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a b s t r a c t

The basal ganglia (BG) are critical for the coordination of several motor, cognitive, and emotional functions
and become dysfunctional in several pathological states ranging from Parkinson’s disease to Schizophre-
nia. Here we review principles developed within a neurocomputational framework of BG and related
circuitry which provide insights into their functional roles in behavior. We focus on two classes of mod-
els: those that incorporate aspects of biological realism and constrained by functional principles, and
more abstract mathematical models focusing on the higher level computational goals of the BG. While
the former are arguably more “realistic”, the latter have a complementary advantage in being able to
describe functional principles of how the system works in a relatively simple set of equations, but are less
suited to making specific hypotheses about the roles of specific nuclei and neurophysiological processes.
We review the basic architecture and assumptions of these models, their relevance to our understanding
of the neurobiological and cognitive functions of the BG, and provide an update on the potential roles of
biological details not explicitly incorporated in existing models. Empirical studies ranging from those in
transgenic mice to dopaminergic manipulation, deep brain stimulation, and genetics in humans largely
support model predictions and provide the basis for further refinement. Finally, we discuss possible future
directions and possible ways to integrate different types of models.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The term basal ganglia (BG) refers to a collection of subcortical
structures that are anatomically, neurochemically, and function-
ally linked [110]. The basal ganglia are critical for several cognitive,
motor, and emotional functions, and are integral components of
complex functional/anatomical loops [73,72]. The intricate com-
plexity of the basal ganglia can be seen at several levels, from myriad
cortico-basal ganglia-thalamo-cortical loops, to the modulations by
neurochemicals such as dopamine, serotonin, and acetylcholine,
to differences in action by distinct receptor subtypes (e.g., D1 vs.
D2 dopamine receptors) and locations (e.g., presynaptic autorecep-
tors and heteroreceptors vs. postsynaptic receptors). Investigations
into the functional organization of the basal ganglia spans many
species, experimental designs, theoretical frameworks, and levels
of analysis (e.g., from functional neuroimaging in humans to genetic
manipulations in mice to slice preparations). To make matters more
complicated, most individual experiments focus only on one level
of analysis in one species, and each method comes with its own
interpretive perils, making it a daunting task to integrate findings
across studies and methodologies such that the effects of a sin-
gle manipulation on the cascade of directly and indirectly affected
variables can be predicted.

Biologically constrained computational models provide a useful
framework within which to (1) interpret results from seemingly
disparate empirical studies in the context of larger theoreti-
cal approaches, and (2) generate novel, testable, and sometimes
counter-intuitive hypotheses, the evaluation of which can be
used to refine our understanding of the basal ganglia. Moreover,
the mathematical grounding of computational models eliminates
semantic ambiguity and vague terminology, allows for more direct
comparisons among findings from different experiments, species,
and levels of analysis, and allows one to explore the intricate com-
plexity of the basal ganglia circuitry while simultaneously linking
functioning of that circuitry to behavior.

Although not without caveats, computational models provide
a tool for exploring cognitive and brain processes not possible
with classical box-and-arrow diagrams (whether the boxes contain
anatomical brain areas, cognitive/functional processes, or both).
Box-and-arrow diagrams can be confusing to interpret, provide
too much leeway for semantic ambiguous interpretations, and do
not allow one to examine the rich temporal dynamic interactions
among subsystems, let alone how these dynamics evolve across
time with learning. Computational models are dynamic, amenable
to quantitative analyses, and can make predictions or inspire novel
empirical work that might be difficult to intuit simply by visually
inspecting a box-and-arrow diagram.

There have been several instances in which new understandings
of basal ganglia functioning arose as a result of computational mod-
els operating on multiple levels of analysis. Some models are built
to help understand the precise biophysical processes governing
neuronal function, such as ion channel gating within the cholin-
ergic interneuron; others are built to help understand the kinds of
computations that might lead to cognitive processes such as learn-
ing, action selection, and even cognitive control. Each model and
class of models has its own strengths and limitations, and each is
appropriate for different applications. Given that no model is com-

plete (i.e., no matter how biophysically or functionally/behaviorally
constrained, every model necessarily omits several molecular and
systems level effects that are undoubtedly relevant), models should
not be judged solely by any of these factors, but instead by
their ability to capture interesting phenomena and make novel
predictions that may lead to insights regarding their underlying
mechanisms.

This review focuses on two classes of models – neural net-
work models and more abstract mathematical models – that have
been repeatedly used to understand behavioral functions of the
basal ganglia and related circuitry. Neural network models use
simplified neuronal units and neural dynamics to help under-
stand how interactions among multiple parts of the circuit, and
modulatory actions by dopamine and other neurochemicals, can
support cognitive and behavioral phenomena such as action selec-
tion, learning and working memory. In contrast, more abstract
models comprise mathematical equations, many of which build
on research on machine learning and artificial intelligence. These
are not necessarily constrained by biological architecture at the
implementational level, but nevertheless make contact with these
data and are designed to account for a large range of behavioral
phenomena using a smaller number of assumptions and parame-
ters. Given the focus on behavior, we do not discuss models that
are highly focused on understanding more detailed biophysical
processes within individual neurons (e.g., [177,179,181,189,102]).
This omission does not imply a lack of interest in or excitement
about these models – indeed, any abstract or systems level neural
account relying on implementational mechanisms will eventually
need to be tested for plausibility using more realistic model neu-
rons, and it is expected that some higher level explanations are
likely to be modified by that endeavor. At present, though, it is
intractable to use highly detailed biophysical models to develop
a model of cognitive and behavioral phenomena which require
systems level analysis. Empirical data reviewed below confirm
that despite some simplifications at the neuronal level, models
make specific predictions that have been borne out across mul-
tiple experiments involving focal lesions, disease, neuroimaging,
pharmacology, genetics, and deep brain stimulation on cognitive
processes.

In the following sections we present an overview of the first
two classes of models, their basic architecture and mathematical
groundwork, and novel insights they have provided into the func-
tions of the basal ganglia and related circuitry including empirical
experiments testing specific model predictions. Following these
overviews, we discuss how these classes of models can be related to
each other, both in theoretical and practical aspects. We conclude
by discussing the future of computational modeling in understand-
ing the functional organization of the basal ganglia and related
circuitry.

2. Neural network models of basal ganglia

By neural network models, we refer to a class of models in
which detailed aspects of neuronal function such as geometry of
an axon are abstracted, while other processes, such as membrane
potential fluctuations over time and dynamic ionic conductances
including activity-dependent channels, are simulated by coupled
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differential equations [24,58,54,55,126,83,81]. Thus these models
are far more biologically constrained than simple “connectionist”
models but less so than detailed biophysical models. This approach
provides a balance between capturing core aspects of underlying
neurobiology while allowing the network to scale up to a level
that is relevant to global information processing and behavior.
Different model neurons are used to simulate neurons with dif-
ferent firing properties, excitatory and inhibitory neurons, as well
as some basic neuromodulators such as dopamine and its post-
synaptic effects onto different receptor subtypes. Parameters of
these processes can be modified to capture different neuronal prop-
erties in different regions of the brain (e.g., striatum vs. globus
pallidus vs. thalamus [55]). Synaptic efficacy typically is simpli-
fied to a single modifiable “weight,” which reflects the extent
to which a presynaptic neuron will influence the activity of the
postsynaptic neuron. Mathematical and implementational details
of this modeling approach is outside the scope of the present
review; interested readers are referred to dedicated textbooks
[128,49], and to the specific basal ganglia model references cited
above.

2.1. Architecture of basal ganglia models

Broadly, we conceptualize the basal ganglia to be a system that
dynamically and adaptively gates information flow in frontal cor-
tex, and from frontal cortex to the motor system (see Fig. 1 for
a graphical overview of the model). The basal ganglia is richly
anatomically connected to the frontal cortex and the thalamocorti-
cal motor system, via several distinct but partly overlapping loops
[68,116,72]. This circuitry can facilitate or suppress action represen-
tations in the frontal cortex [110,58,54,24,4]. These representations
can range from simple actions to complex behaviors to cognitive
operations such as working memory updating. Representations
that are more goal-relevant or have a higher probability of being
correct or rewarded are strengthened, whereas representations
that are less goal-relevant or have a lower probability of reward
are weakened. Dopamine plays a key role in this process by mod-
ulating both excitatory and inhibitory signals in complementary
ways, which can have the effect of modulating the signal-to-noise
ratio [180,119,54].

