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Biological systems offer many interesting examples of oscillations, chaos, and bifurcations. Os-
cillations in biology arise because most cellular processes contain feedbacks that are appropriate
for generating rhythms. These rhythms are essential for regulating cellular function. In this
tutorial review, we treat two interesting nonlinear dynamic processes in biology that give rise
to bursting, spiking, chaos, and fractals: endogenous electrical activity of excitable cells and
Ca?* releases from the Ca%* stores in nonezcitable cells induced by hormones and neurotrans-
mitters. We will first show that each of these complex processes can be described by a simple,
yet elegant, mathematical model. We then show how to utilize bifurcation analyses to gain a
deeper insight into the mechanisms involved in the neuronal and cellular oscillations. With the
bifurcating diagrams, we explain how spiking can be transformed to bursting via a complex
type of dynamic structure when the key parameter in the model varies. Understanding how
this parameter would affect the bifurcation structure is important in predicting and controlling
abnormal biological rhythms. Although we describe two very different dynamic processes in
biological rhythms, we will show that there is universality in their bifurcation structures.

1. Introduction the past, electrical phenomena in excitable cells and

cellular dynamic processes in nonexcitable cells cap-
tured our attention, and we have formulated math-
ematical models that explain the basic mechanisms
involved in rhythmic activity of these two biolog-
ical processes. FEzcitable cells are the cells whose
plasma membrane contains voltage-dependent ion
channels, and thus the membrane potential of these
cells responds when chemicals which modify the key

There is a growing interest in nonlinear dynamics in
biology, especially in the area of rhythms and chaos
[Rapp, 1993]. This interest stems partly from the
realization that some disorderly behavior in biolog-
ical rhythms seems to be governed by deterministic
rules. As James Gleick [1987] explains in his best-
selling book, “CHAOS — Making a New Science,”
chaos offers a way of seeing order and pattern where

formerly only the random, the erratic, and the un-
predictable were observed. This opens the possibil-
ity that abnormal rhythmic activity in biology can
be explained by theory of nonlinear dynamics. In
order to systematically study abnormal rhythmic
activity in biology, however, modeling is needed. In

ion channels are added to the medium. On the
other hand, nonezcitable cells are electrically qui-
escent, but the intracellular calcium concentration
of these cells becomes oscillatory upon addition of
certain neurotransmitters or hormones. Although
both models describe very different biological
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phenomena, they give rise to spiking, bursting,
chaos, and fractals, when the key parameter in the
model is varied. Why such universal behaviors arise
from these biological models can be understood by
constructing bifurcation diagrams using software
such as AUTO [Doedel, 1981; Doedel & Kernevez,
1986; Doedel et al., 1991a, b].

Section 2 of this review deals with endogenous
electrical activity of neurons. Figure 1 describes
types of bursting observed in the membrane poten-
tials of Tritonia neurons (frame a) and Aplysia neu-
rons (frame b). As shown here, a burst consists of
a rapid sequence of action potentials at regular in-
tervals separated by a silent period during which
the cell membrane hyperpolarizes. The fast action
potentials are referred to as spikes. The time scale
of a burst is on the order of tens of seconds while
the spikes have a millisecond time scale. Under cer-
tain circumstances, however, these bursts become
chaotic. How chaos may affect neurobiology is a
very important theoretical problem since it may
help predict the onset of neurodisorders such as
epileptic seizures and suggest the means to control
them. But to determine the limitations and appli-
cations of nonlinear dynamics to neurobiology, it
is necessary to study the genesis of chaotic activ-
ity under well controlled conditions. A bifurcation
analysis is the right method to employ in achieving
this purpose, since it gives a lucid picture on how
the dynamic structure changes when a bifurcation
parameter varies.

(a)

(b)

Fig. 1.
(a) Tritonia neuron. (b) Aplysia neuron.

Types of electrical burstings in excitable cells.

With the two types of neuronal models pre-
sented in this section, we will demonstrate how a
small change in the conductance of the key chan-
nel in the plasma membrane can cause chaos in
the rhythmic activity. These models predict several
types of chaos, some of which have been observed in
examples of one-dimensional discrete systems, e.g.,
period-doubling chaos [May, 1976] and interior cri-
sis [Grebogi & Ott, 1983]. But there are a few new
features which are unique to the excitable models,
an example being a spike splitting route which leads
to an inverse Feigeinbaum scenario [Feigenbaum,
1983, 1987]. This spike splitting route begins with
a spike which rides on a threshold unstable oscil-
lation. The spike then splits into two, three, and
so on, until bursting-chaos sets in. Bursting-chaos
sets in only when the number of attractors is an odd
number. It then transforms to spiking-chaos at the
crisis transition. Spiking-chaos leads to an inverse
period doubling cascade until it reaches a depolar-
ized quiescent state. In addition to this interesting
scenario, in the transition zone where n-spikes are
split into n + 1 spikes, there arise complex oscilla-
tory modes that contain several interesting types of
chaos and a periodic state between them.

Section 3 deals with the intracellular calcium
oscillations in a wide variety of nonexcitable cells
(e.g., hepatocytes and oocytes). These cells gen-
erate repetitive changes in their intracellular Ca?*t
concentration, [Ca®?t];, when a certain agonist —
a neurotransmitter or a hormone — is added to
the medium. Figure 2 shows the types of intra-
cellular Ca?* oscillations that arise in nonexcitable
cells. At first, nonexcitable cells were thought to be
“dull” because they are electrically nonresponsive
cells, and thus little attention was paid by those
scientists engaged in oscillatory phenomena. Semi-
nal work by Cobbold and his collaborators changed
the image of nonexcitable cells; they reported that
hepatocytes [Wood et al., 1986] and oocytes {Cuth-
bertson and Cobbold, 1985] can also give rise to os-
cillatory signals (in a form of [Ca?*];) very similar
to action potential in excitable cells. Since then,
the oscillation in [Ca%%]; has been discovered in
many other nonexcitable cells [Berridge, 1989; Put-
ney & St. J. Bird, 1993]. These oscillations are
due to the release of calcium ions from the intra-
cellular calcium stores (e.g., endoplasmic reticulum
and calcium-induced calcium-releasing stores). The
pattern of [Ca?*]; oscillation is agonist specific in
that some agonists can generate a spike like [Ca®t];
oscillation while others can generate a burst-like
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(2) (b)

(c)

Fig. 2. Types of intracellular calcium oscillations measured
with aequorin. Free Ca?' changes in (a) hepatocyte in-
duced by phenylephrine, (b) the same cell induced by adeno-
sine triphosphate (ATP), and (c) mouse oocytes during
fertilization.

oscillation. Using a mathematical model presented
in Sec. 3.1, we will show why such patterns may oc-
cur. We will also show that the bursting model of a
nonexcitable cell behaves very similar to that of the
excitable cell, when the key parameter in the model
is varied. These similarities inciude a spike splitting
scenario and complex oscillatory modes in the tran-
sition zone between the n-spike bursting and the
n + 1-spike bursting.

The above studies involve a steady application
of the agonist. Under in vivo conditions, however,
the brain releases neurotransmitters and hormones
in a pulsitile fashion [Kriebel et al., 1990; Brabant
et al., 1992)]. Thus, how nonexcitable cells respond
to a pulsitile application of agonists is of great phys-
iological importance. Experiments of Schofl et al.
[1993] showed in hepatocytes that Ca?* release is
blocked when the frequency of periodic pulses of
agonist increases. This frequency dependent block

recalls the phase-locking response seen theoretically
and experimentally in action potentials in excitable
cells driven by periodic current pulses [Hayashi,
1982; Matsumoto et al., 1987]. This block also
closely resembles Wenckebach rhythms observed in
heart patients [Shrier et al., 1987]. We will demon-
strate in Secs. 3.4-3.5 that the phase-locking behav-
ior of [Ca??]; by the periodic agonist stimulation is
fractal and follows universal rules found in other
phase-locking systems.

2. Chaos in the Excitable Models
of Neurons

To find the origin of rhythmic activity of neurons,
it is important to understand the roles of the key
ion channels in the plasma membrane. The chan-
nels which are believed to participate in electrical
activity of neurons are shown in Fig. 3. Neuron
cells contain a high concentration of K+ (140 mM
inside and 5 mM outside), a low concentration of
Nat (20 mM inside and 130 mM outside), and a
very low concentration of Ca?* ions (100 nM inside
and 2.5 mM outside). The Nat and Ca?t chan-
nels are voltage-dependent in that they open and
allow their respective ions to enter when the mem-
brane is depolarized to about —45 mV from the
resting level of about —60 mV. The delayed recti-
fying K* channel also depends on voltage, but it
allows K™ to go out of the cell when the membrane
is depolarized. On the other hand, the opening pro-
cess of the Ca?*-sensitive K* channel depends on
intracellular Ca?* ion in that it opens and allows
K™ ions to leave the cell only when [Ca2?T]; be-
comes high. The Nat/K* pump “pumps” three
Na™ molecules from the cell and two K+ molecules
to enter the cell by converting a “high-energy com-
pound” ATP to a “lower-energy compound” ADP.
Similarly, the Ca2*-ATPase “pumps” Ca2t ions out
of the cell. The Ca%*/Nat exchanger exchanges two
intracellular Ca?* molecules for three extracellular
Nat molecules. The endoplasmic reticulum con-
tains high concentration of Ca?" ions and releases
Ca’* upon receiving a certain external signal.
There are two hypotheses as to which channel
participates in the genesis of the slow wave shown
in Fig. 1: (i) a KT current that opens slowly during
the active spiking phase and (ii) an inward Ca%t
current that slowly inactivates during this period.
The first hypothesis is based on experimental evi-
dence that there is a small conductance Kt chan-
nel that is insensitive to membrane potential but is



Int. J. Bifurcation Chaos 1995.05:595-635. Downloaded from www.worldscientific.com
by UNIVERSITY OF CALIFORNIA @ SAN DIEGO on 01/07/15. For personal use only.

598 T. R. Chay et al.

(v ram)

Fig. 3.

@ai -Sensitive K' Channelj

VAl

(Delaged Rectifying k¥ Channel)

Na*

(Ca 243t Exchangerj

Ca—-ATPase

Ion channels in the plasma membrane of the excitable cell involved in the genesis of bursting. The key channels

are the Ca?*-sensitive K* channel (K-Ca channel) which is activated when the intracellular calcium concentration [Ca®*];
becomes high, and the Ca’* channel which is inactivated when [Ca2+]; becomes high. Here, ATP, ADP, and ER stand for
adenosine triphosphate, adenosine diphosphate, and endoplasmic reticulum.

sensitive to intracellular Ca** ions [Gorman, et al.,
1981; Ammala et al., 1991]. The second hypothe-
sis is based on experimental evidence that the Ca?*
channel in the bursting cells contains an inactivat-
ing component which is sensitive to intracellular
Ca’t ions [Krammer and Zucker, 1985; Chad &
Eckert, 1986]. Thus, it is likely that the burst-
ing neurons may make use of both mechanisms de-
pending on the environmental conditions. In this
section, we will treat both hypotheses — a model
formulated based on a Ca?*-activated K+ channel
from Sec. 2.1 to Sec. 2.7 and a more elaborated
neuronal model based on a Ca?*-blockable Ca’*t
channel from Sec. 2.8 to Sec. 2.12. Although both
models are based on very different mechanisms, we
will find that their dynamic structures are very sim-
ilar (which indicates that there may be universality
associated with rhythmic activity of excitable cells).

2.1. The model based on a
Ca*t-activated Kt channel

There exist several elaborate models based on the
Ca?*-activated Kt channel in the literature [Plant
& Kim, 1976; Plant, 1981; Chay, 1983]. We will
treat here a minimal model which captures the
essence of the bursting mechanism — the three-
variable model described by Chay [1985]. In this
model, the first dynamic equation comes from the
principle of charge balance, that is, the capacita-
tive current is equal to the negative of the sum of

the ionic current components [Hodgkin & Huxley,
1952],

dv
_Cm_&t_ = gim3 heo(V = Vi) + ggn*(V — Vi)

+gpp(V = Vi) +g.(V-V5), (2.1)
where V is the membrane potential, g7, gk, gp, and
g1 are respectively the maximal conductances of a
fast inward current, a fast outward current, a slow
outward current, and a leak current, and V;, Vg,
and Vi are their respective reversal potentials. In
this model, the third current is responsible for the
slow underlying wave.

The first term on the right of Eq. (2.1) is a
“fast” inward current carried by Ca’t ions and
whose activation gating variable m and inactivation
variable h are functions of V as shown below:

Om and h Ah
Moo = ————  an =—.
oe O + ﬁm * Op -+ /Bh
The second term is an outward current carried
by K%t ions. This current is responsible for the
downstroke of a spike, where n is the gating variable
represented by the following first-order equation,

dn  ne—n
_——= (2.2)
dt Tn
In the above equation, n, and 7, are n at the
steady state and the relaxation time, respectively,
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and are functions of V. Following suggestions by
Hodgkin and Huxley [1952], these terms are ex-
pressed as follows:
o' T
Noo ot B and T, o+ B,
where the explicit expressions for ay,, Bm, an, B,
o, and (3, are given in Appendix I.

The third term is an outward pacemaker cur-
rent carried by Kt ions whose probability of open-
ing p (or the fraction of the available Ca?*-sensitive
K* channels at time t) is a slow dynamic variable
which takes the following expression:

d_p _ mgohoo(VI — V) - ka/(l —p) (1 _ )2
dt Tp P

(2.3)
Since the rate at which p changes with time deter-
mines the slow underlying wave, 7, (the relaxation
time constant) controls the periodicity of bursting,
i.e., the smaller the value of 7, the faster the burst
periodicity.

Perhaps, it is worth mentioning that Eq. (2.3)
is not the only functional form that generates burst-
ing. See for example Appendix II. The above equa-
tion is equivalent to that given in Chay [1985], where
in the Chay model of 1985 a slow dynamic vari-
able was manifested via the intracellular calcium
concentration [Ca?*];. In this review, we have re-
placed [Ca®*; by p because recent physiological evi-
dence indicates that [Ca%*]; changes rather quickly
during depolarization [Valdeolmillos et al., 1989,
i.e., it may not be a slow dynamic variable. Using
the variable p is more consistent with experimental
evidence.

To reiterate, this model contains three dynamic
variables, V [Eq. (2.1)], n [Eq. (2.2)], and p
[Eq. (2.3)]. Here, V is a dependent variable, n is
a fast variable that is responsible for the genesis of
a spike, and p is a slow dynamic variable respon-
sible for the underlying wave. The basic paramet-
ric values are: C,, = 1, g; = 1800, gx = 1700,
gdp = 11, agr = 7, V[ = 100, VK = —75, VL = —40,
T, = 0.00435, 7, = 5.0, and k¢ = 0.18.

