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In a forest pest model, young trees are distinguished from old trees. The pest feeds on old

trees. The pest grows on a fast scale, the young trees on an intermediate scale, and the old

trees on a slow scale. A combination of a singular Hopf bifurcation and a ‘‘weak return’’

mechanism, characterized by a small change in one of the variables, determines the features

of the mixed-mode oscillations. Period-doubling and saddle-node bifurcations lead to closed

families (called isolas) of periodic solutions in a bifurcation corresponding to a singular

Hopf bifurcation.
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1. INTRODUCTION

Outbreaks of the spruce budworm Choristoneura fumiferana have been recorded
regularly in the eastern United States since the early 19th century (Schultz, 2009).
Budworms damage balsam fir and spruce and the outbreaks have severe economical
consequences for the forest industry (Kucera and Orr, 1980). Ludwig et al. (1978) dealt
with population dynamics including interaction between trees and budworms. They
found relaxation oscillations: the populations move slowly, approaching quasi-
equilibrium states, briefly interrupted by periods of fast dynamics corresponding to
budworm outbreaks. The fact that the budworm population grows on a much faster
scale than the trees implies that the model has an inherent slow-fast structure where
this kind of dynamics is expected. Relaxation oscillations are also observed in other
forest pest models (Berryman et al., 1987; Muratori and Rinaldi, 1989; Rinaldi and
Muratori, 1992; Antonovsky et al., 1990; Gragnani et al., 1998; Buřič et al., 2006).

We consider again the three-variable forest pest model of Rinaldi and Muratori
(1992), developing on Brøns and Kaasen (2010), who showed the existence of
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mixed-mode oscillations in this model. The population of trees is structured in young
and old trees to capture the fact that the pest mainly feeds on old trees. In dimension-
less variables, the equations are

x0ðtÞ ¼ a1yðtÞ � a2xðtÞ � a3
xðtÞzðtÞ

a4 þ xðtÞ ;

dy0ðtÞ ¼ a5xðtÞ � ða6ðxðtÞ � a7Þ2 þ a8 þ da1ÞyðtÞ;

ez0ðtÞ ¼ �a9 � a10zðtÞ � a11

a12 þ zðtÞ þ a13
xðtÞ

a4 þ xðtÞ

� �
zðtÞ;

8>>>>><
>>>>>:

ð1Þ

where x(t) is the population size of old trees, y(t) is the population size of young
trees, and z(t) is the pest population size at time t. The time scale for the old trees
is taken as 1, d is the time scale of young trees, and e is the time scale of the pest
(Rinaldi and Muratori, 1992).

Eq. (1) has a special structure given by the invariant plane {z¼ 0} and the
invariant line {x¼ y¼ 0}. The relevant part of the space is the invariant half-space
{z> 0}, corresponding to the condition that the pest population size is always
positive. Eq. (1) is similar to systems with symmetry in which invariant spaces,
especially invariant hyperplanes, often play an important role.

Rinaldi and Muratori (1992) considered the case e� d� 1. Based on singular
perturbation theory, inequalities with parameters guarantee the existence of relax-
ation oscillations. Brøns and Kaasen (2010) considered Eq. (1) for a fixed small e
in the limit d! 0. Fenichel theory (1979) allows a reduction to a two-dimensional
system on an attracting invariant manifold close to y0 ¼ 0. The reduced system has
a canard explosion (Benoı̂t et al., 1981). When a parameter is varied through a Hopf
bifurcation, a limit cycle appears. It grows into relaxation over a narrow parameter
interval. Biologically, the combination of a Hopf bifurcation and a canard explosion
corresponds to the transition from an equilibrium state where the forest is infected
(i.e., the pest population z 6¼ 0) toward a periodic state with budworm outbreaks.

The canard analysis is only valid for d sufficiently small. As d increases, the
two-dimensional invariant manifold breaks down, allowing for three-dimensional
mixed-mode oscillations (Desroches et al., 2012), that is, limit cycles with small
and large oscillations and long periods (Figure 1c).

