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ABSTRACT Following the experimental findings of Atwater et al. (In Biochemistry Biophysics of the Pancreatic-
(3-Cell, George Thieme Verlag, New York, 100- 107), we have formulated a mathematical model for ionic and electrical
events that take place in pancreatic (3-cells. Our formulation incorporates a Hodgkin-Huxley type gating mechanism for
Ca2" and K+ channels, in addition to Ca2" gated K+-channels. Consistent with the experimental observations, our

model generates spikes and bursts in (-cell membrane potentials and gives the correct responses to additions of glucose,
quinine, and tetraethylammonium ions. The response of the oscillations to ouabain and changing concentrations of
external K+ can be incorporated into the present model, although a more complete treatment would require inclusion of
the Na+/K+ pump.

INTRODUCTION

A wide variety of secretory cells display oscillations in
membrane potential. Among these, the ,B-cell is of particu-
lar interest because it involves a link between cell meta-
bolism and membrane conductance. Glucose and other
metabolizable sugars, which elicit insulin release from the
(-cell of the pancreatic islet, induce repetitive oscillations
in the (3-cell transmembrane potential. Rapid fluctuations
in potential, i.e., action potentials or spikes, occur as burst
of electrical activity on each phasic depolarization. These
action potentials have been associated with the stimulus for
the release of insulin. The main action of glucose is to
decrease the intracellular level of calcium, which is then
responsible for triggering the release of insulin by exocyto-
sis (1). A characteristic feature of ,B-cells is that the
duration and frequency of each burst can be altered by the
glucose concentration and by the external Ca+2, K+, and
Na+ concentrations. In addition, mitochondrial inhibitors
and uncouplers, which are known to induce a release of
intracellular Ca'2, block glucose-induced electrical activ-
ity (1).

Based on these experimental observation, Atwater et al.
(1) have proposed a qualitative model to explain the
oscillations in the (3-cell. Their model includes (a) a
potassium channel activated by intracellular calcium ions,
(b) a voltage-gated K+ channel, (c) a voltage-gated cal-
cium channel, and (d) cytoplasmic changes of intracellular
calcium concentration that depend on glucose concentra-
tion.

The experimental evidence seems to us sufficiently
detailed to justify construction of a dynamic mathematical

model. In this paper, we present a simple mathematical
model of (-cell oscillations and look for quantitative expla-
nations of how oscillations can arise from the interaction of
membrane processes with intracellular calcium. Although
our model does not include all the effects that have been
observed on (3-oscillations, it does include the basic features
proposed by Atwater et al. (1). Furthermore, additional
transport mechanisms such as the Na+/K+ pump can be
added to the mechanism to account for other observed
effects. In this sense, the mathematical model presented
here is a minimal model, i.e., the simplest that will explain
the burst pattern of (-cell oscillations.

MODEL

The model described in this section is based on recent experimental work
characterizing the electrophysiology of isolated single (3-cells ( 1-6). Using
chemical blocking agents, such as quinine and tetraethylammonium ions
(TEA), two sorts of potassium ion channels have been uncovered in the
membrane of the ,-cells. The TEA-sensitive channel appears to be similar
to the voltage-gated K+ channel known in nerve cells (7). The channel
blocked by quinine, on the other hand, is regulated by internal calcium. It
appears to be related to the calcium-activated K+ channel found in red
blood cell membranes and other tissues (8). Using these and other
observations, Atwater et al. (5) proposed that calcium ion is a control
agent for the membrane potential in ,8-cells and is responsible for the
burst pattern of oscillation.

Voltage oscillations with bursts, similar to those in the ,B-cell, have also
been observed in certain nerve cells, e.g., the R15 cell of Aplysia (9, 10).
Recently, Plant (11-13) has explained the bursting pattern using a
calcium-activated potassium conductance. An inward Na+ current seems
to play a crucial part in these neuronal oscillations. Indeed, when the Na+
channel of the RI5 cell is blocked by application of tetrodotoxin (TTX)
the action potential spikes are abolished and only a slow oscillation
waveform remains. While the effect of TTX in the RI5 cell is quite
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different from what is observed in the #-cell (6), we believe that the
evidence for the importance ofCa"2 regulation in the ,B-cell is compelling.
In the model given below, the differences between neuronal and ,8-cell
oscillations are due primarily to the appearance ofan inward Ca+2 current
in j3-cells that replaces the inward Na+ current of the neuron (7).

