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Preface to the Series

The subject of dynamical systems has matured over a period of more than a century.
It began with Poincare’s investigation into the motion of the celestial bodies, and he
pioneered a new direction by looking at the equations of motion from a qualitative
viewpoint. For different motivation, statistical physics was being developed and
had led to the idea of ergodic motion. Together, these presaged an area that was
to have significant impact on both pure and applied mathematics. This perspective
of dynamical systems was refined and developed in the second half of the twentieth
century and now provides a commonly accepted way of channeling mathematical
ideas into applications. These applications now reach from biology and social
behavior to optics and microphysics.

There is still a lot we do not understand and the mathematical area of dynamical
systems remains vibrant. This is particularly true as researchers come to grips
with spatially distributed systems and those affected by stochastic effects that
interact with complex deterministic dynamics. Much of current progress is being
driven by questions that come from the applications of dynamical systems. To truly
appreciate and engage in this work then requires us to understand more than just the
mathematical theory of the subject. But to invest the time it takes to learn a new sub-
area of applied dynamics without a guide is often impossible. This is especially true
if the reach of its novelty extends from new mathematical ideas to the motivating
questions and issues of the domain science.

It was from this challenge facing us that the idea for the Frontiers in Applied
Dynamics was born. Our hope is that through the editions of this series, both new
and seasoned dynamicists will be able to get into the applied areas that are defining
modern dynamical systems. Each article will expose an area of current interest and
excitement, and provide a portal for learning and entering the area. Occasionally
we will combine more than one paper in a volume if we see a related audience as
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vi Preface to the Series

we have done in the first few volumes. Any given paper may contain new ideas and
results. But more importantly, the papers will provide a survey of recent activity
and the necessary background to understand its significance, open questions and
mathematical challenges.

Editors-in-Chief
Christopher K R T Jones, Björn Sandstede, Lai-Sang Young



Preface

In the world of cell biology, there is a myriad of oscillatory processes, with
periods ranging from the day of a circadian rhythm to the milliseconds of a
neuronal action potential. To one extent or another they all interact, mostly in
ways that we do not understand at all, and for at least the past 70 years, they
have provided a fertile ground for the joint investigations of theoreticians and
experimentalists. Experimentalists study them because they are physiologically
important, while theoreticians tend to study them, not only for this reason, but also
because such complex dynamic processes provide an opportunity to use, as their
tools of investigation, the methods of mathematical analysis.

In this volume, we are concerned with two of these oscillatory processes: calcium
oscillations and bursting electrical oscillations. These two are not chosen at random.
Not only have they both been studied in depth by modellers and mathematicians,
but we also have a good understanding – although not a complete one – of how
they interact, and how one oscillatory process affects the other. They thus make an
excellent example of how multiple oscillatory processes interact within a cell, and
how mathematical methods can be used to understand such interactions better.

The theoretical study of electrical oscillations in cells began, to all intents and
purposes, with the classic work of Hodgkin and Huxley in the 1950s. In a famous
series of papers they showed how action potentials in neurons arose from the time-
dependent control of the conductance of NaC and KC channels. The model they
wrote down, a system of four coupled nonlinear ordinary differential equations,
became one of the most influential models in all of physiology. It was quickly taken
up by other modellers, who extended the model to study oscillations of electric
potential in neurons, and over the last few decades the theoretical study of neurons
and groups of neurons has expanded to become one of the largest and most active
areas in all of mathematical biology.

More traditional applied mathematicians were also strongly influenced, albeit at
one remove, by the Hodgkin-Huxley equations. The simplification by FitzHugh in
the 1960s led to the FitzHugh-Nagumo model of excitability (Nagumo, a Japanese
engineer, derived the same equation independently at the same time, from entirely

vii



viii Preface

different first principles) which formed the basis of more theoretical studies of
excitability across many different areas, both inside and outside cell biology.

Oscillations in the cytosolic concentration of free Ca2C (usually simply called
Ca2C oscillations) have a more recent history, not having been discovered until the
development of Ca2C fluorescent dyes in the 1980s allowed the measurement of
intracellular Ca2C concentrations with enough temporal precision. But since then,
the number of theoretical and experimental investigations of Ca2C oscillations has
expanded rapidly. Calcium oscillations are now known to control a wide variety
of cellular functions, including muscular contraction, water transport, gene differ-
entiation, enzyme and neurotransmitter secretion, and cell differentiation. Indeed,
the more we learn about intracellular Ca2C, the more we realize how important
it is for cellular function. Conversely, the intricate spatial and temporal behaviors
exhibited by the intracellular Ca2C concentration, including periodic plane waves,
spiral waves, complex whole-cell oscillations, phase waves, stochastic resonance,
and spiking, have encouraged theoreticians to use their skills, in collaboration with
the experimentalists, to try and understand the dynamics of this ubiquitous ion.

Many cell types, however, contain both a membrane oscillator and a Ca2C
oscillator. The best-known examples of this, and the most widely studied, are the
neuroendocrine cells of the hypothalamus and pituitary, as well as the endocrine
cells of the pancreas, the pancreatic ˇ cells. In these cell types, membrane oscillators
and calcium oscillators are indissolubly linked; fast oscillations of the membrane
potential open voltage-gated Ca2C channels which allow Ca2C to flow into the cell,
which in turn activates the exocytotic machinery to secrete insulin (in the case
of pancreatic ˇ cells) or a variety of hormones (in the case of hypothalamic and
pituitary cells). However, in each of these cell types, cytosolic Ca2C also controls
the conductance of membrane ion channels, particularly Ca2C-sensitive KC and
Cl� channels, which in turn affect the membrane potential oscillations. In these
endocrine cells, it is thus necessary to understand both types of cellular oscillator in
order to understand overall cellular behavior.

Thus, this current volume. In it we first see how the interaction of Ca2C cytosolic
with membrane ion channels can result in the complex patterns of electrical spiking
that we see in cells. We then discuss the basic theory of Ca2C oscillations (common
to almost all cell types), including spatio-temporal behaviors such as waves, and
then review some of the theory of mathematical models of electrical bursting
pituitary cells.

Although our understanding of how cellular oscillators interact remains rudimen-
tary at best, this coupled oscillator system has been instrumental in developing our
understanding of how the cytosol interacts with the membrane to form complex
electrical firing patterns. In addition, from the theoretical point of view it has pro-
vided the motivation for the development and use of a wide range of mathematical
methods, including geometric singular perturbation theory, nonlinear bifurcation
theory, and multiple-time-scale analysis.
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It is thus an excellent example of how mathematics and physiology can learn
from each other, and work jointly towards a better understanding of complex cellular
processes.

Tallahasse, FL, USA Richard Bertram
Auckland, New Zealand Vivien Kirk
Auckland, New Zealand James Sneyd
Tallahasse, FL, USA Joël Tabak
Indianapolis, IN, USA Wondimu Teka
Boston, MA, USA Theodore Vo
Sydney, NSW, Australia Martin Wechselberger
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Chapter 1
Geometric Singular Perturbation Analysis
of Bursting Oscillations in Pituitary Cells

Richard Bertram, Joël Tabak, Wondimu Teka, Theodore Vo,
and Martin Wechselberger

Abstract Dynamical systems theory provides a number of powerful tools for ana-
lyzing biological models, providing much more information than can be obtained
from numerical simulation alone. In this chapter, we demonstrate how geometric
singular perturbation analysis can be used to understand the dynamics of bursting in
endocrine pituitary cells. This analysis technique, often called “fast/slow analysis,”
takes advantage of the different time scales of the system of ordinary differential
equations and formally separates it into fast and slow subsystems. A standard
fast/slow analysis, with a single slow variable, is used to understand bursting in pitu-
itary gonadotrophs. The bursting produced by pituitary lactotrophs, somatotrophs,
and corticotrophs is more exotic, and requires a fast/slow analysis with two slow
variables. It makes use of concepts such as canards, folded singularities, and mixed-
mode oscillations. Although applied here to pituitary cells, the approach can and has
been used to study mixed-mode oscillations in other systems, including neurons,
intracellular calcium dynamics, and chemical systems. The electrical bursting
pattern produced in pituitary cells differs fundamentally from bursting oscillations
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2 R. Bertram et al.

in neurons, and an understanding of the dynamics requires very different tools from
those employed previously in the investigation of neuronal bursting. The chapter
thus serves both as a case study for the application of recently-developed tools in
geometric singular perturbation theory to an application in biology and a tutorial on
how to use the tools.

1 Introduction

Techniques from dynamical systems theory have long been utilized to understand
models of excitable systems, such as neurons, cardiac and other muscle cells,
and many endocrine cells. The seminal model for action potential generation
was published by Hodgkin and Huxley in 1952 and provided an understanding
of the biophysical basis of electrical excitability (Hodgkin and Huxley (1952)).
A mathematical understanding of the dynamic mechanism underlying excitability
was provided nearly a decade later by the work of Richard FitzHugh (FitzHugh
(1961)). He developed a planar model that exhibited excitability, and that could be
understood in terms of phase plane analysis. A subsequent planar model, published
in 1981 by Morris and Lecar, introduced biophysical aspects into the planar
framework by incorporating ionic currents into the model, making the Morris-Lecar
model a very useful hybrid of the four-dimensional biophysical Hodgkin-Huxley
model and the two-dimensional mathematical FitzHugh model (Morris and Lecar
(1981)). These planar models serve a very useful purpose: they allow one to use
powerful mathematical tools to understand the dynamics underlying a biological
phenomenon.

