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• A conceptual model for Pleistocene glacial cycles is developed.
• The model is analyzed using geometric methods for multiple time-scale systems.
• For certain parameters the model exhibits mixed-mode oscillations.
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a b s t r a c t

Much work has been done on relaxation oscillations and other simple oscillators in conceptual climate
models. However, the oscillatory patterns in climate data are often more complicated than what can
be described by such mechanisms. This paper examines complex oscillatory behavior in climate data
through the lens of mixed-mode oscillations. As a case study, a conceptual climate model with governing
equations for global mean temperature, atmospheric carbon, and oceanic carbon is analyzed. The
nondimensionalized model is a fast/slow system with one fast variable (corresponding to ice volume)
and two slow variables (corresponding to the two carbon stores). Geometric singular perturbation theory
is used to demonstrate the existence of a folded node singularity. A parameter regime is found in which
(singular) trajectories that pass through the folded node are returned to the singular funnel in the limiting
casewhere ϵ = 0. In this parameter regime, themodel has a stable periodic orbit of type 1s for some s > 0.
To our knowledge, it is the first conceptual climatemodel demonstrated to have the capability to produce
an MMO pattern.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

There has been a significant amount of research aimed at
explaining oscillations in various historical periods of the climate
system. Saltzman and Maasch have a series of papers on the Mid-
Pleistocene transition, a change from oscillations with a dominant
period of 40 kyr to oscillations with a dominant period of 100
kyr [1–3]. According to Saltzman and Maasch, the 40 kyr oscilla-
tions in the data result from a linear response to (quasi-)periodic
changes in astronomical forcing. They propose that the transition
to the 100 kyr cycles occurs due to a Hopf bifurcation producing an
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attracting periodic orbit. Paillard and Parrenin also seek to explain
the Mid-Pleistocene transition and the glacial–interglacial cycles
of the late Pleistocene, with a discontinuous and piecewise linear
model [4]. Their work, and the work of Hogg [5], use changes in
astronomical forcing due to variation in the Earth’s orbit to gener-
ate oscillations. Crucifix [6] and Ditlevsen [7] review oscillations in
conceptual climate models. In particular, Crucifix [6] discusses re-
laxation oscillators in ice-age models. However, to our knowledge,
the discussion is limited to single-amplitude or single mode oscil-
lations.

Looking at Fig. 1, each 100 kyr cycle contains a sharp increase
leading into the interglacial period (denoted by the red spikes).
This relaxation behavior clearly indicates the existence of multiple
time-scales in the underlying problem. There are also smaller,
structured oscillations in the glacial state that are repeated in
each 100 kyr cycle. The presence of the large relaxation oscillation
and the small amplitude oscillations indicates that these may be
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Fig. 1. Temperature anomaly obtained from the Vostok ice core deuterium
record [9]. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

mixed-mode oscillations (MMOs)—a pattern of L1 large amplitude
oscillations (LAOs) followed by s1 small amplitude oscillations
(SAOs), then L2 large spikes, s2 small cycles, and so on. The
sequence L1s1L2s2L3s3 . . . is known as the MMO signature [8]. We
propose that the 100 kyr glacial–interglacial cycles as well as the
largest of the SAOs – i.e., the largest cycles that do not enter the
interglacial state – can be interpreted as MMOs. By suggesting
that the SAOs result from intrinsic dynamics, we are proposing an
alternative to the standard interpretation that attributes them to
changes in astronomical forcing. We note, however, that neither
interpretation necessarily rules out the other—it may be possible
to combine both intrinsic and forced oscillations.

This paper tests the scientific hypothesis that oscillatory
behavior in climate data can be interpreted as MMOs, and we
take the data in Fig. 1 as a case study. Desroches et al. survey
the mechanisms that can produce MMOs in systems with multiple
time-scales [8]. From the data set shown in Fig. 1, we know that the
underlying model has a multiple time-scale structure. If we want
to find MMOs, the model must have at least three state variables.
Assuming we can find a global time-scale splitting, there are three
distinct ways to have a 3D model with multiple time scales: (a) 1
fast, 2 slow; (b) 2 fast, 1 slow; and (c) 1 fast, 1 intermediate, 1 slow
(i.e., a three time-scale model). Each of these options can create
MMOs through different mechanisms. Models with 1 fast and 2
slow variables can create MMOs through a folded node or folded
saddle–node with a global return mechanism that repeatedly
sends trajectories near the singularities. Models with 1 slow and 2
fast variables can createMMOs through a delayedHopfmechanism
that also requires a global return.MMOs in three time-scalemodels
are reminiscent of MMOs due to a folded saddle–node type II –
where one of the equilibria is a folded singularity – although the
amplitudes of the SAOs are more pronounced in this case.

To verify our hypothesis, we have to strike a delicate balance.
The model needs to be complex enough to exhibit the desired be-
havior, but if it is too complex we will be unable to prove that
it does so. We know from the data shown in Fig. 1 that temp-
erature shows relaxation behavior, rapidly oscillating between two
meta-stable states. Assuming that ice volume is strongly corre-
lated with temperature, we view glacial cycles in the same way,
i.e., oscillating between two meta-stable states. The possibility of
a bistable regime in ice volume has been discussed for decades,
notably by Weertman [10], MacAyeal [11], Oerlemans [12], Calov
and Ganopolski [13], Crucifix [14], and Abe-Ouchi et al. [15].
Atmospheric carbon should also play a role in any model that de-
scribes glacial–interglacial cycles, as suggested by Saltzman and
Maasch [3] aswell as Paillard and Parrenin [4].We consider a phys-
ical, conceptual model that incorporates continental ice sheets, at-
mospheric carbon, and oceanic carbon. Since this approach has
never been used in a climate-based model, our desire is that
the analysis is clear enough to replicate. This is a major reason
for our choice of such a simplistic 3D model. Indeed, we omit
time-dependent forcing such as Milankovitch cycles, leaving these
effects to future work. Even so, a minimal model is able to pro-
vide insight into key mechanisms behind the MMOs. We include
oceanic carbon as the third variable because the model was able to
produce MMOs. However, we were unable to find MMOs in other
minimal models with, for example, deep ocean temperature.

Our analysis will rely heavily on the model and ideas put forth
byMacAyeal in [11] where the physical units – as well as the phys-
ical meaning of some parameters – are ambiguous. His approach to
explaining glacial cycles with a catastrophe model is similar to our
MMO approach, without the benefit of 25 years of mathematical
development. Rather than using independently varying parame-
ters as ameans of generating slowdynamics,we coupleMacAyeal’s
model with (simplified) carbon dynamics. The main task is to ob-
tain the ‘‘global’’ time-scale separation between the ice sheet evo-
lution and the evolution of the carbon equations denoted by ϵ1 and
ϵ2. In general, a time-scale separation can be revealed through di-
mensional analysis. The process should relate a small parameter ϵi
to physical parameters of the dimensional model. In applications
such as neuroscience, it is often possible to get a handle on the
‘‘smallness’’ of the ϵi because there are accepted values or ranges
for many of the physical parameters. Unfortunately, parameters in
paleoclimate models are not as constrained. We rely on the intu-
ition of physicists, geologists, and atmospheric scientists to deter-
mine a reasonable separation of time-scales.