Our models of this system includes the main architectural struc-
tures of the basal ganglia: striatum; globus pallidus, external and
internal segments (GPi and GPe); substantia nigra, pars compacta

(SNc); thalamus; and subthalamic nucleus (STN). This covers both
the classical “direct pathway”, which sends a Go signal to frontal
cortex, and the “indirect” pathway, which sends a NoGo signal to
frontal cortex [2,110,68,54]. However, as we shall see, our compu-
tational models go beyond the classical direct/indirect model to (a)
explore dynamics of this system as activity propagates through-
out the system and as a function of synaptic plasticity, neither of
which are evident in the static model and (b) incorporate more
recent anatomical and physiological evidence that is not in the
original model but which is essential for its functionality in action
selection.

The direct pathway originates in striatonigral neurons, which
mainly express D1 receptors and provide direct inhibitory input
to the GPi and SNr. We refer to activity in this pathway as “Go
signals” because when striatonigral cells are active, they inhibit
GPi, which in turn disinhibits the thalamus [33], and allows frontal
cortical representations to be amplified by bottom-up thalamo-
cortical drive. Note that this disinhibition process only enables the
corresponding column of thalamus to become active if that same
column also receives top-down cortico-thalamic excitation. This
means that the basal ganglia system does not directly select which
action to ‘consider’, but instead modulates the activity of already
active representations in cortex. This functionality enables cortex
to weakly represent multiple potential actions in parallel; the one
that first receives a Go signal from striatal output is then pro-
vided with sufficient additional excitation to be executed. Lateral
inhibition within thalamus and cortex act to suppress competing
responses once the winning response has been selected by the BG
circuitry.

Complementary to the direct pathway, the indirect pathway
originates in striatopallidal cells in the striatum which mainly
express D2 receptors and provide direct inhibitory input to the
GPe. We refer to activity in this pathway as sending a “NoGo sig-
nal” to suppress a specific unwanted response [2,54,110]. Because
the GPe tonically inhibits the GPi via direct focused projections,
striatopallidal NoGo activity removes this tonic inhibition, thereby
disinhibiting the GPi, allowing it to further inhibit the thalamus and
preventing particular cortical actions from being facilitated. In this
way, the model basal ganglia can facilitate (Go) or suppress (NoGo)
representations in frontal cortex. According to the model, specific
subpopulations of Go and NoGo units can specialize to represent
facilitation/suppression of actions in the context of particular sen-
sory inputs – so that different cells are activated for example when

Fig. 1. Left: Functional anatomy of the basal ganglia circuit, showing an updated model of the primary projections. In addition to the classic “direct” and “indirect” pathways
from Striatum to BG output nuclei originating in striatonigral (Go) and striatopallidal (NoGo) cells respectively, the revised architecture features focused projections from
NoGo units to GPe and strong top-down projections from cortex to thalamus. Further, the STN is incorporated as part of a newly discovered hyperdirect pathway (rather
than part of the indirect pathway as originally conceived), receiving inputs from frontal cortex and projecting directly to both GPe and GPi. Right: Neural network model of
this circuit, with four different responses represented by four columns of motor units, four columns each of Go and NoGo units within striatum, and corresponding columns
within GPi, GPe and thalamus. Fast spiking GABA-ergic interneurons (�-IN) regulate Striatal activity via inhibitory projections. For implementational details, see [54,55].
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facilitating the same action in two different environmental contexts
[54]. Note also that a given action can have both Go and NoGo repre-
sentations, and the probability that it will be selected is a function
of the relative Go–NoGo activation difference [54]. This is due to the
observation that Go and NoGo cells receiving from a given cortical
region (and thereby encoding a given action) originate in the same
striatal region, and terminate in the same region within GPi, where
topographical representations are maintained (e.g., [53,110,190]).
Neurons in the latter structure can then reflect the relative differ-
ence in the two striatal populations, which then influences the like-
lihood of disinhibiting the thalamus and in turn selecting the action.

Note that the above depiction omits the STN, classically thought
to be a critical relay station within the indirect pathway linking
GPe with GPi [2]. However, more recent evidence indicates that (a)
GPe neurons send direct inhibitory projections to GPi rather than
having to exert their control indirectly via STN; (b) these GPe–GPi
projections are more focused, allowing a specific response to be
suppressed, whereas those from STN to GPi projections are broad
and diffuse [110,130], perhaps providing a more global modulatory
function (see below).

This is not to diminish or discount the role of the STN. To the
contrary, recent evidence indicates that the STN should be consid-
ered part of a third “hyper-direct” pathway (so-named because it
bypasses the striatum altogether), rather than just a relay within the
indirect pathway. Indeed, the STN receives direct excitatory input
from frontal cortex, and sends diffuse excitatory projections to GPi
[117,118]. We refer to activity in the STN as sending a “Global NoGo”
signal because its diffuse excitatory effect on many GPi neurons
would prevent all responses, rather than just one, from being facili-
tated [55]. Simulations revealed that these signals are dynamic: The
Global NoGo signal is observed early during response selection, pre-
venting any response from being selected prematurely, but as STN
activity subsides, a response is then more likely to occur. This tran-
sient burst in STN activity is consistent with that observed in vivo
[173,105]. Moreover, in the model, the initial Global NoGo signal
is adaptively modulated by the degree of cortical response conflict:
Greater activation of multiple competing cortical motor commands
is associated with greater STN excitatory drive and a pronounced
Global NoGo signal, enabling the striatum to take more time to “set-
tle” and integrate over noisy intrinsic activity to choose the best
response [55,21]. Without this STN functionality, the BG network is
more likely to make premature responses, often settling on the sub-
optimal choice, particularly when there is a high degree of response
conflict [55]. Such premature responding is observed in rats with
STN lesions [11,10].

Dopamine plays a special modulatory role in the basal gan-
glia. At D1 receptors in the striatum, dopamine is thought to act
as a contrast-enhancer, increasing activity on highly active cells
while decreasing activity on less active cells [77]. This has the
effect of amplifying the signal (highly active cells) while simultane-
ously decreasing the noise (less active cells [54]). At D2 receptors,
dopamine is inhibitory, regardless of the amount of activity in the
cells [78]. Because D1 receptors are expressed in great abundance
on Go cells whereas D2 receptors are expressed in great abundance
on NoGo cells [65], elevated dopamine has the net effect of facilitat-
ing synaptically driven Go activity while inhibiting NoGo activity.
In contrast, low levels of dopamine would decrease the signal-
to-noise in Go cells while freeing the NoGo cells from inhibition.
This conceptualization explains why reduced dopamine levels as
in Parkinson’s disease results in over-activation of the NoGo path-
way [158,150] and slowness of movement, similar to the original
proposal [2]. Moreover, in the context of our dynamic model, these
effects of dopamine on Go and NoGo activity are particularly rele-
vant for reinforcement learning [54,63,24], and can have important
implications for how the basal ganglia system can learn which rep-

resentations to facilitate and which to inhibit, as discussed in the
following section.

2.2. Reinforcement learning in basal ganglia models

Synaptic weights between neurons can change dynamically over
time and over experience, forming the basis of learning. Weights
between units that are strongly and repeatedly co-activated
become stronger (as in long-term potentiation; LTP), otherwise
weights between units do not change or become weakened
(as in long-term depression; LTD). The presence and timing of
dopamine release strongly modulates these effects in the stria-
tum [17,135,90,136,26,25,32]. Indeed, the primary mechanism of
learning in the basal ganglia model is dependent on dopaminergic
modulation of cells already activated by corticostriatal glutamater-
gic input.

Specifically, dopaminergic neurons in the SNc famously fire in
phasic bursts during unexpected rewards, and firing drops below
tonic baseline levels when rewards are expected but not received
[144,13]. In the model, SNc dopamine bursts are simulated when
the model selects the correct action (depending on the nature of
the task). As a result, activated Go units are further potentiated such
that the weights to these Go units from sensory and premotor cor-
tex are increased. This means that the next time the same sensory
stimulus is presented together with the associated premotor corti-
cal response, these same Go units are likely to become active and
facilitate the same rewarding response. In contrast, weakly active
Go units are suppressed. These effects are mediated via simulated
D1 receptors, consistent with the aforementioned physiological
data.