In this chapter, we use a similar approach to understand the dynamics underlying
a type of electrical pattern often seen in endocrine cells of the pituitary. This pattern
is more complex than the activity patterns studied by FitzHugh, and to understand
it we employ dynamical systems techniques that did not exist when FitzHugh
did his groundbreaking work. Indeed, the mathematical tools that we employ,
geometric singular perturbation analysis with a focus on folded singularities, are
still being developed (Brons et al. (2006), Desroches et al. (2008a), Fenichel
(1979), Guckenheimer and Haiduc (2005), Szmolyan and Wechselberger (2001;
2004), Wechselberger (2005; 2012)). The techniques are appealing from a purely
mathematical viewpoint (see Desroches et al. (2012) for review), but have also been
used in applications. In particular, they have been employed successfully in the field
of neuroscience (Erchova and McGonigle (2008), Rubin and Wechselberger (2007;
2008), Wechselberger and Weckesser (2009)), intracellular calcium dynamics (Har-
vey et al. (2010; 2011)), and chemical systems (Guckenheimer and Scheper (2011)).
As we demonstrate in this chapter, these tools are also very useful in the analysis of
the electrical activity of endocrine pituitary cells. We emphasize, however, that the
analysis techniques can and have been used in many other settings, so this chapter
can be considered a case study for biological application, as well as a tutorial on
how to perform a geometric singular perturbation analysis of a system with multiple
time scales.



1 Geometric Singular Perturbation Analysis of Bursting Oscillations in Pituitary Cells 3

The anterior region of the pituitary gland contains five types of endocrine
cells that secrete a variety of hormones, such as prolactin, growth hormone, and
luteinizing hormone, into the blood. These pituitary hormones are transported by the
vasculature to other regions of the body where they act on other endocrine glands,
which in turn secrete their hormones into the blood, and on other tissue including the
brain. The pituitary gland thus acts as a master gland. Yet the pituitary does not act
independently, but instead is controlled by neurohormones released from neurons of
the hypothalamus, which is located nearby.

Many endocrine cells, including anterior pituitary cells, release hormones
through a stimulus-secretion coupling mechanism. When the cell receives a
stimulatory message, there is an increase in the concentration of intracellular
Ca2C that triggers the hormone secretion. More often than not, the response to
the input is a rhythmic output due to oscillations in the Ca2C concentration. Here
we are interested in the dynamics of these Ca2C oscillations. There are actually
two possibilities, and both can be found in pituitary cells. First, Ca2C oscillations
can be due to the cell’s electrical activity. In this case, oscillations in electrical
activity bring Ca2C into the cell through ion channels in the plasma membrane.
This is called a plasma membrane oscillator, because the channels responsible
for electrical activity and letting in Ca2C are on the cell membrane. Another
mechanism for intracellular Ca2C oscillations is the periodic release of Ca2C from
intracellular stores, through channels on the membrane of these stores. The main
Ca2C-storing organelle is the endoplasmic reticulum (ER), so this mechanism is
called an ER oscillator. In both cases we get rhythmic Ca2C increases. Although
the two mechanisms can interact, we will not look deeply into their interactions
here and instead focus on each separately. This chapter describes work performed
to understand the dynamics underlying these two types of rhythmic Ca2C increase
that underlie hormone secretion from the endocrine cells of the anterior pituitary.

Like neurons and other excitable cells, pituitary cells can generate brief electrical
impulses (also called action potentials or spikes). Different ion concentrations across
the plasma membrane and ion channels specific for certain types of ions create a
difference in the electrical potential across the membrane (the membrane potential,
V). Electrical activity in the form of impulses is caused by the regenerative opening
of membrane ion channels, which allows ions through the membrane according to
their concentration gradient. The opening of channels is controlled by V , which
accounts for positive and negative feedback mechanisms. Usually channels open
when V increases (depolarizes), so channels permeable to NaC or Ca2C which flows
into the cell and thus creates inward currents that further depolarize the membrane,
will provide the positive feedback that underlies the rapid rise of V at the beginning
of a spike. Channels permeable to KC, which is more concentrated inside the cells,
produce an outward current that acts as negative feedback to decrease V and to
terminate a spike. There are many types of ion channels expressed in pituitary cells,
and the combination of ionic currents mediated by these channels determines the
pattern of spontaneous electrical activity exhibited by the cells (see Stojilković et al.
(2010) for review). In a physiological setting, this spontaneous activity is subject
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Fig. 1 Recordings of electrical bursting using the perforated patch method with amphotericin B.
(A) Bursting in an unstimulated cell from the GH4C1 lacto-somatotroph cell line. (B) Bursting in
a pituitary gonadotroph stimulated with GnRH (1 nM). Note the different time scale

to continuous adjustment by hypothalamic neuropeptides, by hormones from other
glands such as the testes or ovaries, and by other pituitary hormones (Freeman
(2006), Stojilković et al. (2010)).

One typical pattern of electrical activity in pituitary cells is bursting. This
consists of episodes of spiking followed by quiescent phases, repeated periodi-
cally. Such bursting oscillations have been observed in the spontaneous activity
of prolactin-secreting lactotrophs, growth hormone-secreting somatotrophs, and
ACTH-secreting corticotrophs (Van Goor et al. (2001a;b), Kuryshev et al. (1996),
Tsaneva-Atanasova et al. (2007)), as well as GH4C1 lacto-somatotroph tumor cells
(Tabak et al. (2011)). The bursting pattern has a short period and the spikes tend
to be very small compared with those of tonically spiking cells (Fig. 1A). In fact,
the spikes don’t look much like impulses at all, but instead appear more like small
oscillations. This type of bursting is often referred to as pseudo-plateau bursting
(Stern et al. (2008)). A very different form of bursting is common in gonadotrophs
that have been stimulated by gonadotropin releasing hormone (GnRH), their
primary activator (Li et al. (1995; 1994), Tse and Hille (1992)), as well as other
stimulating factors (Stojilković et al. (2010)). These bursts have much longer period
than the spontaneous pseudo-plateau bursts (Fig. 1B). Since the biophysical basis
for this bursting pattern is periodic release of Ca2C from an internal store, we
refer to it as store-generated bursting. Both forms of bursting elevate the Ca2C
concentration in the cytosol of the cell and evoke a higher level of hormone secretion
than do tonic spiking patterns (Van Goor et al. (2001b)). This is the main reason
that endocrinologists are interested in electrical bursting in pituitary cells, which in
turn motivates mathematicians to develop and analyze models of the cells’ electrical
activity.

Bursting patterns also occur in neurons (Crunelli et al. (1987), Del Negro et al.
(1998), Lyons et al. (2010), Nunemaker et al. (2001)) and in pancreatic ˇ-cells,
another type of endocrine cell that secretes the hormone insulin (Dean and Mathews
(1970), Bertram et al. (2010)). The ubiquity of the oscillatory pattern and its
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complexity has attracted a great deal of attention from mathematicians, who have
used various techniques to study the mechanism(s) underlying the bursting pattern.
The earliest models of bursting neurons were developed in the 1970s, and bursting
models have been published regularly ever since. Over the past decade several books
have described some of these models and the techniques used to analyze them
(Coombes and Bressloff (2005), Izhikevich (2007), Keener and Sneyd (2008)). The
primary analysis technique takes advantage of the difference in time scales between
variables that change quickly and those that change slowly. This “fast/slow analysis”
or “geometric singular perturbation analysis” was pioneered by John Rinzel in
the 1980s (Rinzel (1987)) and has been extended in subsequent years (Coombes
and Bressloff (2005)). While modeling and analysis of bursting in neurons and
pancreatic ˇ-cells has a long history and is now well developed, the construction
and analysis of models of bursting in pituitary cells is at a relatively early stage.
The burst patterns in pituitary cells are very different from those in cells studied
previously, and the fast/slow analysis technique used in neurons is of limited use for
studying pseudo-plateau bursting in pituitary cells (Toporikova et al. (2008), Teka
et al. (2011a)). Instead, a new fast/slow analysis technique has been developed for
pseudo-plateau bursting that relies on concepts such as folded singularities, canards,
and the theory of mixed-mode oscillations (Teka et al. (2011a), Vo et al. (2010)). In
the first part of this chapter we describe this technique and how it relates to the
original fast/slow analysis technique used to analyze other cell types.

One fundamental difference between the spontaneous bursting observed in many
lactotrophs and somatotrophs and that seen in stimulated gonadotrophs is that
in the former the periodic elevations of intracellular Ca2C are in phase with
the electrical activity, while in the latter they are 180o out of phase. This is
because the former is driven by electrical activity, which brings Ca2C into the
cell through plasma membrane ion channels, while the latter is driven by the ER
oscillator, which periodically releases a flood of Ca2C into the cytosol. This Ca2C
binds to Ca2C-activated KC channels and activates them, resulting in a lowering
(hyperpolarization) of the membrane potential and terminating the spiking activity.
Thus, each time that the Ca2C concentration is high it turns off the electrical activity.
In the second part of this chapter we describe a model for this store-operated
bursting and demonstrate how it can be understood in terms of coupled electrical
and Ca2C oscillators, again making use of fast/slow analysis.

