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Predicting the evolution of multispecies ecological systems is an intriguing problem. A sufficiently
complex model with the necessary predicting power requires solutions that are structurally stable.
Small variations of the system parameters should not qualitatively perturb its solutions. When one
is interested in just asymptotic results of evolution �as time goes to infinity�, then the problem has
a straightforward mathematical image involving simple attractors �fixed points or limit cycles� of a
dynamical system. However, for an accurate prediction of evolution, the analysis of transient
solutions is critical. In this paper, in the framework of the traditional Lotka–Volterra model �gen-
eralized in some sense�, we show that the transient solution representing multispecies sequential
competition can be reproducible and predictable with high probability. © 2008 American Institute
of Physics. �DOI: 10.1063/1.2991108�

Evolution of an ecological system with many participants,
who compete with each other, is usually a very complex
process. In the transient period of evolution, which is
mostly relevant for prediction purposes, some species
prevail temporarily over others, thus, supporting the
biodiversity of the food web. Such sequential switching
between momentary winners is often characterized by ir-
regular timing. Therefore it is impossible to predict this
transient winnerless competition for a long time in com-
plete detail. However, as we show in the framework of the
traditional Lotka–Volterra (LVM) model for ecology, the
main characteristic of the competitive process, i.e., tem-
poral order of the prevalent species, can be predicted.
This prediction is possible due to a compact continuum of
transient trajectories in the phase space of the LVM. The
behavior of these trajectories, except at early stages, is
independent of the initial conditions, hence it is robust.

I. INTRODUCTION

Ecologists have been using dynamical principles to de-
sign their models and experiments since the days of Lotka,
Volterra, and Gause. Nowadays, the methods of nonlinear
dynamics have become the main tool for the analysis of evo-
lution of ecological systems. Traditionally, ecological theory
is mostly interested in the asymptotic states of limit sets of
the food web and their stability �see, for example, Refs. 1
and 2�. However, in complex ecological models, competition
often does not lead to simple attractors �equilibrium or limit
cycle�, instead it demonstrates chaotic pulsations3–6 or long
and complex transients before reaching a limit set. In par-
ticular, great interest in transient ecological dynamics has
emerged in the last 10 years.5,7–10 Generally speaking, win-

ners in such multispecies competition cannot be predictable
since, due to dynamical interactions, different species be-
come temporary winners in different time intervals. The se-
quential switching from one group of the predominant spe-
cies �metastable state� to another depends on the interaction
with the environment: different environmental conditions
lead to different temporal sequences �transients�. This is
called transient winnerless competition �TWLC�.12–16 Ac-
cording to TWLC dynamics lifetimes �temporal duration� of
the metastable states are a random value. Nevertheless the
order of the sequential switching from one winner to another
can be reproducible.

It is important to emphasize that competition without a
winner is a widely known phenomenon in systems that in-
volve three interacting agents that satisfy a relationship simi-
lar to the voting paradox or the popular game rock-paper-
scissor. Such interactions lead to nontransitive competition
or cyclic behavior. The mathematical image of it is a stable
heteroclinic cycle. For ecological systems with nontransitive
competition the critical point is the spatial structurization of
the certain communities. In particular, recent experiments
with three populations of Escherichia coli11 showed that
nontransitivity and spatial structurization are both necessary
for the evolution of restrain in the biofilms.

In this paper we consider the transitive �or transient�
competition in complex ecological systems with many inter-
acting species. The prediction of the evolution is possible if
two conditions are satisfied: �i� the dynamical model of the
ecological network is structurally stable, and �ii� the transient
solution corresponding to the evolutionary process loses its
dependence on the initial conditions in a short period of time.
We suppose that the generalized Lotka–Volterra model is
valid for the description of the evolution of N competitive
species and we show based on Refs. 17 and 18 that it is
possible to make some predictions about food web evolution.a�Electronic mail: mrabinovich@ucsd.edu.

