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Discrete sequential information coding is a key mechanism that transforms complex

cognitive brain activity into a low-dimensional dynamical process based on the sequential

switching among finite numbers of patterns. The storage size of the corresponding

process is large because of the permutation capacity as a function of control signals

in ensembles of these patterns. Extracting low-dimensional functional dynamics from

multiple large-scale neural populations is a central problem both in neuro- and

cognitive- sciences. Experimental results in the last decade represent a solid base

for the creation of low-dimensional models of different cognitive functions and allow

moving toward a dynamical theory of consciousness. We discuss here a methodology

to build simple kinetic equations that can be the mathematical skeleton of this theory.

Models of the corresponding discrete information processing can be designed using the

following dynamical principles: (i) clusterization of the neural activity in space and time

and formation of information patterns; (ii) robustness of the sequential dynamics based on

heteroclinic chains of metastable clusters; and (iii) sensitivity of such sequential dynamics

to intrinsic and external informational signals. We analyze sequential discrete coding

based on winnerless competition low-frequency dynamics. Under such dynamics,

entrainment, and heteroclinic coordination leads to a large variety of coding regimes that

are invariant in time.

Keywords: hierarchical cognitive networks, metastable state brain dynamics, heteroclinic binding, information

patterns, control of episodic memory retrieval

INTRODUCTION

There is a wide variety of cognitive model approaches; most of them refer to specific aspects of
cognition such as a language, learning, or decision making. Some efforts aim to develop a general
theory for consciousness (e.g., see Baars, 1988; Dehaene, 2014; Tononi and Koch, 2015). Here we
focus on a basic low-dimensional model that is able to describe several key information aspects
underlying a Dynamical Theory of Consciousness and Cognition. To build this model we used
three global concepts: (i) information processing and information generation in the brain as a
result of winnerless competition of low-frequency (envelope) variables rather than simply the
propagation of information, as many connectionist theories assume; (ii) the transient sequential
nature of cognitive processes that can be represented by sequential switching between metastable
states, which are reproducible and robust against non-controllable perturbations; (iii) sensibility to
informational signals in spite of the robustness of the underlying dynamics.
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Note that by envelope variables we refer to macroscopic
variables that could be related to ensemble or population activity,
in other words, variables that are sufficient to describe the
collective slow dynamics of the system. Let us discuss a simple
ecological and low-dimensional canonical model satisfying the
above principles:
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Equations (1, 2) represent a cognitive model that, in particular,
describes two mutually modulated cognitive processes, for
example, autobiographic memory recall and attention focusing,
or interaction of cognitive and emotional processes under
limited attention. In this model, Xl

i is the intensity of the

i-th pattern of cognitive information (e.g., memory). W l
i is the

sequential intensity of a cognitive resource (e.g., attention and/or
emotion). Inhibitory nonsymmetric connection matrices ρ l

ij,

θ lij, and χ lm
ij provide sequential winnerless competition (WLC),

i.e., switching dynamics for the information patterns and the
associated cognitive resources (Rabinovich et al., 2001, 2006b,
2008a). γ l

i and ζ l
i represent the self-excitation, and βi and ηi

describe the mutual excitation for each variable. ςik is responsible
for cognitive inhibition control. τi ∼1, µ << 1 characterizes fast
attention switching, and ξ lX , ξ lW represent small noise in the X

and W dynamics, which is used to discuss the robustness of the
transients (see Glossary). The order of the patterns in a sequence
is determined by the connection matrices and is invariant to time
scaling. The functions ϕi(�, t,Xl

i) represent a rhythmic external
forcing that we will discuss below. This canonical model can
be easily generalized to describe several interacting cognitive
processes and resources.