2 The Lactotroph/Somatotroph Model

We use a model for the pituitary lactotroph developed in Tabak et al. (2007) and
recently used in Teka et al. (2011b), Teka et al. (2011a, 2012), and Tomaiuolo
et al. (2012). This model can also be thought of as a model for the pituitary
somatotroph, since lactotrophs and somatotrophs exhibit similar behaviors and the
level of detail in the model is insufficient to distinguish the two. This consists
of ordinary differential equations for the membrane potential or voltage (V), an
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activation variable describing the fraction of activated KC channels (n), and the
intracellular free Ca2C concentration (c):

Cm
dV

dt
D �ŒICa.V/ C IK.V; n/ C ISK.V; c/ C IBK.V/� (1.1)

dn

dt
D n1.V/ � n

�n
(1.2)

dc

dt
D �fc.˛ICa C kcc/: (1.3)

The parameter Cm in Eq. 1.1 is the membrane capacitance, and the right-hand side
is the sum of ionic currents. ICa is an inward current carried by Ca2C flowing
through Ca2C channels and is responsible for the upstroke of an action potential.
It is assumed to activate instantaneously, so no activation variable is needed. The
current is

ICa.V/ D gCam1.V/.V � VCa/ (1.4)

where gCa is the maximum conductance (a parameter) and the instantaneous
activation of the current is described by

m1.V/ D
�

1 C exp

�
vm � V

sm

���1

: (1.5)

The parameters vm and sm set the half-maximum location and the slope, respectively,
of the Boltzman curve. Since this is an increasing function of V , ICa becomes
activated as V increases from its low resting value toward vm. The driving force
for the current is .V � VCa/, where VCa is the Nernst potential for Ca2C.

IK is an outward delayed-rectifying KC current with activation that is slower than
that for ICa. This current, largely responsible for the downstroke of a spike, is

IK.V; n/ D gKn.V � VK/ (1.6)

where gK is the maximum conductance, VK is the KC Nernst potential, and the
activation of the current is described by Eq. 1.2. The steady state activation function
for n is

n1.V/ D
�

1 C exp

�
vn � V

sn

���1

(1.7)

and the rate of change of n is determined by the time constant �n.
Some KC channels are activated by intracellular Ca2C, rather than by voltage.

One type of Ca2C-activated KC channel is the SK channel (small conductance
K(Ca) channel). Because channel activation is due to the accumulation of Ca2C
in the cell (i.e., an increase in c), and this occurs more slowly than changes in V ,
the current through SK channels contributes little to the spike dynamics. Instead, it
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contributes to the patterning of spikes. The current through this channel is modeled
here by

ISK.V; c/ D gSKs1.c/.V � VK/ (1.8)

where gSK is the maximum conductance and the c-dependent activation function is

s1.c/ D c2

c2 C K2
d

(1.9)

where Kd is the Ca2C level of half activation.
The final current in the model reflects KC flow through other Ca2C-activated KC

channels called BK channels (large conductance K(Ca) channels). These channels
are located near Ca2C channels and are gated by V and by the high-concentration
Ca2C nanodomains that form at the mouth of the open channel. As has been pointed
out previously (Sherman et al. (1990)), the Ca2C seen by the BK channel reflects the
state of the Ca2C channel, which is determined by the membrane potential. Thus,
activation of the BK current can be modeled as a V-dependent process:

IBK.V/ D gBKb1.V/.V � VK/ (1.10)

where

b1.V/ D
�

1 C exp

�
vb � V

sb

���1

: (1.11)

Because this current activates rapidly with changes in voltage (due to the rapid
formation of Ca2C nanodomains), it limits the upstroke and contributes to the
downstroke of an action potential.

The differential equation for the free intracellular Ca2C concentration (Eq. 1.3)
describes the influx of Ca2C into the cell through Ca2C channels (˛ICa) and the
efflux through Ca2C pumps kcc. The parameter ˛ converts current to molar flux and
the parameter kc is the pump rate. Finally, parameter fc is the fraction of Ca2C in the
cell that is free, i.e., not bound to Ca2C buffers. Default values of all parameters are
listed in Table 1.

Table 1 Default parameter values for the lactotroph model

gCa D 2 nS gK D 4 nS gSK D 1:7 nS gBK D 0:4 nS

VCa D 50 mV VK D �75 mV Cm D 10 pF ˛ D 1:5� 10�3 pA�1�M

�n D 43 ms fc D 0:01 kc D 0:16 ms�1 Kd D 0:5 �M

vn D �5 mV sn D 10 mV vm D �20 mV sm D 12 mV

vb D �20 mV sb D 5:6 mV
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3 The Standard Fast/Slow Analysis

The three model variables change on different time scales. The time constant for the
membrane potential is the product of the capacitance and the input resistance: �V D
Cm=gtotal, where gtotal D gCa C gK C gSK C gBK is the total membrane conductance.
This varies with time as V changes, and during the burst shown in Fig. 2, gtotal ranges
from about 0.5 nS during the silent phase of the burst to about 3 nS during the active
phase of the burst, so 3:3 < �V < 20 mS. The variable n has a time constant of
�n D 43 ms. The time constant for c is 1

fckc
D 625 ms. Hence, �V < �n < �c and V

is the fastest variable, while c is the slowest.
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Fig. 2 Bursting produced by the lactotroph model. (A) Voltage V exhibits small spikes emerging
from a plateau. (B) The variable n is sufficiently fast to reliably follow V . (C) The variable c
changes on a much slower time scale, exhibiting a saw-tooth time course
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The time courses of the three variables shown in Fig. 2 confirm the differences
in time scales. The spikes that occur during each burst in V are reliably reflected in
n, but are dampened in c. Indeed, c is an accumulating variable, similar to what one
observes in the recovery variable during a relaxation oscillation. This observation
motivates the idea of analyzing the burst trajectory just as one would analyze a
relaxation oscillation with a fast variable V and a slow recovery variable c. That is,
the trajectory is examined in the c-V plane and the c and V nullclines are utilized.
However, since the system is 3-dimensional, one replaces the nullcline of the fast
variable (V) with the fast subsystem (V and n) bifurcation diagram, where the slow
variable c is treated as the bifurcation parameter. This is the fundamental idea of
the standard fast/slow analysis, which is illustrated in Fig. 3A. The fast-subsystem
bifurcation diagram, often called the z-curve, consists of a bottom branch of stable
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Fig. 3 2-fast/1-slow analysis of pseudo-plateau bursting. The 3-branched z-curve consists of
stable (solid) and unstable (dotted) equilibria and a branch of unstable periodic solutions (dashed).
Bifurcations include a lower saddle-node (LSN), upper saddle-node (USN), subcritical Hopf
(subHB), and homoclinic (HM) bifurcations. (A) With default parameter values, the burst trajectory
(thick black curve) only partially follows the z-curve. (B) When the slow variable is made slower
by reducing fc from 0.01 to 0.001 the full-system trajectory follows the z-curve much more closely
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steady states (solid curve), a middle branch of unstable saddle points (dotted curve),
and a top branch of stable and unstable steady states. The three branches are joined
by lower and upper saddle-node bifurcations (LSN and USN, respectively), and
the stability of the top branch changes at a subcritical Hopf bifurcation (subHB).
The Hopf bifurcation gives rise to a branch of unstable periodic solutions that
terminates at a homoclinic bifurcation (HM). Thus, we see that the fast subsystem
has an interval of c values where it is bistable between lower (hyperpolarized) and
upper (depolarized) steady states. This interval extends from LSN to subHB. The
c nullcline intersects the z-curve between subHB and USN. This intersection is an
unstable equilibrium of the full system of equations.

The next step in the fast/slow analysis is to superimpose the burst trajectory and
analyze the dynamics using a phase plane approach. Since the c variable is much
slower than V , the trajectory largely follows the z-curve, as it would follow the
nullcline of the fast variable during a relaxation oscillation. Below the c-nullcline
the flow is to the left, and above the nullcline it is to the right. Hence, during the
silent phase of the burst the trajectory moves leftward along the bottom branch of
the z-curve. When LSN is reached there is a fast jump up to the top branch of the
z-curve. The trajectory follows this rightward until subHB is reached, at which point
it jumps down to the bottom branch of the z-curve, restarting the cycle.

As is clear from Fig. 3A, the trajectory does not follow the z-curve very closely.
One explanation for this is that the equilibria on the top branch are weakly attracting
foci, and the “slow variable” c changes too quickly for the trajectory to ever get
close to the branch of foci. Thus, weakly damped oscillations are produced during
the active phase, and these damped oscillations are the spikes of the burst. This
interpretation is supported in Fig. 3B, where the slow variable is made 10-times
slower by decreasing fc from 0.01 to 0.001. Now the trajectory moves much more
closely along both branches of the z-curve. During the active phase there are a few
initial oscillations which quickly dampen. Once the trajectory passes through subHB
there is a slow passage effect (Baer et al. (1989), Baer and Gaekel (2008)) and a few
growing oscillations before the trajectory jumps down to the lower branch.