Further, when the model receives a dip in dopamine (i.e., a
lack of reward when one is expected [144,13]), a complemen-
tary process occurs. In this case, NoGo units, which are normally
inhibited by dopamine via simulated D2 receptors, now become
more activated by their cortical glutamatergic inputs. Indeed, stri-
atopallidal neurons receive stronger projections from frontal cortex
and show particularly enhanced excitability to cortical stimulation
[18,19,95,100]. Critically, transiently enhanced NoGo unit activity is
associated with long-term potentiation (via similar Hebbian learn-
ing principles), such that the next time the model is faced with
the same sensory stimulus and potential response, that response is
more likely to be suppressed. Thus, phasic dips in dopamine induce
learning to avoid particular actions in the presence of particular
stimuli [54]. Recent studies support this basic model prediction,
showing that whereas synaptic potentiation in the direct pathway
is dependent on D1 receptor stimulation, potentiation in the indi-
rect pathway is dependent on a lack of D2 receptor stimulation
[149,191]. In contrast, when DA levels are high, the stimulation of
D2 receptors leads to weakening of synapses [32,149]. Thus, avail-
able data suggest that elevated DA levels (e.g., during phasic bursts)
potentiates Go learning but weakens NoGo learning, whereas low
DA levels (during dips) have the opposite effect, as predicted by the
model [54].

It is through this push–pull mechanism that the basal ganglia
model can learn to select actions or reinforce frontal cortical repre-
sentations that are more likely to lead to reward or correct feedback,
while simultaneously reducing the probability that incorrect or
nonrewarding actions or representations are less likely to occur.
The presence of learning in both pathways allows the model to
enhance contrast between different stimulus-reinforcement prob-
abilities, making it easier to discriminate between, say, a choice
that is 60% versus 40% rewarding. Models learning only to increase
and decrease synaptic weights in just the Go pathway were less
able to make these subtle discriminations in complex probabilis-
tic environments [54]. In dual pathway models, a 60% response is



Author's personal copy

M.X. Cohen, M.J. Frank / Behavioural Brain Research 199 (2009) 141–156 145

represented in both Go and NoGo pathways, and recall that the BG
output (GPi) computes the relative activation differences for each
response. Thus the net effect on GPi (ignoring nonlinearities for
simplicity) is 60 − 40 = 20%. Similarly, a 40% response in GPi would
have greater NoGo than Go and therefore would be represented
as −20%. The net difference between the two responses, which in
reality is 20%, has been contrast-enhanced to 40% at the BG output.

2.2.1. Do dopamine ‘dips’ contain sufficient information for
learning?

Baseline firing rates of dopamine neurons are low – generally
around 5 Hz. Thus, while increases in firing rate can scale upward
with larger magnitudes of prediction errors, they cannot scale
downwards with negative prediction errors (since neurons cannot
have negative firing rates). This led to the question of whether sep-
arate non-dopaminergic mechanisms in the brain are required to
code negative prediction errors [46,12]. However, recent empirical
work suggests that, rather than change in firing rate, the duration of
the dopamine neuron pause during reward omissions might con-
tain information about the magnitude of the negative prediction
error [13]. This is interesting in light of the fact that D2 receptors
in the striatum are highly sensitive to small changes in dopamine,
in part because most D2 receptors are high-affinity [137]; thus, dif-
ferences in the pause duration might have detectable downstream
effects [56,60].

Recall that the model requires a lack of D2 receptor stimulation
to potentiate NoGo units and to promote learning, as supported
by recent data [149]. Thus, longer pause durations provide more
time for dopamine transporters to remove DA from the synapse,
increasing the likelihood that neurons expressing D2 receptors
will become disinhibited. This account is particularly plausible
in dorsal striatum, where there are many dopamine transporters
and the half-life of dopamine in the synapse is roughly 55–75 ms
[155,70,167]. This means that longer duration pauses (>200 ms)
would give sufficient time for dopamine to be virtually absent,
and would allow NoGo units to become disinhibited (in contrast
to ventral striatum, and especially prefrontal cortex, in which the
time-course of reuptake may be too slow for phasic dips to have any
functional effect). Further, depleted striatal dopamine levels, as in
Parkinson’s disease, would actually enhance this effect. Although
tonic dopamine levels are already low, the resulting D2 receptor
supersensitivity [146], together with enhanced excitability of NoGo
cells in the DA-depleted state [158,150], would facilitate the postsy-
naptic detection of DA pauses (such that perhaps they do not have
to be as long in duration to be detected). Indeed, recent studies
demonstrate enhanced potentiation of NoGo synapses as a result
of DA depletion in a mouse model of Parkinson’s disease [149].

2.2.2. Plasticity in cortical system: from actions to habits
Finally, the model also captures plasticity directly in the cortico-

cortical pathway from sensory to premotor cortex. As responses
are made to particular stimuli, simple Hebbian learning occurs
such that the same premotor cortical units are likely to become
active in response to this same stimulus in the future, independent
of whether that response is rewarded or not [54,56]. This effect
allows the cortical units to identify candidate responses based on
their prior frequency of choice, providing an initial “best guess”
on the suitability of a given action which can then be facilitated
or suppressed by the BG based on Go/NoGo reinforcement values.
Once these cortical associations are strong enough, they may not
need be facilitated by the BG at all, consistent with data suggesting
that striatal dopamine is necessary for initial acquisition of learned
behaviors, but much less so for their later expression [153,131].
Similarly, inactivation of the dorsal striatum impairs execution of a
learned task, but this effect is minimal once the behavior has been

ingrained [7]. According to the model, habit learning is dependent
on the striatal dopamine system for acquiring responses that lead
to rewards, but its expression is mediated by more direct cortico-
cortical associations (which, if strong enough, do not require the
additional striatal “boost”). Note that this cortical learning implies
that eventually premotor cortical areas participate in reward-based
action selection themselves – such that responses chosen often in
the past immediately take precedence over other options, prior to
any facilitation by the BG.

2.3. Limitations and comparison with anatomy of real brains.

Our model is far from capturing all the interesting complexity
associated with real basal ganglia circuits. Indeed, the basal gan-
glia are considerably more complex than what is described in the
above paragraphs. Although we have simulated various dynamic
and anatomical projections that are not part of the classical model,
our model nevertheless continues to be highly simplified, and for
any model it is always legitimate to question whether these simpli-
fied principles are relevant for the real system. Here we summarize
some of the challenges to the framework.

2.3.1. Are Go and NoGo pathways truly segregated?
Despite the success of the classical BG model in providing a pre-

dictive framework for interpreting several patterns of data across
multiple levels of analysis, there have been several challenges to the
basic tenets of the model. First, the model relies on the segregation
of D1 and D2 receptors in striatonigral and striatopallidal neurons
[65–67,20,97,84,8]. Earlier challenges suggested that, in fact, D1 and
D2 receptors are co-localized on the same neurons, even if this co-
localization is small relative to the overall expression of one or the
other receptor type [159,1]. More recent advances, most notably
with transgenic mice, have all but put to rest this concern [158].
Nevertheless, a remaining critical challenge is that efferent projec-
tions of striatonigral and striatopallidal neurons themselves may
not be as clearly segregated as they are in the model. In fact, it
appears that although ‘striatopallidal’ cells exist that project solely
to GPe (NoGo cells, in the parlance of our model), many ‘stria-
tonigral’ (Go cells) also have axon collaterals projecting to GPe
[88,101,183]. On the surface this seems to challenge the idea that ‘Go
cells’ function as such, given that they also project to GPe. However,
we argue that this setup is actually useful for ensuring that the acti-
vation of the Go pathway remains transient, and implies that the GPi
computes the temporal derivative of Go signals rather than raw Go
signals [55]. That is, because direct projections from striatum to GPi
are monosynaptic whereas those to GPe and then GPi are polysy-
naptic, Go signals will first disinhibit the thalamus, followed by a
delayed re-inhibition of the thalamus via the GPe route. This type
of system is amenable to rapid facilitation and subsequent inhibi-
tion of representations, which would be relevant if a sequence of
motor commands or items in working memory had to be activated
in succession.

2.3.2. Role of striatal interneurons
For simplicity, our model does not explicitly incorporate func-

tions of cholinergic (tonically active) interneurons, and we are
only beginning to explore the role of GABA-ergic (fast-spiking)
interneurons (Fig. 1), which together make up 5% of striatal neurons
[164,68]. The relatively small proportion of these cell types does
not necessarily diminish their potential functional significance.
For example, cholinergic interneurons are known to be deeply
involved in reward-based learning, and they respond dynamically
to stimuli as they become predictive of reward [178,3]. Cholinergic
neurons also play a permissive role in striatal long-term plastic-
ity changes [31] and appear to indirectly mediate some effects
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of dopamine-induced plasticity [171]. Recent evidence suggests
that acetylcholine and dopamine may play a cooperative role in
reward-based learning: during salient events, midbrain dopamine
cells and striatal cholinergic cells respond during the same tem-
poral window, but only the dopamine cells fire in proportion to
reward probability [112]. It was argued that the pause in choliner-
gic firing may serve as a “temporal frame” that determines when
to learn based on the magnitude of the dopaminergic signal. Fur-
ther, [44] suggested that the cholinergic pause provides a contrast
enhancement effect that discriminates between tonic and phasic
dopaminergic states, effectively enhancing learning due to both
dopamine bursts and dips. This effect partially arises due to presy-
naptic effects of acetylcholine on dopamine release via nicotinic
receptors [44]. Thus, it is possible that whereas dopamine facilitates
what to learn, cholinergic interneurons facilitate when to learn.

