; TS, tonic spiking; SWB, square-wave bursting; and PPB,
pseudo-plateau bursting. Spiking responses and boundaries were manually classified based on the first
1,500 ms of simulation.

doi:10.1371/journal.pcbi.1004776.g005
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Fig 6. The contribution of the memory trace to Mixed Mode Oscillations in the Hodgkin-Huxley model with power-law n gate. The power-law
dynamics was implemented with fractional derivative of order η = 0.7 and constant input current I = 23 nA. (A-E) Examples over a long (left) and short (right)
time window of the voltage, memory trace, and gate values. The gray line is the identical simulation with η = 1.0. (F-H) Phase plane analysis of the same
responses. (F) Phase plot of the sodium (INa) vs Iw = potassium + leak + injected currents. The red line indicates the balance current and the red square
indicates the presence of an attractor. (G) Zoom in the attractor in F. (H) Same data as in G but plotting the imbalance current (INa+Iw) vs Iw. The * indicates
where Iw starts compensating for INa.

doi:10.1371/journal.pcbi.1004776.g006
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the sodium current (INa) versus Iw = potassium + leak + input currents (Fig 6F, black line). We
compared this phase plot to the classic Hodgkin-Huxley model under the same conditions (Fig
6F, gray line). As a reference, we plotted the balanced current between INa and Iw (Fig 6F, red
line). Trajectories above this line tend to generate an action potential, while trajectories under
this line show that the repolarizing currents are stronger than the INa. At the base of the phase
plot we found an attractor that corresponded to the sub-threshold oscillations (red square in
Fig 6F and 6G). This attractor has a trajectory around the line of balanced current. To better
visualize the attractor we plotted the value of the imbalance current (INa+Iw) vs Iw (Fig 6H).
This plot shows that the balance point is around -10 nA. After an action potential is generated
then the Iw is faster to compensate for Ina (� in Fig 6H), bringing the trajectory close to the cen-
ter of the attractor and oscillate outwards until the potassium conductance returns to a normal
state, which then allows the generation of a new action potential.

We performed a similar analysis of the PS spiking pattern (Fig 7 with the corresponding
voltage trace in Fig 4B). As in the MMO spike pattern the phase plane plot of the INa vs Iw also
shows the presence of an attractor at the base of the trajectory (Fig 7A, red square). The current
balance point between INa and Iw is close to -6 nA (Fig 7B). As the model generates spikes (S1
to S4 in Fig 7B) the positive imbalance current decreases until the model generates a first sub-
threshold oscillation (labeled missed spike in the figure), then a forth spike (S4) is generated,
then the trajectory settles into the attractor (RS in the figure). For the duration of this simula-
tion (1,500 ms) no more action potentials were generated; however, it is possible that after the
effect of the memory trace on the n gate vanishes the model could start spiking again. The
attractors for the MMO and PS patterns are very similar (Figs 6H and 7B). In both cases, the
generation of a new action potential is suppressed by a faster compensation of the INa by the
potassium current, which is consistent with an acceleration of the time constant due to power-
law dynamics.

Power-law dynamics in the h gate can generate SWB and PPB spiking patterns (Fig 8A)
depending on the combination of input currents and values of η (see Fig 5C). There are two
types of PPB patterns produced by the model. The first one resembles pituitary cell action

Fig 7. Phase plane analysis of the Transient Spiking pattern (see Fig 4B). (A) Comparison of the current trajectories of the power-law (black) and classic
(gray) Hodgkin-Huxley model. The power-law model had a fractional order derivative of η = 0.4 and input current I = 8 nA. The red box indicates the area of
the attractor. (B) Phase plane of the attractor in A. S1 to S4 indicate spikes and RS is the resting state.

doi:10.1371/journal.pcbi.1004776.g007
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potentials, which are characterized by a spike followed by high voltage oscillations [36]. The
second PPB spiking pattern resembles cardiac myocyte action potentials with a sharp spike fol-
lowed by a high voltage plateau [37]. Pituitary-type action potentials were generated with
higher input currents than cardiac-type action potentials (Fig 8A). In all cases, including the