This analysis, which we will call a 2-fast/1-slow analysis, provides some useful
information about the bursting. For example, this approach was used to understand
the mechanism for active phase termination during a burst, by constructing the
2-dimensional stable manifold of the fast subsystem saddle point (Nowacki et al.
(2010)). This approach was also used to understand the complex burst resetting that
occurs in response to upward voltage perturbations (Stern et al. (2008)). We have
shown how the z-curve for this pseudo-plateau bursting relates to that for the plateau
bursting often observed in neurons (Teka et al. (2011a)). This is illustrated in Fig. 4,
using the Chay-Keizer model for bursting in pancreatic ˇ-cells (Chay and Keizer
(1983)). (The equations for this model are given in the Appendix.) The standard
z-curve for plateau bursting is shown in panel A. It is characterized by a branch of
stable periodic solutions that are the spikes of the burst. In this figure they emanate
from a supercritical Hopf bifurcation (supHB). With this stable periodic branch, the
spikes tend to be much larger than those produced during pseudo-plateau bursting
and they do not dampen as the active phase progresses. If the activation curve
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Fig. 4 The Chay-Keizer model is used to illustrate the transition between plateau and pseudo-
plateau bursting. (A) The z-curve for plateau bursting, using default parameter values given
in Appendix, is characterized by a branch of stable periodic spiking solutions arising from a
supercritical Hopf bifurcation (supHB). (B) Increasing the value of vn from �16 mV to �14

mV moves the Hopf bifurcation rightward and converts it to a subHB, with an associated saddle-
node of periodics (SNP) bifurcation. (C) Increasing vn further to �12 mV creates the z-curve that
characterizes pseudo-plateau bursting. From Teka et al. (2011b)

for the hyperpolarizing KC current is moved rightward by increasing vn, the cell
becomes more excitable. As a result, the Hopf bifurcation moves rightward and
becomes subcritical (Fig. 4B). Most importantly, the region of bistability between
a stable spiking solution and a stable hyperpolarized steady state has largely been
replaced by bistability between two stable steady states of the fast subsystem: one
hyperpolarized and one depolarized. When the activation curve is shifted further
to the right (Fig. 4C), the stable periodic branch has been entirely replaced by a
stable stationary branch and the z-curve is that for pseudo-plateau bursting. Other
maneuvers that make the cell more excitable, such as moving the activation curve
for the depolarizing ICa current leftward, increasing the conductance gCa for this
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current or decreasing the conductance gK for the hyperpolarizing IK current, have
the same effect on the z-curve (Teka et al. (2011b)). In addition to changing
the fast-subsystem bifurcation diagram, the speed of the slow variable must also
be modified to convert between plateau and pseudo-plateau bursting (it must be
faster for pseudo-plateau bursting, which is achieved by increasing the value of fc).
In a separate study, Osinga and colleagues demonstrated that the fast-subsystem
bifurcation structure of both plateau and pseudo-plateau bursting could be obtained
by unfolding a codimension-4 bifurcation (Osinga et al. (2012)). This explains why
the pseudo-plateau bifurcation structure was not seen in an earlier classification of
bursting that was based on the unfolding of a codimension-3 bifurcation (Bertram
et al. (1995)).

Although the 2-fast/1-slow analysis provides useful information about the
pseudo-plateau bursting, it has some major shortcomings. Most obviously, the burst
trajectory does not follow the z-curve very closely unless the slow variable is slowed
down to the point where spikes no longer occur during the active phase (Fig. 3).
Also, the explanation for the origin of the spikes is not totally convincing, since
it is based on a local analysis of the steady states of the top branch, while the
bursting trajectory is not near these steady states. It also provides no information
about how many spikes to expect during a burst. Finally, as illustrated in Fig. 5, it
fails to explain the transition that occurs from pseudo-plateau bursting to continuous
spiking when the c-nullcline is lowered. In this figure, reducing the kc parameter
lowers the nullclline without affecting the z-curve. In both panels B and D the
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Fig. 5 A 2-fast/1-slow analysis fails to explain the transition from pseudo-plateau bursting to
spiking in the lactotroph model when the c-nullcline is lowered. (A) Bursting produced using
default parameter values. (B) The standard fast/slow analysis of the bursting pattern. (C) The
bursting is converted to continuous spiking when kc is reduced from 0.16 ms�1 to 0.1 ms�1. (D)
It is not apparent from the fast/slow analysis why the transition took place. From Teka et al. (2012)
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nullcline intersects the z-curve to form an unstable full-system equilibrium (labeled
as “A”) as well as the unstable periodic branch, forming an unstable full-system
periodic solution. Yet, in one case the system bursts (panel A), while in the other
it spikes continuously (panel C). This is a clear indication that predictions made
regarding pseudo-plateau bursting with this type of analysis may not be reliable.

4 The 1-Fast/2-Slow Analysis

In the analysis above, the variable with the intermediate time scale (n) was associ-
ated with the fast subsystem, and the bursting dynamics analyzed by comparing the
full-system trajectory to what one would expect if the single slow variable (c) were
very slow. That is, by going to the singular limit fc ! 0 and constructing a fast-
subsystem bifurcation diagram with c as the bifurcation parameter. Alternatively,
one could associate n with the slow subsystem and then study the dynamics by
comparing the bursting to what one would expect if the single fast variable were
very fast. That is, by going to the singular limit Cm ! 0. We take this 1-fast/2-slow
analysis approach here, where the variable V forms the fast subsystem and n and
c form the slow subsystem. This is formalized using non-dimensional equations in
Teka et al. (2011a) and Vo et al. (2010), where more details and derivations can
also be found. A recent review of mixed-mode oscillations (Desroches et al. (2012))
gives more detail on the key dynamical structures described below.

4.1 Reduced, Desingularized, and Layer Systems

In the following, we assume that Cm is small, so that the V variable is in a pseudo-
equilibrium state. Define the function f as the right-hand side of Eq. 1.1:

f .V; n; c/ � �.ICa C IK C ISK C IBK/: (1.12)

and then

Qf .V; n; c/ � f .V; n; c/=gmax (1.13)

where gmax is a representative conductance value, for example, the maximum
conductance during an action potential. Then the dynamics of the fast subsystem
are, in the singular limit, given by the layer problem:

dV

dtf
D Qf .V; n; c/ (1.14)
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dn

dtf
D 0 (1.15)

dc

dtf
D 0 : (1.16)

where tf D .gmax=Cm/t is a dimensionless fast time variable. The equilibrium set of
this subsystem is called the critical manifold, which is a surface in R

3:

S � f.V; n; c/ 2 R
3 W f .V; n; c/ D 0g: (1.17)

Since f is linear in n, it is convenient to solve for n in terms of V and c:

n D n.V; c/ D � 1

gK
Œh.V/ C gSKs1.c/� (1.18)

where

h.V/ D gCam1.V/

�
V � VCa

V � VK

�
C gBKb1.V/: (1.19)

The critical manifold is a folded surface consisting of three sheets connected by two
fold curves (Fig. 6). The one-dimensional fast subsystem is bistable; for a range
of values of n and c there is a stable hyperpolarized steady state and a stable
depolarized steady state, separated by an unstable steady state. The stable steady
states form the attracting lower and upper sheets of the critical manifold (denoted as
SCa and S�a and where @f

@V < 0), while the separating unstable steady states form the

repelling middle sheet (denoted as Sr and where @f
@V > 0). The sheets are connected

by fold curves denoted by LC and L� that consist of points on the surface where

@f

@V
D 0: (1.20)

That is,

L˙ � f.V; n; c/ 2 R
3 W f .V; n; c/ D 0 and

@f

@V
.V; n; c/ D 0g: (1.21)

The projection of the top fold curve onto the lower sheet is denoted P.LC/, while
the projection of the lower fold curve onto the top sheet is denoted P.L�/. Both
projections are shown in Fig. 6.

The critical manifold is not only the equilibrium set of the fast subsystem, but
is also the phase space of the slow subsystem. This slow subsystem, also called the
reduced system, is described by

f .V; n; c/ D 0 (1.22)
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Fig. 6 The critical manifold is the set of points in R
3 for which the fast variable V is at equilibrium

(Eq. 1.17). The two fold curves are denoted by LC and L�. The projections along the fast fibers of
the fold curves are denoted by P.LC/ and P.L�/. Also shown is the folded node singularity (FN)
and the strong canard (SC) that enters the folded node. From Teka et al. (2011a)

dn

dt
D n1.V/ � n

�n
(1.23)

dc

dt
D �fc.˛ICa C kcc/: (1.24)

This differential-algebraic system describes the flow when the trajectory is on the
critical manifold, which is given as a graph in Eq. 1.18. We can thus present the
system in a single coordinate chart .V; c/ including the neighborhood of the two
folds. A condition is then needed to constrain the trajectories to the critical manifold.
It is the total time derivative of f D 0 that provides this condition. That is,

d

dt
f .V; n; c/ D d

dt
0 (1.25)

or

� @f

@V

dV

dt
D @f

@c

dc

dt
C @f

@n

dn

dt
: (1.26)

Using Eqs 1.23, 1.24,

� @f

@V

dV

dt
D �fc.˛ICa C kc c/

@f

@c
C
�

n1.V/ � n.V; c/

�n

�
@f

@n
: (1.27)

The reduced system then consists of the differential equations Eqs. 1.24 and 1.27
where n.V; c/ is given by Eq. 1.18.
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The reduced system is singular at the fold curves (where @f
@V D 0), so the

speed of a trajectory approaches 1 as it approaches a fold curve. (This can be
seen by solving Eq. 1.27 for dV

dt and noting that the denominator approaches 0,
but the numerator does not, as a fold curve is approached.) The singularity can
be removed by introducing a rescaled time d� D �. @f

@V /�1dt. This produces a
system that behaves like the reduced system, except at the fold curves, which are
transformed into nullclines of the c variable. With this rescaled time, the following
desingularized system is formed:

dV

d�
D F.V; c/ (1.28)

dc

d�
D fc.˛ICa C kc c/

@f

@V
; (1.29)

where F.V; c/ is defined as

F.V; c/ � �fc.˛ICa C kc c/
@f

@c
C
�

n1.V/ � n.V; c/

�n

�
@f

@n
: (1.30)

Like the reduced system, Eqs. 1.28–1.30 along with Eq. 1.18 describe the flow
on the top and bottom sheets of the critical manifold. They also describe the flow
on the middle sheet, but in this case the flow is backwards in time due to the time
rescaling. The jump from one attracting sheet to another is described by the layer
problem, which was discussed above.