Mixed-mode oscillations occur in systems with folded singularities (Brøns et al.,
2006). We will show that a folded node exists in Eq. (1) and does not determine the
mixed-mode oscillations for the parameters considered in Brøns and Kaasen (2010).
Rather, a combination of a singular Hopf bifurcation (Guckenheimer, 2008;
Guckenheimer and Meerkamp, 2012) and a ‘‘weak return’’ mechanism, partly due
to the smallness of d (Section 2) are the key factors of the mixed-mode dynamics.
We analyze Hopf and period-doubling bifurcations in Eq.(1) and the presence of
folded singularities, and we show that mixed-mode oscillations are due to a singular
Hopf bifurcation. It is more complex than what would be expected from a folded
node scenario.

We keep the same set of parameter values as in Brøns and Kaasen (2010): all
dimensionless ak ’s are equal to 1 except a2¼ 0.2, a3¼ 7, a11¼ 2, a13¼ 5, and a5 and
d, which will be varied. We fix e¼ 0.001.
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2. FEATURES OF EQ. (1)

Eq. (1) defines a slow-fast system with two slow variables, x and y, and one
fast variable z. The critical manifold S of this system is defined as the fast null
surface, as:

S :¼ �a9 � a10z� a11

a12 þ z
þ a13

x

a4 þ x

� �
z ¼ 0; z 2 Rþ

� �
: ð2Þ

S is the union of a folded surface C and the plane P :¼ {z¼ 0} with C
defined by

C :¼ x ¼ uðzÞ ¼
a4 a9 þ a10zþ a11

a12þz

� �
a13 � a9 � a10z� a11

a12þz

; z 2 Rþ

8<
:

9=
;: ð3Þ

Figure 1. Bifurcation diagram of Eq. (1) in parameter a5 for d¼ 0.3. Panel (a): the curve of equilibria is

shown in black; the maximum in x along the branch of limit cycles as well as along period-doubled

branches and along an isola of mixed-mode oscillations is shown in grey; black dots indicate Hopf,

period-doubling as well as saddle-node bifurcations encountered during the computation. Panel (b) shows

the same branch of limit cycles computed with three different decreasing values of e: 10�3, 5 � 10�4, and

10�4. This shows the explosive aspect of the branch when e gets closer to the singular limit. Panel (c) shows

a small-amplitude period-doubled limit cycle for a5� 1.990 and 11 mixed-mode oscillation for a5� 1.976,

along the period-doubled branch displayed in (a), in projection onto the (x, z)-space. The projection of the

critical manifold is represented with its attracting (solid) and repelling (dotted) branches.
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The surface C is S-shaped with ‘‘fold’’ curves:

F� :¼ ðx; y; zÞ 2 C j z ¼ � a11

a10

� �1
2

�a12

( )
: ð4Þ

The plane P and the sets {z> 0} and {z< 0} are invariant for the flow. The
mixed-mode oscillations observed by Brøns and Kaasen (2010) are contained in the
half-space {z> 0}. The mixed-mode solutions have small oscillations near Fþ, jump to
the stable part of P, evolve close to it, cross the instability line defined by P\C, and
evolve close to the unstable part of P. The passage along P corresponds to a simple delay
phenomenon; the invariance of P implies that the amount of time spent by the solution
near the unstable part of P is determined by the balance of attraction and expansion
along P. P plays a similar role to that of the invariant line in Pokrovskii et al. (2008).

The dynamics would be different if the invariance of P was broken for e> 0, as
a delay phenomenon would occur only near discrete parameter values due to the
passage near a canard trajectory (Krupa and Szmolyan, 2001). An analogous effect
is expected in systems with symmetry, which can change slow-fast dynamics.

In Eq. (1), the solution moves mainly in the x direction so that it returns to Fþ
with approximately the same values of y. As d¼ 0.3 is still quite small, the solution is
close to the y null-surface, which is the surface obtained by setting the right-hand
side of Eq. (1) to 0. The y null-surface equation defines y as a function of x, indepen-
dently of z. Hence the transition from any section {x¼ const} back to itself through
a global return results in a value of y very close to the initial one. We call this
property ‘‘weak return.’’