Our minimal model for the ,-cell burst oscillations contains the four
features cited by Atwater et al. (1). Explicitly we assume the following:

(a) A potassium channel activated by intracellular calcium ions and
sensitive to quinine. We have adopted a modification of the scheme
proposed by Plant (12), since the mechanism involved in the calcium
activation is not known at present. The conductance of these channels is
assumed to be

gK,Ca = gK,Ca Y*/(1 + Y) ()

where &c. is the maximum conductance per unit area, and Y = Cai/Kd,,,.
Here Kd , is the dissociation constant for Ca`2 bound to the channel gate
and Q is an integer. A value of 2 - 1 was chosen by Plant (12, 13),
corresponding to noncooperative binding. We have used this value in most
of our numerical work, except as described below. For Kd we have taken
the value of I gM suggested by Atwater et al. (1).

(b) A voltage-gated K+ channel sensitive to TEA. Following the idea
set forth by Hodgkin and Huxley (7), the conductivity for this channel is
written as

- 4
gK,HH = gK,HHn , (2)

where gK.HH is the conductance per unit area when the channel is fully
activated, and n is the fraction of K+ activation. In our work we have
adopted the expressions for the time change of n as given by Hodgkin and
Huxley. These equations depend on the variables n,OX,4T, a,,, and (3,,. In
our model the voltage dependencies of these variables have the same form
as the original Hodgkin-Huxley equations, but are shifted along the
voltage axis by V*, i.e., V is replaced by V + V*. The value we have used
for V* is given in Table I.

Following the Hodgkin-Huxley scheme, the total current due to
potassium channels is given by

IK = gK (VK - V) (3)

where V is the membrane potential, VK is the resting potential for the K+
ion, and

gK = gK,Ca + gK,HH* (4)

(c) A voltage-gated calcium channel. We write the conductance of the
voltage-dependent calcium channel in terms of the variables m and h

TABLE I
VALUES OF PARAMETERS IN THE MODEL

Parameter Numerical value

Cm(AF/cm2) 1

gKz,c(mS/cm2) 0.09

gKKHH(mS/Cm2) 1 2

gC.,HH(mS/cm') 6.5
gL(mS/cm) 0.04
VK(mV) _75
Vc(mV) +100
VJ(mV) -40
V*(mV) 30
V'(mV) 50
Kdi.(MM) I

r(Mm) 8.9
f 0.004
T(°C) 20

introduced by Hodgkin and Huxley (7). Thus

gCa,HH = gca,HHmh- (5)
m is the activation and h is the inactivation parameter of the channel.
Again, to describe the time dependence of the activation and inactivation
parameters, we adopt the usual Hodgkin-Huxley scheme. Thus, what is
normally an inward sodium current in the Hodgkin-Huxley model
becomes an inward Ca+2 current in our model. This is compatible with a
variety of experimental facts, including the persistence of the bursting
pattern in the presence of normally inactivating amounts ofTTX (6). To
describe the voltage dependence of time relaxation parameters am, ah, #ms
and ,3h we have used exactly the form given by Hodgkin and Huxley.
However, the voltage Vin am, at, (,,,, and (6k has been replaced by V + V,
with V given in Table I.

Given the conductance expression in Eq. 5, the calcium current is
written

ICa = gCa,HH(VCa - V), (6)
where Vca is the resting potential of calcium.

To reflect the occurrence of Na+ leaks (6) and, presumably, Cl- leaks
in the ,8-cell, we have added to our model a leak conductance. As in the
Hodgkin-Huxley model, the current due to these leaks is written as

IL = gL (VL - V). (7)
In the Hodgkin-Huxley formalism, the membrane current is the sum of

all the contributions from the above ionic channels. Thus, the time change
of membrane potential may be expressed as

CmdV/dt = gK(VK- V)+2gC,HH (VC. - V)

+ gL(VL- V) + Iapp (8)

where C. is the membrane capacitance, and I.,W is the applied external
current.