A singular periodic orbit can be constructed by gluing together trajectories from
the desingularized system and the layer system such that the resulting orbit returns
to its starting point. An example is shown in Fig. 6. Beginning from a point on
the singular periodic orbit that lies on SCa , the desingularized system is solved to
yield a trajectory that moves along SCa until it reaches LC (black curve with single
arrow). From here, it moves to the bottom sheet following a fast fiber (black curve
with double arrows). From a point on P.LC/ the desingularized equations are again
solved to yield a trajectory that moves along S�a until L� is reached. The trajectory
then moves along a fast fiber to a point on P.L�/ on the top sheet. From here
the desingularized equations are again solved and the trajectory continues until the
starting point is reached.

4.2 Folded Singularities and the Origin of Pseudo-Plateau
Bursting

There are two very different types of equilibria of the desingularized system:
ordinary and folded singularities. An ordinary singularity of the desingularized
system satisfies
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f .V; n; c/ D 0 (1.31)

n D n1.V/ (1.32)

c D c1.V/ D �f .˛ICa C kcc/ (1.33)

and is an equilibrium of the full system Eqs. 1.1–1.3 . A folded singularity lies on a
fold curve and satisfies

f .V; n; c/ D 0 (1.34)

F.V; c/ D 0 (1.35)

@f

@V
D 0: (1.36)

As previously noted, in the reduced system (Eqs. 1.24, 1.27, and 1.18), trajecto-
ries pass through a fold curve with infinite velocity. Folded singularities are an
exception: at these points both numerator and denominator approach 0, and hence
a trajectory passes through a folded singularity with finite speed. In the full system
near the singular limit, the trajectory can pass through the fold curve and move along
the middle sheet of the slow manifold for some time before jumping off.

A linear stability analysis of a folded singularity indicates whether it is a folded
node (two real eigenvalues of the same sign), folded saddle (real eigenvalues of
opposite sign), or folded focus (complex conjugate pair of eigenvalues). In the full
system, singular canards exist in the neighborhood of a folded node and a folded
saddle (Benoit (1983), Szmolyan and Wechselberger (2001)). These trajectories
enter the folded singularity, in our case along SCa , and move through it in finite time,
emerging on the repelling sheet Sr and traveling along this sheet for some time. For
the parameter values used in Fig. 6 there is a folded node (FN) on LC. In such a case,
there is a whole sector of singular canards, bounded by LC and the strong singular
canard (denoted by SC in Fig. 6) associated with the trajectory that is tangent to the
eigendirection of the strong eigenvalue of the FN. This sector is called the singular
funnel. A singular periodic orbit that enters the singular funnel will exhibit canard-
induced mixed-mode oscillations (MMOs) away from the singular limit (i.e., when
Cm > 0) (Brons et al. (2006)).

According to Fenichel theory (Fenichel (1979)), for Cm > 0 the critical manifold
perturbs smoothly to a slow manifold consisting of invariant attracting and repelling
manifolds. We denote the attracting manifolds as SCa;Cm

and S�a;Cm
, and the repelling

manifold as Sr;Cm . Since the critical manifold loses hyperbolicity at LC and L�,
Fenichel theory does not apply there. Indeed, the critical manifold near a folded
node perturbs to twisted sheets (Guckenheimer and Haiduc (2005), Wechselberger
(2005)). This is illustrated in Fig. 7, where SCa;Cm

(blue) and Sr;Cm (red) come together
near the FN. The numerical technique used to compute the twisted sheets utilizes
continuation of trajectories that satisfy boundary value problems, and was developed
in Desroches et al. (2008a) and Desroches et al. (2008b).
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Fig. 7 The twisted slow manifold near a folded node, calculated using Cm D 2 pF with default
parameter values. The primary strong canard (SC, green) flows from SC

a;Cm
to Sr;Cm with a half

rotation. The secondary canard �1 flows from SC

a;Cm
to Sr;Cm with a single rotation. The other

secondary canards (�2, �3) have two and three rotations, respectively. The full system has an
unstable equilibrium near Sr;Cm (cyan circle). The pseudo-plateau bursting trajectory (PPB) is
superimposed and has two rotations. From Teka et al. (2011a)

The singular strong canard perturbs to a primary strong canard that moves from
SCa;Cm

to Sr;Cm with only one twist, or one half rotation. In addition, there is a family
of secondary canards that move through the funnel and exhibit rotations as they
flow from SCa;Cm

to Sr;Cm . The maximum number of rotations produced, Smax, is
determined by the eigenvalue ratio of the linearization at the folded node. If �s and
�w are the strong and weak eigenvalues of the linearization at the FN, then define

� D �w

�s
: (1.37)

The maximum number of oscillations is then (Rubin and Wechselberger (2008),
Wechselberger (2005))

Smax D
�

� C 1

2�

�
(1.38)

which is the greatest integer less than or equal to �C1

2�
. For Cm > 0, but small, there

are Smax � 1 secondary canards that divide the funnel into Smax sectors (Brons et al.
(2006)). The first sector is bounded by SC and the first secondary canard �1 and
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trajectories entering this sector have one rotation. The second sector is bounded by
�1 and �2 and trajectories entering here have two rotations, etc. Trajectories entering
the last sector, bounded by the last secondary canard and the fold curve LC, have
the maximal Smax number of rotations (Rubin and Wechselberger (2008), Vo et al.
(2010), Wechselberger (2005)). Many of these small oscillations are so small that
they would be practically invisible, particularly in an experimental voltage trace
where they would be obscured by noisy fluctuations.

Figure 7 shows a portion of the pseudo-plateau burst trajectory (PPB, black
curve) superimposed onto the twisted slow manifold. Since it enters the funnel
between the first and second secondary canards it exhibits two rotations as it moves
through the region near the FN. These rotations are the small spikes that occur
during the active phase of the burst. The full burst trajectory, then, consists of slow
flow along the lower and upper sheets of the slow manifold, followed by fast jumps
from one attracting sheet to another. The jump from SCa;Cm

down to S�a;Cm
is preceded

by a few small oscillations, which are the spikes of the burst. As Cm is made smaller,
the burst trajectory looks more and more like the singular periodic orbit, and indeed
the small oscillations disappear in the singular limit (Vo et al. (2010)).

4.3 Phase-Plane Analysis of the Desingularized System

Because the desingularized system is two-dimensional, one can apply phase-plane
analysis techniques to it (Rubin and Wechselberger (2007), Teka et al. (2011a)).
This is illustrated in Fig. 8, where the nullclines and equilibria are shown. The V-
nullcline satisfies F.V; c/ D 0 and is the single z-shaped curve in the figure. The
c-nullcline satisfies

fc.˛ICa C kc c/
@f

@V
D 0 (1.39)

and thus

˛ICa C kc c D 0 (1.40)

or

@f

@V
D 0: (1.41)

The first set of solutions forms the c-nullcline of the full system and is labelled
CN1 in Fig. 8. The second set of solutions forms the two fold curves LC and
L�. Intersections of the V-nullcline with CN1 produce ordinary singularities and
are equilibria of the full system (Eqs. 1.1–1.3). There is one such equilibrium in
Fig. 8A, labelled as point A, which is an unstable saddle point of the desingularized
system. Intersections of the V-nullcline with one of the fold curves produce folded
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Fig. 8 Nullclines of the desingularized system. (A) An ordinary singularity (point A) occurs
where the V-nullcline and the CN1 branch of the c-nullcline intersect. This equilibrium is a saddle
point of the desingularized system and a saddle-focus of the full system. Two folded equilibria
occur where the V-nullcline intersects the fold curves. One folded singularity is a stable folded
node (FN), while the other is a stable folded focus (FF). (B) When gBK is increased from 0.4 nS to
2.176 nS the saddle point and folded node coalesce at a transcritical bifurcation (TR). This is also
known as a folded saddle-node of type II. (C) When gBK D 4 nS the ordinary singularity, which
now occurs on the top sheet of the critical manifold, is stable. The folded node has become a folded
saddle and is unstable
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singularities. In Fig. 8A there is a folded focus singularity on L� and a folded node
singularity on LC. The folded node is stable, and will generate canards. The folded
focus is also stable, but it produces no canards.

One advantage of having a planar system is that it facilitates understanding of the
effects of parameter changes. For example, increasing the parameter gBK changes
the shape of the V-nullcline and brings LC and L� closer together, but has no effect
on CN1. As this parameter is increased the FN and the equilibrium point A move
closer together, and eventually coalesce (Fig. 8B). When the parameter is increased
further the stability is transferred from the folded node to the full-system equilibrium
(Fig. 8C). Thus, the desingularized system undergoes a transcritical bifurcation as
gBK is increased. On the other side of the bifurcation, the folded node has become
a folded saddle and no longer attracts trajectories off of its one-dimensional stable
manifold. The intersection point A is now stable, and is a stable equilibrium of the
full system of equations. Thus, beyond the transcritical bifurcation the full system is
at rest at a high-voltage (depolarized) steady state. This transcritical bifurcation of
the desingularized system is also called a type II folded saddle-node bifurcation
(Krupa and Wechselberger (2010), Milik and Szmolyan (2001), Szmolyan and
Wechselberger (2001)). In contrast, a type I folded saddle-node bifurcation is the
coalescence of a folded saddle and a folded node singularity, and does not involve
full-system equilibria (Szmolyan and Wechselberger (2001)).