2.2. Time series of spiking,
bursting, and chaos based
on the Ca?*-activated Kt
channel model

The dynamic nature of the model can be investi-
gated by solving the three simultaneous differential

equations [Egs. (2.1, 2.2, and 2.3)] with a Gear algo-
rithm. Figure 4 reveals interesting patterns that the
model generates as g, (the maximal conductance of
the slow KT current) is increased. As shown here,
when g, is small the model gives rise to repetitive
spiking (see the top trace). As g, is increased, a pe-
riod doubling sequence appears (the second trace),
which leads to spiking-chaos (third trace) and then
bursting-chaos (fourth trace). Bursting-chaos dif-
fers from spiking-chaos in that in the former an un-
predictable number of spikes rides on the slow wave
while in the latter there is no clear underlying slow
wave. When g, is increased to 14.098 there arises
another type of bursting-chaos (see the fifth trace),
whose structure is somewhat different from burst-
ing chaos of the fourth frame. Note that the bursts
shown in this trace consist mainly of three spikes
that are followed by a few extra spikes. When g, is
increased further, a one-spike burster appears, but
beyond this g, value no more oscillation occurs.

The dynamic series shown here were obtained
on a VAX with single precision. Although dou-
ble precision does not alter the bifurcation struc-
ture, the location of the chaotic regime may be
shifted slightly. For example, chaos that appeared
at 14.098 in single precision is moved to 14.097 in
double precision. This rich nonlinear dynamic be-
havior can be more fully elucidated by performing
a bifurcation analysis as discussed below.

2.3. Bifurcation analysis using

AUTO

How bifurcations and chaos arise from this model
can be seen through a bifurcation diagram
constructed using AUTO. Such a diagram is shown
in Fig. 5, where the ordinate consists of a dependent
dynamic variable (V), and the abscissa consists of
a parameter that controls the pacemaker current,
gp- In the top frame, the steady state branch is
represented by the purple line, and the periodic
states by the red and green. Both red and green
lines trace the maximum and minimum of mem-
brane potential. In addition to giving the bifurca-
tion diagram, AUTO also gives the period of the
oscillation as a function of g,, and this is shown by
the bottom frame. As shown in this figure, there
are two Hopf bifurcation points: the left Hopf bi-
furcation (LHB) at g, = —7.776 and the right Hopf
bifurcation (RHB) at g, = 26.853. In the RHB,
an unstable low amplitude periodic state develops
which extends to g, = 26.855 (see the inset). This
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Fig. 4. Time series of the membrane potential, V', of the excitable cell based on the K-Ca channel hypothesis. (i) Repetitive
spiking, (ii) period of two, (iii) spiking-chaos, (iv) bursting chaos, (v) chaos in the bifurcation regime where three spikes split
into four spikes, and (vi) singlet bursting. The maximal conductance, g, of the K-Ca channel is listed in each trace.

point is known as the periodic limit point (PLP),
and this type of Hopf bifurcation point is named as
a subcritical Hopf bifurcation. From the PLP, the
amplitude grows suddenly, and the periodic branch
becomes stable. As one can see from the inset, be-
tween the RHB and PLP three states coexist; (i) a
low-amplitude unstable oscillatory state, (ii) a high-
amplitude stable periodic state, and (iii) a stable
repolarized steady state.

Note that there are two periodic branches —
the green branch which evolves from the LHB and
terminates at g, = 19.243 with an infinite period,
and the red branch which evolves from the RHB
and terminates when it meets the green branch at
10.6359. The red branch is a “spiking” branch, in

that the mode of oscillation in this branch con-
sists mainly repetitive spiking. On the other hand,
the green branch is a “bursting” branch, where the
bursting presides in this branch. In the region be-
tween g, = 10.6359 and 19.243, the bursting branch
(red) and the spiking branch (green) coexist, where
the red branch is a stable one and the green branch
is an unstable one. In the neighborhood of the inter-
section of the two branches (i.e., 10.6359), however,
both modes of oscillations become almost equally
stable. This convergence of two modes of oscilla-
tion gives rise to doublets of spikes. Indeed, the
time series of V shows that a period doubling se-
quence starts from this intersection (see the sec-
ond trace of Fig. 4), which transforms to chaos
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Fig. 5. Bifurcation diagram constructed using AUTO for

the model that is based on the K—Ca channel. The upper
frame shows the maximum and minimum of membrane po-
tential V as a function of g, (the maximal conductance of
the slow outward current), and the lower frame shows the
periods of oscillations in the periodic branches shown in the
upper frame. Here, the purple line is a steady-state branch,
the red line is a bursting branch, and the green line is a spik-
ing branch. The inset shows the neighborhood of the right
Hopf bifurcation, where the stable period, unstable period,
and repolarized resting state coexist.

(see the third and fourth traces) as gp increases. In
other words, this bifurcation diagram predicts that
a periodic doubling sequence will be initiated when
two modes of oscillations converge at one point (i.e.,
gp = 10.6359).

In addition to predicting the regime of periodic-
doubling, AUTO also predicts three bifurcation
points where an n-spike burst transforms to an n+1-
spike burst. The first bifurcation point is located
at g, = 26.85, where a stable one-spike burst arises
from a low-amplitude unstable oscillation (see the
bottom trace of Fig. 4 for illustration). The sec-
ond bifurcation is located at g, = 21.315 where a

one-spike burst becomes a two-spike burst. There
is another bifurcation point at g, = 16.39; at this
bifurcation a two-spike burst becomes a three-spike
burst. At each of the first two bifurcation points,
a stable periodic state is connected to an unstable
periodic branch where the period of the burst be-
comes very large and the minimum of the membrane
potential becomes very low.

2.4. Bifurcation diagram in the
region of complexr dynamics

In the region where two periodic states coexist (i.e.,
10.6359 < g, < 19.243), there may exist several
other unstable periodic branches. A detailed bifur-
cation structure can be seen more clearly through
the bifurcation diagram shown in Fig. 6. Here,
frame (a) reveals the spike-to-spike interval plotted
as a function of gp, frame (b) reveals the proba-
bility of opening of the Ca**-sensitive KT channel
(expressed by p) plotted as an increasing function
of gp, and frame (c) is a blow-up of the region where
the doublets transform to bursting via chaos. These
plots were obtained by solving the three simultane-
ous equations [cf. Egs. (2.1)-(2.3)] for a given gp,
where g, is increased incrementally by a small step
starting from the LHB and ending at the RHB. The
spike-to-spike intervals [in frame (a)] were obtained
by (i) recording the time, 7(n), when the upstroke
of the nth spike crosses the V = —45 mV line and
(ii) subtracting 7(n) from 7(n —1). The values of p
[in frames (b) and (c)] are those values that p takes
when the upstroke of V crosses the V = —30 mV
line. To ensure that the limit cycle values are in-
cluded, we threw away the first few hundred cycles.

Note in this figure that as g, is increased (i.e.,
as the system moves from the depolarized state to
the repolarized state), there arises a very complex
dynamic regime (hereafter we refer to this region as
complex-1). First, the spike splits into doublets at
gp = 10.64, and the two spikes split into quadruplets
at gp = 10.81. This periodic doubling scenario leads
to spiking-chaos as g, is increased [see frame (c)].
Spiking-chaos exists between 10.87 < g, < 10.98,
and the time series of this sequence can be seen
in the second trace of Fig. 4. Within this regime,
there exists an infinite number of chaotic attractors.
Around g, = 10.93, however, three nonchaotic at-
tractors appear within chaotic attractors, i.e., this
model ezhibits subduction according to the defini-
tion of Grebogi & Ott [1983]. On the left side of
the subduction, the characteristic behavior of chaos
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Fig. 6.

Bifurcation diagram constructed by solving three simultaneous differential equations in Sec. 2.1. Frame (a) shows

the spike-to-spike interval, i.e., the time interval taken by two consecutive spikes (recorded whenever the upstroke of spikes
crosses the line V = —45 mV) plotted against g, (the maximal conductance of a slow outward current). Frame (b) shows
p, the probability of opening of K-Ca channel as a function of g,. The p values are picked whenever the upstroke of spikes
crosses the line V = —30 mV. Frame (c) shows the complex oscillatory regime that appears in the depolarized phase. Here, p
can be viewed as the fraction of the available K—Ca channels at time t.

is intermittence. The intermittent chaos occurs via
tangent bifurcation [Grebogi & Ott, 1983]. On the
right side of it, another periodic doubling scenario
starts from each of the three branches. This period
doubling sequence has a self-similar structure with
the original period-doubling scenario.

As the system moves to the right, the bifurca-
tion structure suddenly enlarges with a small change
in gp, and spiking-chaos transforms to the bursting-
chaos. This transition may be classified as an inte-
rior crists according to the definition of Grebogi
& Ott [1983]. After the occurrence of the inte-
rior crisis, certain characteristic statistical behav-
iors occur. Points are condensed to seven bands
of attractors, in which the lower bounds seem to
be more condensed than the upper ones, i.e., the
lower branches are more attractive than the upper

ones. The significance of the seven bands can be
realized in the time series of bursting chaos (see the
fourth trace of Fig. 4), where the seven consecutive
spikes appear more often than others. The inte-
rior crisis observed here is a new type of crisis in
that spiking-chaos (without any apparent interior
structure) transforms to bursting-chaos which con-
tain several (odd number) bands of attractors. The
transition from spiking-chaos to bursting-chaos was
observed previously in excitable models by Chay
[1984, 1985, 1986], Chay & Kang [1987], Chay
& Lee [1990], and Chay & Rinzel [1985]. The char-
acteristics of the crisis transition have been stud-
ied by Holden & Fan [1992a,b,c| and Fan & Holden
[1993] using the Hindmarsh & Rose model [1983]
and also by Fan & Chay [1993, 1994a—c] using the
Chay model [1985]. A refined analysis has also been
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carried out by Kaas—Petersen [1987] using both the
Hindmarsh-Rose and Chay models.

As the system leaves the bursting-chaotic
regime, an inverse period doubling sequence ap-
pears around g, = 11.065, in which the underly-
ing slow wave now starts to double. The period of
two is the only clear sequence one can find in this
regime (i.e., 11.065 < g, < 11.071). This period of
two differs from the period-2 in the period-doubling
scenario seen earlier, in that the former consists of
two types of bursting (each burst contains seven
spikes but the underlying waves have two different
shapes) whereas the latter consists of doublets of
spikes. Then, the period of two transforms to a pe-
riod of one where the slow wave comes only in one
shape. Beyond this doubling sequence (i.e., around
gp = 11.4) a periodic bursting with seven spikes
(i.e., we call this seven-spike bursting) appears first.
This then transforms to a six-spike bursting around
gp = 11.3. As the system moves further to the right
from the six-spike bursting regime, the number of
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spikes decreases one by one — from six spikes to
five at g, = 11.94, from five to four at g, = 12.81,
from four to three at g, = 14.13, from three spikes
to two spikes g, = 16.38, and from two spikes to
one at g, = 21.31. Finally a threshold unstable
oscillation appears at g, = 26.855.

2.5. Complex structure embedded
in the spike reducing
bifurcating zone

How the spikes split one by one at the bifurcating
zone is an interesting phenomenon. Figure 7 depicts
the first four bifurcating zones that appear as the
system moves away from the seven-spike bursting
regime toward the one-spiking bursting regime. As
gp increases, a complex structure shown in frame (d)
appears first that is followed by the structure shown
in frame (c), then a less complex structure in frame
(b), and finally a simpler structure in frame (a).
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Fig. 7. Enlarged portions of the transition zones, where four spikes are decreased to three [frame (a)], five spikes are decreased
to four [frame (b)], six spikes are decreased to five [frame (c)], and seven spikes are decreased to six [frame (d)], as the system

moves from the depolarized phase to the repolarized phase.
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In frame (a), we see that four spikes are reduced to
three spikes, and in frame (b) five spikes are reduced
to four spikes. In frame (c), six spikes are reduced
to five spikes, and finally seven spikes are reduced
to six spikes [frame (d)]. Note that the dynamic
structure becomes more and more complex as the
number of spikes increases. Note also that the range
of the transition zone becomes increasingly wider as
the number of spikes increases.

It is easier to start out our discussion with the
simplest structure, which is the structure in frame
(a). That is, we start out our discussion from the
repolarized region and move to the depolarized re-
gion. As g, increases, the top attractive branch in
frame (a) dives toward the second branch. As it
gets closer to the second branch, chaos (C1) arises;
this chaos is hardly visible here. In fact, the range
where C1 resides is so narrow that its existence can
only be seen through the dynamic solution. See
the fifth trace in Fig. 4. In this trace, the bursting
in C1 consists mostly of three spikes. These three
spikes came from those three attractors that appear
in frame (a).

A structure similar to frame (a) also appears in
frame (b); however, the range of the chaotic regime
(C1) is much wider than that in frame (a). In this
regime the bursting consists mostly of four-spike
bursting separated by a few extra spikes in a very
erratic manner. Chaos that exists in C1 is classi-
fied as semichaos [Fan & Chay, 1994b]. We call this
semichaos since although this is true chaos there
are four clear lines at which these four chaotic at-
tractors are visited more often than is any other
attractor lying in C1. The top attractor is the least
attractive one, whereas the bottom attractor is the
most attractive one. In the case of traditional chaos,
the chaotic attractors lie anywhere between the up-
per and lower bounds of C1.

A dynamic structure similar to frame b appears
in the transition zone between the six-spike burst-
ing and five-spike bursting (see frame c). However,
there appears one more chaotic regime (C2) on the
right. As the system moves from the left to the
right (i.e., as g, increases), the top branch gets
closer to the second branch, and this induces C1.
Note that C1 has a more complex pattern and its
range is wider than that of frame (b). As the sys-
tem leaves C1, there appear five “basic” branches
(which came from the bottom five branches) and
two extra branches (upper and lower) which bi-
furcated from the top band of chaotic attractors.
These seven attractors induce “seven-spike” burst-

ing (R1). This burster differs from the normal
seven-spike burster [in frame (d)] in that the first
five consecutive spikes in this burster are separated
from the remaining two by a pause. The last two
spikes in this “seven-spike” bursting came from the
two extra branches that are bifurcated from C1. In
the case of normal seven-spike bursting, the interval
between the spikes increases gradually without any
pause between them. As the systemn moves more to
the right, the upper extra branch gets closer to the
first basic branch, while the lower branch gets closer
to the second basic branch. This merger gives rise
to C2. After passing C2, normal six-spike bursting
appears.