Fig 8. The contribution of the memory trace to square wave bursting and pseudo plateau potential spiking patterns in the Hodgkin-Huxley model
with power-law behaving h gate. (A) Voltage traces for square wave bursting and two types of pseudo plateau potential (pituitary and cardiac types). The
gray plot corresponds to the classic Hodgkin-Huxley model. (B-E) the temporal behavior of the h memory trace, and gating variables. The square wave
bursting was generated with a fractional order derivative of η = 0.4 and the input current I = 10 nA; the Pituitary type was generated with η = 0.2 and I = 20 nA;
and the cardiac type was generated with η = 0.2 and I = 9 nA.

doi:10.1371/journal.pcbi.1004776.g008
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SWB, the amplitude of the memory trace was more than an order of magnitude larger than in
the case of the power-law n gate (Fig 8B). In the case of the SWB pattern the spiking activity is
slowed down and, as in the case of power-law n gate dynamics, the sub-threshold oscillation do
not correspond to just missing spikes from the classic model (Fig 8A, square wave bursting col-
umn, black and gay plots, respectively). The effect of the memory trace on the activation of the
h gate is to slow down its response when compared to the classic model (Fig 8B and 8C). This
slowdown allows the action potential to broaden (cf Fig 2A) and, as a consequence, the maxi-
mum value of the n gate is higher than in the classic model (Fig 8D), with the m gate not being
affected (Fig 8E). As the effect of the memory trace vanishes from the dynamics of the h gate
then the system can again generate a series of action potentials.

In the case of pituitary-type PPB patterns (Fig 8A pituitary-type column) the memory gate
also results in a slower activation of the h gate. In this case, this allows the sodium current to
remain open for longer periods of time, which compensates for the potassium current, causing
an oscillation at a voltage higher than the action potential threshold (Fig 8B–8E Pituitary-type
column). As mentioned above, the cardiac-type PPB patterns are generated with lower input
currents than the pituitary-type (Fig 8A cardiac-type column). This results in a sharper initial
spike and avoids the oscillatory behavior seen for the pituitary-type spiking (Fig 8B–8E cardiac
type column). Note that the voltage traces of the pituitary- and cardiac-type spiking patterns
show oscillations in different parts of the action penitential. While the pituitary-type has the
oscillations in the decaying supra-threshold section of the action potential the cardiac type
show sub-threshold oscillations.

The phase plane analysis of the SWB and PPB spiking patterns confirms that attractors gen-
erated by the power-law h gate can appear in different sections of the action potential. In all
cases the amplitude of the current generated by the power-law model was larger than in the
classic case (Fig 9A). In each one of the trajectories generated we identified the location of the
attractors (red boxes). Analyzing the imbalance current phase plane shows that for the SWB
pattern the activity is similar to the one of the PS pattern, in which the action potentials during
a burst decrease their positive current until the trajectory enters close to the attractor and then
spirals out until generating another burst of action potentials. In contrast, in the pituitary-style
pattern the attractor is located in the early repolarization of the action potential. Finally, the
cardiac-type has a similar trajectory to the SWB and PS patterns, except that the time course of
the action potential spreads over a long window of time.

In summary, the effect of the negative feedback of the memory trace on each of the gates
variables of the Hodgkin-Huxley model results in the emergence of temporal attractors that
balance the depolarizing and repolarizing currents. As a results power-law dynamics of mem-
brane conductances can give rise to a wide range of spiking patterns.

Discussion
We used fractional order derivatives to study the effects of power-law behaving conductances
on the generation of action potentials in the Hodgkin-Huxley model. The fractional order of
the derivative provides a memory trace to the past activity of the gate. Our a priori hypothesis
was that the history dependence on the potassium channel would cause this conductance to
have a stronger activation than in the original model and no action potentials would be gener-
ated. Similarly, we expected that for power-law behaving sodium activation the model would
show depolarization block. However, our systematic computational analysis showed that for a
wide range of values of η, the model produces spikes with similar amplitude to the classic
model. The resulting spike shapes resembled action potentials found in multiple neuronal and
non-neuronal cells. The spiking patterns generated in response to constant stimulation also
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showed an increase in the diversity of responses, such as TS, MMO, SWB, and PPB. Together,
our results suggest that power-law behaving conductances can increase the diversity of spike
shapes and patterns. We propose that power-law behaving conductances increase the informa-
tion coding capacity of neurons.