While it may be unsettling to not have a more concrete
argument, the ambiguity regarding parameter values – and even
the governing equations – allows more freedom. With this in
mind we take a different approach than that of others in the
paleoclimate literature such as Saltzman and Maasch [1–3]. In
the vast majority of climate science papers, the authors simulate
models with judiciously chosen parameters. Our approach is
different in that we assume nothing about any parameters except
that they are physically meaningful. Then, through the analysis,
we find conditions under which the model behaves qualitatively
like the data. The idea is not to pinpoint specific parameter
values, but to find a range of possible parameters. There are two
advantages to this approach. First, the parameter range can be
used to constrain (or maybe constrain further) previous parameter
estimates, whichmay tell us something previously unknown about
the climate system. It can be used to inform parameter choices for
large simulations. Second, a parameter range is useful to eliminate
options. That is, if the only parameter range which produces the
correct qualitative behavior is entirely unreasonable, the model
needs to be changed.

The outline of the paper is as follows: In Section 2 we set up
themodel and provide relevant background from the paleoclimate
literature. Then we nondimensionalize the model and discuss
assumptions on some of the parameters. In particular, we identify
our dimensionless model as a multiple time-scale problem. We
analyze this model in Section 3, with a focus on finding conditions
for MMOs. We conclude with a discussion in Section 4.

2. Setting up the model

2.1. The physical model

We start with a model of the form

γ
dXe

dt
= A0(B0 − A) − B1X3

e + B2Xe (1)
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Table 1
Summary of the parameters, variables and their units.

Variable/Parameter Unit Parameter Unit

t yr X∗
e km3

Xe km3 γ yr
A PgC L PgC yr−1

H PgC A0 km3 PgC−1

B0 PgC B1 km−6

B2 1 (dimensionless) B3 yr−1

B4 PgC B5 yr−1

B6 yr−1 P PgC km−6

dA
dt

= B3[P(Xe − X∗

e )2 − B4 − A] − (L + B5A − B6H) (2)

dH
dt

= L + B5A − B6H. (3)

Xe is continental ice volume (km3) offset from some mean
value. A is PgC (Petagrams of Carbon) in the atmosphere, and H is
PgC in the mixed layer of the ocean. Often atmospheric carbon is
discussed as carbon concentration in the atmosphere in ppm (parts
per million). However when discussing land–atmosphere flux, as
we will do, it makes sense to discuss carbon in terms of mass,
hence the choice of PgC [16]. Eq. (1) is a variant of the equation
used in MacAyeal’s catastrophe model [11]. The parameter γ is a
time-scale parameter that determines how quickly the ice-sheets
relax to equilibrium. In MacAyeal’s formulation, γ is actually a
variable depending on Xe and t , however it is assumed to be small
and positive. We have dropped the dependence, making γ a true
parameter. The effect of atmospheric carbon and solar insolation
is encapsulated by the term A0(B0 − A). Parameters B1 and B2 are
not given explicit, quantitative interpretations in [11]. When B2 is
positive, the ice sheet dynamics may be in a bistable regime due
to the cubic nature of Eq. (1). This bistability plays an important
role in demonstrating the capability for MMOs. Our discussion
of bistability differs slightly from MacAyeal’s. For our purposes,
bistability in ice volume requires a separation of time-scales –
corresponding to the relative evolution rates of ice sheet dynamics
and the carbon pools – thatwill bemade explicit in a dimensionless
model (see Table 1).

Eq. (2) canbedecomposed into two terms: the land–atmosphere
flux,

B3[P(X − X∗

e )2 − B4 − A],

and the ocean–atmosphere flux

L + B5A − B6H.

Notice that the ocean–atmosphere flux is balanced in Eq. (3).
That is, whatever carbon is outgassed from (or absorbed by)
the ocean must be transferred to (or from) the atmosphere. The
ocean–atmosphere flux is an extremely complicated process. First,
the ocean has numerous carbon reservoirs of various sizes (e.g. the
mixed layer and the deep ocean [16]). Changes in ocean circulation
alter the amount of carbon that is pumped into the mixed layer
versus what is stored in the deep ocean. In the work of Paillard and
Parrenin, the key nonlinearity in the carbon dynamics that drives
the glacial–interglacial cycles occurs in the ocean–atmosphere
component [4]. Additionally, the air–sea exchange of carbon is
temperature-dependent since the solubility of CO2 depends on
temperature [17]. Acknowledging that this is a gross simplifica-
tion, we assume that the carbon exchange between atmosphere
and ocean follows a simple linear equation as described in [18].
Approximating a slow nonlinear mechanism with a linear term
has proved illuminating in systems with multiple time-scales. One
particular example from neuroscience is the FitzHugh–Nagumo
approximation of the Hodgkin–Huxley equations [19,20]. Consid-
ering the role of neuroscience in the historical development of
MMO theory, such an approximation seems natural.
The terrestrial, or land–atmosphere, flux depends on the litho-
sphere and the biosphere (among other things) [21]. Adams and
Faure [22]; Crucifix, Betts, andHewitt [23], Köhler and Fischer [24],
and Lenton and Huntingford [21] all discuss a reduced terrestrial
carbon pool at the last glacial maximum. Our model adapts the
formulation used by Lenton and Huntingford [21], assuming that
there is a critical ice sheet volume X∗

e (corresponding to a criti-
cal temperature) where carbon drawdown is most efficient. De-
spite the consensus that there was a reduced terrestrial carbon
pool at the last glacial maximum, the quantification of such is still
debated [24]. The quantification debate is one reason for our hesi-
tance to assign specific values to parameters.

The reason there is no governing equation for terrestrial PgC is
that the total carbon content of the system should be conserved.
While there can be subdivisions within them [16], we are con-
sidering three carbon stores: atmosphere, land, and ocean. Since
there is a conserved quantity, only the two governing equations
are needed.

2.2. The mathematical (dimensionless) model

In an effort to simplify calculations, we set

X = −Xe,

so X grows as temperature increases, allowing for an easier
comparison with Fig. 1. Note that Similarly, we introduce

X∗ = −X∗

e .