CHAOS 18, 043103 �2008�

1054-1500/2008/18�4�/043103/9/$23.00 © 2008 American Institute of Physics18, 043103-1

http://dx.doi.org/10.1063/1.2991108
http://dx.doi.org/10.1063/1.2991108
http://dx.doi.org/10.1063/1.2991108


The noise determines the “exit time” from a saddle vi-
cinity, i.e., the metastable set. In Ref. 19 the authors have
proposed a theoretical description of reproducible transient
dynamics based on the interaction of competitive agents
�species�. The mathematical image of such transient evolu-
tion, in many situations, is a stable heteroclinic channel
�SHC�, i.e., a set of trajectories in the vicinity of a hetero-
clinic skeleton that consists of saddles �metastable sets� and
an unstable manifold that connects their surroundings. For
the generalized multidimensional Lotka–Volterra model in
Ref. 19 it has been proved that the topology and sequence of
the metastable sets of a SHC does not depend on small
changes in parameters. The SHC is a structurally stable ob-
ject. Such reproducibility means that a prediction of transient
competitive dynamics is possible.

In a more general �pluralistic� case, metastable sets have
a multidimensional unstable manifold. For such cases the
trajectories manifest a prescribed sequence of switchings
only in the presence of noise. The mathematical image of a
corresponding sequence is a generalized heteroclinic channel
�GHC�. In this paper we present the first results about the
predictability of the competitive transients for the general-
ized Lotka–Volterra model in the case when saddles have
multidimensional unstable manifolds.

II. GENERALIZED LOTKA–VOLTERRA MODEL
„GLVM…: TRANSIENT COMPETITION

We are going to investigate a transient multispecies com-
petition in the framework of the following form of GLVM:

dai

dt
= ai��i�E� + �i�t� − �

j

n

�ijaj� . �1�

Here each ai�t��0 represents an instantaneous density
of the ith species, �ij �0 is the interaction strength between
species i and j, �i�E� is the growth rate for species i that
depends on the environmental parameter E ��i /�ii is the
overall carrying capacity of species i in the absence of the
other species�; �i is environmental noise. The product
ai��i�E�+�i�t�� determines the interaction of the species i
with the environment. We will consider a nonsymmetrical
species interaction, �ij�� ji. The role of nonsymmetry for the
stability of food webs has been considered in Ref. 20. Here
we also assume complex interactions as in Refs. 21 and 22.

The phase space of the system �1� is bounded by the
manifolds �ai=0	, which are included in the phase space.

Let us focus on the region in the control parameter
space, where, in the absence of noise, all nontrivial equilibria
�fixed points� ai

0=�i /�ii�0, aj
0=0, j� i, on the ai-axis are

saddles. In this region long multispecies transients �i.e.,
biodiversity� may exist. The necessary conditions for these
are the following: for each increment i, i.e., the eigenvalues
of the matrix of the linearized at the equilibrium
�0¯0�i0¯0�, there is at least one positive: � j −� ji�i�0.

Each saddle has one or m dimensional unstable separa-
trix �manifold�, m�N−2. The unstable separatrix connects
the previous saddle with the next one �or the saddle with a
stable equilibrium�. For multispecies competition, the exis-
tence of heteroclinic sequences �that consist of saddles and

heteroclinic trajectories connecting them� in the phase space
is a structurally stable and a very general phenomenon.

From the theoretical point of view, the prediction of the
species evolution in some ecological niche means the analy-
sis of the transient trajectories that represent the competition
inside this niche in the phase space of the model. Thus, the
goal of our paper is to answer the following question: What
are the conditions of the parameters of Eq. �1� that guarantee
the reproducibility of such transients. The reproducibility of
the transient behavior implies that the system, in a neighbor-
hood of a transient trajectory, mostly forgets the initial con-
ditions. Reproducibility, together with the structural stability
of the transients, makes the prediction possible. Such predic-
tion, however, cannot be deterministic. First, since we con-
sider the multidimensional unstable saddle manifold case,
the next saddle cannot be uniquely determined, and second,
even in the case of one-dimensional unstable separatrices the
time that the system spends in the vicinity of the saddle
�“exit time”� is a random variable. The expected exit value,
�e, is estimated in Refs. 23 and 24 �provided that an initial
point is chosen on the stable manifold� as

�e =
1

�
ln
 1

���� , �2�

where � is a maximal positive eigenvalue of the matrix of the
linearized system at the saddle equilibriums, and ��� is a
level of noise. In Ref. 19, we analyzed the mathematical
image of the transients generated by one-dimensional un-
stable manifolds which is a stable heteroclinic channel
�SHC�. Here we analyze more realistic cases with two- and
three-dimensional unstable saddle manifolds. The dynamics
of transients in these cases are more complex and become
similar to SHC in the presence of noise. We name the math-
ematical image of such transient dynamics the generalized
heteroclinic channel �GHC�.