We argue that goal-directed functional cognitive activity and
also thought generation, imagination, creativity, and emotions
are processes that rely on transient sequential brain activities. A
large array of cognition related processes can be understood and
predicted through the analyses of the temporal switching between
different brain network modes that we name information
patterns and which can be represented in the model described
above by envelope variables. To be robust and sensitive at the
same time, the dynamics that describes such patterns has to
satisfy a set of rules: (i) winnerless competition between modes,
(ii) hierarchical functional organization of the global networks
and the cognitive resources, (iii) hierarchical stability of the
multilevel architecture (Rabinovich et al., 2012b). To follow
these principles in our dynamical models, it is necessary to
use the concept of inhibition at all levels: cognition, emotion,
metacognition, and behavior. This concept can be generalized
to social cognition as well. Inhibitory processes have been

postulated to explain decrements or changes in task performance
in many domains of psychological research, and experimental
evidence shows that such inhibitory processes exist (Aron, 2007;
Munakata et al., 2011; Schilling et al., 2014). The architecture
of the inhibitory networks and the levels of inhibition are
represented in model (1)–(2) by the intrinsic structure of the
connectionmatrixes, which are asymmetric to guaranty theWLC
dynamics.

Hierarchical sequential dynamical coding is a key concept for
cognitive dynamics. It refers to coding in the form of a hierarchy
of sequences where the lowest level contains the minimum
information for intelligibility. Succeeding layers of the hierarchy
add robustness to the scheme. This concept can be easily
illustrated on a language example (Cona and Semenza, 2017),
as sequences of letters compound syllables, syllables compound
words, words compound sentences, etc. Language, in fact, is a
hierarchical sequential process in which auditory and/or visual
patterns learned from other individuals or received from the
environment are sequentially encoded, processed, and modified
for transferring information to other individuals or to our own
semantic memory.

The hierarchical sequential segmentation of information into
discrete events—patterns—is a fundamental intrinsic feature of
brain dynamics. This concept has been used to design top-down
explanations for brain activity on the view that the brain infers
causes of its sensory input (Kiebel et al., 2009; Friston et al., 2011).
In this setting, hierarchal sequential dynamics in general—and
stable heteroclinic channels in particular—have been used as the
basis of generative models for the Bayesian brain. We discuss
here an adequate mathematical approach that is applicable for
the description and prediction of consciousness, emotion, and
human behavioral activity.

DISCRETE REPRESENTATION OF
INFORMATION FLOWS. METASTABLE
STATES AND STABLE HETEROCLINIC
CHANNELS

WLC network activity provides a mechanism for robust discrete
sequential coding of cognitive information. For such processing,
information meaning and coherence is more important than
information quantity. To deal with cognitive information
processes, we have to address context–dependent sequential
information and goal–dependent information, e.g., perception
depends on ongoing cognitive activity and behavior. The
coexistence of bottom-up and top-down discrete information
sequences (for example between the prefrontal cortex and
hippocampus) produces closed functional loops that lead to
the generation of new information, i.e., new thoughts or/and
new behavior. This can be the origin of autonomous dynamics
with new temporal structure, the sort of dynamics required for
creativity (Rabinovich et al., 2012a).

Information feedbacks are crucially important for
consciousness as it has been shown by studying the importance
of top-down projections in recurrent information processing
that involves high-order associative cortices for conscious
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perception (Boly et al., 2011). Because multiple actions usually
cannot be performed at the same time due to the lack of cognitive
resources, there is competition between multiple brain systems,
(e.g., see Daw et al., 2005).

Thus, a relevant question here is how to mathematically
represent and describe the evolution of cognitive information in
time. A stable heteroclinic channel is a convenient mathematical
image to describe robust cognitive information flows based on
sequential dynamics. It is defined as a sequence of successive
metastable (saddle) states in the phase space (Rabinovich et al.,
2008b, 2015). These saddles can be pictured as successive and
temporary winners in a competitive information scenario (see
Figure 1).