In terms of the variables X, A,H , the system (1)–(3) becomes

γ
dX
dt

= −γ
dXe

dt
= A0(A − B0) − B1X3

+ B2X (4)

dA
dt

= B3[P(X − X∗)
2
− B4 − A] − (L + B5A − B6H) (5)

dH
dt

= L + B5A − B6H. (6)

Secondly, based on the observation made in Fig. 1, the model
(4)–(6) should evolve on multiple time-scales. Such a separation
of time-scales can only be identified in a dimensionless model.
Therefore, we define the dimensionless quantities

x =
X
Xc

, y =
A
Ac

, z =
H
Hc

, and s =
t
tc

where

Xc =


B2

3B1
, Ac =

B2

3A0
Xc,

Hc =
B5Ac

B6
, tc =

3γ
B2

.

Then Eqs. (4)–(6) become

ϵẋ = y − x3 + 3x − k (7)

ẏ = p(x − a)2 − b − my − (λ + y) + z (8)
ż = r(λ + y − z), (9)

where the dot (̇ ) denotes d
ds . The new dimensionless parameters

relate to the physical parameters of Eqs. (4)–(6) in the following
way:

k =
3B0A0

B2Xc
, p =

3PB3A0Xc

B2B5

a =
X∗

Xc
, b =

B3B4

B5Ac

m =
B3

B5
, λ =

L
B5Ac

, r =
B6

B5
, and ϵ =

3γ B5

B2
.
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(a) Stable MMO orbit with parameters
ϵ = 0.01, a = 0.8, p = 3, b = 2.1, k = 4, r = 1, m = 1, and
λ = 1.

(b) Stable MMO orbit with parameters
ϵ = 0.1, a = 0.8, p = 3, b = 2, k = 4, r = 0.05, m = 1, and
λ = 1.

Fig. 2. Example of MMO patterns generated from the model (7)–(9).
Any time-scale separation is determined by ϵ1 = ϵ and ϵ2 = ϵr .
As mentioned earlier, parameter values in paleoclimate problems
are the subject of some debate. In accordancewith our observation
based on Fig. 1, we assume that temperature evolves on a faster
time-scale than carbon, implying 0 < ϵ ≪ 1. If r = O(1) we
have 1 fast and 2 slow variables, and if r ≪ 1 we are in the three
time-scale case. Depending on which parameters hold the key to
having 0 < ϵ ≪ 1, other parameters (e.g. p, b, or λ) may be small
as well. Again, our approach is to assume as little as possible about
the parameters, so we will keep this in mind as we perform the
analysis.

Remark 1. The dimensionless form of the model is a variant of
the Koper model, an electrochemical model that is known to ex-
hibit MMOs [25,26]. Many other models in chemistry and neuro-
science also demonstrate MMOs (e.g., modified Hodgkin–Huxley
equations [27]). Indeed, many mechanisms in other areas such as
mass balance in chemical reactions or gated ion channels in neu-
ral models behave similarly to certain climate mechanisms such
as conservation of mass or exchange of carbon dioxide across the
ocean–atmosphere surface.

The geometric theory for analyzing dynamical systems with
multiple time scales – known as Fenichel theory or geometric sin-
gular perturbation theory (GSPT) [28,29] – has provided powerful
tools for studying singular perturbation problems such as system
(7)–(9). Together, GSPT and blow-up techniques [30–32] pro-
vide rigorous results on global behavior such as relaxation os-
cillations [33]. Fig. 2 depicts another type of complex oscillator
behavior called mixed-mode oscillations (MMOs). Neurophys-
iological experiments are known to produce similar patterns
[34–38]. Recently, these complicated oscillations have been ex-
plained using canard theory [39] in conjunction with an appropri-
ate global return mechanism by exploiting the multiple time-scale
nature of the underlying models [40–44,32,45,46]. This is now one
widely accepted explanation for MMOs; see, e.g., [47,48,8].

3. Analyzing the system

In this section we will analyze the system (7)–(9). We assume
that the system is singularly perturbed with singular perturbation
parameter ϵ.We also assume that r = O(ϵn)where n = 0 or n = 1
(although fractional powers may be acceptable as well). Hence we
are using a 2 slow/1 fast approach that allows for the case where
r = O(ϵ). We will comment on the case where r is small when
appropriate.
The following quantities will appear often in our calculations,
so we define

h(x) = x3 − 3x + k,
f (x) = p(x − a)2 − b,

as well as

F(x, y) = y − h(x).

3.1. The layer problem

To begin the analysis, we rescale the time variable s by ϵ−1 to
obtain the system

x′
= y − h(x) = y − x3 + 3x − k (10)

y′
= ϵ[f (x) − my − (λ + y) + z]
= ϵ[p(x − a)2 − b − my − (λ + y) + z] (11)

z ′
= ϵr(λ + y − z), (12)

where the prime (′) denotes d/dτ , and τ = ϵ−1s is the fast time-
scale (while s is the slow time-scale). As long as ϵ > 0, the new
system (10)–(12) is equivalent to (7)–(9) in the sense that the
paths of trajectories are unchanged—they are merely traced with
different speeds. However, in the singular limit (i.e. as ϵ → 0) the
systems are different.

When ϵ = 0, the system (10)–(12) becomes

x′
= F(x, y)

y′
= 0

z ′
= 0,

which is called the layer problem. Notice that the dynamics in the y
and z directions are trivial. The critical manifold,

M0 = {F(x, y) = 0} = {y = h(x)},

is the set of critical points of the layer problem. M0 is attracting
(resp. repelling) whenever Fx < 0 (resp. Fx > 0), which corre-
sponds to the x-values where the cubic h(x) is increasing (resp. de-
creasing). A simple calculation shows h′(x) = 0 when x = ±1, so
M0 is attracting on the outer branches where |x| > 1, repelling on
the middle branch where |x| < 1 and folded at x = ±1. To make
this more explicit,M0 is ‘S’-shaped with two attracting branches

M±

A = {±x > 1}

and a repelling branch

MR = {−1 < x < 1}.
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(a) Projection of the singular orbit onto the critical manifold, with projections of
the fold lines. The funnel is the shaded region below the strong canard γs
(denoted SC). The dashed line indicates the weak eigendirection along which
trajectories inside the funnel approach FN.

(b) Singular orbit Γ in the full 3D phase space. Colored lines correspond to those
in (a).

Fig. 3. Example of a singular periodic orbit Γ for a = 0.8, p = 3, b = 2.1, k = 4, r = 1, m = 1, and λ = 1. Fold lines (L±) and their projections (P(L±)) can be
computed explicitly. Additionally, fast trajectories (denoted by double arrows) can be computed explicitly in the singular limit. Slow trajectories (denoted by single arrows)
are computed and plotted numerically. Note that the strong canard (SC) is also a trajectory of the reduced problem and is found using a classic ‘‘shooting method’’ as
implemented in, e.g. XPPAUT. Here we have plotted a numerical approximation of the strong canard. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
The attracting and repelling branches are separated by the folds

L±
= {x = ±1}.