Power-law conductances and biophysical interpretation
The standard model of a membrane conductance is based on the independence of the open,
closed, and inactive states. This assumption is based on a Markov model of protein function.
The rate at which a state changes is determined by the voltage and temperature, but not by the
previous history of the channel. At the stochastic level this implies that the probability of transi-
tion between states depends exclusively on the present state of the system. As a result, the
dynamics of the conductance is characterized with an integer order differential equation (η = 1).

The Markov model of a voltage or calcium activated conductance is represented by a single
open state and multiple closed or inactive states. Power-law activation of such channels can
emerge when the number of closed/inactive states is large [5]. In those cases, the state of the
channel is assumed to diffuse over the multiple closed states. The time between open episodes
depends on the trajectories through the close/inactive states. Under conditions in which the
probability of staying in the same state is similar across all states (trapping probability) then
the open states follow a power-law distribution. This behavior is equivalent to a random walk
with random waiting times, which results in anomalous diffusion, a well-known power-law
process [39]. Under this model, each closed/inactive state is still independent and, formally, the

Fig 9. Phase plane plots of the square wave bursting and the two types of pseudo plateau potential spiking patterns in the Hodgkin-Huxley model
with power-law behaving h gate. Same settings as in Fig 8. (A) Phase plot of the sodium (Ina) vs Iw = potassium + leak + injected currents, the red square
shows the place of the attractor. (B) The attractors from A plotting balanced current (Ina+Iw) vs Iw.

doi:10.1371/journal.pcbi.1004776.g009
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process is memory-less. While the transition between states only depends on the present state
the emergent behavior is imposed by the complex interactions of a large number of closed
states. Thus, the memory trace from the fractional derivative represents the complexity of the
distribution in internal states of the channel.

An alternative mechanism to generate a power-law behavior is that there is a small number
of internal states that interact with each other. In this case, the transition rates between states
not only depend on the present state but on some memory of where the state has been in the
past, such as in allosteric processes [40]. At the stochastic level this would mean that the proba-
bility of transition changes depending on the previous trajectory of the state. A transition state
going from C2!C1!0 with a rate between C1!0 of x would be different if the trajectory
were C3!C1!0. The slow power-law activation (η< 1) emerges because a state that is closed
increases the probability of the next state to remain closed, slowing down the opening of the
channels. The memory trace of the fractional derivative represents then how much internal
states influence each other, thus deviating from classical Markovian dynamics. Power-law volt-
age dynamics could also be possible without the sum of multiple membrane conductances but
because of actually having fractional order capacitance properties [41]. Thus, a neuron could
have independent sources of power-law dynamical properties in the voltage and membrane
conductances.

While only using a sodium and potassium conductances our power-law conductance mod-
els replicate action potential shapes and activity patterns of multiple cell types. However, some
of these patterns are generated by the combination of several conductances. In this context the
effect of the power-law dynamics captures the combination of multiple conductances or the
different expression of sub-units, which could provide more internal-states or states that inter-
act more strongly.

Our results suggest that it is the potassium or inactivating variables that provide the increase
in spiking shape and pattern richness, which is consistent with recent experimental results. For
example, different potassium sub-units allow cortical cells to generate firing rate adaptation
[13, 42, 43], which we have suggested follows power-law dynamics [14]; the recovery from
inactivation of some calcium and sodium channels has been shown to be history dependent [6,
7]; and extended recordings of neurons also show history dependence [8, 44].

Comparison with other work
In our previous work we implemented power-law dynamics in the membrane voltage of a LIF
model. In this model our aim was to replicate the firing rate adaptation reported in multiple
types of cortical cells. Instead of increasing the complexity of the model by adding different
types of conductances operating in different time domains we proposed that their cumulative
effect results in power-law behavior. We showed that with fixed parameters (threshold and
membrane resistance) our model replicated a wide array of experimental results by only chang-
ing the input current and the value of η. Most experiments were replicated with values of η<
0.2 [14]. In the present study, the power-law dynamics of the sodium and potassium conduc-
tances resulted in changes of the spike shape and spiking patterns that again only depended on
the input current and the order of the fractional derivative. The model was consistent with
experimental results that suggest that it is the potassium conductances and the recovery from
inactivation that allows neurons to generate complex spiking patterns [6, 7, 13, 42, 43]. As
such, fractional derivatives can capture the complexity of the combination of multiple conduc-
tances or the intrinsic dynamics of individual channels.