3. NUMERICAL BIFURCATION ANALYSIS OF EQ. (1)

We use the software package Auto (Doedel et al., 2007) to perform a numerical
bifurcation analysis of Eq. (1) in parameter a5. Figure 1a shows some families of
stationary and periodic attractors of Eq. (1) for a5 varying in the interval [1.96,
2.03]. Computation shows that the unique nontrivial (zeq 6¼ 0) equilibrium loses its
stability after a Hopf bifurcation (H) at a5� 2.025278. This value depends on e
and is rather close to 1.987 chosen in Figure 2. A pair of period-doubling bifurca-
tions along the branch of limit cycles born at the Hopf bifurcation modifies the
stability of this branch. The branch of period-doubled cycles yields two other
period-doubling bifurcations, which are likely to participate in cascades generating
chaotic dynamics. Along each branch of periodic solutions—period one, two, and
four shown in Figure 1—an explosion occurs, by which small cycles (small-
amplitude period-2k cycles) grow into large-amplitude relaxation cycles (12k� 1

mixed-mode oscillations, i.e., a mixed-mode periodic solution with one large
oscillation and 2k� 1 small oscillations per period). Figure 2 shows two different
phase-space views of a mixed-mode oscillation. Certain families of mixed-mode
oscillations form closed curves in the parameter space, also referred to as isolas
(Golubitsky and Schaeffer, 1985). Such an isola is shown in Figure 1. Mixed-mode
oscillations on this isola have a 12 pattern of oscillation. The relaxation cycles and
the relaxation loop of mixed-mode oscillations are made possible by the second
branch of the critical manifold C of Eq. (1), that is, the plane {z¼ 0}, which is
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attracting in the x-interval where the folded sheet of C is unstable (Section 2). This
double canard effect—canard explosion giving a canard segment around a fold point
of the critical manifold and delayed exchange of stability giving a second canard
segment near a non-fold non-hyperbolic point of the critical manifold—was termed
canard doublet in the context of Lotka-Volterra equations (Pokrovskii et al.,
2008). This phenomenon is shown in Figure 1c. A period-doubled cycle and a 11

mixed-mode oscillation, computed on the branch of period-two cycles (Figure 1a)
for very close values of a5, are shown on top of the critical manifold. The explosive
character of the branch of periodic solutions appears for small enough e. Figure 1b
presents the branch of period-one solutions computed for e¼ 0.001, 0.0005,
and 0.0001. The narrow range for a5 on the horizontal axis brings evidence that the
branch becomes nearly vertical as e decreases to zero.

When continuing the rightmost period-doubling bifurcation of Figure 1 in
both parameters a5 and d, we find a curve that is consistent with the boundary of
the region of mixed-mode oscillations computed in Brøns and Kaasen (2010) by
simulation (Figure 4, Brøns and Kaasen, 2010). Figure 3 compares both computa-
tions. The isolas of mixed-mode oscillations in the (a5, d) parameter plane are located
within the curve of period-doubling bifurcations. This gives additional numerical
evidence that the mixed-mode dynamics is confined to the narrow band (Brøns
and Kaasen, 2010). The existence of mixed-mode dynamics in this model is related
to period-doubling bifurcations followed by canard explosions for e small enough.

4. SLOW-FAST ANALYSIS OF EQ. (1)

The mixed-mode oscillations oscillate around the fold curve Fþ¼F, where we
will focus our analysis (Figure 2). We define

a :¼ a11

a10

� �1
2

�a12 ð5Þ

Figure 2. Panel (a): Mixed-mode oscillation of Eq. (1) and the critical manifold C[P, formed by two

components, each having attracting and repelling submanifolds. The black dots represent the folded node

pfn and the saddle-focus equilibrium ps of the system. The non-fold component of the y null-cline of the

desingularized reduced system and the z null-cline of the desingularized reduced system are also

represented. Panel (b) shows an approximation of the two-dimensional unstable manifold WuðpsÞ of ps,

which drives the behavior of the stable mixed-mode oscillation during the return.
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in order to show that mixed-mode oscillations in Eq. (1) originate from a singular
Hopf bifurcation.