At the folds L±, the critical manifold is degenerate and the ba-
sic GSPT theory for normally hyperbolic critical manifolds breaks
down. As is so often the case, the scientifically andmathematically
interesting behavior arises where the standard theory does not ap-
ply. In our case, the folds allow for more complicated dynamics
such as relaxation oscillations or MMOs.

3.2. The reduced problem

The layer problem, which describes the fast dynamics off the
critical manifold, was obtained by considering the ϵ = 0 limit
of Eqs. (10)–(12). The dynamics on the critical manifold, or slow
dynamics, are obtained by looking at the system (7)–(9) as ϵ → 0.
In the singular limit, the system becomes

0 = y − h(x) (13)
ẏ = f (x) − my − (λ + y) + z (14)
ż = r(λ + y − z). (15)

The system (13)–(15) is called the reduced problem. It is a
differential algebraic system—i.e., a differential equation on the
manifold y = h(x, z) = h(x) which is a graph over the coordinate
chart (x, z). As usual, we study manifolds in charts (i.e., in local
coordinates), and here we have a single coordinate chart (x, z)
where we can study the whole reduced flow. This is done by
differentiating the algebraic condition in (13), and substituting it
for the ẏ Eq. (14). Doing so produces

−Fxẋ = Fyẏ + Fz ż = Fyẏ
ż = r(λ + y − z).

Substitution provides

h′(x)ẋ = f (x) − (m + 1)h(x) − λ + z
ż = r(λ + h(x) − z),

(16)

andwe have obtained an expression for the reduced problem (13)–
(15) as a system (16) in the coordinate chart (x, z).

Notice that h′(±1) = 0. Points along the set {x = ±1} are called
fold points because they correspond to extrema of the criticalman-
ifold where it appears folded (denoted by red lines in Fig. 3(b)).
Additionally, the system (16) is singular at the folds because the
coefficient of ẋ is 0. System (16) has three different types of singu-
larities:

• ordinary singularities—these are equilibria of the full system
(7)–(9)

• regular fold points—also known as jump points, and
• folded singularities—isolated points along L± where the re-

duced flow changes orientation.

We can desingularize the system by rescaling the time variable
s by a factor of h′(x), and we obtain

ẋ = f (x) − (m + 1)h(x) − λ + z

ż = rh′(x)(λ + h(x) − z).
(17)

The rescaling reverses trajectories on MR because this is precisely
the set where h′(x) < 0, and hence, the time variable is scaled
by a negative factor. However, the benefit of being able to define
dynamics on thewhole criticalmanifold – including the folds – out-
weighs the cost. The folds themselves are transformed from singu-
lar setswhere the dynamicswere undefined into z nullclines. From
system (17), it is now easy to classify the different singularities of
the reduced problem:

• Ordinary singularities occurwhere f (x)−(m+1)h(x)−λ+z = 0
andλ+h(x)−z = 0. That is, they are equilibriawhere h′(x) ≠ 0.

• Regular fold points are fold points that are not equilibria of (17).
That is, h′(x) = 0, but ẋ ≠ 0. The red lines in Figs. 3(a), 5 and
6 (with the exception of the points labeled ‘FN’, ‘Z−’, and ‘Z+’)
denote regular fold points.

• Folded singularities are equilibria of (17) where ż = 0 as a
result of the rescaling. That is, folded singularities occur where
h′(x) = 0, λ + h(x) − z ≠ 0, and ẋ = 0. The points labeled
‘FN’ in Figs. 3(a) and 5 mark folded singularities. Additionally,
the points labeled ‘Z−’ and ‘Z+’ in Fig. 6 are folded singularities.

Similar to ordinary singularities (or ‘‘standard’’ equilibria), folded
singularities can be classified by the eigenvalues of Jacobian eval-
uated at the folded singularity. For example, a folded singularity
with real, negative eigenvalues is a stable folded node, or if the Ja-
cobian has real eigenvalueswith opposite sign, it is a folded saddle.
The ‘FN’ in Figs. 3(a) and 5 indicate that the folded singularities are
folded nodes.
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3.3. Canard induced MMOs

Folded nodes (as well as folded saddle–nodes) can produce
MMOs with a suitable global return mechanism [42]. A node (in
a 2D system) has two real eigenvalues of the same sign, a weak
eigenvalue µw and a strong eigenvalue µs such that |µw| <
|µs|. Each eigenvalue corresponds to a trajectory that approaches
the folded node tangent to the corresponding eigenvector. The
geometry of these special trajectories plays a key role in the return
mechanism.Wedenote the strong stable trajectory (corresponding
to µs) by γs, and similarly define the weak stable trajectory γw .

Since γs is a trajectory of the slow dynamics, uniqueness of
solutions prevents other slow trajectories from crossing it. Thus,
γs partitions M−

A into two regions of trajectories. In particular,
γs separates the trajectories that cross the fold before reaching
the node from those that reach the fold at the node. Aside from
γs, the trajectories approaching a stable node stack up along the
weak stable trajectory. So, we see that trajectories in the region
containing γw will reach the fold at the node. Trajectories on the
opposite side of γs will reach the fold first. The region between the
strong stable trajectory γs and the fold L− that contains the weak
stable trajectory γw is called the singular funnel (denoted by the
shaded region in Figs. 3(a) and 5), and we often refer to γs as the
boundary of the funnel. Since γs is also called the strong canard, it
is labeled ‘SC’ in Figs. 3(a) and 5. All trajectories in this region will
reach the fold at the folded node, while all trajectories on the other
side of γs cross the fold without reaching the node [39].

We establish a global return mechanism by constructing a
singular periodic orbit Γ , consisting of heteroclinic orbits of the
layer problem and a segment on each of those stable branchesM±

A .
The heteroclinic orbits of the layer problem take trajectories from
a fold L± to its projection P(L±) on the opposite stable branch. An
example of a singular periodic orbit Γ is shown in Fig. 3. Assuming
there is a folded node on L− (without loss of generality), we can
construct Γ by following the fast fiber from the node to the stable
branchM+

A . From there, the trajectory follows the slow flow onM+

A
as described by (17) until it reaches the fold L+. If it reaches L+ at
a jump point, we follow the fast fiber back to M−

A . We want the
landing point on M−

A to be in the funnel, since any singular orbit
from the folded node that returns to the funnel will necessarily be
a singular periodic orbit.