Predictability of the transitive competition means that it
is possible to predict the sequential order of the temporal
winners in the real evolutionary process. Note that it is im-
possible to predict the temporal characteristics of such se-
quence. To connect the robust transient solution generated by
the dynamical model with the real ecological process we
have to know the connectivity matrix. In principle, such ma-
trix can be calculated based on the experimental data �see
Sec. VI�. If the growth rates are fixed, then the numbers of
unstable directions of the metastable states are determined by
the elements of the connectivity matrix. Since the time that
the system spends in the vicinity of the saddles is not pre-
dictable due to the presence of noise �see Eq. �2��, the exact
time scale of the ecological evolution cannot be determined
in the framework of the discussed model and needs a proba-
bilistic description. Our modeling confines the uncertainty to
the switching times, and leaves the sequential order of the
species predictable.
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III. GENERALIZED HETEROCLINIC CHANNEL „GHC…

In Ref. 19 a definition of SHC was presented. A SHC is
a tube consisting of pieces of trajectories that travel from a
small neighborhood of one saddle point to another, and a
finite collection of these saddle equilibria is ordered in a
prescribed way. From the neighborhood of the saddle equi-
libria, each trajectory follows the unstable one-dimensional
separatrix until it reaches the neighborhood of the next
saddle. To get a SHC one must impose conditions on the
saddle: each of them must be dissipative and have a one-
dimensional unstable manifold. The occurrence of a SHC in
a system is a structurally stable event, which means that it
persists being subjected to an action of a small noise. The
motion in a SHC can be described as a sequence of switching
among saddle equilibria.

For multidimensional unstable manifolds the trajectories
arriving into a neighborhood of a saddle have multiple
choices by following any direction in the multidimensional
unstable manifold. Nevertheless, the direction corresponding
to the maximal positive eigenvalue of the linearized system
at the equilibrium point is preferable. The preference be-
comes feasible if the system is subjected to the action of a
small noise, such that the probability of getting closer to one
of the exit points corresponding to the strongest unstable
manifold is higher. Therefore, by adjusting the parameters of
a system, one may organize a sequence of saddles joined by
one-dimensional strongly unstable manifolds. If this behav-
ior is achieved, we say that the system has a GHC.

Let us give mathematical definitions without considering
noise.

A. Stable heteroclinic sequence for saddles
with multidimensional unstable manifolds

Here we deal with a system of ordinary differential equa-
tions,

ẋ = X�x�, x � Rd, �3�

where the vector field X is C2-smooth. We assume that the
system �3� has N equilibria Q1 ,Q2 , . . . ,QN, such that each Qi

is a hyperbolic point of saddle-type with one-dimensional
strongly unstable manifold WQi

u , that consists of Qi and two
“separatrices,” the connected components of WQi

u \Qi which
we denote by 	i

+ and 	i
−. This manifold corresponds to the

maximal positive eigenvalue of the linearized at Qi system
�3�. We assume also that

	i
+ � WQi+1

s , �4�

the stable manifold of Qi+1.
Definition 1: The set 	ª�i=1

N Qi�i=1
N−1	i

+ is called the
heteroclinic sequence �HS�. Denote by �1

�i� , . . . ,�d
�i� the eigen-

values of the matrix �DX�Qi
. By the assumption above, at

least one of the eigenvalues is positive. Without loss of gen-
erality one can assume that they are ordered in such a way
that

�1
�i� � ¯ � Re �mi

�i� � 0 � Re �mi+1
�i� � � ¯ � Re �d

�i�. �5�

The number


i =
− Re �mi+1

�i�

�1
�i�

is called the saddle value.
Definition 2: The heteroclinic sequence 	 is called the

stable heteroclinic sequence �SHS� if


i � 1, i = 1, . . . ,N .