Although none of these effects is simulated at the biophysical
level in our model, we nevertheless implicitly incorporate some
of them. That is, the equations that govern learning in our model
amount to a form of contrastive Hebbian learning in which the effects
of phasic dopamine signals on Go/NoGo activity are computed rel-
ative to those in the immediately preceding states (during which
dopaminergic signals are tonic). Thus this mechanism automat-
ically ensures that learning occurs during the correct temporal
window and also provides a contrast between tonic and phasic
states; both of these functions may be supported by the pause in
cholinergic firing, as proposed above [112,44]. Nevertheless, it is
undoubtedly the case that these interactions are considerably more
complex, and may benefit from more explicit simulation.

2.3.3. Thalamic back-projections
In addition to the recurrent projections between thalamus and

frontal cortex, and the feedforward projections from GPi to tha-
lamus, there are also often-neglected back-projections from the
parafasicular thalamus to both the striatum and the subthala-
mic nucleus (e.g., [113,30]). Given that thalamostriatal projections
synapse primarily on cholinergic interneurons and regulate cholin-
ergic efflux [96,188], it is possible the parafasicular thalamus
provides an alerting signal during salient events that induces a
pause in cholinergic firing and promotes learning. Further, pre-
liminary (unpublished) simulations in our model suggest that
back-projections from thalamus to the STN [30] might play a role
in terminating a motor response once it has been disinhibited.

2.3.4. Ventral versus dorsal striatum
Although the striatum in our and in several other models

appears as a unitary structure, it in fact comprises several sub-
regions. These subregions follow a ventromedial to dorsolateral
gradient, with afferents from a roughly parallel gradient in the
cortex [72,35]. Although precise boundaries between subregions
can be difficult to define based on cytoarchitectonic proper-
ties [169,103], subregions can be delineated by their patterns
of input/output fibers [73], and, in some cases, by functional
dissociations [27,133,7,122]. Dorsal striatal regions are richly inter-
connected with dorsal prefrontal regions, and therefore are thought
to play a central role in modulating cognitive operations such as
working memory updating [58,38,138]. In contrast, ventromedial
regions, including the nucleus accumbens, are more implicated
in reinforcement-guided learning and addiction-related processes
[28,52,93]. Further distinctions can be made within the nucleus
accumbens, between the shell and core regions.

One classic interpretation of the ventral/dorsal functional dis-
sociation in the realm of reinforcement learning has been that
between the “critic” and the “actor” [85,82]. The critic, played by
the ventral striatum, evaluates whether the current environmen-
tal state is predictive of reward, and learns to do so by experiencing

rewards in particular states. Changes in phasic dopamine responses
during unexpected rewards (or lack thereof) are thought to drive
learning in the critic so that its predictions are more accurate in
the future. In contrast, the actor – played by the dorsal striatum
– determines which actions to select, and learns to do so via these
same phasic dopamine signals following the execution of particular
actions, such that it develops action-specific value representations.
(Note that once the critic has learned, it will generate a dopamine
burst when encountering an environmental state that is predic-
tive of future reward, which serves to train the actor to produce
actions that produced this state – even if they don’t immediately
precede reward itself.) Although evidence exists in favor this view-
point [85,122], the story is likely to be more complex [7].

Based on the modeling framework presented above, we would
argue that different subregions of the striatum engage in similar
computations and interactions with frontal cortex, but that the kind
of information that is processed in different regions depends on the
subregion of frontal cortex with which the striatal subregion inter-
acts (see also [174]). For example, because the dorsal striatum is
most densely innervated by dorsal and lateral prefrontal regions,
it might gate information flow related to processes engaged by
dorsolateral prefrontal cortex, namely working memory, planning,
cognitive control, etc. [58,126]. In contrast, the ventral striatum,
with dense connectivity from the orbitofrontal cortex and ventro-
medial prefrontal cortex, might gate information regarding reward
and motivation [56]. Other parts of the accumbens are likely to
be involved in learning which environmental states (both exter-
nal and internal) are associated with reward so that they can drive
dopamine signals and train the actor [127,22].

More recently, O’Reilly and colleagues have proposed an
expanded model of the neurobiological mechanism of dopamine-
mediated learning. In the PVLV (primary value-learned value)
model [127], the single node that corresponded to the SNc is now a
network of regions including the ventral striatum, lateral hypotha-
lamus, central nucleus of the amygdala, and SNc. The primary value
(PV) system, mediated by patch-like striosomal neurons in the
ventral striatum, is responsible for learning when unconditioned
rewards will occur, and act to cancel out the dopamine burst when
these are expected (due to inhibitory projections from striosomes
into SNc and VTA [86]). The activity resulting from the PV system
matches the initial increase and subsequent decrease of dopamine
neuron activity as animals learn to anticipate primary rewards.

The learned value (LV) system of the model learns to assign
reward value to arbitrary stimuli that are predictive of later reward
(i.e., conditioned stimuli). Learning in this system occurs only if an
external reward is present or the PV system expects primary reward
– that is LV learning is gated by PV activation. In this way, the LV
system can express generalized reward value at times during which
no reward is present in the environment (in contrast, the PV sys-
tem always learns about rewards or their absence and so does not
express reward values in advance of their occurrence). The LV is
represented by the central nucleus of the amygdala, which is heav-
ily involved in reward learning and sends excitatory projections
to midbrain dopamine neurons. This system is more biologically
plausible than previous mathematical estimations of the midbrain
dopamine system’s functioning using temporal difference learning,
and is more robust than that system under certain circumstances
(e.g., stimulus-reward timing variability and sensitivity to interven-
ing distracting stimuli [127]).

In sum, despite the incompleteness of our computational model,
brains are more than the sum of their complex synaptic, neural,
and chemical parts: brains can learn and engage in an impressive
array of cognitive and behavioral processes. In this sense, the mod-
eling approach described above is biologically relevant, because, as
detailed in the next section, the model can produce outputs that are
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similar to those of biological organisms, and the model’s behavior
is modulated from simulations of drugs, disease states, and genetic
variation. Thus, the purpose of the neural network approach to
modeling is not to capture every known aspect of the neurobiol-
ogy of the basal ganglia, but instead to relate the key elements of
basal ganglia neurobiology to cognitive and behavioral processes.

In the next section, we describe some of the predictions of the
model that have been confirmed by empirical results.

2.4. Empirical evidence for predictions from basal ganglia models

This basal ganglia model makes several testable and falsifiable
predictions regarding behavioral and neural responses during rein-
forcement learning, and how those responses should be modulated
by drug, disease, or genetic states. The initial model was designed
to be constrained by physiological and anatomical data, but also to
account for cognitive changes resulting from Parkinson’s disease
and medication states, including complex probabilistic discrimina-
tion between reinforcement values and reversal [54], and the role
of the subthalamic nucleus in high-conflict decisions [55].

2.4.1. Dopaminergic modulation of Go and NoGo learning
At the neural level, the model predicted the existence of sep-

arate striatal populations that code for positive and negative
stimulus–response action values. Such neurons have since been
reported in monkeys [139], although it remains to be determined
whether these correspond to the Go and NoGo units (i.e., stria-
tonigral vs. striatopallidal), but synaptic plasticity studies support
the model’s predictions regarding how these separate populations
might emerge via differential D1 and D2 receptor mechanisms for
potentiating synapses in Go and NoGo synapses [149].

At the behavioral level, monkeys’ ability to speed reaction
times to obtain large rewards (requiring Go learning in our model)
is dependent on striatal D1 receptor stimulation, whereas the
tendency to slow down for smaller rewards (NoGo learning)
is dependent on D2 receptor disinhibition [115]. Similarly, our
computational model has simulated a constellation of reported
findings regarding D2 receptor antagonism effects on expression
of catalepsy in rodents, as a form of NoGo learning, including sen-
sitization, context dependency, and extinction [175].