(d) Glucose-activated loss of cytosolic Ca+2. There are a variety of
mechanisms that regulate the free calcium ion concentration, Ca,, in the
cytosol (14-16). These include a plasma-membrane bound Ca"2 ATPase
that pumps Ca+2 out of the cell (14, 16, 17), a passive Ca+2 leak into the
cell (8), the Na+/Ca+2 exchange mechanism (14, 17) mitochondrial
uptake and release of Ca+2 (14,15) and other fixed and mobile Ca+2
binding sites. Because little is known about these specific mechanisms in
the ,8-cell, and because many details of these transport mechanisms are
still unknown in other systems, we have chosen to model the metabolism
of Ca+2 in a minimal fashion. We have included a single rate term for the
change of Ca+2 in the cytosol of the form -kc,,Ca;. This specifically
ignores the leak of external calcium ions into the cell, although this is
probably justified by the slow rate of leakage (8).

Three of the Ca+2 transport mechanisms mentioned above contribute,
in principle, to the efflux of Ca,: the Na+/Ca+2 exchange, the mitochon-
drial uptake of Ca+2, and the Ca+2 ATPase pump. The fact that burst
oscillations in the (3-cell occur only in the presence of glucose suggests that
the efflux mechanisms is at least partially dominated by one that is
coupled to glucose metabolism. While the activity of the Ca"2 ATPase
depends explicitly on ATP, the KM value of the ATPase for ATP is 0.05
mM (14), which is several orders of magnitude below physiological levels
of ATP. Thus, an increase in glucose metabolism should be incapable of
increasing the efflux of Ca"2 by this mechanism. Similarly, the Na+/
Ca+2 exchange mechanism operates in the absence of ATP, although
small amounts of ATP are known to stimulate Ca"2 binding to the
presumptive carrier (14). This leaves mitochondrial uptake of Cat, a
process that is known to be strongly coupled to the membrane potential of
the mitochondria (14,15), as the primary candidate for the glucose-
activated efflux of Ca'2. Indeed, recent experimental work (14), suggests
that uptake occurs by a uniport mechanism that is stimulated by oxidative
phosphorylation. Oxidative phosphorylation, of course, is coupled to
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FIGURE 1 The burst pattern in variation of glucose. a was obtained with kcX = 0.02 ms-1, b with kc. = 0.04 ms-', and c with kca - 0.06 msr'
This figure and the following three figures comes from calculations with Ipp = 0. Initial conditions used in this figure and the following figures
(with an exception of Fig. 4) are V = -55 mV and Cai - 0.8 gM. In Fig. 4 we set Cai = 0.5 uM in order to facilitate the computation.
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glycolysis through the Krebs cycle. Interpreted in this fashion, kc.
depends on the mitochondria membrane potential, being small in the
absence of glucose and larger when the glucose concentration is
increased.
With this assumption, and the neglect of the dynamics of other Ca+2

transport mechanism, we can complete the specification of our model.
This gives, for the rate of change of the free calcium in the cytosol,

f-' dCa1/dt = 3Ica/rF - kca Ca; (9)

where r is the radius of the cell, F the Faraday constant, kc, the rate
constant for the removal of Ca,, andfthe fraction of free Ca2" inside the
cell, i.e.,

f= dCai/d[Ca]T. (10)

Here, [CaJT is the total calcium concentration inside the cell, i.e., the
bound-plus-free cytosolic calcium ion concentration. According to Fer-
reira and Lew (18) it may be expressed as

[CaJT = [IV/V + ZjBjl/(Kj + Cai)] Ca, (11)

where V. is the volume of cell water per liter of cells (V,), Bj the
concentration of the jth buffer, Kj the dissociation constant between Ca
and this buffer. Note that if Kj is much greater than Ca1, the fraction of
ionized Ca"2, f, is independent of the calcium concentration inside the
cell. In Eq. 9 the factor 3 came from the ratio between the surface and
volume of the cell, i.e., (4irr2)/(4irr3/3).