Mathematically, a stable heteroclinic channel can be explained
as follows. Suppose we have a dynamical model in the form of
differential equations:

dx/dt = f (x) (3)

where vector x ǫ Rn. This system gives rise to a heteroclinic
sequence if it has a finite sequence {Q1,Q2,...,QN} of equilibrium
points, and at Qi the eigenvalues of the linearization of Equation
(3) can be ordered as Rabinovich et al. (2008b):

λ
(i)

1 > 0 > Re λ
(i)

2 ≥ Re λ
(i)

3 ≥ · · · ≥ Re λ
(i)

n . (4)

Thus, each Qi is a saddle with a one-dimensional unstable
manifold—separatrix—which connects each saddle with the next
one to form a heteroclinic sequence.When the saddle value νi = –
Re λ

(i)
2 /λ(i)

1 for Qi is positive νi > 1, then the saddle Qi is
called dissipative. In this case, the compression along the stable
manifolds dominates the stretching along the unstable manifold.
If all saddles in the heteroclinic sequence are dissipative, then
the trajectories in their vicinity cannot escape from the sequence,
providing the stability. If a system has a Stable Heteroclinic
Sequence, then it also has a Stable Heteroclinic Channel (SHC)
like the one illustrated in Figure 1A (Afraimovich et al., 2011).

In the absence of perturbation, the state vector approaching
a saddle node along a stable manifold is indefinitely confined to
the neighborhood of the saddle. The exit from the neighborhood
of a saddle is only possible under a strong perturbation. The
dependence of the exit time on the perturbation level was studied
in Stone and Holmes (1990). A local stability analysis around a
saddle fixed point results in the following relation:

τ i = 1/λi
1 ln(1/|η|) (5)

where τ i is the mean time spent in the neighborhood of saddleQi

(provided that the initial points belong to the stable manifold)
and |η| is the level of perturbation. Both values of |η| and λ

i
1

can be controlled by excitation or the interaction with other
information modalities, and thus the temporal characteristics
of the sequence can be changed. Importantly, the order of
the saddles Qi is invariant and this is a relevant mathematical
mechanism for time compression in episodic memory, as we will
argue later.

The discussed basic model is formulated for the description of
neuronal envelope or rate group activity. In principle, it can also

be formulated in terms of spiking neuronal ensembles (Nowotny
and Rabinovich, 2007), see Figure 2. Both rate- and spiking-
canonic models contain in the corresponding phase space a
powerful dynamical object for sequential information coding—
a SHC which allows representing robust transient coding. The
necessary condition for its existence is the presence of non-
symmetric reciprocal inhibitory connections between the neural
groups that form the specific cognitive modes (Afraimovich et al.,
2004; Rabinovich et al., 2008b). Here we hypothesize that fast
pulsations do not influence slow envelope dynamics as observed,
in particular, in fMRI experiments. Recently, in their effort to
understand the brain’s coding and its canonical computational
motifs, Turkheimer et al. observed the phenomenon of self-
similarity dynamics at the micro-, meso-, and macro-scale, and
suggested that computational motifs are repeated at increasing
spatial and temporal scales (Turkheimer et al., 2015). Self-
similarity phenomena can be observed in the interaction
of different temporal scales in the models represented in
Figure 2.

In general, we can hypothesize that the WLC dynamics
responsible for the discrete sequential information coding
supports many kinds of robust brain activity. Models describing
such dynamics can be applied at all levels of temporal and spatial
hierarchical organization, from motor and sensory processing to
higher-level behavior and cognition.