The transcritical bifurcation of the desingularized system is a signature of a
singular Hopf bifurcation of the full system (Desroches et al. (2012), Guckenheimer
(2008)). The ordinary saddle point of the desingularized system in Fig. 8A is a
saddle focus of the full system, and trajectories can approach the saddle focus
along its one-dimensional stable manifold and leave along the two-dimensional
unstable manifold with growing oscillations. In fact, with an appropriate global
return mechanism, this can be a mechanism for MMOs that is different from that
due to the folded node (which co-exists with the saddle focus). In this case, the
small oscillations are characterized by a monotonic increasing amplitude, which
may or may not be the case for canard-induced MMOs. Interestingly, these two
mechanisms for MMOs are not mutually exclusive; in Fig. 21 of Desroches et al.
(2012) an example is shown of an MMO whose first few small oscillations are due
to a twisted slow manifold induced by a folded node and whose remaining small
oscillations are due to growing oscillations away from a saddle focus.

4.4 Bursting Boundaries

One useful application of the 1-fast/2-slow analysis is the determination of the
region of parameter space for which bursting occurs. A change in a parameter
can convert bursting to spiking, as in Fig. 5, or can convert bursting to a stable
steady state, as would occur in Fig. 8. Since the pseudo-plateau bursting is closely
associated with the existence of a folded node singularity, one necessary condition
for this type of bursting is the existence of a folded node. We have seen that a folded



22 R. Bertram et al.

node can be created/destroyed via a type II folded saddle-node bifurcation. That is,
when the weak eigenvalue crosses through the origin, and thus � D 0. A folded
node can also change to a folded focus, which has no canard solutions. This occurs
after the eigenvalues coalesce, i.e., when � D 1. Since a folded node singularity
exists only when 0 < � < 1, canard-induced mixed-mode oscillations only occur
for parameter values for which 0 < � < 1 at the folded singularity. This is predictive
for pseudo-plateau bursting, at least in the case where Cm is small. For larger values
of Cm the singular theory may not hold up, so bursting may occur for parameter
values at which the singular theory predicts a continuous spiking solution.

Another condition for canard-induced MMOs is that there is a global return
mechanism that periodically injects the trajectory into the funnel. When this
occurs, the trajectory moves through the twisted slow manifold and produces small
oscillations that are the spikes of pseudo-plateau bursting. If instead the trajectory
is injected outside of the funnel, on the other side of the strong canard, continuous
spiking will occur. To quantify this, a distance measure ı is used. This is defined
using the singular periodic orbit, and is best viewed in the c-V plane (Fig. 9). When
the orbit jumps from the bottom sheet of the critical manifold at L� it moves along
a fast fiber to a point on P.L�/ on the top sheet. The horizontal distance from this
point to the strong canard is defined as ı. If the point is on the strong canard, then

Fig. 9 Projection of the singular periodic orbit and key structures onto the c-V plane. The upper
fold curve (LC) and strong canard (SC) delimit the singular funnel. The singular periodic orbit
jumps from L� onto a point on P.L�/. The distance in the c direction from this point to the strong
canard is defined as ı, and by convention ı > 0 when the point is in the funnel. From Teka et al.
(2011a)
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Fig. 10 The singular analysis predicts whether the full system should be continuously spiking,
bursting, or in a depolarized steady state. The folded node becomes a folded saddle above the
� D 0 curve and the ordinary singularity of the desingularized system becomes stable. Between
the � D 0 and ı D 0 curves the two conditions are met for mixed-mode oscillations, and pseudo-
plateau bursting is predicted to occur. Below the ı D 0 curve the singular periodic orbit does
not enter the singular funnel, resulting in relaxation oscillations. Away from the singular limit (for
Cm > 0) these become a periodic spike train

ı D 0, while if it is in the funnel then ı > 0 by convention. Thus, a necessary
condition for the existence of canard-induced MMOs, and pseudo-plateau bursting,
is ı > 0.

With these constraints on ı and � one can construct a 2-parameter bifurcation
diagram characterizing the behavior of the full system. One such diagram is
illustrated in Fig. 10, where the maximum conductances of the delayed rectifier (gK)
and the large-conductance K(Ca) (gBK) currents are varied. In the diagram, the upper
curve (magenta) consists of type II folded saddle-node bifurcations that give rise to
a folded node, and thus is characterized by � D 0. Above this curve the full system
equilibrium is stable and the system goes to a depolarized steady state. Below this
curve � > 0. The lower curve (green) consists of points in which ı D 0. Above this
curve ı > 0, while below it ı < 0. Both conditions for MMOs are satisfied between
the two curves, so this is the parameter region where mixed-mode oscillations occur.

4.5 Spike-Adding Transitions

In the region of parameter space where MMOs occur, one can characterize the
number of small oscillations (spikes) that occur in different subregions. Such an
analysis was performed in Vo et al. (2012), using a variant of the lactotroph model
(described in the Appendix) that we have been using thus far. It was motivated by the
observation that, in a 4-variable lactotroph model containing an A-type KC current,
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pseudo-plateau bursting can occur even if one fixes the c variable at its average
value (Toporikova et al. (2008)). Thus, to simplify the analysis, c is clamped and
the model reduced to 3 dimensions. This 3-dimensional model is what we consider
now, where the major difference with the 3-dimensional lactotroph model discussed
previously is that the SK and BK currents are replaced by leakage and A-type KC
currents, and the calcium variable c is replaced by an inactivation variable e for
the A-type channels. The bursting boundaries were determined with this model in
the plane of the two parameters gK and gA. In this case, the left bursting boundary
occurs when � D 0 and the folded node becomes a folded saddle at a type II
folded saddle-node bifurcation. Unlike in Fig. 10, however, the right boundary for
mixed-mode oscillations occurs when � D 1 and the folded node becomes a folded
focus (Fig. 11). A third boundary occurs where ı D 0, and the fourth boundary
occurs where a stable equilibrium of the full system is born at a saddle-node on
invariant circle (SNIC) bifurcation. Both conditions for MMOs are satisfied within
the trapezoidal region bounded by these line segments (Fig. 11).
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Fig. 11 Bursting boundaries and the maximum number of spikes per burst in a variant of the
lactotroph model (described in Appendix). The left and right boundaries occur when the folded
node becomes a folded saddle (� D 0) or a folded focus (� D 1). The lower boundary occurs
when the periodic orbit jumps to the strong canard that delimits the singular funnel (ı D 0). The
upper boundary occurs when a stable equilibrium of the full system is born at an SNIC bifurcation.
The maximum number of spikes (Smax) is determined by �. From Vo et al. (2012)
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The maximum number of small oscillations that occur in the mixed-mode
oscillations (Smax) depends on �, the eigenvalue ratio, according to Eq. 1.38. In
this model, the eigenvalues depend only on gK , and only slightly on gA. Thus,
the subregions of constant Smax are separated by almost-vertical line segments (gK

values where the value of the greatest integer function changes). Near the right
boundary � � 1, so by Eq. 1.38 there is at most one small oscillation per burst.
(There will be an additional oscillation, due to the trajectory jumping from the lower
sheet to the upper sheet of the slow manifold; after the jump, the voltage is initially
large and then slowly declines, producing the first spike of the burst.) For gK � 5

nS, Smax increases to 2, and then to 3 for gK � 4:4 nS. The maximum number of
oscillations continues to increase as the left boundary is approached, where � D 0

and Smax ! 1.
While the eigenvalue ratio tells half of the story, the other half is determined by

where the periodic orbit lands when it jumps to the top sheet of the slow manifold
(i.e., it depends on the value of ı). If the orbit jumps to a point close to the primary
strong canard, then ı is near 0. In this sector, bounded on one side by the primary
strong canard and on the other by the first secondary canard, one small oscillation
will be produced, regardless of the eigenvalue ratio �. This is the case near the
bottom of the MMO region in the parameter plane. The distance measure ı becomes
larger for larger values of gA, and thus the number of small oscillations produced
during a burst increases as the trajectory jumps into sectors that are further from the
primary strong canard. In summary, the parameter gK controls the eigenvalue ratio �

and thus the maximum number of spikes per burst. It also determines the number of
secondary canards, which delimit sectors of the funnel. The parameter gA controls
the distance measure ı and thus which sector the orbit jumps into when it jumps
to the top sheet of the slow manifold. In the two-parameter diagram of Fig. 11, the
number of spikes per burst will increase as one moves to the left or upward in the
MMO region.

If ı is held constant by fixing gA, and � is varied by varying gK , what will the
bifurcation structure of the spike adding transitions look like? How are the MMO
solution branches connected to one another? That is, how does a bursting branch
with n spikes connect to a bursting branch with n C 1 spikes? These questions were
addressed in Vo et al. (2012), first by performing a bifurcation analysis with the
continuation program AUTO (Doedel (1981), Doedel et al. (2007)), and then by
using return maps of both the singular and non-singular systems to better understand
the spike adding behavior. Figure 12 shows the L2 norm of the solution over a
range of values of gK for gA D 4 nS. For gK below about 3.7 nS there is a
stable depolarized steady state (ED). This becomes unstable at a subcritical Hopf
bifurcation. The family of periodic solutions born at this bifurcation consists of
continuous spiking, labeled here as s D 0 (no small oscillations). The first family
of bursting solutions (s D 1 branch) connects to the spiking branch at a period
doubling bifurcation (at gK � 3:592 nS, shown in the left inset) and later at a
second period doubling bifurcation (at gK � 6:127 nS). This bursting pattern has
one spike induced by a folded node, in addition to the initial spike due to the jump
up to and initial motion down the top sheet. The next bursting branch, with s D 2, is
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Only the s D 1 bursting family is connected to the spiking branch (s D 0). All other families of
bursting solutions (e.g., the s D 2 family) form isolas. The lactotroph model variant is used. From
Vo et al. (2012)

connected to neither the spiking branch nor the s D 1 branch. Instead, it is an isola
formed by a pair of saddle-node of periodics bifurcations (right inset of Fig. 12).
This family of solutions extends over a smaller range of gK values than the s D 1

family, and the stable portion of the branch in particular is only about a quarter as
long as that of the s D 1 branch. Other bursting families are isolas similar to the
s D 2 family, and the range of each successive family is shorter than its predecessor.
There is an accumulation point as gK is decreased (toward the point where � D 0)
as the stable range of the bursting families approaches 0 and s ! 1.