The eigenvalues are important for another reason as well. The
ratio of the eigenvalues,

µ =
µw

µs
< 1,

determines the number of small-amplitude oscillations in the
MMO signature. This is made explicit in the following theorem due
to Brøns et al. [42] that provides conditions under which a system
has a stable MMO orbit.

Theorem 1. Suppose that the following assumptions hold in a
fast/slow system,

(A1) 0 < ϵ ≪ 1 is sufficiently small with ϵ1/2
≪ µ

(A2) the critical manifold is ‘S’-shaped, i.e. M0 = M−

A ∪ L−
∪ MR ∪

L+
∪ M+

A ,
(A3) there is a (stable) folded node N on (without loss of generality)

L−,
(A4) there is a singular periodic orbit Γ such that Γ ∩M−

A lies in the
interior of the singular funnel to N, and

(A5) Γ crosses L± transversally.

Then there exists a stable periodic orbit of MMO type 1s, where

s =


(1 + µ)

2µ


, (18)
and the right-hand side of (18) denotes the greatest integer less than
(1 + µ)/(2µ).

In [49], Krupa and Wechselberger show that the folded node
theory still applies in the parameter regime where µ = O(ϵ1/2) if
the global return mechanism is still intact (i.e. Γ ∩ M−

A lies in the
interior of the singular funnel). Note that in this parameter regime,
the MMO signature can be more complicated. Fig. 11 depicts a few
of the more interesting MMO patterns generated by (7)–(9) when
µ = O(ϵ1/2).

The remainder of this section will focus on finding conditions
on the parameters of Eqs. (7)–(9) so that the system satisfies
(A1)–(A5). Since µ is calculated in the singular limit, we can al-
ways choose ϵ small enough to satisfy condition (A1). Also,wehave
already discussed the ‘S’-shape of the critical manifold, demon-
strating that condition (A2) is satisfied. The next task will be find
conditions so that Eqs. (7)–(9) have a folded node singularity.

3.4. Folded node conditions

The data in Fig. 1 show small amplitude oscillations occurring
at low temperatures, so we seek parameters for which (16) has a
stable folded node along the lower fold L−.

Lemma 2. Define

δ = f (−1) − mh(−1) = p(a + 1)2 − b − m(k + 2). (19)

Assume the parameters of the system (7)–(9) satisfy

(a) p > 0,
(b) a > −1,
(c) δ > 0, and
(d) p2(a + 1)2 − 6rδ > 0.

Then there is a folded node at (−1, z−) where

z− = 2 + k + λ − δ.

Proof. The linearization of (17) at any fixed point (x0, z0) is

J(x0, z0)

=


f ′(x0) − (m + 1)h′(x0) 1

r[(h′(x0))2 + h′′(x0)(λ + h(x0) − z0)] −r h′(x0)


. (20)

There is a folded singularity at (−1, z−) where

z− = (m + 1)h(−1) + λ − f (−1).

Since h′(−1) = 0, we have the linearization

J(−1, z−) =


f ′(−1) 1

−6r[f (−1) − mh(−1)] 0


. (21)

For (−1, z−) to be a stable folded node, J(−1, z−) must satisfy
three conditions:

1. Tr(J(−1, z−)) < 0,
2. det(J(−1, z−)) > 0, and
3. [Tr(J(−1, z−))]2 − 4 det(J(−1, z−)) > 0.

The requirement on the trace implies that f ′(−1) < 0, or p(−1 −

a) < 0. Assuming p > 0, we arrive at condition (b) a > −1. The
requirement on the determinant gives us 6r[f (−1) − mh(−1)] >
0. Since r > 0, we will have det(J(−1, z−)) > 0 whenever δ =

f (−1) − mh(−1) > 0. That is precisely condition (c). Conditions
(a)–(c) are enough to guarantee that the folded equilibrium is
stable, but they do not distinguish between stable a stable node
or a stable focus. This is determined by the discriminant condition,
which is satisfied if

p2(a + 1)2 − 6r[f (−1) − mh(−1)] = p2(a + 1)2 − 6rδ > 0. �
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(a) Time series for ϵ = 0.01. (b) Time series for ϵ = 0.05.

Fig. 4. Time series for different values of ϵ when a = 0.8, p = 3, b = 2.1, k = 4, r = 1, m = 1, and λ = 1.
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Fig. 5. A lower bound for the edge of the funnel. The fold line L− is again in red.
P(L+), drawn in green, is the set where fast trajectories leaving L+ land onM−

A . The
solid black line containing z∗ is the strong eigendirection, and the dashed line is the
weak eigendirection along which trajectories inside the funnel approach FN. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Note that |δ| is precisely the distance along the fold from the
node to the intersection of the true z nullcline with the fold at
x = −1. If δ > 0, which is required by condition (b), then the node
lies under the z nullcline on M0. That is, if zn is the intersection of
the z nullcline with the fold (i.e., zn = h(−1) + λ), then zn > z−
with zn = z− + δ. As we will see, the parameter r will not appear
in the remaining calculations. Thus we strive to find conditions on
δ, a, and p. Choosing values that satisfy those conditions, (c) then
provides an upper bound on r .

Remark 2. In each of the limiting cases r → 0 and δ → 0, the
Jacobian (21) will have a zero eigenvalue and the system will have
a folded saddle–node of type II. Near the r = 0 limit we are in
the three time-scale casewith a global three time-scale separation.
Near the δ = 0 limit, we have a local three time-scale split at
the folded singularity. In either case, the ratio of eigenvalues µ
will be small, so near the saddle–node limit, we use the theory for
µ = O(ϵ1/2).

Having found conditions for a folded node, it remains to be
shown that these conditions are consistent with a return mech-
anism satisfying (A4) and (A5) from Theorem 1. As indicated by
(A4), the singular funnel is a vital component of the global return
mechanism. Typically, the functionality of the returnmechanism is
demonstrated numerically [26,50]. This is done by choosing a set
of reasonable parameters and then varying one parameter until the
MMO orbit disappears. For example we set parameters to have the
following values: p = 3, b = 2.1, k = 4, r = 1, m = 1, λ = 1,
and we vary a. If a ≈ 0.643, we have that δ ≈ 0 and we are in the
SN-II case. From this value we increase a to 0.8 to obtain the sin-
gular orbit in Fig. 3. Fig. 4 shows stable MMO time series for these
parameters away from the singular limit. Continuing to increase a,
we see that when a ≈ 0.823, the singular periodic orbit lands on
the strong canard. For a ≥ 0.824, there is no MMO orbit since the
return mechanism no longer sends trajectories into the funnel.

In the following subsections, we use approximations to obtain
analytical results and prove our main result. The strategy is to lin-
early approximate strong canard and show that the approximation
lies within the funnel. Thenwe find conditions underwhich the re-
turn mechanism lands in the approximated funnel region.