The dynamic structure in frame (d) is very sim-
ilar to that in frame (c), except that the ranges in
which C1 and C?2 reside are wider. On the left of
C1 resides the normal seven-spike bursting. Burst-
ings in C1 and C2 consist mostly of seven- and
six-spikes, respectively, separated by a few extra
spikes in an erratic manner. The R1 regime resides
between g, = 11.39 and 11.43, and “eight-spike”
bursting exists here. As the system leaves C'2, an
inverse period doubling sequence appears beyond
gp = 11.4485 which lasts to g, = 11.4488. The
doublets which exist in this range consists of two
types of slow waves (one whose minimum poten-
tial is lower than the other). Each of the doublets
consists of six spikes. Then, this inverse period-
doubling sequence terminates when the doublets in
the slow wave transform to singlets, giving rise to
normal six-spike bursting.

2.6. Lyapunov exponents

The Lyapunov exponents are good measures with
which to find whether chaos generated by the model
is truly deterministic or quasiperiodic in nature. In
Fig. 8, the largest Lyapunov exponent A; (the solid
curve) and the next largest exponent Ag (the dash-
and-dot) are displayed as a function of g,. The
upper inset shows the smallest Lyapunov exponent
A3 as a function of gp, and the lower inset shows
the first four complex regimes that exist in this
model in an expanded scale. In order to obtain
these exponents, the three differential equations in
the model were solved using a two-time step Euler
method with a fixed time increment (At ranging
from 2 x 107% to 1 x 107°) and with a maximum
time equal to 500. To shorten our computation
time, we utilized a look-up table where all the expo-
nential terms (see Appendix I) were computed as a
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Fig. 8. The first two Lyapunov exponents as a function of g,, which reveal the chaotic regimes and the bifurcating regions
where the n spikes split to n + 1. Here, the solid and dash—dot lines are, respectively, the largest and next largest Lyapunov
exponents. The upper inset shows the smallest Lyapunov exponent as a function of g,. The lower inset shows the first two

exponents in an expanded scale.

function of V at the beginning of the program,
placed them in a tabular form, and read them when-
ever needed. The three Lyapunov exponents Aj, Ag,
and A3 were computed using the method of Wolf
et al. [1985] for a fixed g,. We then increased g,
incrementally and automatically starting from the
repetitive spiking regime. The exponents shown
in this figure were obtained by summing all of )
(i =1, 2,3) values from t = 450 to ¢ = 500 and
dividing it by 500/At, i.e., they are the means of )
for the last 500 seconds.

Note that A1 becomes positive and Ay becomes
zero in the chaotic regime. At each bifurcation
point, both exponents become zero. The fact that
A1 became positive in the complex regimes verifies
that the chaos that appears in these regimes is truly
deterministic chaos. In the complex-5 regime, how-
ever, our increment was too coarse to locate the
chaotic regime there. It is interesting to note that
the Lyapunov exponents can provide information
on many of the complex structures that exist in
the model. That is, they can locate the periodic
doubling regime, the periodic regime (i.e., period-3)

in the complex-1, the regular periods that are em-
bedded in the complex-2 and complex-3 regimes (in
addition to the chaotic regimes). Among all these
interesting features that the Lyapunov exponents
can provide, the most interesting feature is the mag-
nitude of A; in the chaotic regimes. Note that the
most irregular region is the bursting-chaotic regime
(i.e., 10.82 < g, < 11.07), so A; is largest there. On
the other hand, the complex-5 regime (g, = 14.10)
is least complex, so A; is smallest there. Thus, the
magnitude of the largest Lyapunov exponent can be
used as a measure for the degree of complexity (i.e.,
the degree of irregularity) of deterministic chaos.

2.7. Why spiking, bursting and
chaos?

Although the bifurcation diagrams presented in
Figs. 5 and 6 reveal the types of complex structures,
these diagrams tell little about why such structures
are induced when the bifurcation parameter varies.
How spiking, bursting, and chaos arise from this
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Membrane Potential

Slow Variable (p)

Fig. 9.

The dynamic orbits projected on the V—p phase plane and their respective V-nullclines (dV//dt). Here, the black curve

is the p-nullcline (dp/dt = 0), the z-shaped curves and the spikes are respectively the V-nullclines and the dynamic orbits at
various values of g,: g, = 8 (green), g, = 10.7 (purple), g, = 12.5 (red), g, = 16.3 (gray), gp = 21.0 (pink), and g, = 23.0

(blue).

model can be explained by studying how the dy-
namic orbit travels on the V—p phase plane relative
to the V-nullcline (dV/dt = 0) and the p-nullcline
(dp/dt = 0). This type of dynamic orbital study
was first carried out by Rinzel & Lee [1986, 1987]
using both the neuronal model of Plant [1981]
and pancreatic (-cell model of Chay-Keizer
[1983] and Lee et al. [1983].

Figure 9 reveals those orbits traveled by a spike
at five different locations of the bifurcation
diagrams in Fig. 5. On this plane we have su-
perimposed two nullclines, where the black line is
the p-nullcline and the z-shaped curves are the V-
nullclines at the corresponding five g, values. Here,
the green trajectory (g, = 8) reveals repetitive spik-
ing; the purple trajectory (gp = 10.7) doublets; the
red trajectory (g, = 12.5) a five-spike burster; the
gray trajectory (g, = 16.3) a three-spike burster,
the pink trajectory (g, = 21.0) a two-spike burster,
and the blue trajectory (g, = 23.0) a one-spike
burster. Note that the p-nullcline is invariant to
gp, while the V-nullcline slides to the left as g,
increases. In the V-nullcline, the two ends of the
curved portion of the letter z are termed the
“knees.” So, there are three branches that the orbit

has to cross — the upper unstable branch (hereafter
referred to as the Z; branch), the middle curved
branch (Z;), and the lower stable branch (Z3).

To proceed with our discussion, it is important
to note the location of the homoclinic point relative
to that of the steady state point. The homoclinic
point (HCP) is the point where the stable periodic
branch intersects the Zs branch. At the homoclinic
point, the period becomes infinity. The spiking ter-
minates as soon as it passes the HCP. Thus, the
farther the HCP is from the knee the more spik-
ings can be accommodated. The steady state point
(SSP) is the intersection between the two nullclines.
If the spike falls into the SSP, it will stay there for a
long time. Both the SSP and the HCP lie on the Z;
branch, where the SSP can be located in this figure
but the HCP can be visualized only as a point very
near to the termination of the final spike. Note that
for the one-spike burster (blue) and the two-spike
burster (pink) the HCP is located on the right side
of SSP, while for the others it is located on the left
side of the SSP. When HCP is located on the left
of the SSP, a spike traveling upward makes a spiral
form (i.e., to the left, up, and right) before entering
the Z; branch. Because of this spiral movement,
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the spike width becomes narrower. The narrowness
of the spike width makes the spike approach closer
to the HCP.

Why does repetitive spiking arise when g, is
small? Take for example the green spike on the
right side. Here, the upstroke of the spike is caused
by the inward current, and the downstroke is caused
by the KT currents. Consider the spike at its max-
imum potential. At this point dV/dt is negative, so
the direction of the spike is downward. The spike
which travels in the downward direction will first
pass the Z; branch and then the p-nullcline. As the
spike passes the Z; branch, it experiences an up-
ward pull (since dV/dt becomes positive below this
line), at first a weak pull but later a strong pull. Af-
ter passing the p-nullcline, the spike is pulled to the
left (since dp/dt becomes negative). The KT cur-
rent is too weak to pull the spike further downward,
so the spike reverses its path without reaching the
Z, branch. As the spike moves upward and passes
the Z; branch, it is pulled downward again. The
cycle repeats. Thus, repetitive spiking results when
the trajectory does not have enough downward pull
to reach the Z3. The path that the spike takes is
clockwise. The doublets (see the purple trajectory)
result when two spikes are closely spaced, and the
second spike almost touches the Z; branch. This
can be better understood from Fig. 5 where the
bursting periodic branch (red) touches the spiking
periodic branch (green) at around g, = 10.6. This
makes the green branch almost as stable as the red
branch.

Regular bursting shown on the left in Fig. 9
can be explained as follows. Take the case of the red
burster in the middle. Let the spike travel on the Z3
branch (i.e., the repolarized phase) first. Along this
branch dp/dt is negative, so the spike travels from
the right to the left. As the spike passes the knee
of the V-nullcline, it will be pulled upward (since
dV/dt > 0), then pass the p-nullcline (the black
line), and then the Z; branch. As it passes the Z;
branch, the spike experiences a downward pull (now
dV/dt is less than zero). So, the spike will reverse its
path and travel downward passing the p-nullcline.
As it passes the p-nullcline, the spike will experi-
ence a strong left- and up-ward pull again (since
dp/dt < 0 and dV/dt > 0), and this will initiate the
next spike. As the spike traveling upward re-crosses
the p-nullcline, the spike will experience a pull to-
ward the right (since dp/dt > 0). The spike con-
tinues to travel upward (since dV/dt is still positive
here), but its position is shifted to the right (mak-

ing a spiral form). The spiking will continue four
more times, but each time the minimum of the spike
becomes more repolarized. On the fifth time down-
ward, the spike touches Z3 branch. As it touches
the Z3 branch, the spike experiences a strong down-
ward pull (since beyond this point dV/dt < 0) and
lands on the Z3 branch. This is how the bursting
occurs.

How would the spike split one by one as g, de-
creases? When g, is very large (e.g., the blue orbit),
both the HCP and the SSP are located close to the
knee and the SSP is located to the left of the HCP.
This makes the width of the spike very broad. Be-
cause the HCP is so close to the knee, only one (big)
spike can be accommodated. As g, decreases, the
HCP moves farther away from the knee, but the
SSP moves even farther than the HCP. The first
movement makes more spikings possible, and the
latter movement makes the spike width narrower.
The movement of HCP and the narrowness of the
spike width make additional spiking possible. Spike
splitting stops when the spike no longer can reach
the Z, branch.

Chaos that appears on the boundary between
the n-spike bursting and the n + 1-spike bursting
can be explained by the following mechanism. Near
the bifurcating point where n spikes split into n+1
spikes, the nth spike approaches very close to the
HCP. As the nth spike gets closer to the HCP (i.e.,
“black hole”), there exists an infinite number of pe-
riods for given V' and p. In fact, AUTO predicts
that p and V fluctuate many times while approach-
ing the homoclinic orbit (i.e., there exist multiperi-
odicities for given V' and p). The existence of multi-
periodicity in the neighborhood of the HCP means
that an infinitesimal change in V would make the
timing of the next spike impossible to predict, i.e.,
chaos sets in. In other words, chaos results when
the spike approaches very, very close to the homo-
clinic orbit, where it takes a variable length of time
for the spike to come out of the black hole. The
complex structure disappears as the system passes
this transition zone because both the SSP and the
HCP move to other locations (due to the change
in gp).

This also explains why the complex regime does
not exist in the transition zone between the one- and
two-spike burstings and also between the two- and
three-spike burstings. When g, is large, the SSP is
located to the left of the HCP and the spike width
is quite broad. Since the spike width is broad, the
spike cannot get closer to the homoclinic point, i.e.,
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there is little chance that the spike can fall into
the black hole. This also explains why the complex
structure becomes more and more complex (and
complex-1 is most complex of all) as g, becomes
smaller. This is because as the system moves to-
ward the depolarized state, the spike width becomes
narrower. The narrowness allows the spike to get
increasingly closer to the HCP.

2.8. Model based on a Ca?*t
blockable Ca?*t channel

The model presented in this section is based on
the Ca?*-blockable Ca?* channel presented in Chay
[1990c], Chay & Lee [1990], and Chay & Fan [1993).
This model contains four ionic currents — the fast
inward current Ir,o, the slow Ca?* current I oy, the
delayed rectifying KT current Ik, and the leak cur-
rent Jleax- There are six dynamic variables in this
model. The first variable is membrane potential V
which changes with time in the following form:

av

—Cmﬁ

=gfastmooh(v_ Vfast) +gslowdf(v - Vslow)

+g9xn(V—Vk)+g.(V VL) (2.4)
where gfast, gslow, 9K, and gr are the maximal con-
ductances of a fast inward current, a slow calcium
current, a delayed rectifying K* current, and a leak
current; Viast, Vsiow, Vi, and V, are the reversal po-
tentials for their respective currents; m and h are
the activation and inactivation gating variables of
the fast current (where me, is the m at the steady
state), d and f are the activation and inactivation of
the slow inward current, and n is the opening prob-
ability of the outward current. Note that Eq. (2.4)
also contains four types of currents as in Eq. (2.1).
In this model, the second term is responsible for
the genesis of the slow underlying wave, whereas
in the first model the third term is responsible for
this wave.

The hypothesis in this model is that the Ca?t
channel becomes inactive when a Ca2* ion binds to
the receptor site located at the pore of the channel.
Accordingly, its kinetic scheme may be represented
as follows:

Af

BLOCKED UNBLOCKED (2.5)

AsC

where C = [Ca?*];/Kca, As is the forward kinetic
constant from the blocked state to the unblocked

state, and K¢, is the dissociation constant of the
Ca?* ion from its receptor site located in the pore
of the Ca?t channel. Then, the fraction of calcium
channels which is unblocked, f, can be obtained
from the above kinetic scheme as,

d
ait=/\f(1—f)—/\f

[Ca?"};
Kon f. (2.6)
In the modern view, f can be interpreted as the
fraction of available Ca?* channels at time ¢ (in-
stead of the inactivation variable). As [Ca?*]; in-
creases, the availability of functional Ca?t channels
decreases due to dephosphorylation by a calcium-
dependent protein [Armstrong, 1989]. If the process
described in Eq. (2.5) is fast (i.e., As is large) then
f can be approximated by its steady state value
foo = 1/(1 + C). This is the expression used by
others to describe the inactivation term of the Ca2*
channel (Chad and Eckert, 1986), but as we show
here it has a limited applicability.
As in the Hodgkin-Huxley model [1952], we as-
sume that the three other gating variables h, d, n
depend on time and potential in such a way that

d_?l_yoo_y

— - d .
;r — y=~h,d, and n, (2.7)

where yo and 7, are the y at its steady state and
relaxation constant, respectively. Here, the steady
state expression takes the following form,

1

Yoo = V. — ’
T

y=m,h,d, and n.

According to this model, the relaxation constants
take the form

*
Ty

Ty =

V,=V Vy—-V>’
S, )+exp ((ay 1) S,

y=h,d, and n,

1+exp (ay

where V, is the voltage at the half maximal point,
Sy is the slope at V' =V, 77 is the maximal re-
laxation time constant, and a, determines how the
relaxation constant 7, depends on voltage (for ex-
ample, a, = 0.5 makes 7, a bell shape as an increas-
ing function of V).