A recent study, analyzed the spiking and network properties of a fractional order voltage
dynamics Hodgkin-Huxley model [15]. This work showed that applying the fractional order
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derivative to the voltage reproduces spiking properties not seen in the original model, such as
the fast time-to-peak and spike time adaptation. However, this model did not generate complex
patterns such as MMO or SWB. This could be due to the effect of the memory trance only on
the membrane voltage without affecting the kinetics of the gating variables. In this study it was
also found that the range of current inputs that elicit spiking is reduced as a function of the
value of decreasing η. Although, we find that in our model the threshold to generate spiking
varies we found spiking over the entire range of tested values of η. Furthermore, whenever
action potentials were generated their amplitude was very similar to the classic model.

There are two studies close to our work in which the authors generalized the Hodgkin-Hux-
ley model by applying fractional order dynamics to all the gates [16, 17]. However, these studies
were more focused on the application of fractional dynamic analytical and numerical tech-
niques and only analyzed the generation of a single action potential over a narrow range of
parameters and values of η> 0.65. In contrast, our work systematically studied the response of
the model to individual changes of each gate to power-law dynamics over a broad range of
input currents and values of η. In any case, the numerical techniques used in these and our
studies could be incorporated into standard neuronal simulation packages [45].

Experimental tests to determine if a conductance follows power-law
dynamics
The detection of power-law dynamics is a topic of growing interest across the biological sci-
ences [46]. While in stochastic processes detection of a power-law could be complicated by
noise, in mesoscopic phenomena, such as in ionic currents in neurons, the measurements can
be done more easily; however, experiments have to be designed to be able to detect the exis-
tence of power-laws. Isolating single conductances in neurons is experimentally challenging,
thus there has to be combination of steps to conclude the existence of power-law behavior:

1. Assuming that a single current can be isolated, perhaps by expressing channels in an oocyte
or by pharmacological methods then it is necessary to record for a long period of time (for
example 1 sec). Fit a single exponential to the first 1 ms, 10 ms, 100 ms, and 1000 ms. If the fit-
ted time constants are the same then the process is exponential. If the time constant shows a
linear relationship with the time window of the fit then the conductance might be following
power-law dynamics. The acquisition of the signal should be done at the highest rate possible.

2. Together with the measurement in step A, long term current clamp recordings of action
potentials should show the emergence of sub-threshold oscillations. In the majority of cases,
this will be MMO that emerge as the neuron adapts. It is necessary to record for long peri-
ods of time (longer than 1 sec). These patterns are not going to be static but will continue
changing as more spikes are generated.

3. A different way of testing for intrinsic memory in the neuronal spiking generation mecha-
nism is by delivering shorter depolarization steps but at specific intervals. The memory
trace for a value of η = 0.2 decays 95% in about 800 ms; thus, repeating a series of stimula-
tions separated by 2 sec in the first sweep and by 500 ms in the second would result in the
emergence of spiking patterns due to power-law dynamics.

4. If a current is suspected of following power-law dynamics but cannot be isolated, then the
conductance could be blocked and use our algorithms together with dynamic current clamp
techniques [47] to recover the current with and without power-law properties and compare
the results to control experiments.
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Computational consequences
The number of spiking patterns a neuron can generate in relation to its input determines its
information capacity [48]. In a Markov process, the spiking activity of a neuron is history
dependent as a function of its slowest time constant. This implies that the spiking response,
such as firing rate, measures the amplitude or timing of the input. However, if a neuron is con-
stantly integrating inputs and its condition reflects the integration over temporal scales then
the spiking activity can vary. Our results show that if conductances follow power-law dynamics
then the spiking activity of the neuron will reflect not only the amplitude of the input but how
long this input has been delivered, as this would be reflected in the changing spiking pattern.
Thus, power-law adaptation increases the computational capacity of neurons. Taking our pre-
vious and present results together suggest that power-law dynamics in the voltage or mem-
brane conductances increases the spiking repertoire of a neuron and provides constant
adaptation to encode information even in the case of having a small number of conductances.
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