We are unaware of any experimental measurements that give the
fraction of free calcium in ,B-cells, although in red blood cells Ferreira and
Lew (18) estimated thatf = 0.4. Nonetheless it seems likely that a much
smaller value will obtain in #-cells due to the more complicated structure
of their internal organelles. In our calculations we have used values off
between 0.01 and 0.001. Such values, in fact, are necessary if our
mechanism is to produce oscillations on the second-to-minute time scale
characteristic of the experimental bursts. Indeed Eq. 9 shows that a
change infdirectly changes the time scale of the bursts, since it appears
as a factor in the denominator of the time derivative of Ca,, and in our
model Cai controls the burst frequency.

RESULTS AND DISCUSSION

Eqs. 8 and 9, along with the other Hodgkin-Huxley
equations that define our model, were integrated using the
Shampine-Gordon computer code (University of Pitts-
burgh). This code is applicable to the solution of stiff
differential equations, such as in the Hodgkin-Huxley
model. The magnitude of the absolute and relative errors
required in the integration code was taken to be 106. The
values of parameters used in most of our computations are
given in Table I. Other values are listed in the figure
captions.

Fig. 1 illustrates the numerical solutions of the
dynamics of glucose-induced electrical activity obtained
from our model. Note that as kca becomes larger, i.e., as
the glucose concentration increases, the silent phase (polar-
ization phase) becomes shorter and the active phase (depo-
larization phase) becomes longer. Above a critical value of
kc, the bursts disappear entirely and only action potentials
remain (Fig. 1 c). For kc. below another critical value, no
electrical activity of any kind appears and V is fixed near
the resting potential of K+. This is in agreement with the
experimental observation in ,8-cells (5).
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FIGURE 2 Variation of Ca; with time. The conditions are the same as
that of Fig. I b. b, the time scale is expanded by a factor of 500.
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In Fig. 2 a we show the variation of calcium inside the
cell with time, over a period of several oscillations. As
expected, Ca, continuously falls during the silent phase and
rises abruptly during the active phase. On this time scale it
is not possible to perceive the effect of individual action
potentials during the active phase. This can be seen on an
expanded time scale, as shown in Fig. 2 b. In that figure
each action potential gives rise to a steplike increase in
Ca,.

Figs. 1 and 2 are compatible with the qualitative
description of the oscillations given by Atwater et al. (1):
In the absence of glucose, Cai is relatively high; thus, the
permeability of K+ is high and the membrane potential is
at its most negative state. Upon addition of glucose, Cai is
lowered by the activation of various energy-requiring
mechanisms, probably the mitochondria. As Cai is low-
ered, the calcium-sensitive K+-channel becomes inhibited,
inducing depolarization. When Cai is sufficiently reduced,
a rapid depolarization to the plateau potential occurs; at
the plateau potential, a series of action potentials occur due
to the activation of the voltage-gated Ca2' and K+ chan-
nels (see Fig. 1). The inward current of Ca2' results in an
increase of Cat. After a volley of action potentials the
calcium-sensitive K+-channel is activated, repolarizing the

membrane and inhibiting further influx of calcium. This
inhibition leads to a decrease in Cal, and once the cell has
managed to reduce Cai sufficiently the cycle starts again.

The repetitive action potential spikes at high glucose
concentration (Fig. 1 c) are reminiscent of the repetitive
firing of certain nerves stimulated by a fixed depolarizing
current. Indeed, there is a great similarity between our
description of glucose-induced spiking in the (-cell and
Rinzel's treatment of repetitive neuronal activity (19). In
our model, when kca takes on a large enough value, the
inward Ca'2 current is no longer sufficient to bring the Cai
level up to a value that can reinstate the Ca+2 activated
potassium current. Thus under high glucose a fixed part of
the potassium current is always turned off. In the repetitive
neuronal spikes, this circumstance is effectively achieved
by the fixed depolarizing current.

The form of the burst patterns in Fig. 1 a and b is
remarkably like those observed experimentally. Experi-
ments with several hundred different (3-cells (1) have
shown a large variance in both the duration of the active
(spiking) phase and the number of bursts per minute. In
spite of this, the general features of the experimental
oscillations are close to those we have found in our
calculations. These features include such things as the
minimum voltage (-57 mV), the overall amplitude of the
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oscillations (-30 mV), the average amplitude of the spikes
(- 12 mV), the irregularity of the action potentials with
their tendency to decrease in amplitude during the active
phase, the period of bursting (10-20 s), and the slow
depolarization during the silent phase (see Fig. 1, reference
20). By changing the parameter values listed in Table I
slightly, we are able to produce quantitative changes in the
form of the oscillations that, nonetheless, retain the basic
characteristics described above.