In the scheme shown by Eq. (2.5), [Ca®*]; de-
pends on the influx of Ca?t from outside through
the calcium channel and the eflux of Ca?* via the
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Ca?*-pump. This effect is expressed by the follow-
ing mathematical expression:

Ei_g — {gslowdf(‘/slow - V)
dt o

~keC + kcacr} ,

[Ca?t];

¢= KCa. ’

(2.8)
where p is a measure of the Ca?t buffer capacity
of the cell, and o is a factor that converts the elec-
tromotive force to the concentration gradient mul-
tiplied by Kca. In the above expression, C, is equal
to [Ca?*],/Kca, where [Ca?T], is the intracellu-
lar calcium concentration at the resting potential.
Note here that if p is large, one can introduce a
rapid equilibrium assumption such that C can be
expressed by

gslowdf (Vslow - V)

C=C+ ke

This relation would approximately hold for p greater
than 10, and thus for p > 10 the six dynamic vari-
ables in the model can be reduced to five.

To reiterate, in this model the slow Ca%*t cur-
rent is responsible for the slow wave that underlies
the bursting, and the fast inward current together
with the delayed rectifying K™ current is respon-
sible for generating the spike activity. There are
altogether six dynamic variables, V' [Eq. (2.4)], h
[Ea. (2.7)], d [Ba. (2.7)],  [Eq. (2.6)], n [Bq. (2.7)],
and [Ca®*]; [Eq. (2.8)]. In this model, s deter-
mines the burst periodicity, i.e., the smaller the
value of Af, the longer the burst periodicity be-
comes. However, as shown in Eq. (2.5) (since the
rate of closing is determined by [Ca%*];) p also de-
termines the burst periodicity, i.e., the smaller the
value of p, the longer the burst periodicity becomes.
The parametric values that define the model are:
Cm = 1, gfast = 1000, ggow = 18, gx = 200,
arL = 10, ‘/fa.st = 607 ‘/SIOW = 140, VK = _807
VL =-60,V,, =-12, 5, =5, V}, = —40, S}, = -6,
Va = =30, S4 =10, V, = 15, S, = 15, 7% = 0.1,
Tax = 0.5, Tox = 0.1, Ay = 0.01, 0 = 193, p = 20,
C, = 0.1, kca = 0.5, ap, = 0.5, ag = 0.5, a, = 0,
and K¢, = 0.7.

There are alternative models based on other
Ca?* channel inactivation mechanisms in the lit-
erature. Some of these models are presented in Ap-
pendix III, especially in their reduced three-variable
forms. All these models, although their forms are
very different, give rise to interesting patterns of
bursting and chaos. The patterns are similar to

those observed in the previous sections when a cer-
tain parameter in the model, representing the avail-
ability of the key ion channel, is varied.

2.9. Dynamazc solution of the
Ca2t-blockable Ca?**+ channel

Figure 10 shows the time course of membrane po-
tential V (solid lines) and {Ca2*]; oscillation (dashed
lines) predicted by the Ca?*-blockable Ca?* chan-
nel model. Note that the burst simulated from
this model has an appearance very similar to those
observed in neuronal bursting [Strumwasser, 1968;
Junge & Stephens, 1973; Gorman et al., 1982]. It
differs from that of the first model in that the spikes
undershoot the slow wave potential, while in the
three-variable model treated above the spikes re-
main above the plateau potential. Note in this fig-
ure that the shape of the electrical burst is un-
affected by the buffer strength p [see Eq. (2.8)].
However, as p decreases the burst period increases,
and as the burst period increases the number of
spikes increases. Although the shape of electrical
bursting is not affected by p, the shape of [Ca’t];
oscillations changes dramatically as p changes. If
p is equal to 20, [Ca”]i oscillates in bursts in par-
allel to electrical bursting (see the top trace). If
p is equal to one (see the middle trace), then the
peak of [Ca?*]; oscillation occurs shortly after the
onset of electrical spike activity with spike activ-
ity being still visible (see the middle trace). If p
is equal to 0.1, [Ca?*); oscillates out-of-phase with
electrical bursting such that it peaks at a maximum
near the termination of the plateau and reaches a
minimum just before the onset of the active phase.
During the active phase [Ca?*]; gradually increases
without spikes (see the bottom trace).

As shown in this figure, the period of a burst
becomes large as p decreases. How p controls the
burst periodicity can be understood from the ki-
netic scheme in Eq. (2.5). In this kinetic scheme,
the period of the slow wave is determined by a
parameter that affects the blocking and unblock-
ing process of the Ca’?t channels. Note that the
apparent rate of the blocking process is affected
by the dynamic change of [Ca%*];. This rate, in
turn, is controlled by p which determines how fast
[Ca%t]; changes with varying membrane potential
(see Fig. 10). Thus p is one of the factors that con-
trol the burst periodicity (via the rate of the change
in [Ca?*];). The plateau fraction (i.e., the duration
of the period of spike activity divided by the burst
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Fig. 10. The time series of electrical activity (solid lines) and the oscillation in the Ca®* concentration, [Ca®*]; (dashed
curves) of a neuron based on the hypothesis of a Ca®* -blockable Ca** channel. Note that the pattern of [Ca®*); oscillations
is very different for different p values. From the top trace to the bottom, p = 20, 1, and 0.1. The value of gsow used for this

computation is 18.

periodicity), on the other hand, is controlled by the
pump activity kc, and the dissociation constant
K¢, (whose effect comes in through o) such that
the larger the value of k¢, or K¢, is the longer the
plateau fraction becomes.

It is important to note that all the existing neu-
ronal models [e.g., Canavier et al, 1991; Epstein

& Marder, 1990; Plant, 1981; Rinzel & Lee, 1987,
also some of the models in Appendix III] excluding
ours [Chay, 1983, 1990; Chay & Lee, 1990; Chay &
Fan, 1993] utilize [Ca?T}; as a slow dynamic vari-
able. According to all those models except ours,
the slow accumulation of [Ca%*]; leads to the ter-
mination of the active spiking phase, and thus V is
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out of phase with [Ca*]; (as in the third trace in
Fig. 10). Measurements with Ca?*-sensitive dyes
in various cells indicate that [Ca2+]i changes rather
quickly with varying membrane potential. Thus,
the assumption that [Ca’*]; changes slowly may
not be valid any more. In our two-state (blocked
and unblocked) model in which the rate of block-
ing is Ca?*-sensitive [as in Eq. (2.5), Appendix II,
Models C & D in Appendix III] the slow accumula-
tion of [CaZt]; is not a necessary requirement for
the bursting. As discussed above, the apparent
rate of the blocking/unblocking event (or phospho-
rylation/dephosphorylation) determines the burst
periodicity.

2.10. Bzifurcation diagram for the
second model

As shown in Fig. 11, AUTO predicts several inter-
esting periodic branches when p = 20. There are
four Hopf bifurcation points from which four peri-
odic branches emerge: One unstable branch emerges
from HB = 19.551 and terminates in a homoclinic
orbit at ggow = 25.9252 with an infinite period.
Another one emerges from HB = 20.9737 and ter-
minates when it meets the periodic branch from
the first branch at ggow = 21.0863. A periodic
branch emerges from the right-most HB (ggow =
114.0568) and extends to the periodic limit point at
gslow = 114.852. From there, its amplitude grows,
and as its amplitude grows this periodic branch
becomes stable. Then, this stable periodic state
stretches to the left and terminates in a homoclinic
orbit at ggow = 19.500 with an infinite period. In
this branch, the spiking mode predominates. The
fourth periodic branch emerges from the left-most
HB (gsiow = 17.3965); its amplitude grows suddenly
at the periodic limit point of gsjow = 17.36864 (see
the inset). From there, it becomes very difficult
for AUTO to trace this branch. Below ggow =
17.36864 exists the repolarized phase, and above
gslow = 114.852 exists the depolarized phase. Be-
tween the left periodic limit point (LPL = 17.3686)
to the left Hopf bifurcation (LHB = 17.3965) exists
three states — unstable and stable periodic states
and the stable steady state (see the inset). Thus,
AUTO predicts that there is a complex oscillatory
region between the left most periodic limit point
(g9slow = 17.3686) and the periodic limit point of
the first branch (gsiow = 25.9252).

The complex structure which AUTO predicts
can be seen more clearly through a bifurcation

| a7
= 2 - ~ |
5 o ]
= 52 1
A~ 47—
g 17.36 174 1745 -
g
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g
[
= | 4
B 4
g L
Ay
Eistow
Fig. 11. Bifurcation diagram constructed using AUTO for

the model based on the Ca?*-blockable Ca?* channel. The
upper frame shows the maximum and minimum of the mem-
brane potential V as a function of gsjow (the maximal conduc-
tance of the slow inward current), and the lower frame shows
the periods of oscillations in the periodic branches shown in
the upper frame. The inset shows the neighborhood of the
left-most Hopf bifurcation, where the stable period, unstable
period, and repolarized resting state coexist. We used those
parameters given in the text with p = 20.

diagram constructed by solving the six differential
equations in the model. Figure 12 is such a diagram
obtained from the dynamic solution, where the or-
dinate displays f (the inactivation variable or the
availability of Ca?* channels) and the abscissa dis-
plays gsiow (the maximal conductance of the slow in-
ward current). The two insets are enlarged portions
of the left- and right-most regions of the diagram.
The points in Fig. 12 (f values) for a given ggow
were obtained as follows: We first throw away a few
hundred cycles to ensure that the system reaches
the limit cycle. We then record all the f values
whenever the upstroke of V passes the line V' =
—30 mV. Consistent with the AUTO prediction,
this diagram reveals that the bursting bifurcates to
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Fig. 12. Bifurcation diagram as a function of gsiow, which reveals the bifurcating structure of the inactivation gating variable,
f, of the Ca?*-blockable Ca?* channel. According to the modern view of channel dynamics, f can be interpreted as the
fraction of available Ca’* channels at time ¢. The inset on the left reveals the region where the bursting regime starts, and
the inset on the right reveals chaos in the crisis transition zone where the bifurcation structure suddenly shrinks.

chaos and chaos to spiking as gsow increases from
gslow = 17.0 t0 gslow = 23. As in Fig. 6, this model
also gives rise to a spike splitting scenario. It begins
with the bursting with two spikes at 17.3686 and
three spikes at ggow = 17.3688 (see the left inset).
The three-spike bursting then transforms to four-
spike bursting at gsgow = 17.3694. The fourth spike
will eventually split into thirteen spikes as gsjow
increases to 21.45. Beyond this point, bursting-
chaos appears that transforms to spiking-chaos at
the interior crisis. After this spiking-chaotic regime
comes an inverse period-doubling route which leads
to regular repetitive spiking at ggow = 21.7. It is
interesting to note that the bifurcating structure of
the right-most chaotic regime (see the inset on the
upper right) resembles closely frame (c) in Fig. 6.

As in Fig. 7, there appears a complex dynamic
structure at the transition zone between the n-spike
bursting and n + 1-spike bursting when a sufficient
number of spikes is added. At which stage of the
spike-splitting scenario the complex structure ap-
pears can be predicted by examining the way that a
spike is born. Note that in the first four spike split-
ting series, a spike is added to the bifurcating trees
from outside, giving a concave-up appearance. The
next several branches also have a concave-up ap-
pearance, but they seem less concave upward than
the first four branches. Afterwards, however, a spike
is born from the existing branch (i.e., the bottom
branch) giving a concave-down appearance. When
a newly born bifurcating branch appears concave
up, there is no complex regime. When it appears
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concave down, there lies a complex oscillatory
regime. In other words, a complex transition zone
arises whenever a spike is born from the ezisting
attractors. We will discuss this interesting phe-
nomenon in detail in Sec. 2.12.

2.11. The Feigenbaum scenario
plus more for neurons!

Figure 13 is a section of the right-most chaotic
regime (complex-1). Here, frame (a) reveals how
the fifteen branches of the nonchaotic attractors
may induce bursting-chaos, and frame (b) shows
the entire period doubling tree. The inset shows
the boxed region in frame (a) at an enlarged scale.
As shown in this figure, the complex-1 is really
complex. On the right side of it, the route from
order into chaos follows the Feigenbaum diagram
of the period-doubling scenario. Out of repetitive
spiking two branches bifurcate (period-2), out of
these branches two branches bifurcate again
(period-4), and then two branches bifurcate out of

0.278

0.274

each of these again (period-8). We can follow the
bifurcating tree up to period-16; afterwards chaos
sets in. We find that the first four bifurcation points
(b1, be b3, and by) are 21.6921, 21.5895, 21.5692,
21.56488, respectively. Thus, the first two Feigen-
baum ratios are 61 = 4.9950 and 62 = 4.6990 for
this model. Note that d; is already close enough to
the Feigenbaum universal number of 4.6692016148.

On the left side of this chaos, we see a vari-
ety of beautiful structures. As shown in the inset
there are several bands resulting from points not be-
ing uniformly distributed over this chaotic regime.
As in one-dimensional discrete systems, the chaotic
regime which follows the period-doubling sequence
(i.e., the spiking-chaotic regime) is not simply a re-
gion of utter chaos. First, the four lines emerge
from the period of four which collapses to only a
few points (attractive periodic orbits) at ggow =
21.562. Then from this junction arise three con-
centrated lines which give rise to the period of five
at gsow = 21.558. There are several other regular
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Fig. 13. The complex regimes which exist in the depolarized phase. Frame (a) shows how the thirteen-spike bursting
transforms to the doublet as the system moves from the left to the right. Frame (b) shows a period doubling sequence which
leads to chaotic bursting as the system moves from the right to the left. The inset is the boxed portion of frame (a) in an

enlarged scale, which reveals a Feigenbaum type chaos.
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periodic states embedded in this chaotic regime:
The period-6 (really 12 since there are six peri-
ods from the lower branch) appears first, then the
period-5 (really the period of 10), and then the
period-3 (really the period of 6). At each of these
bifurcation points, another periodic doubling sce-
nario starts. Indeed, the Feigenbaum diagram is
fractal, in that if a portion of the upper branch of
this cascade is blown up, the resulting diagram has
a self-similar structure to the original Feigenbaum
tree (see the inset for evidence).