Consider the set of parameters of Brøns and Kaasen (2010): a5¼ 1.987 and
d¼ 0.3 as in Figure 3 (e)-(f) of Brøns and Kaasen (2010). The periodic attractor
of Eq. (1) for these values is a mixed-mode oscillation of pattern 12 (one large-
amplitude oscillation and two small-amplitude oscillations).

The desingularized reduced system

dy0ðtÞ ¼ uzðzðtÞÞða5uðzðtÞÞ � ða6ðuðzðtÞÞ � a7Þ2 þ a8 þ da1ÞyðtÞ;

z0ðtÞ ¼ a1yðtÞ � a2uðzðtÞÞ � a3
uðzðtÞÞzðtÞ
uðzðtÞÞ þ a4

8><
>: ð6Þ

implies that Eq. (1) possesses a folded node, that is, a node equilibrium of the
desingularized reduced Eq. (6) lying on the fold curve F. Hence, a folded node

corresponds to u0(zfn)¼ 0, then zfn ¼ a ¼ a11

a10

� �1
2�a12. Finally, the coordinates of the

folded node are:

xfn ¼ uðaÞ ¼
a4 a9 þ 2 a10a11ð Þ

1
2�a10a12

� �
a13 � a9 þ 2 a10a11ð Þ

1
2�a10a12

� �
yfn ¼

xfn

a1
a2 þ a3

z

xfn þ a4

� �
zfn ¼ a:

8>>>>>>>><
>>>>>>>>:

ð7Þ

Figure 2 shows that the folded node is not located at the center of the
small-amplitude oscillations within the mixed-mode oscillation. Consequently,
folded node theory fails to account for the dynamics of Eq. (1).

Figure 3. Locus of period-doubling bifurcations in the (a5, d)-plane computed using a numerical

continuation routine, superimposed onto Figure 4 of Brøns and Kaasen (2010). The curve of period-

doubling bifurcations is consistent with the boundary of the region where mixed-mode oscillations appear

by direct simulation of Eq. (1). On the left, the black curves correspond to the locus of Hopf bifurcations

and the solution of the equation l¼ 0 (almost superimposed); on the right, they correspond to the solution

of the equation ~dd ¼ 0, where ~dd is the distance of the return to the strong canard.
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First, the mixed-mode oscillations are far away from the folded singularity and
are close to a saddle-focus equilibrium. Second, small-amplitude oscillations are few
with regard to what they should be according to folded node theory. These features
of the trajectories are partly due to the proximity of a singular Hopf bifurcation.
For all values of a5, using a similar argument as in Szmolyan and Wechselberger
(2001), we prove that Eq. (1) has a unique folded singularity given by Eq. (7).
We change the coordinates, so that Eq. (1) becomes:

x0ðtÞ ¼ lþ AxðtÞ þ BzðtÞ þ higher order terms

dy0ðtÞ ¼ xðtÞ � yðtÞ þ higher order terms

ez0ðtÞ ¼ ð�xðtÞ þ uðzðtÞÞÞðzðtÞ þ aÞ;

8><
>: ð8Þ

where l, A, and B are functions of the parameters a1,. . ., a13, and d. To change
variables, we first replace x(t) by x(t)=(a4þ x(t)), then replace (x, y, z) by
(x� xfn, y� yfn, z� zfn), and rescale. For each l> 0, the origin is a folded node
point and l¼ 0 corresponds to a singular Hopf bifurcation. The value of a5

corresponding to l¼ 0 is a5� 2.030596282. We found this value by expanding
the vector field about the folded node and calculating the value of a5 for
which the resulting Taylor expansion has its constant term vanishing, which
corresponds to l¼ 0 in Eq. (8). The value of the Hopf bifurcation computed with
Auto is a5� 2.0252772146 for e¼ 10�3, a5� 2.0279173803 for e¼ 5 � 10�4, and
a5� 2.0300574958 for e¼ 10�4.