Quinine is known to block the Ca2' activated K+-
channel, and thus to depolarize the silent phase leading to
the generation of continuous activity and to the loss of the
burst pattern (1). To mimic this behavior we have lowered
the value of gK Ca from 0.09 to 0.02 mS/cm2. The results for
this smaller value of gK,c. are shown in Fig. 3. The rather
complicated pattern of continuous spikes is similar to that
found in the presence of 0.1 mM quinine and in the absence
of glucose (1).

The f-cell membrane oscillations respond dramatically
to TEA, which is known to block the voltage-dependent K+
channel by prolonging the outward K+ current (4). We
have modeled this action of TEA in our calculations by
increasing the value of the K+ outward-current activation
time, r", by a factor of 2. The resulting oscillations are

shown in Fig. 4. Note that this abolishes the burst pattern
and blocks the repolarization phase of action potentials.

Also, note that the amplitude of the action potential is
significantly larger than in Fig. 1 a and that the potential
at the foot of each spike is close to the potential during the
silent phase in Fig. 1 a. This is in agreement with experi-
mental observations (4).

It should be noted that our model does not explicitly
consider effects due to the electrogenic Na+/K+ pump.

The importance of the pump on the burst pattern, however,
has been shown experimentally by Atwater and Meissner
(21) and Meissner and Preissler (6). Nonetheless, when
K+ or Na+ are removed from the external bathing solution,
it takes a very long time until a significant change in
intracellular K+ or Na+ is observed. Similarly, it takes up
to 20 min after the Na+/K+ pump is blocked with ouabain
to observe significant effects on the,-cell oscillation. Thus
we may partially include the effect of the pump in our

model by the following device: When the Na+/K+ pump is
fully activated, the cytosolic Na+ and K+ ion concentra-
tions change very little, and hence the outward current that
is contributed by the pump varies very little with time. In
other words, the current due to the pump acts effectively
like an applied current (cf. Iapp in Eq. 7) with a negative
value. In Figs. 1-4 we have taken Iap, equal to zero.

However, as shown in Fig. 5 a, the presence of a constant
negative current Iapp = -0.6 ttA/cm2 changes our results
qualitatively very little from those in Fig. 1. However, to

5.00 10.00 lb.00
Time (s)

20.00

0

0

0

cm

0

w
Icu

>0
r= l

0

0L
0

c9
co
0'*.o- I

.0

so

MtO
It

0

U)

0

U)
U)

25.00 30.00 I'o.00

b

a0.oo 10.00 15.00 2b.00 2b.0o 3b.oo
Tlme ( s)

FIGURE 5 Effects of ouabain on the bursting pattern. Here kc, 0.084 ms- X. 0.05 mS/cm2, and gL 0.06 mS/cm2. a was obtained

with Ipp = -0.6 uA/cm2, and b was obtained with Ipp = 0. Calcium binding in Eq. I was taken as very cooperative, i.e., Q = 4.

BIOPHYSICAL JOURNAL VOLUME 42 1983

0

cu01

0

a

i
IM3.

lII

Co

a
r-0

woI
-a

so

"I

a
a
U)

0

m

a

0 - l 1 I I II-w l----ss--------

I

L

I

I

Io .00

186



achieve the results in Fig. 5 a we have needed to use a
smaller value of g-KC, a larger value of gL, and to assume a
Hill coefficient of 2 = 4 for the Ca"2 binding to the Ca+2
activated K+ channel. These changes are shown in the
legend to Fig. 5.

Using this slight extension of our minimal model, we
can simulate the effect of the Na+/K+ pump inhibitor,
ouabain, on the oscillations. Because ouabain shuts off the
pump, we merely set Ipp = 0. As shown in Fig. 5 b, this
leads to continuous spiking. This is compatible with the
observations of Atwater and Meissner (21) on the effect of
ouabain. Another way of eliminating the action of the
Na+/K+ pump is by reducing the external concentration of
potassium to a low value. This is also known to produce a
pattern of oscillations like that in Fig. 5 (1).