4.6 Prediction Testing on Real Cells

Figures 10 and 11 provide predictions about how the number of spikes per burst vary
with parameter values and the boundaries between continuous spiking, bursting,
and stationary behavior. These predictions have proven to be quite good (Teka
et al. (2011a), Vo et al. (2010)) even in cases where the singular parameter Cm

is large, within the right range for pituitary cells (� 5 pF). Importantly, these
predictions also apply to real pituitary cells. For example, if a pituitary cell is
spiking continuously, then it should be possible to convert it to a bursting cell by
increasing the conductance of the BK-type or A-type KC currents, or by decreasing
the conductance of the delayed-rectifier KC current. Also, if the cell is bursting, then
the number of spikes in a burst should increase if gBK or gA is increased, or if gK is
decreased. These predictions were tested using the dynamic clamp technique, which



1 Geometric Singular Perturbation Analysis of Bursting Oscillations in Pituitary Cells 27

records the voltage from a real cell using an electrode, then uses a mathematical
model to compute a current, which is injected into the cell in real time. Thus, the
dynamic clamp allows one to add a voltage-dependent current to a real cell, using
the cell’s membrane potential to calculate that current (Milescu et al. (2008), Sharp
et al. (1993)).

Figure 13 shows the result of adding a BK current to a GH4C1 cell (a lacto-
somatotroph cell line). With no added BK conductance the cell spikes continuously
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Fig. 13 Patch clamp recording from a GH4C1 lacto-somatotroph cell using dynamic clamp to add
a model BK-type current (Eq. 1.10). (A) With no added current the cell spikes continuously. (B)
When 0.5 nS of BK conductance is added the cell exhibits bursts intermingled with spikes. (C)
With a larger added BK conductance, 1 nS, the burstiness is increased, as is the number of spikes
per burst. (D) Quantification of the burstiness over the entire time course for the three values of the
added gBK . The burstiness increases with gBK . (E) Quantification of the mean event duration for
the three values of the added gBK . The event duration increases with gBK
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(Fig. 13A). However, once BK current is added with a sufficiently large conduc-
tance the cell exhibits a pseudo-plateau bursting pattern intermixed with spiking
(Fig. 13B). Adding more conductance increases the burstiness of the cell, that is, the
fraction of events that are bursts. Also, as predicted by the analysis, adding more gBK

increases the number of spikes in a burst (Fig. 13C). The change in burstiness with
added BK conductance is quantified in panel D, where the burstiness is calculated
over the entire time course for each value of the added gBK . Panel E shows the
quantification of the mean even duration, including both spikes and bursts. Both
the burstiness and the event duration increase with an increase in the added gBK , as
predicted by the analysis. The transition between spiking and bursting with addition
or subtraction of a BK current using the dynamic clamp was shown repeatedly in
GH4C1 cells and primary pituitary gonadotrophs (Tabak et al. (2011), Tomaiuolo
et al. (2012)).

It is also possible to use the dynamic clamp to add a negative conductance to
the cell, thereby subtracting an ionic current. One can, for example, develop a
model for the IK current that reflects the characteristics of this current in the real
cell. Then the dynamic clamp technique can be used to subtract off some of this
current from the cell, by adding a negative gK conductance. This can be superior
to using pharmacological agents to remove a current, since such agents are often
non-specific. Also, the dynamic clamp approach allows the investigator to subtract
off only a fraction of the current, in a controlled manner. We use this approach to
subtract off gK conductance, and thus reduce the effective gK value in the cell (the
native gK minus that subtracted off with dynamic clamp). The prediction is that a
spiking cell should become a burster when a sufficient amount of gK is subtracted,
and as more is subtracted the number of spikes in a burst should increase (Fig. 12).
The results of applying the dynamic clamp to a GH4C1 cell are shown in Fig. 14.
The top panel shows that the cell is mostly spiking, with a low degree of burstiness
and no more than 2 spikes per burst, prior to subtraction of gK . When some delayed
rectifier conductance is subtracted (�1 nS) the burstiness of the cell increases
(Fig. 14B). Subtracting off even more conductance (�2 nS) further increases the
burstiness and increases the number of spikes per burst (Fig. 14C). These effects are
quantified in panels D and E, where burstiness and mean even duration are computed
over the entire time course durations. As predicted by the singular analysis, reducing
gK in the cell increases the likelyhood that it wil burst, and increases the number of
spikes within a burst.

5 Relationship Between the Fast/Slow Analysis Structures

We began with a description of the standard fast/slow analysis technique applied to
bursting oscillations in which the full 3-dimensional system is decomposed into
a 2-dimensional fast subsystem and a 1-dimensional slow subsystem. We then
described an alternate decomposition, with a 1-dimensional fast subsystem and
a 2-dimensional slow subsystem. Each approach made use of key structures that
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Fig. 14 Patch clamp recording from a GH4C1 lacto-somatotroph cell using dynamic clamp to
subtract a delayed rectifier KC current (Eq. 1.6). (A) With no added current the cell has very low
burstiness, with at most two spikes per burst. (B) When 1 nS of delayed rectifier K conductance
is subtracted the burstiness of the cell increases. (C) When more delayed rectifier conductance is
subtracted, 2 nS, the burstiness increases further and the number of spikes per burst increases. (D)
Quantification of the burstiness over the entire time course for the three values of the subtracted
gK . The burstiness increases when more gK is subtracted. (E) Quantification of the mean event
duration for the three values of the subtracted gK . The event duration increases when more gK is
subtracted

organized the behavior of the system. In the case of the 2-fast/1-slow analysis
(Fig. 3), the z-curve (equilibria of the fast subsystem) and the subcritical Hopf
bifurcation point on the upper portion of the z-curve are two key structures. In
addition, the nullcline of the slow variable (the c-nullcline) is important since
it determines the direction of the slow flow. In the case of the 1-fast/2-slow
analysis, the critical manifold, the folded node singularity, and the nullclines of the
desingularized system are key organizational structures (Figs. 6, 8). In Teka et al.
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(2012) the lactotroph model (with SK and BK currents, and calcium variable c) was
used to investigate the relationship between these sets of structures. In this section
we discuss the key findings of this investigation.

5.1 The fc ! 0 Limit

The nullclines of the desingularized system shown in Fig. 8A are redrawn in
Fig. 15A. These were computed using fc D 0:01, which is the typical value for
this parameter (the ratio of free to bound Ca2C in the cell). Superimposed is the
z-curve obtained from the 2-fast/1-slow decomposition, computed using Cm D 10

pF. This z-curve is the stationary branch of the 2-variable fast subsystem, where c
is treated as a parameter, so it tacitly assumes that fc D 0. It is clear that the V-
nullcline and z-curve are very similar, and the CN1 nullcline of the desingularized
system is the c-nullcline of the 2-fast/1-slow system. The point A is the single
intersection of all three curves, and is both an equilibrium of the desingularized
system and an equilibrium of the full system. The subcritical Hopf bifurcation of
the 2-fast/1-slow system lies on the top branch of the z-curve, but below LC, which
means that it is located on the middle sheet of the critical manifold (Fig. 15B). In
addition, the two saddle-node bifurcations of the z-curve are on the middle sheet
of the critical manifold. The folded node of the desingularized system is located
close to the subcritical Hopf bifurcation point, but on the upper fold of the critical
manifold.

We now take the limit fc ! 0, so that the variable c becomes infinitesimally slow.
Taking this limit has no effect on the z-curve, which already assumes that fc D 0. It
also has no effect on LC, L�, or CN1, since fc divides out of the equations for these
curves. However, it does influence the V-nullcline of the desingularized system,

� fc.˛ICa C kc c/
@f

@c
C
�

n1.V/ � n

�n

�
@f

@n
D 0: (1.42)

When fc ! 0 the first term disappears, and for the second term to equal 0 either
n D n1.V/ or @f

@n D gk.V � VK/ D 0. Since V > VK , and gK ¤ 0, we must have
n D n1.V/, so that dn

dt D 0. Thus, the V-nullcline of the desingularized system
satisfies dV

dt D 0 and dn
dt D 0, which are the same equations defining the z-curve.

Although the V-nullcline and the z-curve superimpose in the fc ! 0 limit, the
folded node and the Hopf bifurcation do not (Fig. 16). Instead, in this limit, the Hopf
bifurcation remains on the middle sheet of the critical manifold.
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Fig. 15 (A) The nullclines of the desingularized system with the z-curve (black) superimposed.
(B) The critical manifold of the reduced system with the z-curve superimposed. In both cases,
gK D 4 nS, gBK D 0:4 nS, Cm D 10 pF (for the z-curve), and fc D 0:01 (for the desingularized
system). Redrawn from Teka et al. (2012)

5.2 The Cm ! 0 Limit

While the limit fc ! 0 makes c infinitesimally slow, the limit Cm ! 0 makes
V infinitely fast. We now take this limit, returning fc to its default value of 0.01.
The desingularized system is formed from the limit Cm ! 0, so taking this limit
only affects the z-curve of the 2-fast/1-slow decomposition. This curve of fast-
subsystem equilibria is defined by f .V; n; c/ D 0 and n D n1.V/, and Cm appears
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in neither equation. Thus, the locations of the equilibria that comprise the z-curve
are unaffected by Cm. However, the stability of these points does change with Cm,
since Cm is in the ordinary differential equation for V (Eq. 1.1). In fact, as Cm ! 0

the Hopf bifurcation migrates toward the fold curve LC (Fig. 17).
To understand this convergence to LC, note that the Jacobian matrix of the 2-

dimensional fast subsystem (Eqs. 1.1, 1.2) is

J D
 

1
Cm

@f
@V

1
Cm

@f
@n

@g
@V

@g
@n

!
(1.43)

where g.V/ � n
1

.V/�n
�n

. The trace of J is

trace.J/ D 1

Cm

@f

@V
C @g

@n
(1.44)

and at a Hopf bifurcation trace.J/ D 0. Thus, at the Hopf,

@f

@V
C Cm

@g

@n
D 0 : (1.45)

In the Cm ! 0 limit the second term disappears, requiring that @f
@V D 0. This is the

equation for the fold curve.