For a singular Hopf bifurcation, near the folded singularity, there exists
a center manifold, weakly unstable, with Hopf type dynamics (Guckenheimer,
2008), denoted by Wu(ps). For l> 0 very small, this center manifold corresponds
to a saddle-focus point with a strongly stable real eigenvalue and a weakly unstable
center direction. The trajectories passing near the folded singularity are attracted
to the unstable center manifold of the saddle point and follow the dynamics on it.
This implies that the small-amplitude oscillations are close to the saddle-focus
equilibrium rather than remaining near the folded singularity.

The chaotic dynamics arises from the transition between the center
manifold and the set of slow manifolds farther away from the fold line. By this
mechanism, simple periodic orbits undergo a period-doubling cascade en route
to chaos. Subsequently, complicated periodic orbits undergo canard explosions
on one of their loops, growing to mixed-mode oscillations. This mechanism
is not completely understood yet (Guckenheimer, 2008; Guckenheimer
and Meerkamp, 2012) for generating mixed-mode oscillations. Figure 1 shows
a transition from a period-doubled orbit to a 11 mixed-mode oscillation through
a canard explosion.

The second feature of Eq. (1) shaping the mixed-mode oscillation trajectories is
the weak return: y changes very little in the course of a global return. This implies
that every trajectory returning through the global return is close to the strong
canard, staying away from the central sector of the funnel corresponding to the
maximal total number of small-amplitude oscillations (Brøns et al., 2006). As y in
the fold region moves faster than x, the solution moves relatively fast toward Wu(ps)
and then leaves the vicinity of the fold region (Figure 2b).
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With regard to folded node theory, the maximal total number of small
oscillations in a mixed-mode oscillation generated from a folded node comes from

smax ¼ WðlÞ½ �; ð9Þ

where [ � ] denotes the integer part and W(l) is a smooth function satisfying
W(l)¼O(1=l) (Wechselberger, 2005; Vo et al., 2010). Applying this to the case
a5¼ 1.987 and d¼ 0.3 yields smax¼ 27, substantially above the actual value s¼ 2.
This indicates that the folded node scenario does not explain the pattern of mixed-
mode oscillations observed here.

5. CONCLUSION

We completed the analysis of mixed-mode oscillations done by Brøns and
Kaasen (2010) for the forest pest model of Eq. (1). Eq. (1) provides an example
where the generating mechanism is the singular Hopf bifurcation rather than
the folded singularity. The folded node in the model is not decisive in shaping and
organizing mixed-mode oscillations so that small-amplitude oscillations are fewer
than what they should be under folded node theory (Brøns et al., 2006).

To understand the mixed-mode dynamics of Eq. (1), we located the folded
singularity and the saddle-focus equilibrium of the full system, computed the eigen-
values at the equilibrium, and assessed the properties of the global return. The forest
pest model for the chosen parameters is more kin to the singular Hopf bifurcation
than to the folded node or folded saddle-node (Brøns et al., 2006; Guckenheimer,
2008; Krupa and Wechselberger, 2010; Guckenheimer and Meerkamp, 2012).
In particular, Guckenheimer and Meerkamp (2012) pointed out the role of period-
doubling bifurcations in the mixed-mode dynamics in a singular Hopf normal form
in connection with canard explosion phenomena. We showed that, for small enough
e, the presence of mixed-mode oscillations in Eq. (1) owes to the explosion of
small-amplitude period-2n (n2N) cycles born along a cascade of period-doubling
bifurcations. This cascade involves a small-amplitude chaotic attractor. There are
also orbits of period 2nþ 1 located on isolas changing their large-amplitude
oscillations through period-doubling bifurcations.
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