3.5. Estimate of the funnel

Assuming the node conditions (a)–(d) from Lemma 2 are met,
the folded singularity will have a strong stable eigenvalue (eigen-
vector) and a weak stable eigenvalue (eigenvector). Letµs,w be the
eigenvalues, where s and w denote strong and weak, respectively.
Then

µs < µw < 0.

Also let (xs,w, zs,w) denote the corresponding eigenvector. A simple
computation shows the slope of the eigenvector

mi =
zi
xi

=
−6rδ
µi

> 0,

where i can be either s or w. Then we have the following relation-
ships

0 < ms < mw < −f ′(−1),

where −f ′(−1) is the slope of the x nullcline at the node. Recall
that the singular funnel is the region bounded by the fold L− and
the strong canard γs (the trajectory that approaches the node with
slope ms) that contains the weak canard. In our case, locally near
the folded node, the funnel will lie below the strong canard. Fol-
lowing γs away from the node in reverse time, we see that if γs
intersects the x nullcline, it will turn down and to the right until
it intersects the fold L−. We want to avoid this situation since it
effectively precludes a global returnmechanism. However, if γs in-
tersects the z-nullcline, then it will continue up and to the left in
reverse time as in Fig. 5. The following lemma provides conditions
under which γs lies entirely above its tangent line at the node, al-
lowing us use a linear approximation to find a lower bound for the
intersection of γs with P(L+).

Lemma 3. Let Eqs. (7)–(9) satisfy the conditions (a)–(d) of Lemma 2.
Furthermore assume

(e) 2p2(a+1)2

δ
+ 2pa − 6(m + 1) < 0, and

(f) p(a + 1) > 2.
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Let ms denote the slope of the strong eigenvector to the node. That is

ms =
6rδ
−µs

=
6rδ
|µs|

.

Then the strong canard γs is tangent to the line z = ms(x + 1) + z−
at x = −1, and lies above the line for x < −1.

The method of proof is to show that γs, thought of as z = γs(x),
is concave up at the node (−1, z−). This shows that γs lies above
the line

z − ms(x + 1) = z−
near the folded node. We will then consider the direction of the
vector field along the line to show that γs remains above the line.

Proof. The z coordinate of the strong canard tends to z− as x →

−1, however since the point (−1, z−) is a node, there are many
trajectories that do so. The strong canard can be characterized as
the trajectory whose slope tends toms as x → −1. That is

lim
x→−1

dz
dx

=
6rδ
|µs|

.

The concavity of the strong canard determines whether it ap-
proaches its tangent line from above or below. We begin with the
first derivative,

dz
dx

=
rh′(x)(λ + h(x) − z)

f (x) − (m + 1)h(x) − λ + z
.

To assist us in the calculations, we define

η(x) = f (x) − (m + 1)h(x) − λ + z
φ(x) = λ + h(x) − z

noting that

φ(−1) = δ, φ′(−1) =
−6rδ
|µs|

, η(−1) = 0,

h′(−1) = 0, h′′(−1) = −6, h′′′(x) = 6

and

lim
x→−1

h′(x)
η(x)

=
6

|µs|
.

Now, we use the quotient rule to obtain:

d2z
dx2

=
r

(η(x))2


η(x)


h′(x)


h′(x) −

dz
dx


+ φ(x)h′′(x)


− h′(x)φ(x)η′(x)


.

In particular, we are interested in

L = lim
x→−1

d2z
dx2

.

Using L’Hospital’s rule, we see

L = lim
x→−1


r

2η(x)η′(x)

·


η(x)


h′(x)


h′′(x) −

d2z
dx2


+ h′′(x)


h′(x) −

dz
dx


+ φ(x)h′′′(x) + h′′(x)φ(x)


+ η′(x)


h′(x)


h′(x) −

dz
dx


+ φ(x)h′′(x)


− η′(x)φ(x)h′′(x) − h′(x)


φ(x)


f ′′(x)

− (m + 1)h′′(x) +
dz
dx


+ φ′(x)η′(x)


,

which simplifies to

L =
3r

η′(−1)


12rδ
|µs|

+ δ


−

3r
|µs|


6rδ
|µs|


−

3r
|µs|


δ(2p + 6(m + 1) + L)

η′(−1)
−

6rδ
|µs|


.

Simplifying further and gathering the L terms on one side gives

η′(−1)|µs| + 3rδ
3rδ

L = 12r + |µs| − 2p − 6(m + 1). (22)

Using the node conditions – specifically the bound on r from con-
dition (d) – we can show the coefficient of L is negative since

η′(−1)|µs| + 3rδ =


−2p(a + 1) +

6rδ
|µs|


µs + 3rδ

= 9rδ − 2p(a + 1)|µs|

<
3
2
p2(a + 1)2 − 2p2(a + 1)2

− 2p(a + 1)

p2(a + 1)2 − 6rδ

< 0.

Since we are looking for a lower bound on the edge of the singular
funnel, we want the strong canard to lie above its tangent line at
the node. So, wewant L > 0, which happens when the right-hand
side of (22) is negative. That is, we want

12r + |µs| − 2p − 6(m + 1) < 0. (23)

Using the bound for r again aswell as the estimate |µs| < 2p(a+1),
we see that (23) will be true if

2p2(a + 1)2

δ
+ 2pa − 6(m + 1) < 0. (24)

Therefore condition (e) implies that γs lies above the line z−ms(x+
1) = z− near the node.

Next, we want to show that it remains above the line moving
away from L− in reverse time. To do so we consider the vector field
on lines of the form

C = z − msx.

In particular, we look for conditions such that

Ċ |C=z− ≤ 0. (25)

When this happens, γs must be repelled away above the line in re-
verse time. Obviously, Ċ = 0 at the node (−1, z−). When

p(a + 1) > 2,

then Ċ |C=z− is increasing as a function of x and the condition in (25)
is satisfied. Thus conditions (e) and (f) together ensure that γs lies
above the line z − ms(x + 1) = z− onM−

A . �

Wedefine z∗ to be the intersection of the line x = −2 (i.e. P(L+))
with the linear approximation of the funnel, z − ms(x + 1) = z−
as shown in Fig. 5. Lemma 3 ensures that z∗ lies in the interior of
the funnel. As we construct the singular periodic orbit, z∗ provides
a target for trajectories returning fromM+

A .

3.6. Singular periodic orbit

We now seek conditions so that a singular orbit leaves the
folded node, lands on M+

A along P(L−), follows a trajectory of the
reduced problem towards L+, crosses L+ transversely, and returns
to M−

A on P(L+) below z∗. Singularities on L+ and M+

A will play a
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Fig. 6. Position of nullclines in the singular limit when a = 0.8, p = 3, b =

2.1, k = 4, r = 1, m = 1, and λ = 1. The blue curve denotes the x nullcline,
and the black curve denotes the z nullcline. The blue point is the landing point
of the singular orbit from the node. The region R between the nullclines on M+

A
is locally positively invariant. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

major role in determining conditions that guarantee the existence
of the singular periodic orbit.