1 Geometric Singular Perturbation Analysis of Bursting Oscillations in Pituitary Cells 33

-30

-28

-26

-24

-22

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42

L
+

L
+

A

subHB

V-nullcline
c-nullcline
z-curve (unstable)
z-curve (stable)

c (µM)

V
 (
m

V
)

FN

Fig. 17 In the Cm ! 0 limit the Hopf bifurcation on the z-curve migrates to the fold curve LC. In
this figure Cm D 0:1 pF, so it is very close to LC, but has not yet reached it (inset). The V-nullcline
of the desingularized system is computed with the default fc D 0:01. From Teka et al. (2012)

5.3 The Double Limit

In the Cm ! 0 limit the Hopf bifurcation point migrated to the upper fold curve,
but remained distinct from the folded node singularity since the V-nullcline of the
desingularized system does not overlay the z-curve. The two coalesce when, in
addition to taking Cm ! 0, one takes the fc ! 0 limit. In this double limit the
V-nullcline converges to the z-curve and the Hopf bifurcation is on the fold curve
LC, and thus the folded node singularity of the desingularized system and the Hopf
bifurcation of the 2-dimensional fast subsystem of the 2-fast/1-slow decomposition
are the same point.

It is interesting to see how the bursting orbit changes as the double limit is
approached from the fc direction and from the Cm direction. Fig. 18A shows the
bursting orbit computed with fc D 0:01 and Cm D 10 (within the range of values
for a pituitary lactotroph or somatotroph), superimposed with the V-nullcline of
the desingularized system and the z-curve. In this case, the system is far from any
singular limit, so the orbit is only somewhat close to the z-curve and the spikes are
large. When fc is reduced by a factor of 10 the bursting orbit (which is actually more
like a relaxation oscillation) is clearly organized by the z-curve (Fig. 18B). During
the silent phase it moves along the bottom branch, while during the active phase it
moves along the top branch. It passes through the subcritical Hopf bifurcation, and
follows the unstable branch for some time before moving away with oscillations of
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the folded node. (D) Near the double limit the orbit passes through the folded node, but also moves
close to the z-curve and the Hopf bifurcation. From Teka et al. (2012)

increasing size. Thus, it exhibits the slow passage effect that is well documented
for an orbit of a fast/slow system as it moves through a subcritical Hopf bifurcation
(Baer et al. (1989), Baer and Gaekel (2008)). If fc is returned to its original value
and Cm is reduced by a factor of 100, then the system is organized by the structures
of the desingularized system. Fig. 18C shows that in this case the burst trajectory
passes very close to the folded node singularity as it moves along the V-nullcline.
The spikes are small, and first decrease and then increase in amplitude as the orbit
moves along the twisted slow manifold, which is typical for passage near a folded
node singularity (Desroches et al. (2012)). If Cm is kept at this small value and fc
is now reduced by a factor of 10, then the bursting orbit again moves through the
folded node along the V-nullcline, but this time with more spikes and a much more
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extreme decrease in amplitude near the folded node. Also, since this is near the
double limit, the trajectory passes near the z-curve, and the folded node and Hopf
bifurcation are close together.

6 Store-Generated Bursting in Stimulated Gonadotrophs

The pseudo-plateau bursting that we have discussed so far is common in the sponta-
neous activity of pituitary somatotrophs and lactotrophs, and is sometimes observed
in the spontaneous activity of gonadotrophs (Stojilković et al. (2010)). More often,
though, gonadotrophs exhibit a tonic spiking pattern that yields little hormone
release (Van Goor et al. (2001b)). However, when stimulated by the physiological
stimulator gonadotropin-releasing hormone (GnRH) the gonadotrophs typically
produce a bursting pattern with period of roughly 4–15 sec that results in a much
higher level of luteinizing hormone release (Stojilković et al. (2010)). This was
first observed using Ca2C imaging, where a train of Ca2C spikes was observed in
the presence of GnRH (Shangold et al. (1988)). In a series of papers published
in the 1990s, it was shown that this bursting pattern is due to the interaction of
a Ca2C oscillator stimulated by GnRH and an electrical oscillator that produces
tonic spiking when the Ca2C oscillator is turned off (Kukuljan et al. (1994),
Stojilković et al. (1992, 1993), Stojilković and Tomić (1996), Tse and Hille (1992),
Tse et al. (1994, 1997)). A key element of this research was the development of
a mathematical model that helped with the interpretation of the data and guided
experiments (Li et al. (1994, 1995), Rinzel et al. (1996)). In this section we discuss
a simplified version of this model that retains the key biophysical and dynamic
elements (Sherman et al. (2002)).

6.1 Closed-Cell Dynamics

We begin with the Ca2C oscillator. Here, oscillations in the free cytosolic Ca2C
concentration (c) are due to the cycling of Ca2C into and out of the endoplasmic
reticulum (ER). Denote the ER Ca2C concentration as cER. In the closed-cell model
we analyze first, the total number of Ca2C ions in the cell is conserved; ions simply
move back and forth between the cytosolic compartment and the ER compartment.
Denote the total free Ca2C concentration in the cell as ctot. Then

ctot D c C �cER (1.46)

where � is the ratio of the “effective ER volume” NVER D VER
fER

(VER is the ER volume

and fER is the fraction of unbound Ca2C in the ER), to the “effective cytosol volume”
NVc D Vc

fc
. That is,
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� D VERfc
VcfER

: (1.47)

Rewriting,

cER D .ctot � c/=� (1.48)

where ctot is constant. The differential equation for the cytosolic Ca2C concentra-
tion is

dc

dt
D .JER�out � JER�in/= NVc (1.49)

where JER�in and JER�out are the calcium fluxes into and out of the ER, respectively
(Fig. 19A).

The flux of Ca2C into the ER is through pumps powered by the hydroly-
sis of adenosine triphosphate (ATP). These are called SERCA (Sarcoplasmic-
Endoplasmic Reticulum Calcium ATPase) pumps. The pump rate is an increasing
function of the cytosolic Ca2C concentration, and in some models includes a
dependence on the ER Ca2C concentration (Sneyd et al. (2003)). We use a simple
second-order Hill function of c to describe the flux through SERCA pumps,

JER�in D V1c2

K2
1 C c2

(1.50)

where K1 is the Ca2C concentration for the half-maximal pump rate and V1 is the
maximum pump rate.

The flux of Ca2C out of the ER has two components. First, there is leakage
that is assumed to be proportional to the difference in the ER and cytosolic Ca2C
concentrations,
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Jleak D L.cER � c/ : (1.51)

The Ca2C concentration in the ER is greater than that in the cytosol, so the
leakage is from the ER into the cytosol. The second component is only active
when GnRH binds to receptors in the cell’s plasma membrane, generating the
intracellular signaling molecule inositol 1,4,5-trisphosphate (IP3). This molecule
binds to IP3 receptors in the ER membrane and can activate them. Once activated,
the IP3 receptors behave like Ca2C channels, allowing Ca2C to flow out of the
ER and into the cytosol down the Ca2C gradient. Cytosolic Ca2C ions can also
bind to regulatory sites on the receptor, increasing its open probability. Thus, the
IP3 receptors are gated by both IP3 and cytosolic Ca2C. There is a third binding
site on each receptor subunit, for Ca2C-induced inactivation of the receptor. This
negative feedback operates on a slower time scale, so that in the presence of IP3,
Ca2C provides both fast positive feedback and slower negative feedback onto the
IP3 receptor. Thus, the IP3 receptor has dynamics that are very similar to those of
the voltage-gated NaC channel that is ubiquitous in neurons, as was demonstrated
by Li and Rinzel (1994). In the expression that we use for the probability that the
IP3 receptor/channel is open the kinetics of IP3 binding and Ca2C binding to the
activation site are instantaneous, while the Ca2C binding to the inactivation site
occurs with a time constant �h. The IP3 open probability is then multiplied by the
Ca2C gradient, which provides the driving force for Ca2C flux:

JIP3 D P

�
c3

.c C ka/3

��
IP3

3

.IP3 C ki/3

�
h3 .cER � c/ (1.52)

where P is a parameter representing the flux through an open channel, ka, ki are
parameters, IP3 is the intracellular IP3 concentration, and h is an inactivation
variable satisfying the differential equation

dh

dt
D .h1 � h/=�h (1.53)

where

h1.c/ D Kd

Kd C c
(1.54)

and

�h.c/ D A

Kd C c
: (1.55)

Here Kd is the dissociation constant for Ca2C binding to the inactivation site (i.e.,
the unbinding rate k� divided by the binding rate kC). Parameter A is the inverse of
kC and is convenient for setting the speed of the negative feedback. The exponent