One of the striking experimental observations on the
:-cell oscillations is the irregular appearance of the spikes
in the active phase. We have also observed this irregularity
in our numerical results, but only when they are plotted on
the time scale of the overall oscillations. In Fig. 6 we show a
graph of the same spikes plotted on a millisecond time
scale. When plotted this way they are seen to be quite
regular in shape and to have a gradually decreasing
amplitude, as we would expect. Thus it would appear that
much of the irregularity of the active phase spikes is an
artifact of the time scale used to measure the oscillations.
Another important aspect of the spikes shown in Fig. 6 is
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FIGURE 6 The action potential spikes shown in Fig. I b, but plotted on a
time scale that is expanded by a factor of 500.

their period, which increases from 10 to 40 ms, and
considerably shorter than the 50 ms period observed
experimentally (20). This suggests to us that the parame-
ters we have chosen for Hodgkin-Huxley conductances
gK,HH and gCa,HH are not correct. We can easily lengthen the
duration of the action potentials by increasing the relaxa-
tion time constant for the calcium conductance in our
modified Hodgkin-Huxley model, or by increasing the
capacitance of the membrane slightly. However, any real
improvement of this aspect of the model awaits the experi-
mental determination of the Hodgkin-Huxley parameters
for the ,B-cell.

SUMMARY AND CONCLUSIONS

Based on the experimental work of Atwater et al. (1), we
have developed a minimal mathematical model to describe
burst oscillations in the ,3-cell. The model is minimal in that
it includes only the basic set of processes that lead to burst
oscillations: voltage-regulated K+ channels, Ca 2-acti-
vated K+ channels, voltage-regulated Ca+2 channels, and
glucose-stimulated efflux of Ca+2 from the cytosol. With
these basic processes the model produces burst oscillations
with features like those observed experimentally. The
response of the oscillations in our model to the action of
glucose, quinine, or TEA is similar to that elicited experi-
mentally.

In its minimal form our model is not capable of
describing the effect on the oscillations of changing exter-
nal concentrations of Na+ or K+. To properly treat the
effects of externally applied Na+ and K+ requires that the
Na+/K+ pump be added to our model. Although we have
not done that here, we have assessed the effect of turning
off the pump using ouabain or low external K+ concentra-
tions. To do this we have extended the minimal model by
including a fixed polarizing current to mimic the effect of
the pump. Reducing the current to zero in this extended
model gives a continuous volley of action potentials as is
seen experimentally in the presence of ouabain (21).

One of the purposes of constructing a minimal model
like ours is to assess which experimental facts are crucial to
the oscillations. Based on our results, the Ca 2 activated
K+ channel appears to be the trigger for the oscillations
(1, 5). The trigger is initiated by glucose which, in our
model, acts by stimulating efflux of Ca+2, probably into the
mitochondria. While other Ca+2 transport mechanisms,
such as the Na+/Ca 2 exchange mechanism and the Ca 2
ATPase, are undoubtedly important in the /3-cell, they do
not appear to be strongly enough coupled to glucose
metabolism to initiate oscillations. The Na+/K+ pump, on
the other hand, has been implicated in the burst oscillations
by several experiments. Our numerical work suggests that
the pump is, indeed, important in moderating the mem-
brane potential of the /3-cell. In this way both external Na+
and K+ are coupled to the Ca+2 triggering mechanism. Our
work, however, suggests that the Na+/K+ pump is not a
crucial dynamical part of the oscillatory mechanism.
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Calcium occupies a central control position in our
model. Nonetheless its effect has been observed in experi-
ments only indirectly. Based on our model, there are two
aspects of the control of calcium that it may be possible to
observe experimentally. First, as yet there has been no
direct observation of internal calcium changes within the
cell. Our calculations predict a calcium oscillation of the
same frequency as the burst oscillations (Fig. 2 a) with a
steplike fine structure during the active phase. Although
the internal calcium concentration is quite small, it may be
possible to measure these changes spectroscopically with
Ca'2-sensitive fluorescence probes or a Ca'2-selective
microelectrode. Another prediction, based on the way in
which calcium enters our model, is that oscillations will
cease if the calcium conductance is specifically blocked.
This follows from the fact that, at fixed glucose concentra-
tion, the only mechanism in our model for reentry of
calcium into the cell is through the Ca+2 conductance. If
the Ca+2 conductance is blocked, no inward current of
Ca'2 is possible, and only a steady depolarization of the
membrane should be observed. This, of course, neglects the
effect of other calcium transport mechanisms, such as the
Na+/Ca+2 exchange mechanism and the Ca 2 ATPase.
However, it seems unlikely to us that their effect could lead
to anything but a slightly increased, but steady, value of
Cai.