For mi=1 this definition coincides with the definition of
SHS in Ref. 13. If mi=1, the conditions imply stability of 	,
in the sense that every trajectory, started at a point in a vi-
cinity of Q1, remains in a neighborhood of 	 until it comes to
a neighborhood of QN. In fact, the motion along this trajec-
tory can be treated as a sequence of switchings between the
equilibria Qi, i=1,2 , . . . ,N. If mi�1, then some amount of
stability remains to be feasible if we subject the system �3� to
the action of a small noise, see below.

We conjecture: if a system �3� has a SHS, then being
subjected to the influence of small noise, it will manifest the
occurrence of GHC. For the system �1�, the conjecture is
confirmed numerically as shown below.

Of course, the condition 	i
+�WQi+1

s indicates the fact
that the system �3� is not structurally stable and can only be
realized either for exceptional values of parameters or for
systems of a special form. As an example of such a system
one may consider the model �1� that under some conditions
on its parameters will generate GHC.

IV. SHS IN GLVM IN THE ABSENCE OF NOISE

Selection of saddles. We are dealing now with the sys-
tem �1� in the absence of noise. We look for the conditions
under which the system has a SHS consisting of saddles Sk

= �0, . . . ,0 ,�ik
,0 , . . . ,0� linked by heteroclinic trajectories,

k=1, . . . ,N�n. The saddles Sk have the following incre-
ments �eigenvalues of the linearized system at Sk�: � j

−� jik
�ik

, j� ik, and −�ik
.13

The saddles Sk= �0, . . . ,0 ,�ik
,0 , . . . ,0�, k=2, . . . ,N are

selected in such a way that: there are mik
−1 positive eigen-

values, mik
�1, one of them is maximal, and the rest, are

negative. Then the following inequalities are verified:

�ik+1
− �ik+1ik

�ik
� �ik+1

�2� − �ik+1
�2� ik

�ik
� ¯

� ��k+1
− ��k+1ik

�ik
� 0, �6�

where �k+1= ik+1
mik

−1, and the other eigenvalues are negative.
Heteroclinic connections. To assure that there is a het-

eroclinic orbit 	ik−1ik
joining Sk−1 and Sk, the following con-

dition has to be satisfied:

1 − �ik−1ik
�ikik−1

� 0. �7�

This orbit belongs to the plane Pik−1ik
=� j�ik−1,ik

n �aj =0	,
where the point Sk has a one-dimensional strongly unstable
direction �determined by ik+1�. This fact can be shown in the
same way as for the one-dimensional unstable direction.13

Indeed, the restriction of Eq. �1� on the plane Pik−1ik
has the

form that is independent of the dimension of the unstable
manifold.

Leading directions. Under the following conditions:
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− �ik
� �ik−1

− �ik−1ik
�ik

� 0 �8�

and

�i − �iik
�ik

� �ik−1
− �ik−1ik

�ik
, �9�

the separatrix 	ik−1ik
comes to Sk following a leading direc-

tion, transversal to the aik
-axis on the plane Pik−1ik

, where we
use the same arguments given in Ref. 13.

Dissipativity of saddles. The saddle value


ik
=

�ik−1ik
�ik

− �ik−1

�ik+1
− �ik+1ik

�ik

, �10�

is defined for every saddle Sk. We assume that


ik
� 1, k = 1, . . . ,N . �11�

It means that every saddle Sk is “dissipative.”
It was shown in Ref. 13 that if mik

=1 for every k, i.e., if
all saddles have one-dimensional unstable manifolds, then
under the conditions above, the SHS consisting of the
saddles Sk and joining the separatrices 	ik−1ik

is stable in the
following sense: if one chooses a positive initial condition in
a small neighborhood of S0, the trajectory going through
it will follow the sequence �	ik−1ik

	, staying in a small vicin-
ity of them until it comes to a neighborhood of the last
saddle SN.