After passing this interesting chaotic regime,
there arise two interesting phenomena — an interior
crisis first and spike splitting series next. These sce-
narios do not exist in examples of one-dimensional
discrete systems, but they are often observed in ex-
citable cell models. First, a crisis transition sets
in around ggow = 21.514 where the structure sud-
denly expands. This expanding structure gives rise
to bursting-chaos. In the bursting-chaotic regime,
there appear several concentrated lines (attractive
periodic orbits) — the top several attractors are
more clearly defined, while the bottom ones have
a diffuse appearance. This diffuse appearance be-
come more focused as the system moves toward
the left. Finally, fifteen concentrated lines clearly
appear. After this scenario regular bursting appears
from gsow = 21.495. This regular bursting consists
of thirteen spikes followed by two extra spikes with
some pause between them.

What is the most interesting about bursting-
chaos is that an odd number of attractors appears
as the systems leaves the bursting chaotic regime.
In other words, only an odd number of attractors
can initiate bursting-chaos if the system moves from
the left to the right. In the case of the first model
bursting-chaos was set in by seven attractors (see
Fig. 2.4), and in the case of the second model, fifteen
attractors lead to bursting-chaos. In Chay [1985]
and Canavier et al. [1990], the number of attrac-
tors is five for both models. In Fan & Chay [1993,
1994, 1995a,b], various odd numbers appear de-
pending on a 7,; value. In some cases, the system ex-
hibits period-doubling (in the slow wave) before en-
tering the bursting-chaotic regime, as evidenced in
Fig. 6 and in Canavier et al. {1990]. In other cases,
however, the system enters the bursting-chaotic
regime without period doubling, as seen in this fig-
ure [see frame (a)]. Bursting-chaos is semichaos
in that the band of attractors farthest away from
the homoclinic orbit (the bottom branch in Fig. 6
and the top branch in Fig. 12) is most “attractive.”

By most attractive, we mean that the location in
which the chaotic attractors appear is more pre-
dictable than that in the vicinity of the homoclinic
orbit.

2.12. Complex oscillatory modes

at the spike splitting junctions

As in the first model which utilizes the Ca?* acti-
vated KT channel mechanism, a complex dynamic
structure resides at the junction where n spikes split
into n + 1 spikes. Figure 14 reveals the structure
that resides in the transition zone between eleven-
spike bursting and twelve-spike bursting [frame (a)],
between twelve-spike bursting and thirteen-spike
bursting [frame (b)], and between thirteen-spike
bursting and bursting-chaos [frame (c)]. There are
several similarities between this figure and Fig. 7:
First, the dynamic structure becomes increasingly
complex as more spikes are added (i.e., as gglow ID-
creases). Second, the range of the complex dy-
namic regime becomes wider as more spikes are
added. Third, the dynamic structure contains a
few chaotic states and an ordered state between
them. Fourth, in the nonchaotic regime, at least
two extra attractive branches are added to the ba-
sic branches. Fifth, more points (i.e., chaotic at-
tractors) appear near the homoclinic orbit (i.e., the
top band in Fig. 7 and the bottom band in Fig. 14).
In other words, the attractor bands become increas-
ingly narrower the farther they are from the homo-
clinic orbit, i.e., the farther the attractors are from
the homoclinic orbit the more “predictable” they
become.

Note in frame (a) that chaos (C1) exists in a
very narrow range. From C1, the system enters the
periodic state (R1). This regime contains eleven
basic branches and two extra branches. Two ex-
tra branches are born from the bottom band of
chaotic attractors. In the R1 regime, a burst con-
sists of eleven spikes that are followed by two ex-
tra spikes with some pause between them. As the
system moves further to the right, the two extra
branches get closer to the basic branch at the bot-
tom. This movement gives rise to chaos (C2). Af-
ter passing C2, a period of twelve emerges. This
periodic state consists of a burst with twelve spikes
whose spike interval gets longer and longer as it ap-
proaches the termination of the active phase (i.e.,
normal bursting).

A complex dynamic regime that resides in frame
(b) is very similar to that in frame (a), but it
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Fig. 14. Enlarged portions of the transition regimes shown in Fig. 12, where eleven spikes are split to twelve [frame (a)],
twelve spikes are split to thirteen [frame (b)), and thirteen spikes are running into the bursting chaotic regime [frame (c)].

contains one additional complex regime. There are
altogether three chaotic regimes (C1, C2, C3). Be-
tween them lie two ordered states — the left one
(R1) with fourteen attractors and the right one (R2)
with fifteen attractors. In R1, there are twelve ba-
sic branches and two extra branches that are born
from the bottom two bands of chaotic attractors
in C1. In R2, there are twelve basic branches and
three extra branches that are born from the band of
chaotic attractors at the bottom. On the boundary
between R2 and C3 there is some order in the struc-
ture: at gsow = 21.265 a period of fifteen spikes ap-
pears (thirteen basic spikes plus two extra spikes).
It then transforms to sixteen spikes (thirteen basic
spikes plus three extra spikes) at ggow = 21.268.
As ggow increases to 21.269 an alternating order of
thirteen and fifteen spikes appears. When ggow =
21.270 there arises a repeating structure with a long
period consisting of the combination of thirteen,

fourteen, and fifteen spikes. Afterwards chaos sets
in (C3).

A bifurcating structure in frame (c) is much
more complex than the previous two bifurcating
regimes. What differentiates this complex regime
from that in frame (b) is that the third attractive
branch (from the bottom) also contributes to the
genesis of the complex dynamics. In frame (c),
there are at least three ordered states embedded in
this complex regime. The periodic state on the left
consists of sixteen-spike bursting — thirteen basic
spikes that are separated by three extra spikes. The
periodic state in the middle consists of thirteen ba-
sic branches and five extra branches. The periodic
states on the right consists of seventeen branches
— thirteen basic ones and four extra ones. As the
system leaves this complex regime, there appears
a burst with fifteen spikes (thirteen basic spikes
which are followed by two extra spikes). As gsiow 1S
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increased to ggow = 21.478, the sys.em enters the
bursting-chaotic regime.

Although the complex structures shown in
Fig. 14 are essentially the same as those shown in
Fig. 7, the way that a new spike is born in frame
(c) (i.e., the last complex structure before entering
complex-1) is quite different. In frame (d) of Fig. 7,
only one spike is added to the bifurcation trees as
the system leaves this complex regime. On the other
hand, in frame (c) of Fig. 14 two new spikes are
born from the bottom two branches as the system
leaves this complex zone. Perhaps because of this
difference, the way the system enters the complex-1
regime is quite different for the two models. In the
first model, the system enters complex-1 via a pe-
riod doubling route, whereas in the second model it
enters abruptly. This difference may not be due to
the two different mechanisms (i.e., the K* channel
activation for the first model and the Ca?t chan-
nel inactivation for the second model); rather they
may be due to the value of another important bi-
furcation parameter we chose to study — 7, in the
first model, and gp.e (the fast conductance) in the
second model. We refer the reader to a paper by
Fan and Chay [1995b] to find out how delicately 7,
controls the bifurcation structure and the chaotic
domain in the case of the first model.

2.13. Discussion of Sec. 2

In this section, we undertook a bifurcation analy-
sis to cover the roles of the key ion channels in the
plasma membrane in the genesis of complex oscil-
latory phenomenon. We considered two types of
model: the first model is dependent on the Ca?*-
activated K* channel for a pacemaker current and
the second model is dependent on the Ca?*-
blockable Ca?* channel for a pacemaker current.
With these two models, we showed how easily a
spiking neuron can be converted to a bursting neu-
ron when the conductance of the pacemaker current
changes slightly. We furthermore showed that their
bifurcating dynamic structures (as a function of the
“pacemaker” conductance) are universal in the fol-
lowing senses. When the value of the pacemaker
conductance (bifurcation parameter) is either small
or very large, the cell is in the stable steady states
(i.e., repolarized or depolarized state). When the
bifurcation parameter is changed from the depolar-
ized state toward the repolarized state, the system
enters a complex dynamic regime (which we refer to
as the complex-1 regime). In this complex regime,

first, the Feigenbaum scenario sets in, which con-
tains a period doubling route, tangent bifurcation,
period-3, and interior crisis of a Feigenbaum type.
Chaos that resides in the Feigenbaum scenario is
named as spiking-chaos in neurobiology [Chay &
Rinzel, 1985].

After passing the Feigenbaum scenario, there
appears another type of interior crisis, where spiking-
chaos transforms to bursting-chaos. Bursting-chaos
contains several clear concentrated bands. Bursting-
chaos is semichaos in that the band that is farthest
away from the homoclinic orbit is most attractive
and the band that is closest is least attractive. That
is, points (i.e., chaotic attractors) are most concen-
trated in the band that is farthest away from the ho-
moclinic point, and the band that is nearest to the
homoclinic point has the most diffused appearance.
As the system moves away from this chaotic regime
toward the repolarized phase, each band narrows
down to a single line (an attractor). What is inter-
esting about these attractors is that there appears
to be only an odd number of attractors. In other
words, only an odd number of attractors can trigger
bursting-chaos as the system enters into complex-1
from the spike splitting scenario.

After passing complex-1, there appears another
type of scenario, a spike-reducing series. As the
system enters the spike-reducing scenario, there ex-
ists an odd number of attractive branches at first,
but the attractive branch at the extreme level (i.e.,
the top branch for the first model and the bot-
tom branch for the second model) starts to dis-
appear one by one. First, this attractive branch
(say Al) disappears by merging with the attrac-
tor in the next level (A2). This gives the appear-
ance that the Al branch curves inward in order to
merge with the A2 branch. In this case, a com-
plex dynamic regime (say complex-2) arises as Al
merges to A2. This phenomenon repeats until the
number of the attractive branches is sufficiently re-
duced (say until it reaches complex-n). Then, the
way Al disappears becomes quite interesting — in-
stead of merging to A2, it runs away from A2. This
gives the appearance that the Al branch curves out-
wardly away from other attractive branches. In this
case, the spike disappears suddenly, i.e., there ap-
pears no complex dynamic regime. Within each
complex regime, there reside bursting-chaos as well
as periodic bursting. Complex-1 is the most com-
plex, and complex-n is the least complex. Also, the
magnitude of the largest Lyapunov exponent A; is
largest in the complex-1 regime, and it is smallest in
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the complex-n regime. Thus, not only does Aj in-
dicate the type of irregularity (i.e., deterministic
chaos versus quasiperiodicity) but it also indicates
a degree of irregularity of chaos (i.e., the larger the
A1 is the more chaotic the system becomes). The de-
gree of the complexity owes its origin to how closely
the system can approach the homoclinic orbit. The
range in which complex-1 resides is the widest, and
complex-n is the narrowest.

The features that arise after the Feigenbaum
scenario have not yet been observed in discrete one-
dimensional systems or any other physical system.
Thus, it seems that this scenario is a unique feature
of excitable cells. It would be interesting to explore
experimentally the existence of such a scenario in
bursting neuronal cells. At the present time, the
resolution of the digitizers that record the neuronal
voltage signal is not accurate enough to perform ex-
periments where the bifurcation parameters can be
precisely controlled. With the advent of improved
recording techniques and isolated single cell prepa-
ration, it would be possible to verify this interesting
scenario predicted by our neuronal models. By com-
bining experiment with theory it will also be pos-
sible to find the means of controlling the neuronal
chaos by adjusting the conductance of the key ion
channels.

But what does it mean physiologically when
the system bifurcates when the conductance of a
pacemaker current varies? Varying the conductance
of a channel either enhances or blocks the chan-
nel. Most epileptogenic and convulsant agents are
known to be blockers of the key ion channels in
the plasma membrane. Our demonstration that
the blocking of the pacemaker channel can bring
cells back to regularity from erratic electrical ac-
tivity suggests that chaos theory may be applicable
in controlling neuronal disorders. In fact, there is
experimental evidence [Chalazonitis, 1978] demon-
strating that the application of epileptogenic agents
such as PTZ to the Helix neuronal cell leads to the
appearance of abnormal bursting activity. Elimina-
tion of the drug by washing converts the cell back
to repetitive rhythmic activity.

We believe that the elucidation of abnormal
electrogenesis in terms of ionic mechanisms will lead
to a greater understanding of the intrinsic nonlin-
ear dynamic properties of neurons. Our findings
may explain why the drugs that are used to treat
neurodisorders are usually ion channel blockers. An
implication of our finding is that theory of nonlinear

dynamics may be used to understand and improve
the treatment of epilepsy.

3. Bursting, Phase-Locking, and
Fractals in the Intracellular Ca?t
Oscillations in NonExcitable Cells

Intracellular Ca?t ions are essential for the initi-
ation of cellular events such as the fertilization of
eggs, the contraction of muscle, and the secretion
of hormones and peptides. In excitable cells, an in-
crease in intracellular Ca?" ions is brought about by
the Ca2t channels in the plasma membrane when
these channels open during depolarization, permit-
ting calcium from the external medium to enter
the cell (see Sec. 2). In nonexcitable cells (which
are electrically nonresponsive), however, calcium is
supplied mainly by the Ca?* stores in the cytosol.
These stores release Ca?* when a certain type of ag-
onist binds to the receptor embedded in the plasma
membrane. There are two types of Cat stores in
the cytosol; a store that releases luminal calcium
when cellular inositol (1,4,5) triphosphate becomes
high (known as the IP3-sensitive store) and another
type of store that releases Ca?t when [Ca?*]; be-
comes high (known as the IP3-insensitive store).
See Fig. 15. The two Ca?" stores are refilled by
the Ca?*-ATPase pump which pumps intracellular
Ca?t back to the stores. These two types of stores
are also abundant in excitable cells, and thus ex-
citable cells may make use of intracellular as well
as extracellular sources of calcium to initiate and
maintain cellular events [Chay, 1993a).

As is the case for most cellular events, the re-
lease of Ca?t from the Ca®t stores occurs in an
oscillatory manner. For a given agonist, the con-
centration of the agonist has little influence on the
amplitude, but it has a great influence on the fre-
quency of the oscillation, i.e., this oscillation is a
frequency-encoded oscillation. So, the question is,
why and how does [Ca?*]; oscillate when the cell
senses the agonist? Using a “one-pool” model in-
troduced in Sec. 3.1, we will show in Secs. 3.2 and
3.3 how the bifurcation structure changes when the
agonist concentration varies. The case treated in
these two sections is in the steady presence of the
agonist. Under ¢n wvivo conditions, however, the
brain releases neurotransmitters and hormones in
a pulsatile fashion. Thus, how [Ca%*]; responds to
a pulsatile application of agonist is of more phys-
iological significance. In Secs. 3.4 and 3.5 we will
show that the response of [Cat]; to brief repetitive



Int. J. Bifurcation Chaos 1995.05:595-635. Downloaded from www.worldscientific.com
by UNIVERSITY OF CALIFORNIA @ SAN DIEGO on 01/07/15. For personal use only.

618 T. R. Chay et al.

Hormones

Phospholipase C A

TITT

Receptor

Protein
Kinase C

Fig. 15.