In humans, a direct model prediction is that the ability to
learn from positive versus negative feedback should depend on Go
and NoGo learning, the balance of which depends on the level of
dopamine. Phasic bursts of dopamine promote Go learning from
positive feedback, whereas phasic dips promote NoGo learning
from negative feedback [54]. If these phasic levels of dopamine
were modulated or compromised by disease or pharmacology, the
way that individuals learn from positive versus negative feedback
should likewise be modulated. Patients with Parkinson’s disease
provide an opportunity to test these hypotheses: these patients
have reduced dopamine signaling when off their medication, but
enhanced dopamine levels when on their medication. Previous
research has found that Parkinson’s patients are impaired at rein-
forcement learning as a function of feedback [161,152,39,41], linked
to low levels of dopamine in the striatum and prefrontal cortex. One
might therefore expect that dopamine medication would improve
performance in these patients. Curiously, however, performance
can be improved or impaired depending on which cognitive task
is used [42,151,54,63].

The computational model might help clarify this apparent
inconsistency. Specifically, the model predicts that dopamine levels
should differentially affect learning from negative versus posi-
tive feedback (Fig. 2). When patients are off their medication,
they should learn better from negative than from positive feed-
back, because low levels of dopamine activate the NoGo pathway

(e.g., [158]), and, together with D2 receptor supersensitivity, may
facilitate the detection of DA dips, but prevent the Go pathway
from being sufficiently activated during rewards. In contrast, when
patients are on their medication, presynaptic dopamine synthesis
increases [163,132]. Moreover, chronic administration of levodopa
(the main DA medications used to treat PD) has been shown to
increase phasic (spike-dependent) DA bursts [75,176,89], and the
expression of zif-268, an immediate early gene that has been linked
with synaptic plasticity [92], in striatonigral (Go), but not striatopal-
lidal (NoGo) neurons [29]. Thus, the model predicts that medication
improves positive feedback learning in the Go pathway. Interest-
ingly, the same model predicts that dopamine medication will
impair the ability to learn from negative feedback: because the
medication continually stimulates D2 receptors,1 they effectively
preclude phasic pauses in DA firing from being detected when
rewards are omitted [54].

This pattern of results was recently confirmed in Parkinson’s
patients who tested on and off their medication in a probabilis-
tic reinforcement learning paradigm in which some choices had
greater probabilities of being associated with positive and negative
feedback [63] (Fig. 2). Patients off their medication learned bet-
ter from negative than from positive feedback, whereas patients
on medication learned better from positive than from negative
feedback. These effects were also produced when DA depletion
and medications were simulated in the model [63,61], and have
been replicated using a different paradigm in a different lab [40].
Moreover, they are in striking accord with the synaptic plastic-
ity studies described above, in which DA depletion was associated
with reduced D1-related potentiation of Go synapses but enhanced
D2-related potentiation of NoGo synapses, whereas D2 agonist
administration reversed the potentiation of NoGo synapses [149].
Notably, similar patterns of behavioral results (enhanced Go but
reduced NoGo learning) have been reported in mice with genetic
knockouts of the dopamine transporter, who have elevated striatal
dopamine levels [43]. All of these findings confirm that dopamine
is critically involved in learning not only from positive but also
negative prediction errors.

This same modulation of probabilistic Go and NoGo learning has
also been observed in young, healthy college students who took
small doses of dopamine agonists and antagonists [60] (Fig. 2). Fur-
ther, aged adults (older than 70 years of age), who have striatal
DA depletion and damage to DA cell integrity [9,87,94], showed
selectively better negative feedback learning than their younger
counterparts (60–70 years of age), consistent with the Parkinson’s
findings [57]. The opposite pattern of results was seen in adult
ADHD participants, who showed better positive than negative feed-
back learning while on stimulant medications [62] (Fig. 2), which
block the dopamine transporter and elevate striatal DA [168,104].
In sum, across a wide range of populations and manipulations,
increases in striatal dopamine are associated with relatively bet-
ter Go learning and especially, worse NoGo learning, whereas
decreases in striatal dopamine is associated with the opposite pat-
tern.

Behaviorally, the model suggests that having independent Go
and NoGo pathways improves probabilistic discrimination between
different reinforcement probabilities. That is, networks learning
only from positive feedback or only from negative feedback do
not produce as robust learning as those receiving both positive
and negative feedback (even if the number of feedback trials is
equated). Such a pattern was recently found in a basal ganglia-

1 This assumption most clearly applies to D2 agonist medications taken by the
majority of patients, but also potentially by levodopa, which may increase tonic DA
release in addition to phasic bursts.
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Fig. 2. (a) Probabilistic selection reinforcement learning task. During training, participants select among each stimulus pair. Probabilities of receiving positive/negative
feedback for each stimulus are indicated in parentheses. In the test phase, all combinations of stimuli are presented without feedback. “Go learning” is indexed by reliable
choice of the most positive stimulus A in these novel pairs, whereas “NoGo learning” is indexed by reliable avoidance of the most negative stimulus B. (b) Striatal Go and
NoGo activation states when presented with input stimuli A and B, respectively. Simulated Parkinson’s (Sim PD) was implemented by reducing striatal DA levels, whereas
medication (Sim DA Meds) was simulated by increasing DA levels and partially shunting the effects of DA dips during negative feedback. (c) Behavioral findings in PD patients
on/off medication supporting model predictions [63]. (d) Replication in another group of patients, where here the most prominent effects were observed in the NoGo learning
condition [61]. (e) Similar results in healthy participants on dopamine agonists and antagonists modulating presynaptic DA (pDA) and (f) adult ADHD participants on and off
stimulant medications. (g) and (h) Individual differences in Go/NoGo learning in college students are predicted by genes controlling striatal D1/D2 function.

dependent probabilistic learning task [6], in which it was concluded
that the dual pathway Go/NoGo model is required to capture the
basic behavioral findings.

Although we have found in our probabilistic reinforcement
paradigm that on average healthy individuals learn equally well

from positive and negative feedback, there are nevertheless sub-
stantial individual differences in these measures, such that some
participants are “positive learners” and some are “negative learn-
ers” [64]. We hypothesized that at least some of this variability may
be due to genetic factors controlling striatal dopaminergic func-
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Fig. 3. (a) Subthalamic nucleus contributions to model performance in the probabilistic selection task. While not differing from intact networks in selection among trained
low-conflict discriminations (80 vs. 20 and 70 vs. 30), STN lesioned networks were selectively impaired at the high conflict selection of an 80% positively reinforced response
when it competed with a 70% response. The model STN Global NoGo signal prevents premature responding when multiple responses are potentially rewarding, increasing
the likelihood of accurate choice [55]. (b) Behavioral results in Parkinson’s patients on and off DBS, confirming model predictions. Response time differences are shown for
high relative to low conflict test trials. Whereas healthy controls, patients on/off medication (not shown) and patients off DBS adaptively slow decision times in high relative
to low conflict test trials, patients on DBS respond impulsively faster in these trials (adapted from [61]).

tion. To test this hypothesis, we collected DNA from 69 healthy
participants and tested them with the same probabilistic reinforce-
ment learning task [59]. If individual differences in Go learned
are attributed to D1 function and NoGo learning to D2 func-
tion, genetic factors controlling striatal D1 and D2 efficacy may
be predictive of such learning. Because there is not yet a genetic
polymorphism shown to preferentially affect striatal D1 receptors,
we analyzed instead a polymorphism that controls the protein
DARPP-32, which is heavily concentrated in the striatum, and is
required for D1-dependent plasticity and reward learning in ani-
mals [129,170,25,154]. Furthermore, in humans, the only brain area
that was functionally modulated according to DARPP-32 genotype
was the striatum, and its functional connectivity with frontal cor-
tex [109]. We also analyzed a polymorphism within the DRD2 gene,
which codes for postsynaptic striatal D2 receptor density [79]. Strik-
ingly, we found that individual differences in DARPP-32 genetic
function, as a surrogate measure of striatal D1-dependent plastic-
ity, were predictive of better positive feedback learning, whereas
individual differences in DRD2 function, as a measure of striatal D2
receptor density, were predictive of better negative feedback learn-
ing [59] (Fig. 2). This latter effect was also found independently by
another group [91], who analyzed a different DRD2 polymorphism.
Moreover, the Go/NoGo learning effects were specific to striatal
genetic function, as a third gene coding primarily for prefrontal
dopaminergic function [166], was not associated with Go or NoGo
incremental probabilistic learning, but instead – and in contrast to
the striatal genes – was predictive of participants’ working memory
for the most reinforcement outcomes [59]. This working memory
effect is consistent with other detailed computational models sug-
gesting that prefrontal dopamine is critical for robust maintenance
of information in an active state [51], and that parts of prefrontal
cortex support working memory for reward values, guiding trial-to-
trial behavioral adaptions and complementing the incrementally
learning basal ganglia system [56].