We show below that under these conditions the system
�1� admits a GHC, for mik

=2,3 which corresponds to saddles
with two- or three-dimensional unstable manifolds.

V. RESULTS

In this section we impose conditions on the system �1� to
satisfy the assumptions of Sec. III, and we confirm the exis-
tence of a GHC.

A. Occurrence of a GHC with two-dimensional
unstable manifolds

For the model �1�, we reformulate the conditions stated
in Sec. III to obtain the two-dimensional case.

Selection of saddles. In Sec. III the saddles Sk

= �0, . . . ,0 ,�ik
,0 , . . . ,0�, k=2, . . . ,m, belonging to a SHS,

are selected in such a way that there are two positive eigen-
values with one of then being maximal, such that

�ik+1
− �ik+1ik

�ik
� �ik+1

�2� − �ik+1
�2� ik

�ik
� 0,

�12�
ik+1
�2� � �ik−1,ik,ik+1	 ,

and the other eigenvalues are negative,

�i − �iik
�ik

� 0, �13�

1� i�n, i� �ik , ik+1 , ik+1
�2� 	.

Thus, all points Sk, 2�k�N are saddles with two-
dimensional unstable manifolds. And since there is only one
maximal eigenvalue, corresponding to the ik+1 direction,
there is a preference of the system to evolve in that direction,
with or without, the influence of a small noise.

To simplify our calculations we impose the following
conditions on the parameters:

�ik−1

�ik

+ 1 � �ik−1ik
�

�ik−1

�ik

, �14�

�ik+1

�ik

� �ik+1ik
�

�ik+1

�ik

− 1, �15�

�ik+1
�2�

�ik

� �ik+1
�2� ik

�
�ik+1

�2�

�ik

−
�ik+1

�ik

+ �ik+1ik
, ik+1

�2� � �ik−1,ik,ik+1	 ,

�16�

�iik
� �ik−1ik

+
�i − �ik−1

�ik

, �17�

1� i�n, i� �ik−1 , ik , ik+1 , ik+1
�2� 	.

Therefore, for the simulation procedure, the following
values are appropriate:

�ik−1ik
=

�ik−1

�ik

+ 0.51, �18�

�ik+1ik
=

�ik+1

�ik

− 0.5 �19�

and having set the value for Eq. �19�, we have

�ik+1
�2� ik

=
�ik+1

�2�

�ik

− 0.25, ik+1
�2� � ik+1, �20�

�iik
= �ik−1ik

+
�i − �ik−1

�ik

+ 2, �21�

for 1� i�n, i� �ik−1 , ik , ik+1 , ik+1
�2� 	.

We have checked that the conditions �14�–�17� imply the
conditions of Sec. III �see the Appendix�.

Ten sets of 100 simulations of the dynamics of GLVM
were performed, where the integration was performed using
the Milstein integration scheme,25 with n=25 and N=8, and
multiplicative noise level of 5 ·10−4. The growth rates �i

were set to be random numbers taken uniformly from the
interval �5, 10� and kept for each set of 100 simulations with
a variation smaller than 10−4. Initial conditions for ai�t�
were set randomly but uniformly from �0, 0.001�, except for
a0�0�, that was set to be equal to �0−0.01. An illustrative
example is shown in Fig. 1.

In Fig. 2 we present the statistics of several runs as dis-
played in Fig. 1. We observed in this first run, that the oc-
currence of the whole sequence is of 54% and its median is
66.5, which seemed to be very low. We noted the cases when
the sequence would not appear, then a new experiment was
carried out, with the same exact parameters, but with the
additional condition that ik+2

�2� � ik+1
�2� �see Fig. 3�, which means

that there will not be trajectories belonging to the unstable
manifolds of Sk+1 and Sk+2 that go to the same equilibrium,
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even though we also noticed that when ik+1
�2� = ik+2

�2� , it does not
necessarily mean that the sequence will not appear.