Ca-ATPase

Types of intracellular calcium stores and the role of G-proteins. This diagram depicts how the intracellular calcium

concentration rises when certain hormones or neurotransmitters bind to their receptors in the plasma membrane of nonexcitable
cells. Here, g, stands for the GTP-bound g-protein, IP3 for inositol (1,4, 5) triphosphate, DAG for diacylglycerol, ISCS for
the IP3-sensitive Ca®T store, and IICS for the IPs-insensitive Ca2™ store.

application of the agonist follows the universality
rule that exists in theory of nonlinear dynamics. In
the remaining sections, we will treat a “two-pool”
model and show that the participation of the sec-
ond Ca’t store gives rise to a complex bifurcating
structure similar to that of electrical bursting in
neurons.

3.1. A model which includes
only one type of calcium store
(i.e., an IP;-sensitive store)

The first model of a nonexcitable cell that we will
consider is based on Example 1 of Cuthbertson and
Chay [1991] with a few modifications as presented
in Chay [1993a]. This model includes the following
sequence of events (see Fig. 15). When certain types
of hormones and neurotransmitters are bound to
their receptors in the plasma membrane, the GDP-
bound g-protein (g-GDP) is converted to Go-GTP
(GTP-bound g-protein). See Step 1. The activated
form of the g-protein, G,-GTP, together with Ca*"

ions can activate phospholipase C (PLC). Activated
phospholipase C can produce two important cellular
messengers from phosphatidy! inositol (4, 5) biphos-
phate (PIP2). These messengers are inositol (1,4, 5)
triphosphate (InsP3) and diacylglycerol (DAG). See
Step 2 in Fig. 15. A positive-feedback by DAG
makes the production of DAG and IPj3 very cooper-
ative (although this step is not a requirement). The
IP; thus produced can release Ca?* ions from the
IP3-sensitive calcium store (ISCS) by activating the
Ca?t channels in this store. See Step 3 in the same
figure. At the same time, protein kinase C (PKC)
activity is enhanced because of combined elevations
of DAG and cytosolic Ca?t. Activated PKC in-
hibits Go-GTP via phosphorylation. The phospho-
rylation of G,-GTP inactivates PLC, which in turn
leads to lowering of the InsP3 level. The oscillatory
cycle thus is initiated.

The first step shown in Fig. 15 can be described
by the equation below:

d[Ga—GTP] _

— rg — hgRpxc[Ga—GTP]

(3.1)
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where [Go-GTP] is the concentration of a receptor
bounded GTP-bound g-protein, and Rpkc is the
activity of PKC which is a function of both [DAG]
and [Ca?*);:

[DAG] [Ca?t);
K, + [DAG] K, + [CaZT]; ’

Rpxc =

Here, K, and K, are the dissociation constants of
DAG and Ca?* from their respective receptor sites
in PKC. In Eq. (3.1), 7, is an important parame-
ter (i.e., a bifurcation parameter) which is “propor-
tional” to the agonist concentration.

The second step shown in Fig. 15 can be
described by

d[Dd?G] = k| RpLc — ha[DAG] + £y,
(IDAG] = [1Py)), 42

where Rpyc is the activity of PLC which is a func-
tion of [Ca?T];,

po__ [Car
PLO T R+ [Ca

and K, is the dissociation constant of [Ca?]; which

depends on [Go-GTP] in the following manner:

K,

Kég:ch 1+[G—‘1_—‘GT—P] .

In Eq. (3.2), k], has a positive feedback from DAG
such that
[DAG]?
YK2 + [DAG]’
where kg and K, are the rate constant and the dis-

sociation constant, respectively.
Step 3 of Fig. 15 can be described by

Ky =k

d[Ca?*);

= kiscsRips — ho[Ca®t )i+ 4.,  (3.3)

where Rypj is the activity of the IP3-sensitive Ca2+
channel in the ISCS and is enhanced by [IPj)
as shown:

_ [pgP?

K3+ [IP3]3

In Eq. (3.3), h. measures the ATPase pump activity,
and £ measures the resting Ca?* level.

To reiterate, this model (which does not include
the IP3-insensitive second store) can be described
by three variables, [Go-GTP] [Eq. (3.1)], [DAG)]

Rip3

[Eq. (3.2)], and [Ca?*); [Eq. (3.3)], given above.
The basic parametric values in the model are: 74 =
2.0 nM-s™1, hy = 10 s71, kg = 4.0 x 10° nM-s~1,
hg =857, £4 = 0.6 nM:s™!, kiggs = 500 nMs™1,
he =0.5s71, £, =100 nM-s~!, K, = 40 M, K, =
500 nM, Kg4 = 5 nM, K., = 500 nM, K, = 50 oM,
and K, = 5 nM.

3.2. Dynamic solution in the
presence of only one store

Figure 16 shows the time series of [Ca?*]; (solid)
and [G,-GTP] (dashes) at four different values of
Tg. In this model, the agonist concentration is mod-
eled by 7, [see Eq. (3.1)], such that as the ago-
nist concentration increases ry also increases. The
top and bottom traces show, respectively, the os-
cillations of [Ca?*}; and [G,-GTP] at very low and
very high agonist concentrations. The middle two
traces are those occurring in the presence of moder-
ate agonist concentrations. Note that the period of
oscillations ranges from several minutes to several
seconds as r, increases. Note also that [G,-GTP)]
builds up slowly while [Ca?*]; is at its resting level
of 200 nM. When [G,-GTP] reaches a critical level
(~60 nM), there is a sudden release of luminal Ca2*+
from the ISCS. This release causes a sudden increase
in [Ca%*];, allowing it reach above 600 nM. The in-
crease in [Ca’t};, in turn, activates protein kinase
C (PKC) whose activity is determined by [Ca?*};
and [DAG]. Activation of PKC causes a drop of
[Go-GTP]| due to phosphorylation of g-proteins. As
shown in this figure, the decrease of [G,-GTP] is
rather sudden, while [Ca?t]; decreases in an expo-
nential fashion. The decrease of [Ca?t]; is due to
refilling of ISCS by the action of the ATPase pump.
In this model, the Ca?* oscillation is driven by the
pulsatile appearance of IP3 (not shown), as in the
model of Meyer & Stryer [1988]. The period of the
[Ca®*]; oscillation is determined by the rate of the
build-up of [Go-GTP], i.e., the lower the r, value,
the longer it takes to reach the maximum level of
[Go-GTP].

Note that the concentration of the agonist has
little effect on the shape or the width of the oscilla-
tions. Also, it has little influence on the amplitude
of both [Ca2*]; and [G,-GTP] oscillations. The fre-
quency of the oscillations, however, depends on the
agonist concentration, i.e., an increase in the ago-
nist concentration increases the frequency. These
simulation results are consistent with experiments
observed in hepatocytes in the presence of phenyle-
phrine [Wood et al., 1986].
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Fig. 16. Dynamic plots at four different values of ry, the parameter that measures the strength of the agonist concentration.
Here, the solid curves show the [Ca.2+]i oscillations, and the dashed curves show the oscillations of the slow dynamic variable
[Ga-GTP]. The top and bottom traces are picked near the left and right Hopf bifurcation points, respectively. The middle two
traces are picked from intermediate agonist concentrations. The ry, values used for the computation are listed in the figure.

3.3. AUTO analysis on the
one type store

The dynamic structure that arises from the model
that is based on one type of calcium store can be
seen more clearly by constructing a bifurcation di-
agram using ry as a bifurcation parameter. The
result of AUTO analysis is shown in Fig. 17. Here,
the top frame shows the amplitude of [Ca?*);

oscillation, while the bottom frame shows the cor-
responding period of the oscillation. The steady
state branch is shown by the purple line, and the
oscillatory branch is shown by the red line. AUTO
predicts two Hopf bifurcation points, LHB at ry =
0.5463 and RHB at r4 = 3.007. The periodic limit
point (PLP) is located on the right side at ry =
3.196. There are four distinct regions in this
diagram: (i) the “repolarized” state below LHB
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Fig. 17. AUTO result showing the effect of the concentra-
tion of an agonist on Ca?*-spikes for the one-pool nonex-
citable cell model. The upper frame shows the amplitude of
[Ca®*]; as a function of 74, and the lower frame shows the
corresponding period of oscillation. Here, the purple line is
the steady state branch, the red line is the oscillatory branch.

where the cell rests at [Ca%t]; of 200 nM, (ii) the os-
cillatory state between LHB and RHB where [Ca?*];
spikes between 200 nM and 620 nM, (iii) the coexis-
tence of two stable states, the oscillatory state and
quiescent state, between RHB and PLP, and (iv)
a quiescent “depolarized” state above PLP with a
high [Ca?*]; of above 715 nM. Note that in the os-
cillatory regime, ry has little influence on the am-
plitude, minimum level and maximum level of the
[Ca%*); oscillations. Although the amplitude is not
affected by 74, the period increases sharply as rg
is decreased from RHB to the LHB. This is consis-
tent with the dynamic result shown in Fig. 16 where
the period of oscillation in the top trace (which is
near the LHB) is very long compared to that of the
bottom trace (which is near the RHB). Thus, this
bifurcation diagram clearly reveals that the [Ca?*];
oscillation is a frequency coded one.

3.4. Phase-locking of [Ca**]; in
response to periodic
stimulation of agonist

Figure 18 shows a phase locking pattern of [Ca®*);
(the upper trace) in response to repetitive agonist
stimuli (the lower traces). Here, SS is a stimulus
interval (i.e., the interval from the beginning of a
stimulus pulse to the beginning of the next stimulus
pulse). The N:M rhythm listed in this figure is
defined in such a way that M stands for the number
of [Ca®*]; responses during N stimulus pulses; thus
N is always equal to or greater than M. The square
shaped stimuli shown in the lower traces (in each
frame) have a base of r; = 0.4 nM/sec, a height
of ry = 2.0 nM/sec, and a duration of 10 seconds.
The stimulus strength of ry = 2.0 nM/sec is not a
weak stimulus (see that ry = 2 corresponds to the
oscillatory range in the bifurcation diagram shown
in Fig. 17). The lower base (i.e., 7, = 0.4 nM/sec)
corresponds a nonoscillatory condition, where the
cell rest in quiescence with [Ca?t]; = 200 nM.

Note in Fig. 18 that as the stimulus interval
decreases progressively (from the top trace to the
bottom), the number of blocked [Ca?*]; responses
increases. Note also that the 5:4 and 4:3 rhythms
(the second and third traces) exhibit a progressive
lengthening of SH, the response time of [Ca?T]; to
a stimulus S. There is a concomitant reduction in
the interval from the response to the next stimu-
lus (HS). The lengthening of SH and the short-
ening of HS lead to a blocked [Ca®*t]; response at
the Nth stimulus. The amplitude decreases slightly
during the consecutive responses. The Mobitz Type
IT block (which occurs in abnormal heart rhythms)
can also be seen in the 2:1 trace, where the SH
interval is sufficiently long such that the next stim-
ulus fails to elicit a Ca2* spike. A complex 5:2
reverse Wenckebach rhythm composed of alternat-
ing 3:1 and 2:1 cycles can also be seen here (bottom
trace). The dropped beats seen in this figure re-
semble those observed in the EKG trace of heart
patients and is known as Wenckebach periodicity
or Mobitz Type I block [Shrier et al., 1987]. It also
resemble those observed in the Purkinje cell under
a repetitive periodic current stimulation [Chialvo &
Jalife, 1987].

The N:M phase locking patterns seen in this
figure also resemble those observed experimentally
in squid axons [Hayashi et al., 1982; Matsumoto
et al, 1987] and theoretically [Holden and
Muhamad, 1984; Aihara and Matsumoto, 1987]
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Fig. 18. Dynamic plots showing the phase-locking response of [Ca**]; for given values of the stimulus interval (SS). The
stimulus intervals used for the simulation are listed in the plot. In each frame, the top trace shows [Ca**]; spikes and the
lower trace shows the time course of the agonist stimulus. The strength of stimulus has a base of r, = 0.4 nM/sec, a height of
ry = 2.0 n1M/sec, and a duration of 10 seconds. Here, N:M stands for M Ca?*-responses during N agonist pulse applications.

using the Hodgkin—Huxley model [Hodgkin and
Huxley, 1952]. There are some differences between
excitable and nonexcitable cells in their responses,
however. When high-frequency periodic current
pulses are applied to heart tissues, the width of ac-
tion potentials changes significantly with each stim-
ulus with little change in the height [Frame and
Simson, 1988]. When high-frequency periodic ag-
onist pulses are applied to the nonexcitable “cell”,
the peak of [Ca?t]; spike changes with each stimu-
lus while the shape or the width of a spike change
little.

The mechanism involved in the delayed and
blocked [Ca?*}; thythms observed in our simulation

can be explained as follows: According to the model
presented in Sec. 3.1, Ca?t can only be released
from the Ca?* stores when [G,-GTP] reaches a crit-
ical level (see Fig. 16). The build-up of [Go-GTP] is
slow, and during this slow build-up [Ca**]; remains
at its resting level of 200 nM. When the agonist is
pulsed prematurely, the concentration of G,-GTP
is too low to release Ca2t from the store. So, a
blocked response or delay arises from the model.
This mechanism of the blocked [Ca?*]; response
is similar to that involved in the Hodgkin-Huxley
model (HH). In HH, the sodium current is the one
that responds to a brief current stimulus (since it
carries a depolarizing current). The inactivation
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variable h of the sodium current is a slow dynamic
variable. So, a dropped beat can occur when not
enough sodium channels are available, which hap-
pens, for instance, when a current pulse is applied
prematurely. The major difference between the ex-
citable cell and the nonexcitable cell model is the
“reaction” time, in that in the excitable cell the re-
action time is of the order of milliseconds while in
the nonexcitable cell it is of the order of seconds.
Because of the slow reaction time, the nonexcitable
cells may be ideal systems to elucidate the univer-
sal rules associated with phase-locking phenomena
in biological rhythms. In fact experimental work of
Schofl et al. [1993] indicates that such research is
feasible in hepatocytes using a fluorescent dye as a
probe.