Such clear genetic findings – where distinct polymorphisms
having different functional brain effects are associated with disso-
ciable cognitive functions – are rare in the literature, and without a
computational model, it is unlikely that these specific genes would
have otherwise been analyzed in the context of these specific types
of decisions. Nevertheless, the nature and direction of the prefrontal
dopaminergic genetic effects, despite being consistent with the
general role of prefrontal cortex in rapid trial to trial adaptations,
were inconsistent with our existing model of the role of DA in that
system [56], which will lead us to revisit and refine that model (i.e.,
such that prefrontal DA plays a role closer to that suggested by [51].)

2.4.2. Subthalamic nucleus in high-conflict decisions
The basal ganglia model also makes predictions for other non-

dopaminergic and non-learning aspects of decision-making. As
described in a previous section, the STN projects diffusely to BG
output nuclei (GPi and GPe), and receives direct excitatory input via
the hyperdirect pathway from dorsomedial frontal cortex [117,4].
The model implicates the STN in preventing impulsive decisions,
by dynamically (and transiently) adjusting decision thresholds as
options are being considered [55]. Such a role would be evident
when making decisions involving a high degree of response con-
flict (see Fig. 3a). Neuroimaging studies support this conclusion,
whereby increased co-activation between dorsomedial frontal cor-
tex and STN is associated with increasingly slowed response times
in high but not low conflict conditions [4].

To demonstrate that the STN provides a critical (rather than
correlational) role in slowing responses under conflict, it has to
be manipulated. Parkinson’s patients with deep brain stimulators
(DBSs) implanted into the STN provide a unique window into the
role of the STN in human conflict-related decisions. These stimu-
lators provide electrical current into the STN at abnormally high
frequency and voltage, disrupting STN function, effectively act-
ing like a lesion (or like adding noise to the system, preventing it
from responding naturally to its cortical inputs) [15,16,108]. How-
ever, this virtual lesion is temporary, because the stimulator can be
turned on or off by a physician. While the stimulator is switched
on, many of the motor-related symptoms of Parkinson’s disease
are sharply diminished; within minutes to an hour after the stim-
ulator is switched off, symptoms return. In a recent study, Frank
and colleagues tested these patients in a reinforcement learning
task on and off stimulation, and compared their performance to
another group of patients on and off dopaminergic medication [61].
High conflict decisions were defined as those choices in which
the probability of reinforcement between the two options dif-
fered only subtly (e.g., one option had an 80% chance of being
rewarded whereas the other had a 70% chance), whereas low con-
flict decisions were characterized by choices involving disparate
reinforcement probabilities (e.g., 80% vs. 30%).

Typically, when faced with these high-conflict choices, response
times slow down; this pattern was observed in healthy controls, in
patients off and on medication, and in patients off DBS. Notably,
patients on DBS failed to slow reaction times with increased deci-
sion conflict (Fig. 3b). Moreover, patients on DBS actually responded
faster to high than to low conflict choices. These speeded high con-
flict decision times were even more exaggerated when patients
selected the suboptimal choice (that with lower reinforcement



Author's personal copy

150 M.X. Cohen, M.J. Frank / Behavioural Brain Research 199 (2009) 141–156

probability [61]), suggesting that the stimulation disrupted the
STN’s ability to provide a global NoGo signal during high-conflict
decisions. Further, when the model was given a STN lesion or when
simulated high frequency DBS was applied, it produced the same
pattern of results. Together with the medication effects reported
above (and replicated in the 2007 study), these findings reveal a
double dissociation of treatment type on two aspects of cogni-
tive decision-making in PD: dopaminergic medication influences
positive/negative learning biases but not conflict-induced slowing,
whereas DBS influences conflict-induced slowing but not posi-
tive/negative learning biases.

In sum, although our neural model is simplified relative to
the complexity of real basal ganglia circuitry, and abstracts away
a host of biophysical and molecular mechanisms, the modeling
endeavour has proved to be a valuable tool in developing explicit
testable and falsifiable hypotheses, which directly led to empiri-
cal experiments providing support for several of these predictions.
Nevertheless, we acknowledge that some of the detailed mecha-
nisms by which our model functions, while neurally plausible, are
likely over-simplified. We look forward to further refinements and
challenging data that will cause us to revisit some of the basic
mechanisms.

3. Abstract models of action selection and learning

In contrast to the neural network models described in the
previous section, abstract models typically do not capture neuro-
biological or neuroanatomical processes, but instead focus on the
nature of cognitive operations that might lead to specific behav-
ioral outputs, such as learning and decision-making. Although these
models have been linked to neurobiological events, and in some
cases, incorporate specific neural processes such as the effects
of dopamine [182,34], these models typically are not constrained
by known biological limitations (incorporating neither anatomy
nor physiology). Nonetheless, by adapting a ‘top-down’ functional
approach, these models have proven valuable in uncovering the
cognitive mechanisms of reward-guided learning and decision-
making, and have made several strides in linking these mechanisms
to the neurobiology of the basal ganglia, prefrontal cortical, and
dopamine systems [34,111,47,122].

3.1. The math behind the models

We focus on models that have been used most extensively
in understanding basal ganglia functioning. The basic learning
mechanism behind these reinforcement learning models can be
summarized semantically by Thorndike’s Law of Effect [165]: “Of
several responses made to the same situation, those which are
accompanied or closely followed by satisfaction to the animal will,
other things being equal, be more firmly connected with the sit-
uation, so that, when it recurs, they will be more likely to recur;
those which are accompanied or closely followed by discomfort to
the animal will, other things being equal, have their connections
with that situation weakened, so that, when it recurs, they will be
less likely to occur. The greater the satisfaction or discomfort, the
greater the strengthening or weakening of the bond.”

In other words, actions associated with positive feedback are
more likely to be repeated, whereas actions associated with neg-
ative feedback are less likely to be repeated. In models, different
actions may be represented with “Q values”; the larger the Q value
relative to that of other actions, the more likely the model is to select
that action. Nevertheless, the choice function “policy” is typically
probabilistic, such that sometimes other choices with lower Q val-
ues are selected. This ensures that the model occasionally explores

alternative actions, thus avoiding situations in which other deci-
sion options provide higher rewards but are not selected because
the model is stuck continually choosing one decision option (i.e., a
local minimum) [160]. The most common choice function used is
termed softmax because it assigns a higher probability of choosing
the action with the maximum Q value, but the arbitration between
Q-values is soft, such that those with only slightly smaller values
are almost as likely to be chosen. The slope of the softmax func-
tion determines the degree to which maximum Q values are chosen
versus the probability of making an exploratory choice [160,48,59].

To learn which Q values lead to the highest rewards, Q values
are adjusted following reinforcements. The most commonly used
method for updating Q values is through a reward prediction error,
which is the difference between an expected and received reward:
ı = r − Q , where ı is the prediction error, r is the reward, and Q
is the value of the weight corresponding to the action selected.2

This prediction error term might reflect phasic activity of mid-
brain dopamine neurons, described in more detail below [157].
Thus, when rewards that follow particular actions are greater than
the reward expected from that particular action (i.e., the Q value),
the prediction error is positive; when rewards are received exactly
as expected, the prediction error is zero; and when rewards are
smaller than those expected, the prediction error is negative. These
prediction errors then adjust the Q value in the subsequent trial:
Q (t + 1) = Q (t) + ı, where t refers to a trial. Q values that led to
rewards (punishments) are strengthened (weakened), thus becom-
ing more (less) likely to be selected in subsequent trials. Thus, the
Q value updating equation can be seen as a concise mathemati-
cal representation of part of Thorndikes Law of Effect. Note that
prediction error terms are multiplied by a learning rate, which
scales the impact of the prediction error on the subsequent Q value:
Q (t + 1) = Q (t) + ˛ ∗ ı.

The learning rate describes the degree to which the prediction
error adjusts the Q values, and might correspond to the relative
number of AMPA receptors that are mobilized from a single learning
experience. These learning rates might also differ among differ-
ent brain regions. For example, the hippocampal learning system is
capable of rapid, single trial learning (high learning rate), whereas
the basal ganglia learning system learns by integrating more slowly
over time, thus utilizing a lower learning rate. Thus, one important
computational issue is determining when to use systems with high
versus low learning rates. Some have proposed that the amount of
uncertainty plays a role in determining the learning rate [14,47,187].