In Fig. 4 we observe that the occurrence of the whole
sequence is of 81.1% and its median is 95. The results im-
proved by 27.1% and the median went very close to 100. We
believe that this is because the condition ik+1

�2� = ik+2
�2� causes

such an influence that the system will evolve to equilibria
different from the ones in the expected sequence. Eventually
it gets back to a last portion of the expected sequence, and by
avoiding this condition, there is a minor probability for that
kind of deviation to happen.

B. Occurrence of a GHC with three-dimensional
unstable manifolds

For the model �1�, we reformulate the conditions de-
scribed in Sec. III to have the three-dimensional case.

Selection of saddles. We refer to Sec. III, where it was
shown that the saddles Sk= �0, . . . ,0 ,�ik

,0 , . . . ,0�, k
=2, . . . ,m, belonging to a SHS are selected in such a way
that there are three positive eigenvalues instead of two, one
of which is maximal. Provided that, in addition to Eq. �12�
we have

�ik+1
− �ik+1ik

�ik
� �ik+1

�3� − �ik+1
�3� ik

�ik
� 0,

�22�
ik+1
�3� � �ik−1,ik,ik+1,ik+1

�2� 	 ,

and the other eigenvalues are negative

�i − �iik
�ik

� 0, �23�

1� i�n, i� �ik , ik+1 , ik+1
�2� , ik+1

�3� 	.
Thus, all points Sk, 2�k�N are saddles with three-

dimensional unstable manifolds. And again, since there is

FIG. 1. �Color online� Illustrative example of a single run for a total of 25
variables and eight saddles connected following the sequence 2, 4, 6, 14, 18,
22, 1,5. It is a sequence of partially reproducible states �compare to Ref. 6�.

FIG. 2. Reproducibility level with two-dimensional unstable manifolds.
Here it is represented by the average of the ten trials with 100 runs each. The
distribution is bimodal meaning that the system may recover the whole
sequence �occurrence of the eight elements� or just go through the last few
steps of the sequence.

FIG. 3. �Color online� �a� There are heteroclinic trajectories joining the
saddles Sk+1 and Sk+2 and another �the same� equilibrium. �b� There are no
trajectories belonging to the unstable manifolds of Sk+1 and Sk+2 that go to
the same equilibrium.

FIG. 4. Reproducibility level with two-dimensional unstable manifolds by
avoiding manifold collision as shown in Fig. 3. The reproducibility level
increases notably by introducing a repulsion mechanism in the matrix con-
struction with the additional condition: ik+2

�2� � ik+1
�2� . Again, it is represented

the average of the ten trials with 100 runs each. The distribution is bimodal
in the same sense as Fig. 2.
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only one maximal eigenvalue, corresponding to the ik+1 di-
rection, there is a preference of the system to evolve in that
direction that is well manifested under the influence of a
small noise.

In the same way as for the two-dimensional case, we
impose the following conditions on the parameters of the
system �1�: it can be verified in the same way as for the
two-dimensional case that these conditions imply the fact
that all saddles in the sequence have the three-dimensional
unstable manifolds,