Wewill define z+ to be the z coordinate of the folded singularity
on L+, so

z+ = (m + 1)h(1) + λ − f (1)
= (m + 1)(k − 2) + λ − p(1 − a)2 + b.

If z+ lies above the z nullcline, then there will be a region where
trajectories cross L+ transversely as depicted in Fig. 6.

Lemma 4. Let Eqs. (7)–(9) satisfy the conditions of Lemmas 2 and 3.
Furthermore, assume δ < 4 and

(g) 4(ap − m) − δ > 0
(h) ∆δ(a, p,m) < 0,

where

∆δ(a, p,m) = p2(−3m + 2ap)2 − 4m(−3m + 2ap)3 (26)
+ 4p3(−δ − 2m + p + 2ap)
− 18mp(−3m + 2ap)(−δ − 2m + p + 2ap) (27)
− 27m2(−δ − 2m + p + 2ap)2.

Then the singular orbit from the folded nodewill land on P(L−) ⊂ M−

A ,
follow a trajectory of the reduced problem (17), and cross the fold L+.

Remark 3. The condition that δ < 4will be replacedwith a stricter
condition in Lemma 5 to ensure that the singular orbit returns to
the funnel.

Proof. The intersection of the z nullcline with L+ occurs at z =

h(1) + λ. Therefore, the region R between the nullclines on M+

A
will be locally positively invariant if

z+ = (m + 1)h(1) + λ − f (1) > h(1) + λ,

which happens if and only if

0 < mh(1) − f (1)
⇔0 < m(k − 2) − p(1 − a)2 + b
⇔0 < 4(ap − m) − δ.

Thus condition (g) gives us that the nullclines are aligned as in Fig. 6
along L+, and the positively invariant region exists. Any trajectory
that enters R can only escape by crossing L+. Next, we show that
the singular orbit from the node enters R.

The assumption that δ < 4 ensures that z− > h(1) + λ.
This is because the fast fiber from the folded node on L− lands
on P(L−) ⊂ M+

A exactly the distance δ below the z nullcline. At
the landing point (denoted by a blue dot in Fig. 6), the vector field
of (17) points up and to the left. If the x nullcline lies above the z
nullcline, then the trajectory will continue up and to the left until
it enters R. Condition (g) implies that the x nullcline lies above
the z nullcline at the fold. Thus, the only way for the nullclines
to switch their orientation is for them to intersect, creating a true
equilibrium of (17). The nullclines intersect wherever the curves
z = h(x) + λ and z = (m + 1)h(x) + λ − f (x) intersect. That is,
intersections occur whenever

mh(x) − f (x) = 0.

Note that mh(x) − f (x) is a cubic. Therefore, the number of zeros
of mh(x) − f (x) is determined by the cubic discriminant, which is
precisely the quantity ∆δ .

If ∆δ < 0 there is only one intersection, but if ∆δ > 0 there
are three. Condition (c) implies the x nullcline lies below the z
nullcline on L− (i.e. where x = −1), and condition (g) implies the x
nullcline lies above the z nullcline on L+ (i.e. where x = +1). By the
Intermediate Value Theorem, the nullclines will intersect for some
x such that −1 < x < 1. Therefore, the conditions (g) and (h)
prevent there from being an intersection on either stable branch of
M0. This implies a singular trajectory through the folded node will
cross L+. �

Remark 4. In fact, the condition δ > 0 precludes true equilibria
on M−

A . This can be seen by comparing the slopes of the x and z
nullclines on M−

A . The x nullcline is the curve z = (m + 1)h(x) −

λ − f (x), so it has slope

dz
dx

= (m + 1)h′(x) − f ′(x)

= (m + 1)h′(x) − 2p(x − a)
> (m + 1)h′(x),

since x ≤ −1 on M−

A . Meanwhile, the z nullcline is given by the
equation z = h(x) + λ which has slope

dz
dx

= h′(x).

Since an equilibrium is precisely the intersection of these curves,
any equilibrium on M−

A will result in the x nullcline crossing the
fold above the z nullcline, implying δ < 0.

Lemma 4 allows for the possibility that the folded singularity
(1, z+) is also a folded node. If we consider the Jacobian at the
point (1, z+), we see that condition (g) implies det(J(1, z+)) > 0.
Therefore, the stability of the folded singularity depends on f ′(1).
To exclude the possibility of SAOs along L+, we want to avoid the
case where (1, z+) is a stable folded node. If f ′(1) > 0, then the
folded singularity will be unstable. Requiring f ′(−1) < 0 < f ′(1)
implies that p > 0 and −1 < a < 1. We update condition (b) from
Lemma 2 accordingly, so we now have

(b) −1 < a < 1.

Finally, we need to find conditions so that the singular trajec-
tory from the folded node returns to the funnel. This will show that
we in fact have a singular periodic orbit.

Lemma 5. Let Eqs. (7)–(9) satisfy the conditions (a)–(h) from Lem-
mas 2–4. Additionally, suppose the equations satisfy

(i) 4(m + 4) − 5ap − p > 0.

Then there is a singular periodic orbit Γ .
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(a) Model output for x. (b) A closer look at the small amplitude oscillations in Fig. 7(a).

Fig. 7. MMO orbit for ϵ = 0.001, a = 0.91, p = 1.05, b = 0.31, k = 2.2, r = 0.3, λ = 1, andm = 0.6. With these parameters δ = 1.
(a) Solid in apm-space. (b) Slice for m = 0.4.

(c) Slice form = 0.6.

Fig. 8. Parameters in apm-space for δ = 1.3 that satisfy conditions (a)–(i) from Theorem 6.
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(a) Solid in apm-space. (b) Slice for m = 0.4.

(c) Slice form = 0.7. (d) Slice for m = 1.5.

Fig. 9. Parameters in apm-space for δ = 1.3 that satisfy conditions (a)–(d), (g), and (h) from Theorem 6.
Proof. By Lemma 2, we know the system will have a folded node
singularity. Let Γ be the singular trajectory consisting of the fast
fiber of the layer problem from the singular node to P(L−). By
Lemma 4 we know that the trajectory will follow the slow flow
on M+

A until it crosses L+. Furthermore, we know that z+ is an
upper bound on the z coordinate of the intersection. If z+ < z∗,
then Γ will land in the singular funnel upon leaving L+. Direct
calculation shows that z+ < z∗ precisely when 4(m + 4) − 5ap
− p > 0. �

3.7. Main result

Theorem 6. Suppose the parameters of the system (7)–(9) satisfy the
conditions (a)–(i). Then, for ϵ sufficiently small, the system will have
a stable periodic orbit of MMO-type 1s for some s > 0.