Learning Q values might also help explain how we form habits, as
is formalized in “Advantage learning” [50]. Advantage learning the-
ory states that actions are chosen when the value associated with
that action exceeds the average value of the entire set of possible
actions at that state (e.g., point in time). Over time, as agents learn
optimal response strategies, the advantage of a particular action
declines because the overall value of that action state increases.
At that point, action selection becomes more automatic, and a
stimulus–response habit is formed. Our neural models also show
a similar transition from choosing actions according to rewards
to choosing actions by habit. In our neural models, this transition
occurs gradually over many trials through slow Hebbian learning
in cortico-cortical projections, as described above.

2 In more sophisticated algorithms the prediction error takes into account not
only the current reward but also the predicted reward for future trials, based on
prior learning, and where rewards further into the future are discounted [172]. This
function is important for allowing a reinforcement learning agent to learn not only
which actions lead to immediate rewards, but which actions to reinforce when their
consequences occur later in time, and to maximize total future rewards [160]. Nev-
ertheless, we restrict our discussion here to the simple case in which simple actions
lead to immediate rewards or lack thereof.
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Note that the basic principles of reinforcement learning –
strengthening representations of rewarded actions while weaken-
ing representations of nonrewarded actions – is conserved between
the neural network and abstract models. The neural network
models are more concerned with putative neural implementation
whereas “Q models” abstract the neural implementation in favor of
focusing on the essential computational implementation.

Many models that have been used to understand basal ganglia
functions are more elaborate and sophisticated than these simple
equations. For example, other abstract models address how ani-
mals arbitrate between a BG-based habitual system versus a more
goal directed system localized in the prefrontal cortex [47], when
to explore in a dynamic probabilistic environment [48,107], how
much vigor to respond with in variable reward schedules [121],
and when to supplement basic dopamine-mediated reinforcement
learning with an explicit rule for detecting when the environ-
ment has changed [74]. Nevertheless, the above basic equations are
robust in many situations and continue to form the “backbone” of
these more sophisticated models. Although many aspects of neu-
robiology are not incorporated into these models (e.g., membrane
potential dynamics, different actions at D1 vs. D2 receptors, role
of different BG nuclei), these equations predict activity in spe-
cific striatal and prefrontal regions, demonstrating the elegance
of these simple but powerful models in elucidating the compu-
tations engaged by the basal ganglia without requiring as many
assumptions about the precise implementational form in neural
circuitry.

3.2. Neurobiological correlates of abstract models

3.2.1. Neurobiology of prediction errors
Reward prediction errors have been proposed to be signaled by

phasic bursting activity of midbrain dopamine cells in the ven-
tral tegmental area and SNc. This burst induces rapid dopamine
release in widespread regions of the striatum and limbic sys-
tem. Like the prediction error term from reinforcement learning
models described above, midbrain dopamine activity phasically
increases unexpected rewards are received, phasically decreases
when expected rewards are not received, and does not change
from baseline levels when expected rewards are received. Detailed
reviews of this evidence can be found elsewhere [143,142,145].

The link between dopamine cell activity and prediction error
terms from computational models has inspired many researchers
using noninvasive neuroimaging techniques in humans to inves-
tigate neural correlates of reward prediction errors. For example,
in functional MRI studies, computational reinforcement learning
models, similar to that outlined above, have been used to generate
reward prediction errors on each trial. These prediction errors are
then used in a regression to identify brain regions areas in which
activity correlates with prediction errors derived from the model.
These correlations are often observed to be significant in the stria-
tum and frontal cortex, as well as other regions (discussed in more
depth below), and are taken to reflect reward prediction error sig-
nals from the midbrain to striatal circuitry [34,124,123,148].

In other work using scalp-recorded EEG in humans, researchers
have identified a component called the error-related negativity
(ERN) and the feedback-related negativity (FRN) that may reflect
a reward prediction error signal [185,80,37,64,120]. These compo-
nents are located at frontocentral scalp sites from around 200 to
400 ms following negative compared to positive feedback, or fol-
lowing error compared to correct responses. It has been proposed
that the FRN reflects the impact of a negative reward prediction
error signal originating in the midbrain dopamine system, which
is then used to adapt reward-seeking behavior [80,23]. This is con-
sistent with findings that midbrain dopamine neurons project to,

and can modulate activity in, pyramidal cells in the cingulate cortex
[125]. However, it is unclear whether the cingulate can detect DA
dips, given the slow time-course of DA reuptake in frontal cortex
(discussed above). Nevertheless, it is possible that these scalp-EEG
recordings actually reflect the impact of DA dips in the BG, which
activate the NoGo pathway, and then indirectly lead to changes in
frontal cortical activity (e.g., via increased post-response “conflict”
[186]).

3.2.2. Neurobiology of action (Q) values

The other main component of these reinforcement learning
models is the Q value, which represents specific actions or deci-
sions. Although the possible neurobiological correlates of Q values
has received less attention compared to the neurobiological corre-
lates of prediction errors, evidence suggests that Q values in models
might correspond to activity in brain regions responsible for plan-
ning and executing those specific actions. For example, activity of
neurons in the striatum that represent specific actions (e.g., sac-
cades to the right or left) is modulated by the amount of reward
that would be obtained by correct responses [139]. In this study, the
properties of these neurons were well fit by a Q learning algorithm.
Further, reward-related activity modulations in motor regions can
bias decision-making and action selection processes [69,140,156].
Although these findings are not always discussed in terms of Q-
values from computational learning models, the observations are
consistent with the idea that Q-values or weights in models corre-
spond to activity in sensory–motor systems. Preliminary evidence
in humans suggests that activity in cortical motor regions might
correspond to Q values. For example, [37] reported that EEG activ-
ity over lateral frontal electrode sites (sites C3/4, typically taken to
index motor cortex activity) resembled Q values obtained from a
computational model, while the model played the same strategic
game the human subjects played.

One important question is what a “Q” value means in the brain,
and where it is stored. As described in the previous paragraph,
for simple decisions in which each decision maps onto a partic-
ular action or response (e.g., saccade to the left, or pressing the
right index finger), the Q value might correspond to the strength
of the activation of that motor action in basal ganglia and/or corti-
cal motor regions. But most decisions we face are more complex,
and do not have specific, discrete motor actions associated with
them (e.g., which college to attend? What to eat for dinner? Should
I marry this person?). Relatedly, in some experiments, the same
stimuli are associated with different motor responses in different
trials. This is useful for counterbalancing motor response require-
ments, but leaves open the question of whether Q values in such
experiments are linked to the stimulus representation, or whether
they remain linked to a more abstract response representation that
is flexible and changes according to task demands. One possibility
is that multiple Q-like representations are maintained by different
brain regions, and correspond to reward-modulated weights of dif-
ferent kinds of information. For example, the orbitofrontal cortex
or ventral striatum might contain basic value representations of
particular world states (divorced from action); the dorsal striatum
and supplemental motor area might contain Q-like representations
for specific motor actions; and dorsolateral or anterior prefrontal
cortex might contain Q-like representations of more abstract goals
or plans.

3.3. Individual differences

The equations for reinforcement learning described above are
normative, in that they prescribe how all individuals should act and
learn from reinforcements. However, human decision-making can
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be variable; myriad individual differences influence how people
make decisions, and different individuals can act and learn quite
differently, even when given the same reinforcements following
the same actions. One advantage of abstract models is that they
can be used to characterize mathematically such individual differ-
ences. This is done by fitting the model to each subjects’ behavioral
data and estimating some model variables through statistical fitting
procedures. For example, one could estimate unique learning rates,
which scales the impact of prediction errors on adjustments in Q
values, for each subject. This approach has been successfully used
to link behavioral task performance and brain activity in the basal
ganglia and frontal cortex to individual differences in decision-
making [36,34,141,14]. Frank and colleagues recently demonstrated
that genetic polymorphisms related to the expression of dopamine
receptors in the human striatum and prefrontal cortex are asso-
ciated with different learning rates [59]. Further, separate learning
rates for gains (Go) and losses (NoGo) were predicted by the DARPP-
32 and DRD2 genes, providing a nice mapping onto the neural
network model. Lee and colleagues have shown in monkeys that
activity of prefrontal cortical cells is predicted by these estimated
model parameters [98,99].

When subjects vary widely in how they use reinforcements to
adjust decision-making (e.g., in a gambling study in which there
are no correct answers or policies to learn [36]), fitting model
parameters to subjects’ data can be critical to elucidating the neu-
rocomputational mechanisms of decision-making (Fig. 4). In these
cases, ignoring individual differences (i.e., a normative approach)
may lead to the misleading interpretation that the models cannot
account for the data.