�ik−1

�ik

+ 1 � �ik−1ik
�

�ik−1

�ik

, �24�

�ik+1

�ik

� �ik+1ik
�

�ik+1

�ik

− 1, �25�

�ik+1
�2�

�ik

� �ik+1
�2� ik

�
�ik+1

�2�

�ik

−
�ik+1

�ik

+ �ik+1ik
,

�26�
ik+1
�2� � �ik−1,ik,ik+1	 ,

�ik+1
�3�

�ik

� �ik+1
�3� ik

�
�ik+1

�3�

�ik

−
�ik+1

�ik

+ �ik+1ik
,

�27�
ik+1
�3� � �ik−1,ik,ik+1,ik+1

�2� 	 ,

�iik
� �ik−1ik

+
�i − �ik−1

�ik

, �28�

1� i�n, i� �ik−1 , ik , ik+1 , ik+1
�2� , ik+1

�3� 	.
Therefore, for the simulation procedure, the next values

are appropriate,

�ik−1ik
=

�ik−1

�ik

+ 0.51, �29�

�ik+1ik
=

�ik+1

�ik

− 0.5 �30�

and having set the value for Eq. �30�, we have

�ik+1
�2� ik

=
�ik+1

�2�

�ik

− 0.25, ik+1
�2� � �ik−1,ik,ik+1	 , �31�

�ik+1
�3� ik

=
�ik+1

�3�

�ik

− 0.25, ik+1
�3� � �ik−1,ik,ik+1,ik+1

�2� 	 , �32�

�iik
= �ik−1ik

+
�i − �ik−1

�ik

+ 2, �33�

for 1� i�n, i� �ik−1 , ik , ik+1 , ik+1
�2� , ik+1

�3� 	.
To verify the reproducibility of the GHC with three-

dimensional unstable manifolds, we performed an experi-
ment with ten sets of 100 simulations each. There, we used

the same parameters as for the two-dimensional unstable
manifold case. Figure 5 displays the obtained results.

We observe that we obtained 35.7% of reproducibility
with median 42.5. With the previous experience of the two-
dimensional case, and with similar observations, we carried
out a new experiment with the same exact parameters but
with the additional condition: �ik+2

�2� , ik+2
�3� �� �ik+1

�2� , ik+1
�3� � �see

Fig. 6�, with the purpose of avoiding the behavior when the
system evolves to equilibria different from the ones in the
expected sequence. And again, the results improved remark-
ably as seen in Fig. 7.

Here we observe that we obtained 74.2% of reproduc-
ibility with median 93. The results improved in 38.5%, and
again, the median went very close to 100. Similar observa-
tions to the two-dimensional case are made.

So, the main result of the article is that the reproducibil-
ity occurs with a high probability in spite of the multidimen-
sionality of the saddle manifolds in heteroclinic sequences.

We obtain the following observation. When choosing the
nonmaximal positive eigenvalues, the additional restrictions
ik+2
�2� � ik+1

�2� for the two-dimensional case �see Fig. 3�, and
�ik+2

�2� , ik+2
�3� �� �ik+1

�2� , ik+1
�3� � for the three-dimensional case �see

Fig. 6�, are not necessary for the sequence to appear, but they
improve the probability of occurrence of the expected se-
quence remarkably.

As we can see, the probability to observe the full se-
quence is much higher in the last case. Currently, we do not
have an explanation for this fact.

VI. DISCUSSION

In the last decade, theoretical ecologists have envisioned
a new role for the transient solutions of models of the eco-
logical system.5,7–10 Transient dynamics plays an even more
important role, than the simple attractors, such as stable

FIG. 5. Reproducibility level with three-dimensional unstable manifolds.
Here it represented the average of the ten trials with 100 runs each. The
distribution is bimodal meaning that the system may recover the whole
sequence �occurrence of the eight elements� or just go through the last few
steps of the sequence.
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steady state solution �fixed points� and limit cycles, for the
understanding and predicting of natural ecological processes.
There are at least two reasons for this: �i� the stable solutions
do not necessarily exist in a multidimensional system with
realistic values of control parameters, and �ii� if such solu-
tions exist, the basin of their attraction in the phase space
could be not large enough to keep the system in the vicinity
of the stable solution in the presence of environmental per-
turbations. Thus, the transients �solutions that precede the
simple attractors or substitute them� are key objects that we
have to analyze to understand natural ecological systems.

It is important to emphasize that many kinds of dynami-
cal phenomena �like winnerless competition and stable tran-
sient�, which would be nongeneric in an arbitrary complex
dynamical system, can become generic when constrained by
specific variables. For GLVM, such specificity is in the posi-
tive value of the variables. It is also worth mentioning that
the Lotka–Volterra model in a high dimensional space may
display different types of dynamical behavior as Milnor or
fragile attractors.31 The conditions analyzed here were set to
form stable heteroclinic channels. However, it is likely that
within this complex system and for another set of parameters
one can find Milnor or fragile attractors. It is an interesting
problem for the future to investigate the conditions for their
existence and compare them to the SHCs.