The blocking of the inward Ca'2 current in our model
has a much different effect than the blockage of the inward
(Na+) current in the Aplysia R- 15 neuron (9, 10). As
Plant has shown, this leads to a simple slow wave, which
can be thought of as an oscillation that underlies the
observed burst pattern. In our model, the inward calcium
current is absolutely essential to achieving any kind of
oscillations. Nonetheless, there is a kind of slow-wave
oscillation that can be generated with our model. It
requires increasing the capacitance of the membrane from
1 to 5 ,uF and is shown in Fig. 7. Under these conditions the
time scale of the action potentials is greatly lengthened; the
gradual repolarization in the -30 mV region of that figure
represents a single extended action potential that, by itself,
is sufficient to increase Ca, and reinstate the calcium-
regulated potassium channel.

There is another way in which our model can generate a
slow wave. If the Hodgkin-Huxley potassium conductance,
gK,HH, is set equal to zero and the Hill coefficient, Q, for Ca
in Eq. 1 is set equal to 10, a definite slow-wave oscillation is
observed. On the other hand, if we take Q = 1, as in Figs
1-4, and set g-K,HH = 0, we find simply a steady depolariza-
tion of the membrane potential. Because it is doubtful that
the calcium-activated potassium channel has a Hill coeffi-
cient as high as 10, our prediction is that a selective
blockage of gK,HH would lead only to a new steady value of
the resting potential. Thus a slow wave, while built into our
model under certain extreme conditions, does not appear to
be an intrinsic part of the ,B-cell oscillations.

Ours is not the first dynamical model of the ,B-cell.

FIGURE 7 A burst-only type oscillation that occurs when the membrane
capacitance is increased to 5 MF/cm2; all other parameters are as for Fig.
I b.

Recently Matthews and O'Conner (22) have proposed a
model based on the Goldman equation, extended to include
divalent ions. Their model includes three potassium perme-
abilities, one of which is directly activated by glucose,
rather than by calcium, as we have assumed. The Mat-
thews-O'Conner model is a good deal more complicated
than ours (some 46 parameters and variables are used) and
is constructed with operational thresholds for most of the
important events. For example, termination of the active
phase is achieved in their model when an assigned thresh-
old in the voltage is achieved. The similar event in our
model occurs continuously as calcium reenters the cell and
gradually increases the conductance, gK,C,a of potassium.
Two other important differences between the models are
that Matthews and O'Conner (a) include a changing
internal concentration of potassium (Ki is constant in our
minimal model) and (b) assume steady-state kinetics for
Ca,. Thus Ca, is determined by permeability ratios, instead
of a kinetic equation, like Eq. 9, that we use. Nonetheless
the Matthew-O'Conner model is successful in producing
burst oscillations. The chief advantages of our minimal
model seem to be its simplicity and its direct connection
with the Ca+2 activated K+ channel.

Our model needs to be extended to include the moderat-
ing effect of external calcium. Because large changes in
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calcium are involved (20, 23, 24), large changes in the
calcium resting potential occur. This means that a lineari-
zation around a fixed resting potential, as used in the usual
Hodgkin-Huxley model, is not appropriate. Furthermore,
we have determined that the Nernstian dependence of the
calcium resting potential on Cai/Ca~ is not sufficient to
reproduce the large effects observed experimentally. Con-
sequently a dependence of the calcium conductance gCaHH
on external calcium must be introduced. This can be done
systematically using the mechanistic theory of irreversible
thermodynamics (25). Preliminary considerations suggest
that this modification of the model will lead to agreement
with experiments on the effect of changes in external Ca+2
concentration.
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