3.4. Uncertainties and inconsistencies in linking abstract models
to neurobiology

Although extant literature has shown that activity in fronto-
striatal circuits correlates with some aspects of abstract computa-
tional models, inconsistencies and uncertainties remain regarding
what brain systems are involved to what extent, and how closely
brain activity conforms to predictions from the abstract models.
Some of this uncertainty is related to the fact that models are far

more simplistic than real basal ganglia systems. For example, it
is unlikely that the equations detailed above describe all internal
mental processes engaged during experimental learning tasks, even
in species with simple nervous systems; humans and animals are
likely engaging mechanisms akin to these plus other complex and
dynamic high level processes, such as hypothesis-testing.

One area of uncertainty concerns positive versus negative pre-
diction errors. As described in the previous section, recent work
suggests that the duration of dopamine cell firing pauses may
encode negative prediction errors [13]. The serotonin systems has
also been proposed to play a role in signaling negative prediction
errors [46]. The functional MRI literature is less clear on this issue:
some have found increased/decreased activity in fronto-striatal
circuits for positive/negative prediction errors [34,106,124] while
others have found that ventral striatal activity correlated with pos-
itive prediction errors only [184]. Yet others have suggested that
different subregions of the striatum are involved in positive ver-
sus negative prediction errors [147]. In studies that have reported
activation in the midbrain, some have reported increased activity
for rewards compared to punishments [114], others have reported
increased midbrain activity for negative compared to positive feed-
back [5], and others have reported increases for positive prediction
errors but nonsignificant decreases for negative prediction errors
[45].

Another area of uncertainty concerns the precise regions in
which activity correlates with prediction errors: although the
prediction error-correlated activity in the ventral striatum is com-
monly reported, different studies have also shown prediction
error-like responses in the dorsal striatum, regions of the prefrontal
cortex, including orbitofrontal, ventrolateral, and dorsolateral, mid-
brain, and cerebellum [106,148,124,76,134]. It is possible that
prediction errors are utilized by different networks in the brain
depending on current task goals, although to our knowledge this
has not been investigated.

There is another problem with the interpretation of the BOLD
response, particularly with respect to the basal ganglia: the BOLD
response is a temporally and spatially sluggish signal that does
not distinguish activity of different types of neurons or different
functional networks, especially if those networks are spatially over-

Fig. 4. Abstract reinforcement learning models can be useful for investigating individual differences. Here a model was used to estimate the impact of reinforcement (winning
money or not in a gambling task) on the likelihood of making a low- or high-risk gamble in the subsequent trial. The best-fitting parameter for each subject determines
the magnitude and sign of the weight change for the high-risk option after obtaining a high-risk reward. Individual differences in this parameter were then correlated
with reinforcement-related brain activation. Results indicate that, in a network of regions including the lateral striatum (top right), this weight-update parameter (x-axis)
predicts whether brain activations to large rewards are associated with subsequent risky (y-axis positive values) or non-risky (negative values) choices. In this case, individual
differences proved critical for understanding how reinforcements guide subsequent decisions: for some subjects reward-related activity predicted increased likelihood of
making a subsequent risky choice, whereas for others it predicted decreased likelihood, according to their estimated parameters. See [36] for details.
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lapping. For example, networks of Go and NoGo cells are spatially
overlapping, so one could not distinguish between these systems
using functional MRI. Similarly, functional MRI cannot dissociate
interneurons from medium spiny neurons, or oscillations of dif-
ferent frequencies, or different subregions within particular basal
ganglia structures. This issue may become critically important if
one assumes that, for example, Go and NoGo cells are acting in
opposition to each other. In this case, it is possible that there would
be no differences in the BOLD response of the striatum between
conditions of high Go and low NoGo activity compared to conditions
of low Go and high NoGo activity.

Despite these inconsistencies across studies – which may be
relatively minor compared to their commonalities – the theory
that reward prediction errors are signaled by midbrain dopamine
neurons has proven to be a remarkable one in its simplicity, ele-
gance, and ability to tie together vastly different fields of research,
from artificial intelligence to cellular electrophysiology to human
neuroimaging. It continues to inspire new, creative, and interdisci-
plinary research, and has shed new light on the role of basal ganglia
circuitry on reinforcement learning and decision-making.

4. Integrating neural network and abstract models

These two approaches to understanding the computational
functions of the basal ganglia have traditionally been conducted
separately, often by separate research groups. As outlined in
previous sections, different models have different strengths and
weaknesses. To the extent that their strengths and limitations
match, combining these two modeling approaches might prove
more fruitful than using either in isolation. For example, abstract
models, but not neural network models, are amenable to estimating
individual differences in a learning rates and other parameters, and
relating these individual differences to performance or brain activ-
ity; in contrast, neural network models, but not abstract models,
make specific predictions regarding how functional computations
may arise via interactive dynamics among multiple brain areas, and
in turn the effects of focal brain lesions, pharmacological manipula-
tions, and genetics. One way to combine these modeling approaches
is to use abstract mathematical models to estimate learning param-
eters of neural network models, as if it were a human subject. That
is, when estimating individual learning rates, abstract models are
typically “fit” to account for a given subject’s actual trial-by-trial
choices when faced with their particular sequence of reinforce-
ments. One could instead apply the same procedure and treat the
output of the neural network model as “behavioral choices”, and
then use the abstract model to estimate learning rates used by
the neural network model as an entire system (which may differ
substantially from learning rates at a given synapse). This might
prove useful in understanding the neurobiology of individual dif-
ferences in behavioral learning rates. Although several studies have
investigated individual differences in learning rates and correlates
of those individual differences in behavior and brain activity, it
remains unknown what neurobiological factors might lead dif-
ferent individuals to have different learning rates. Is it dopamine
system response amplitude, concentration of dopamine receptors,
or the efficacy of globus pallidus-thalamus efferents? Empirically,
it might be difficult to determine the neurobiological mechanisms
that lead to differences in behavioral learning rates. However, this
is where neural network models become useful: various param-
eters in a neural network model could be manipulated, and the
model could be tested in a virtual experiment. The resulting learn-
ing rates from different model versions (e.g., models with intact
or impaired dopamine system functioning to simulate Parkinson’s
disease) could be compared to different groups of subjects with

different learning rates. If the learning rates from different model
versions matched the learning rates from different subjects groups
(e.g., subjects with different genotypes), one could conclude that
the changes made to the model represent one biologically plau-
sible mechanism by which different learning rates are achieved.
Of course changes made to the neural network models should be
driven by a priori hypotheses, constrained by physiological evi-
dence. This would provide an important validation of the abstract
models because, although activation in various regions of the brain
correlate with model parameters that were derived from individual
differences in learning rates [34,162], it remains unknown which
biological processes could account for these differences.

5. Conclusions and future directions

Computational models such as those discussed here are the-
ories, and, like all theories, are simplified, limited in scope, and
likely to undergo significant revision as new empirical data refines
our understanding. Many empirical papers often rely on conceptual
models, but these are often static anatomical diagrams that lack the
mathematical precision of the models reviewed here, and are often
are relatively more simplistic. The computational models discussed
here are similar in the sense that they are simplistic versions that
omit many details. However, computational models have distinct
advantages over less mathematically grounded theories: they can
go further by considering the computational functions the brain
is trying to solve, the implementation of those computations, and
the rich dynamics of the basal ganglia circuitry. Ultimately, pat-
terns of data captured by particular models should be replicated
by models one level above (for elegance, analytic tractability, and
succinctness), and by models one level below (for exploring more
biophysically detailed constraints and adjusting models accord-
ingly).

The field of computational modeling, and especially model-
ing of the basal ganglia system, has grown considerably over the
past few decades. We envision several parallel future directions of
using computational modeling to understanding basal ganglia and
related circuitry. It is likely that more researchers will use more
complex and biologically detailed models, due to the emergence
of new software that eases the entry into this field, as well as
to advancements in computer hardware speed and efficiency. As
computers become faster, and parallel processing becomes more
commonly used, highly detailed neural models may be scaled up to
a level where they can produce behaviorally and cognitively mean-
ingful outputs. We also envision that computational models will be
integrated more with empirical research, along the lines discussed
in this review about uncovering the putative neural mechanisms
of prediction errors and related reinforcement learning variables.
Finally, insights from neurobiologically plausible computational
models might increasingly find their way into domains outside
neuroscience, such as artificial intelligence and robotics [71].
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