3.5. Constructing the Devil’s
staircase

The manner in which blocked rhythms occur as the
stimulus interval decreases can be seen more clearly
in the plot shown in Fig. 19. This plot is given
the name “devil’s staircase” because between any
two steps there is an infinity of steps, and only the
devil would design such stairs. This staircase was
constructed by solving three differential equations
[Egs. (3.1)-(3.3)] for a given SS value. The program
used to construct this diagram contains the follow-
ing features: First, SS is varied automatically by
a small increment starting from SS = 10 and end-
ing at SS = 200. For each given SS value, we
record H;, the time when the upstroke of a Ca?™
spike crosses [Ca?*]; = 0.4 uM, where the subscript
i stands for the ith response. We disregard the first
few tens of responses so as to ensure that the data
contain only the responses at the limit cycle. We
then calculate the spike-to-spike intervals, H;—H;_;
for all ¢’s. From the intervals thus obtained, we
pick up only M distinct (and consecutive) inter-
vals. The number N of stimuli was obtained first
by computing the total time taken for the system
to respond M distinct intervals and then dividing it
by SS.

When the stimulus interval is long (i.e., from
8§85 = 127.0 to oo) the model gives rise to a 1:1
rhythm. In the narrow range between SS = 126.5
and SS = 121.5 exist various quasiperiodic modes
whose winding number [Bak, 1977] is less than 1 but
is greater than 2/3 (see the inset on the right). The
time series of some of these modes are illustrated
in the second and third traces of Fig. 18. Between

88 = 121.0 and S5 = 95.0 exists the 3:2 rhythm.
The time series of this rhythm is displayed in the
fourth trace of Fig. 18. In the second narrow range
between S5 = 94.5 and 92.5 exist various periodic
modes whose M and N ratio is less than 0.667 but
greater than 0.5 (see the top inset on the left). The
2:1 rhythm resides from SS = 92.0 to 35.0. As
shown in the fifth trace of Fig. 18, every other re-
sponse is blocked for the 2:1 rhythm. In the third
narrow range between SS = 34.5 and 29.0 exist sev-
eral modes. The M and N ratio of these modes is
less than 1/2 but greater than 2/5 (see the bottom
inset on the left). Then, from SS = 28.5 to 21.0
lies a 5:2 rhythm. The time series of this rhythm
is displayed on the bottom trace of Fig. 18. From
SS = 20.5 to 13.5 lie many periodic modes whose
ratio is greater than 1/3 and less than 2/5. The
basic rhythm of 3:1 appears below SS = 13 sec.
Since the pulse duration is 10 seconds, autonomous
[CaZt]; oscillations arise when SS becomes equal to
or less than 10 sec.

Our staircase follows the universality rules of
phase-locking nonlinear dynamic systems. An in-
teresting feature of the staircase is that if a part
of the staircase is blown up, the resulting stair-
case looks very much like the original curve. To
illustrate this point, in Fig. 19 we have blown up
three narrow regions in the staircase; (i) between
the 1:1 and 3:2 region, (ii) between 3:2 and 2:1 re-
gion, and (iii) between 2:1 and 5:2 region. Between
two adjacent steps there are many other types of
rhythms with shorter transition zones. As shown
here, the range in which the 1:1 rhythm resides is
the longest and that of the 2:1 rhythm is the next
longest. The range in which the 3:2 rhythm re-
sides is shorter than that of the 1:1 or 2:1 rhythm.
Our staircase also obeys the addition rule of the
devil’s staircase, in that between the N:M rhythm
and N":M' rhythm there exist another rhythm of
(N + N'):(M + M'). This addition rule was shown
to hold by Keener [1981] only in the specific itera-
tive model he studied. But it is interesting to note
that this rule also holds for our nonexcitable model.
Our staircase is not complete in that it starts from
0.333. As shown by Peitgen et al. [1992], a com-
plete devil’s staircase starts from zero and ends at
one. A complete staircase has the fractal dimen-
sion of unity and the length of the boundary curve
is exactly 2. Since our staircase was obtained by
solving the three differential equations with a pulse
duration of 10 sec, it is not possible to obtain the
solution for SS equal to or less than 10 seconds.
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Fig. 19. Devil’s staircases, M /N, as a function of the stimulus interval S.S, where M is the number of Ca* spike responses and
N is the number of agonist pulse stimulations. In the inset, three sections of the staircase are enlarged to demonstrate the fractal
nature of the original staircase. The response was recorded whenever the upstroke of a spike crossed the [Ca®*]; = 400 nM
line. This diagram was constructed by solving three simultaneous differential equations in the model. The model cell was

stimulated periodically at a regular interval.

3.6. Model which includes both
the IP;-sensitive and
IP;-insensitive Ca*t stores

Why does the bursting of [Ca2+]i arise in the oocyte
when it “senses” a sperm (see Fig. 2) or in the hep-
atocyte when it is exposed to adenosine triphos-
phate (ATP)? As in the excitable cell model where
the inclusion of the fast-gating variable n gives rise
to bursting (see Sec. 2), the bursting of [Ca?t];
can be induced by including a fast Ca*t releasing
store. The model considered here is that formulated

by Chay [1993b] which includes the “fast” IPj3-
insensitive calcium store (IICS) as well as the slow
IP3-sensitive store (ISCS). In this model, as in the
two-variable excitable cell model of Chay & Lee
[1992], it is assumed that the Ca?t channel in the
IICS contains a fast activating component, the “m-
gate,” which opens when [Ca?t]; becomes high.
This channel is also gated by an “h-gate,” which
closes slowly when [Ca%*]; becomes undesirably
high. The essential features of the model that in-
cludes the IICS are as follows: The events outlined
in Sec. 3.1 occur first, i.e., [Ca??]; rises as a result of
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the release of luminal Ca?* from ISCS. Then, this
rise of [Ca?t]; activates the IP3-insensitive Ca’*
store by the “calcium-induced-calcium release mech-
anism” [Fabiato, 1983; Goldbeter et al, 1990].
When enough Ca?t is released, the IICS will close
by the Ca?*-inactivation mechanism. Although for
consistence with the biochemical literature we will
call this calcium store IICS, what is important to
our model is that release from the calcium store is
calcium sensitive, that is, the release is evoked by
an increase of [Ca?t];.

The dynamic change of [Ca’?*]; now includes
step 4 of Fig. 15, where the release of luminal Ca?*t
from the IICS contributes a further increase in
[Ca?*);. This modifies Eq. 3.3 as

d[Ca’*);

pra kiscsRip, + kircsmooh

- hc[Ca2+]i +£.. (3.3")
In the above equation, m and h are the activation
and inactivation gates of the Ca?* channel in IICS
(which are governed by [Ca?*];) and have the same
significance as those described in Eq. 2.4. In this
model, mq is activated by [Ca%t]; by the relation

__ [Ca™]}
" T RS 1G-S
The h-gate in Eq. 3.3’ describes the closing of the
channel when [Ca%*]; becomes too high and has fea-
tures similar to that of the Hodgkin-Huxley inacti-
vation h-gate,

dh
I =op(1 —h) — Brh

:ah{(l—h)—%h},

(3.4)

where oy, B, and K}, carry their usual meanings.
In addition to those parametric values given
in Sec. 3.1, other parametric values are: K,, =
400 oM, ap = 0.01 s7%, and K}, = 500 nM. In this
model, the degree of the participation of the second
store is modeled by kiics in units of (nM s71).

3.7. AUTO analysis to find the
effect of the second type
of Ca?t store

How the participation of the IPs-insensitive Ca2t
store (IICS) affects the [Ca?*); oscillation can be
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Fig. 20. Bifurcation diagram that includes an IP3-

insensitive Ca®* store (IICS). The upper frame shows [Ca?t)
as a function of kncs (a measure of the participation of the
IICS), and the lower frame shows the period of oscillation.
Here, the purple line is the steady-state branch, and the red
line is the periodic branch. This bifurcation diagram was
constructed using AUTO at ry = 2.0.

seen via the bifurcation diagram presented in
Fig. 20. Here, the bifurcation parameter, kics,
measures the degree of the participation of the IICS
such that the larger the value of kyjcg, the stronger
the effect of the second store. The upper frame
shows the bifurcating structure of [Ca?t]; as a func-
tion of kiicg, and the lower frame shows its corre-
sponding period. In the upper frame, the purple
line is the steady state branch, and the red line is a
periodic branch. AUTO predicts two Hopf bifurca-
tion points, LHB at —7.104449 x 10* and RHB at
739.9853. Asshown here, the periodic branch which
evolved from the LHB connects to the RHB after
reaching the periodic limit point at kpjcs = 1753.79.
AUTO also predicts five distinct regions: (i) a re-
gion from kics = 0 to 225.5, where [Ca?*); os-
cillates with a period of about 35 sec (note that
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the negative krics is unphysiological), (ii) a “hump-
back” region from kijcs = 225.5 to 291.5 where
the period decreases sharply (i.e., 59.8 seconds at
krics = 225.5 to about 10 seconds at krics = 300),
(iii) a fast spiking region from beyond krcg = 291.5
to RHB, (iv) a region where a fast spiking peri-
odic state and the steady state coexist from the
RHB to PLP, and (v) a quiescent “depolarized”
region above PLP. This resembles the bifurcation
plot of Figs. 5 and 11, which shows several interest-
ing regions as the mode of oscillation changes from
spiking to bursting as the bifurcation parameter
gp increases.

0.8

J

i

0.0 -

0.0 -

0.0 -

0.8

[Ca¥™];, (uM)

0.4
0.0
0.8
0.4 4
0.0 ~
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3.8. Dynamic solutions that
include the second Ca?t
store (i.e., IICS)

The hump-back region [region (ii)] predicted by
AUTO can be further explored by solving the four
differential equations [Egs. (3.1)—(3.4)]. The re-
sult of the solution is shown in Fig. 21. Bursts
that resemble those in the excitable models (see
Figs. 4 and 10) arise in the region between kijcs =
225 to 300. When kpics is small, there is a one-
spike burst with low frequency (the top trace where
kiics = 225); when kjics is large the model gives

kics = 225

kics = 250

0.8
ot M’\M’\M\M\M’\MM

kucs = 274

0.8
0.4 _MI\WMI\\I\WN\\N\MW

kics = 280

kics = 291

kies = 300
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T
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Fig. 21. Dynamic plots of [Ca®*]; simulated from the model that includes two types of cellular Ca?t store: kmcs = 225
(one-spike bursting), 250 (a mixture of one-and-two spike bursting), 274 (a mixture of three-and-four spike bursting), 280 (a
four-spike bursting), 291 (a seven-spike bursting), and 300 (continuous spiking). The conditions are the same as Fig. 20.
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rise to repetitive spiking with fast frequency (the
bottom trace where kjjcs = 300). Between these
two modes appears a mixture of one-spike and two-
spike bursts at kpjcs = 250 (the second trace), a
mixture of three-spike and four-spike bursts at
kiics = 274 (the third trace), a pure four-spike
burst at kics = 280 (fourth trace), and a pure
seven-spike burst at kjcs = 291 (fifth trace). We
may elucidate the complex structure embedded in
the bursting region systematically by constructing
a bifurcation similar to that of the excitable mod-
els (see Figs. 6 and 12), and this is shown in the
following section.

3.9. Bzifurcation diagram for
the burst structure in
nonezxcitable cells

Figure 22 shows a bifurcation diagram that reveals
how the interspike intervals change as a function of

kucs. This diagram was constructed by solving all
four differential equations at a given kpcs starting
from kpics = 200 and increasing this value incre-
mentally until it reaches kjjcs = 380. The points in
this figure (which are the spike to spike intervals)
were obtained by recording the time at which the
upstroke of a Ca?™ spike crosses [Ca’t]; = 0.4 uM
for each given kijcg value. Note that the bifurcation
structure of the nonexcitable cell is very similar to
that of excitable cells (cf. Fig. 6). These similar-
ities include: low frequency one-spike bursting at
the “repolarized” phase (i.e., small krjcs value) and
high frequency spiking at the “depolarized” phase
(i.e., large ks value), a spike splitting scenario
where the spikes split one by one until seven spikes
are reached, and the complex oscillatory regime in
the transition zone between the n- and n + 1-spike
burstings (see the inset). Thus, there seems to be
universal rules associated with the bursting phe-
nomena whether the origin of the bursting is elec-
trical or cellular.
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S S e, IR AR
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Fig. 22. Bifurcation diagram obtained by solving the four dynamic variables in this model. The ordinate shows the spike-to-
spike interval (the time interval taken by two consecutive spikes as they cross the [Ca®"]; = 400 nM line of the upstroke). In

the inset, we show the bursting regime in an expanded scale. The condition is the same as Fig. 20.
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In the complex oscillatory regime where n spikes
are splitted into n + 1 spikes, two modes of os-
cillations coexist — n-spike bursting and n + 1-
spike bursting. The complex structures shown in
the seven coexistence regions are not chaotic but
consist of a mixture of n and n + 1 spikes in a reg-
ular interval. At the boundary which faces the pe-
riodic n-spike bursting (i.e., on the left boundary),
the n-spiking bursting predominates over the n + 1-
bursting, while on the right boundary the reverse
is true. In the middle of the boundary, the two
modes of burstings appear in an alternating order
(see the second and third traces of Fig. 21). For
example, in the complex regime where one and two
spikes coexist, at first the bursting consists mainly
of one-spike bursting with occasional (but regular)
appearances of a two-spike burster. However, as the
system moves toward the right two-spike bursters
appear more frequently. As the system is about to
move out of this transition zone, the bursting con-
sists mainly of two-spike bursters with occasional
(but regular) appearances of a one-spike burster.
This aspect of the complex dynamics is different
from that observed in the excitable cell model where
chaos is embedded in the bifurcating region where
n spikes split to n + 1 (see Figs. 7 and 14). In this
complex regime, there are more than two modes of
oscillations which coexist.

Those thick bands with interspike interval of
about 28 seconds are the regimes in which two modes
of bursting coexist. Note that the range in which
the two modes coexist shortens as the number of
spikes increases. That is, the complex regime in
which one- and two-spike burstings coexist is the
longest, and the regime in which six- and seven-
spike burstings coexist is the shortest. This re-
minds one of the complex dynamic structure oc-
curring in the excitable cell models (see Figs. 7 and
14) but exactly in the opposite way. In the excitable
cell model, the complex regime becomes longer and
longer as the number of spikes increases.

3.10. Discussion of Sec. 3

We have demonstrated in this section that through
an approach based on bifurcation analysis we can
elucidate the rich dynamic structures that are em-
bedded in the model of a nonexcitable cell driven
by a steady application of agonist. In particular,
through Figs. 17, 20, and 22, the roles of two Ca?"
stores in the genesis of spiking, bursting, and com-
plex rhythms can be seen vividly when the key pa-

rameter in the model varies. The dynamic struc-
ture of these cells resembles in many ways that
observed in the excitable cell models in Sec. 2, which
indicates that universality may lie in the bursting
mechanisms. The similarities include: (i) a spike
splitting cascade when the key bifurcation parame-
ter in the model is changed; (ii) a complex dynamic
structure in the transition zone at which n-spikes
split into n + 1-spikes; and (iii) the steady states at
both ends of the bifurcation diagram. Perhaps, our
future effort should be directed toward exploring
both theoretically and experimentally the universal-
ity that may exist in bursting cells whether they are
electrically excitable or chemically excitable. For
the universality that exists in theory of nonlinear
dynamics is an important subject for cell biology.