In this paper, we have analyzed a new dynamical object
that exists in the phase space of the multidimensional gener-
alized Lotka–Volterra model of n competitive species. The
GHC is in some sense an image of predictable ecological
transients. GHC is a set with a complex structure that can
exist in two forms: a� dissipative sticky set, i.e., heteroclinic
chain that ends in the simple attractor, and b� strange hetero-
clinic attractor.17 Both forms of GHC are characterized by
specific chaotic patterns with ordered switching between
temporal winners and irregular temporal duration of the
“winner’s time.” The observed phenomenon—stable com-
plex transients �or chaotic heteroclinic attractor�—can be a
dynamical origin of the sequential coexistence of the food
webs that is associated with stability and persistence in com-
plex ecosystems.20

The food web, as a network of dynamical systems, is not
just a dynamical system with a high-dimensional phase
space. It is also equipped with a canonical set of
observables—the states of the individual nodes of the net-
work and network motifs.26–29

It has been recently observed in a unique long-term ex-
periment with a plankton community that the population dy-
namics was characterized by positive Lyapunov exponents.30

It would be interesting to check, based on these data, not a
prediction of the time evolution of the different species,
which can be fundamentally impossible,30 but to check the
reproducibility just to the order of the prevalent species in
the evolutionary sequence.
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FIG. 6. �Color online� For the three-dimensional case, A–F correspond to
the situation of Fig. 3�a�, and G corresponds to Fig. 3�b�.

FIG. 7. Reproducibility level with three-dimensional unstable manifolds by
avoiding manifold collisions as shown in Fig. 6. The reproducibility level
increases notably by introducing a repulsion mechanism in the matrix con-
struction with the additional condition: �ik+2

�2� , ik+2
�3� �� �ik+1

�2� , ik+1
�3� �. Again, it is

represented by the average of the ten trials with 100 runs each. The distri-
bution is bimodal in the same sense as Fig. 5.
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APPENDIX: INEQUALITIES FOR THE SIMULATION
PROCEDURE

From Eq. �13�, we take i= ik−1 and Eq. �8� and we have

�ik−1
− �ik−1ik

�ik
� 0 � �ik−1

+ �ik
− �ik−1ik

�ik
,

�ik−1
� �ik−1ik

�ik
� �ik−1

+ �ik
, �A1�

�ik−1

�ik

� �ik−1ik
�

�ik−1

�ik

+ 1.

We assume 
ik
�1, k=1, . . . ,N, i.e., the saddles are dis-

sipative. Then �k�1 is satisfied, and then


ik
=

�ik−1ik
− �ik−1

�ik+1
− �ik+1ik

�ik

� 1, �A2�

and from Eqs. �A2� and �12�, we have
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� �ik+1
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�2� ik
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�ik

� �ik−1
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− �ik+1ik
�ik

� �ik−1
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�2� ik

�ik
,
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+
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�ik
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From Eq. �A3�, the next pair of inequalities hold,

�ik+1ik
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+
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,

�ik+1
�2� ik
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+
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and we can rewrite Eq. �A2� as follows:

− �ik−1ik
� −

�ik−1

�ik

− 1,

and combined we have the following:
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�
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but we have �ik+1ik
−�ik+1

/�ik
�−1 from Eq. �A4�, then the

last inequality becomes
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From Eq. �12� we have �ik+1
/�ik
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. With Eq. �A4�

we obtain
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Just as well, from Eq. �12� we have �i
k+1
�2� /�ik

��i
k+1
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.
With Eq. �A5�, we obtain
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�
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And the condition �9� can be reinstated as follows:
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� �ik−1ik

+
�i − �ik−1

�ik

, �A8�

1 � i � n, i � �ik−1,ik,ik+1,ik+1
�2� 	 .

So, the inequalities to consider for our simulation proce-
dure satisfy Eqs. �A1� and �A6�–�A8�,
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�
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, 1 � i � n, i � �ik−1,ik,ik+1,ik+1
�2� 	 .

Therefore, for the simulation procedure, the next values
are appropriate,

�ik−1ik
=

�ik−1

�ik

+ 0.51, �A10�

�ik+1ik
=

�ik+1

�ik

− 0.5 �A11�

and having set the value for Eq. �A11�, we have
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=
�ik+1
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�2� � ik+1, �A12�
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for 1� i�n, i� �ik−1 , ik , ik+1 , ik+1
�2� 	.
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