Proof. Lemmas 2–5 show that these conditions satisfy the as-
sumptions of Theorem 1. �

Fig. 8 depicts a portion of parameter space that satisfies condi-
tions (a)–(i) in Theorem 6. These conditions place restrictions on
a, p, m, and r explicitly, as well as b and k through the restrictions
on δ. However, there are no restrictions on λ. Additionally, Fig. 7
shows the time series for x for a trajectory satisfying the conditions
of Theorem 6.

3.8. Extending the parameter regime

While the conditions (a)–(i) in Theorem 6 are sufficient, they
are not all necessary conditions for the model to exhibit MMOs. In
fact, they are rather strict. This is a direct consequence of linearly
approximating the funnel to obtain conditions analytically. Fig. 9
depicts the portion of phase space satisfying only the conditions
of Theorem 6 that do not relate to the linear approximation of the
funnel. However, not all parameters from the region pictured in
Fig. 9 will produce MMO orbits.

The stable periodic orbits (of some MMO type) outside of the
parameter regimedescribed by Theorem6, such as the one in Fig. 4,
can bemuchmore complicated as a result of the returnmechanism
projecting the singular periodic orbit closer to the boundary of the
funnel (i.e., closer to the strong canard γs). The behavior in this
regime is also described by Brøns et al. in [42]. For the parameters
that generate the orbit in Fig. 4, µ ≈ 0.1010 and s = 5. However,
the MMO signature for the orbit is 12. This is because the return
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(a) Attracting periodic orbit in the 3D phase space. (b) The attracting periodic orbit shown with the critical manifold.

(c) Model output for x for the trajectory in Fig. 10(a).

Fig. 10. MMOs for ϵ = 0.1, a = 0.8, p = 3, b = 2.1, k = 4, r = 1, m = 1, and λ = 1.
mechanism sends the trajectory near the boundary of the funnel
in the singular limit.

4. Discussion

We have found sufficient conditions such that the system (7)–
(9) has a stable periodic orbit with MMO signature 1s. To our
knowledge, this is the first climate-basedmodel that has been ana-
lyzed to demonstrate MMOs. The dimensionless model is a variant
of the Koper model with an added nonlinearity. As with the stan-
dard Koper model, the model has an ‘S’-shaped critical manifold
and a parameter regime with both a folded node and global return
mechanism. Although the additional nonlinearity in the model
does not factor into obtaining a folded node, nonlinear effects play
a significant role in determining the shape of the funnel, and conse-
quently the returnmechanism. From amathematical standpoint, it
is significant that the additional nonlinearity does not destroy the
functionality of the model to produce an MMO pattern.

We are able to find the conditions in Theorem 6 analytically,
which is a rarity for MMO problems. Although it is nice to have
an analytical proof, the approach excludes a significant region of
parameter space whereMMOs can be found. Numerically approxi-
mating the strong canard, the standard practice for demonstrating
MMOs, helps provide a more complete picture of the parameter
regime that producesMMOs. Themethod relies on varying one pa-
rameter at a time, making it difficult to actually plot the complete
region.
The time series in Figs. 1 and 10(c) are qualitatively similar in
that they both contain large oscillations followed by a series of
smaller amplitude oscillations. Note that ϵ = 0.1 in Fig. 10 is not
truly small. In Figs. 2 and 4 we plotted analogous trajectories with
smaller ϵ (keeping the other parameters fixed). Fig. 3 depicts the
singular orbit for all of these examples. We focus on the ‘‘nice’’
MMO in Fig. 10 because of its similarity to Fig. 1. Since ϵ is larger,
we are able to see the small amplitude oscillations clearly.

The model can give us some insight about the climate system.
The physical implication of the requirement that −1 < a < 1 is
that CO2 drawdown due to terrestrial mechanisms ismost efficient
at a temperature (or ice volume) somewhere between the stable
glacial and interglacial states. Through the requirements on δ we
learn about the relationship between b, m, and k. This relates the
amount of CO2 removed from the atmosphere when the planet is
most efficient at doing so (b), the ratio of the timescales of the
land–atmosphere carbon flux to that of the ocean–atmosphere
exchange (m), and the minimum/maximum values of atmospheric
carbon (k). Finally, r tells us something about the proportion of
carbon in the atmosphere to carbon in the ocean required for the
ocean to switch from absorbing to outgassing. If r is large, we will
no longer have a folded node. It may be the case that r ≪ 1, which
puts us near the folded saddle–node limit and allows for more
complicated behavior. Some simulations with r ≪ 1 are shown
in Fig. 11.

The analysis required to show MMOs due to a folded node
assumes a separation of time scales and (at least) two slow
variables. Asmentioned in the introduction and Section 2, it is often
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(a) Example of 3 time-scale series
ϵ = 0.1, a = 0.8, p = 3, b = 2, k = 4, r = 0.05,
m = 1, and λ = 1.

(b) Example of 3 time-scale series
ϵ = 0.1, a = 0.8, p = 3, b = 2.3,
k = 4, r = 0.01,m = 1, and λ = 1.

(c) Example of 3 time-scale series
ϵ = 0.05, a = 0.8, p = 3, b = 2.32,
k = 4, r = 0.1,m = 1, and λ = 1.

Fig. 11. Examples of MMO patterns in the three time-scale case.
difficult to determine exactly which parameters are small enough
to perform this analysis. Here we rely on the wisdom of climate
scientists. It may be that changes in atmospheric greenhouse gases
happen on a similar timescale to temperature. Fig. 10 depicts the
case where there is only a marginal time-scale separation and we
still see MMOs.

The power of canard theory lies in its generality. It can be
applied to a diverse range of research areas from mathematical
physiology, fluid dynamics, magnetohydrodynamics and even
climate modeling. It was recently applied to explain the ‘compost
bomb instability’—a potentially catastrophic explosive release of
peatland soil carbon into the atmosphere as the greenhouse gas
carbon dioxide,which could significantly accelerate anthropogenic
globalwarming [51]. The take-homemessage lies in the realization
that folded singularities and associated canards create local
transient ‘attractor’ states in multiple scales problems. This is due
to the fact that trajectories in the domain of attraction of folded
singularities will reach and pass these folded singularities in finite
slow time; folded singularities are not equilibrium states. In the
context of climate tipping point problems, [51] identifies canards of
folded saddle type as threshold manifolds, while [52,53] identify the
same canard structure as firing threshold manifolds in the context
of neural excitability.
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