We have also demonstrated that the devil’s stair-
cases arises from nonexcitable cells when the agonist
is pulsed periodically. How the [Ca?*); response en-
trains an agonist pulse is very important in view of
the fact that the brain releases neurotransmitters
and hormones periodically. The frequency of re-
lease of these agonists by the brain depends on fac-
tors such as drugs and mental state (e.g., depression
or excitement). Since the release of [Ca’*}; occurs
in a frequency dependent manner, it is conceivable
that a premature release of the neurotransmitter
from the brain may cause “arrhythmias.” The role
of a premature agonist pulse in the Ca?* release has
been investigated by Chay et al. [1995], where we
found that chaos arises at certain critical parameter
values, as is the case in discrete circle maps [Jensen
et al., 1984]. Although phase-locking rhythms and
chaos have been observed in one-dimensional maps
as well as various physical systems, it is interesting
to note that the same staircase also appear in the
calcium release mechanism of the endoplasmic retic-
ulum in response to agonist pulses. Because of the
slow dynamics involved in the release of Ca?*, cal-
cium response entrained by neurotransmitter pulses
should be a good system with which to investigate
the phase-locking phenomena in biology.

The impact of a premature electrical impulse
on the cardiac rhythm is obvious in that it gives
rise to various cardiac arrhythmias [Chay and Lee,
1984, 1985, 1992]. Similarly, the implication of ab-
normal rhythms and chaos in neurobiology is clear.
But, it is not clear what roles a premature ago-
nist pulse might play in mental health, and what
roles the complex bursting of [Ca%t); play in cellu-
lar physiology. This remains to be elucidated, since
the study of Ca?* dynamics in nonexcitable cells is
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yet in its infancy. Pursuing both theoretically and
experimentally this line of research (i.e., the rela-
tionship between extracellular agonist stimulation
and intracellular Ca?" responses), we will eventu-
ally clarify the effect of oscillations of [Ca%*]; on cel-
lular processes. We will also clarify the advantages
and disadvantages of having such complex rhythms
in health and disease. These studies are a contri-
bution to what promises to be an entertaining and
enlightening future in cellular Ca?* dynamics.

4. Final Remark

In the past, a great deal of effort has been spent
to classify and characterize the nature and types of
chaos that arise in one-dimensional discrete systems
[Peitgen et al., 1992]. With the availability of high-
speed computers and software tools such as AUTO,
it is now possible to direct our efforts to more real-
istic physical and biological systems, where we may
elucidate the universality that is known to exist in
theory of nonlinear dynamics. In this review, we
gave two examples in biological rhythms and have
shown that such efforts are feasible and rewarding.
In conclusion, we believe that many new and in-
triguing phenomena in nonlinear dynamics await
discovery, and this is particularly so in biological
rhythms. We can predict that the impact of non-
linear dynamics will then be enormous, especially
in controlling and curing abnormal biological disor-
ders such as epileptic seizures.
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Appendix I

The Rate Constants in the Ca’T-sensitive Kt
Channel Model.

~ The expressions of the rate constants am, Bm,
ap, Br, an, and G, that appear in Sec. 2.1 are given
in Chay [1985] and are as follows:

0.1(25 + V)
Xm = 7 —01v-25>

By — 4o (V+50)/18 ,

ap = 0.07¢0-05V~25

Y

1
h= oo

0.01(20 4+ V)
Qp =

1—e01V-2"

Bn = 0.125¢~(V+30)/80

Appendix II

A Refined Neuronal Model Based on the Ca’t-
Activated K* Channel.

The model presented in this Appendix is the
model of neurons described in Chay [1983], that
gives rise to interesting patterns of bursting, spik-
ing, and chaos, as demonstrated in Chay [1984,
1986]. A crucial difference between this model and
the Plant model [1981] is the expression used for
the opening probability of the pacemaker channel
(i-e., the K-Ca channel), such that [Ca%*]; being a
slow dynamic is not required for this model. In this
model, the probability of the opening of the K-Ca
channel (or the fraction of available K-Ca channels)
is dependent on time, Cai2+, and voltage such that

ApCP? exp(0.5a,V)

Closed

Open,
ApC ™93 exp(—0.5a,V),
C= ([Ca2+]i>"“’
Kca ’

where ng is the Hill coefficient, A, is the rate con-
stant independent of C and V, and K¢, is the dis-
sociation constant of Ca?* ion from its receptor site

located in the pore of the KT channel. Note that if
ap is small then the opening and closing processes
of the K-Ca channel depend weakly on voltage but
strongly on [Ca?*]; such that its open state is fa-
vored over the closed state when [Ca?*]; becomes
high. Note also that this model does not assume
that [Ca?t]; is a slow dynamic variable. Recent
measurements on [Ca?*]; with fluorescent dyes indi-
cates that [CaZ*]; is a rather fast dynamic variable.
This invalidates the assumption in the Plant model
as well as other currently available neuronal models.
The opening probability of the K—Ca channel
can be derived from the above kinetic scheme as,

dp

bl A}

dat F
— )\ppC—O'5 exp(—0.5a,V),

(1 — p)C®° exp(0.5a,V)

where C = [Ca%t];/Kc,. If the kinetic process is
fast (i.e., Ap is large) then the fraction of open p can
be approximated by its steady state expression:

_ C
"~ C+exp(—apV)’

Poo

This is the expression used by Plant where a, is
taken to be zero, but note that it has a limited
applicability.

The model contains six other simultaneous dif-
ferential equations:

dv
—Cmﬂ = m3hJya + dJca + pJx + ntJk
+ Jlea.k + Iapp )

dm Mme —m

dt Tm

dh heo—h

a TH

dn  Nee — 7N

dat Tn

dd deo —d

at a4

d[Ca?t);  PcadJc, — kc[Ca?t];
dt TC ’

In this model, J; is the flux of the jth ion expressed
as

Jj = Z;iP;

(in) Z;FV (out) Z;FV
X {Cj exp (——————) —C; exp | — SRT ,
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where j stands for the jth ion (i.e., Na*, Ca’t,

and K%), Z; is the charge of the jth ion, P; is the

permeability of the jth type ion through its own ion

channel, C](ln) and C°" are the concentration of

the jth ion in the inside and outside the membrane,

respectively, and F/RT carries its usual meaning.
For the leak flux, the model uses

F(V_‘/leak)>_ex (_ F(V_‘/leak)>
9RT P °RT )

The steady states Mmoo, Moo, Moo, and deo, and
their respective relaxation time constants 7,,, 7,
Tn, and 74 take the following expressions:

Jleak =€XP (

‘ *
Qy Ty

—— and T, =
ay + By Y ay + By

where o, Bm, n, B, oy, and G, take the same
expression as those given in Appendix I. The rate
constants, ag and Bq, in the Ca?t current take the
following expressions:

ag = exp(—0.5a4(V — Vy))

Yoo =

and
Bd = exp(—0.5ad(V - Vd))
The parametric values for this model are as fol-
lows: Cpy = 1, Iypp = 0.65, Pna = 4.0, Py =

0.03, Pry = 0.5, Poo = 0.2, Peax = 0.5, Vg =
—50, Vieak = —40, [Nat]out = 145, [CaZT]on = 2,
[Kt]out = 4, [Nat]in = 12, and [K*]in = 155, k¢ =
280, ag = 0.25, a, = 0.04, nyg = 3, K¢, = 0.001,
T = 20, 7f = 20, ¥ = 20, 7} = 5000, 7¢ = 10°,
Ap = 0.0002, and 2RT/F = 51.2.

Appendix III

Three- Variable Models Based on Slow Inactiva-
tion of Ca®’t Channel.

A minimal model that generates the bursting
contain three dynamic variables — a slow dynamic
variable which gives rise to an underlying slow wave,
a fast dynamic variable which participates in the
spiking, and membrane potential which balances
the charge neutralization.

As far as we are aware, the model of Chay
[1985Db] is the first three-variable bursting model
which incorporates the calcium-inactivated calcium
channel. In this model, the inactivation variable of
the calcium channel is voltage-gated, but its half-
maximal potential shifts to the left as [Ca’t); in-
creases. The Ca,;-inactivation mechanism is incor-
porated in this model to account for the observed

extracellular Ca?t effect in the pancreatic S-cell.
In addition to containing the calcium-inactivated
calcium channel, this model also contains the K-
Ca channel which is activated by [Ca?*];. Thus,
the bursting occurs by the combination of both the
Ca’* channel inactivation mechanism and K-Ca ac-
tivation mechanism via slowly varying [Ca?*];.

We present in this appendix four types of three-
variable models which utilizes slow inactivation of
Ca?t channels. These models differs from each other
the way that the Ca2* current inactivates and the
way the spike is generated.

Model A. This model appeared in Chay [1987],
and its bifurcating structure was investigated by
Chay and Kang [1987]. In this model, n is a fast dy-
namic variable which is responsible for the genesis
of spiking, and [Ca?*]; is a slow dynamic variable
which affects V, the half-maximal potential of s
(one of the activation variables in the Ca?* chan-
nel). That is, increasing [Ca?*]; shifts V; toward,
the repolarized direction. The three simultaneous
differential equations in the model is as follows:

dv
C—‘— aooooV Va
o = 9cad ( Ca)

+gxn(V - Vi) + g(V - W),

dn  nNe —n

dat - o,
d[Ca2+]i _ dooSoo(VCa - V) - kc[ca2+]i
dt TC ’
where
i 1
1+e (Vd V)
X
Sd
and
1
Soo
1
+ exp ( S, )
[Ca? ]x)
Vs =5 ln( d
_ 1
T 1+ ex Yo - V)
p S,
and .
Tn

Tn =

1+exp(V —-V,)/Sn

The parametric values are: C, = 1, gca = 55, g =
280, g1, = 2.2, Voo = 100, Vx = —80, VL = —40,
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Vy=-22, 8,=15V, =-9, 5, =10, S; = 10,
¢ = 4000, and 77 = 0.0085, Ks = 1, kca = 75,
nyg = 3. The two bifurcation parameters that give
rise to the interesting bursting and chaos behaviors
are Vs and 7.

Model B. This model appeared in Chay & Kang
[1988] and Chay [1991]. Its bifurcating structure
was investigated by Chay & Cook [1988]. Unlike
Model A, this model contains two inward currents.
One of the inward currents is affected by [Ca’t];,
in such a way that fo (the fraction of available
Ca?* channels) decreases with increasing [Ca?*];.
In this model, the spikes are caused by two types
of fast currents — the fast inward current (the first
term below) and the fast outward current (the third
term below). The three differential equations in this
model are as follows:

dVv
——CmE = gtMoo(V = Vi) + gsdoo foo(V — V5)

+gxn(V — Vi) +g.(V - V1),

dn N —7n

dat - T
d[Ca?*}; oo foo(Vs = V) — kc[Ca”]i
dt - TC ’
where
_ 1
" e ()
X
P S,
and .
doo - N VAN
1
+exp( 5 )
1 [Ca2+]i
= —— wh =12
f i1C where C K
1
Moo = V.-V
1 n
+exp< 5. )
and
Tn = ™
" 14 exp(V-V,)/S,
The parametric values are: Cp = 1, gf = 60,

gs = 25, gx = 110, g1 = 25, Vf = 40, V; =
110, Vx = -80, Vp, = —60, V,, = —18, §,,, = 8§,
Vg =-40, S =8, V,, = —-10, S, = 8, 7¢ = 40,
n = 0.026, Ky = 1.0, and k¢ = 2.0. The two

n

bifurcation parameters that give rise to the inter-
esting bursting and chaos behaviors are k¢ and 7.

Model C. This model was presented in Chay
[1990a] and Chay & Lee [1990]. In this model f
is a slow dynamic variable which depends on time
and voltage. This model differs from Models A and
B in that it does not have any [Ca?*]; dependent
component. The three differential equations in this
model are as follows:

av

—Cmﬁ = gsdoof(V = Vs) + grn(V — Vk)
+gL(V_VL)7
ﬁ: foo_f
dt Tf ’
d_n_noo—n
dat 1
where
1
S e (D)
p Sy
1
foo = ,
” 1+exp(Vf—V)
Ss
and
- 1
oo — Vn—V 9
1
+exp( S, )
7

= exp(Vy = V)/25; + exp(V — V;)/25;

and

*
Tn

T 1+exp(V—Vn)/Sn"

The parametric values are: Cp, = 1, g5 = 200, gx =
250, gr, = 13, V, =40, Vx = —80, V, = —60, V4 =
—-18, 84 =8, Vy = —40, Sy = —10, V,, = =5, Sp =
10, 7¢% = 40, and 7,; = 0.0115. The two bifurcation
parameters that give rise to the interesting bursting
and chaos behaviors are Vy and 7.

Tn

Model D. This model appeared in Chay [1990 b,c]|.
As in Model C, f depends on time and voltage.
However, unlike models A, B, and C, the spike is
generated by [Ca’*); which is a fast dynamic vari-
able in this model. That is, [Ca2+]i affects hoo
(the fast inactivating component of the Ca’* cur-
rent) and no, (the probability of opening of the
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K—-Ca channel), and ny together with h., gener-
ate a spike. The three simultaneous equations in

the model are expressed as follows:

dVv
—Cmﬁ = gCadoofhoo(V - VCa)
+ 9K,cNoo(V — V) +91(V — V1),
fdl — foo - f
dt Tf ’
d[Ca2+]i _ oo fhoo(Voa ~ V) — kc[Ca2+]i
dt N TC
where
do = 1
= 1+ex (Vd—v>
and
noo=1+ex (Vn_V)7
p Sn
1
f =
= 1+ex (Vf — V)
P
S

b

and
7

I exp(V; — V)/25; + exp(V — V})/25;

1 [Ca2+]i
hoo = m where C = —E—,
B [Ca2+]i)
Vo, =—-35In ( X .

The parametric values are: C,, = 1, gc, = 400,
gk,c = 9000, gr = 25, Vca = 100, Vx = —90,
Vp = -60, V4 = —13, 54 = 8, V; = —40, Sy = 10,
Sn =13, 77 = 40, ¢ = 0.06, k¢ = 2, Kp = 1,
and K, = 10. Note here that (unlike Models A and
B) V,, is not constant but is a function of [Ca2*];.
The two bifurcation parameters that give rise to
the interesting bursting and chaos behaviors are V;
and 7¢.