SEQUENCES OF HIERARCHICALLY
ORGANIZED INFORMATION PATTERNS:
BINDING AND CHUNKING DYNAMICS

Here we meet the problem of temporal order information coding
in memory retrieval in our everyday life. Such retrieval needs
binding or association of various features of an event and the
preservation of multimodality events in sequential order for all
memory types—episodic, semantic, working, etc. Analyses of the
robustness of the binding sequential dynamics in the framework
of our basic model have illustrated that the recalled sequence
can vary depending on intrinsic and environmental conditions
(Afraimovich et al., 2015). It has been shown that in the model
phase space there exist heteroclinic networks consisting of saddle
equilibrium points and heteroclinic trajectories joining them that
can bind multi-dimensional events (see Figure 3, Rabinovich
et al., 2010a). The binding sequential dynamics is robust for
coupled heteroclinic networks: for each collection of successive
heteroclinic trajectories inside the joint networks, there is an
open set of initial conditions such that the trajectory going
through each of them follows the prescribed collection staying
in a small neighborhood of it.

The analysis of the complexity and the dependence on the
initial conditions in these type of models helps to understand
the dynamical origin of well-known cognitive phenomena—
episodic memory gaps and errors, i.e., incorrect recalls. In fact,
episodic memory can be viewed as a sequential dynamical
process that is constructive, rather than reproductive, and it can
generate various kinds of errors and illusions, see for example
(Schacter and Addis, 2007). Because, as we mentioned above, the
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FIGURE 1 | (A) Stable heteroclinic channel (SHC), an invariant topological construction. An SHC is a set of metastable states sequentially connected by unstable

seperatrices. The robustness of such channel means that trajectories in the neighborhood of the sequence of separatrices do not leave it until the end of the channel

is reached (Rabinovich et al., 2012a, 2015). (B) This panel shows heteroclinic channels representing a recurrent cognitive-emotion interaction—the dotted trajectories

illustrate that the interruption of cognitive performance by emotion, which can happen at any cognitive stage. Adapted from Rabinovich and Varona (2017). (C) Time

series of sequential switching of emotional and cognitive modalities from model (1)–(2), (Rabinovich et al., 2010b).

FIGURE 2 | Transition from multistability to WLC dynamics in models with different time scales with connection asymmetry as the control parameter. The figure

illustrates the bifurcation toward the birth of a heteroclinic cycle in a Lotka–Volterra model (A–C) and in a H–H model (D–H). (A,D) represent multistable dynamics

(stable fixed points indicated in red correspond to the attractors). (B) and (E) represent an intermediate case before the annihilation of the stable fixed points (saddles

are indicated in blue). (C,F) represent the heteroclinic cycle that emerges after the saddle node bifurcation. (G,H) represent the time series corresponding to transient

heteroclinic dynamics and a robust heteroclinic cycle in the H-H model. Adapted from Nowotny and Rabinovich (2007), Rabinovich and Varona (2011).

heteroclinic sequence of informational patterns is topologically
invariant, the SHC is not sensitive to time compressing—allowing
to make the time intervals between patterns smaller. This is
a possible way to implement time dynamical rescaling and

compress time in mind space, specifically in relationship with
episodic memory (Howard, 2018).

When we discuss binding, it is necessary to emphasize that
functional connections in the human brain are typically more

Frontiers in Computational Neuroscience | www.frontiersin.org 4 September 2018 | Volume 12 | Article 73

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Rabinovich and Varona Discrete Cognitive Sequential Information Dynamics

FIGURE 3 | Sequential memory—Binding dynamics of 3-modality events. (A) Illustration of an ensemble of 18 competitors fluctuating on three functional

communities: each of them is responsible for the processing of different informational modalities. In this example, all connections are inhibitory as characterized by the

WLC matrices in the model (1)–(2) withW = const., i.e., focused attention. (B) Illustration of the heteroclinic network in the model phase space, where Ql
i
is the saddle

i in the modality l. (C) Mutual modulations of different modalitity sequences, as shown by the projection of a trajectory on a 3-dimensional space. Colored regions point

out the vicinity of the metastable states. One can see that this complex trajectory spends some time in a neighborhood of one modality and goes to the next modality

afterwards (Afraimovich et al., 2015).

stable within the same modality than across modalities (Zalesky
et al., 2014). In general, recent fMRI and electrophysiological
studies that have mapped the connections between inter-regional
communication and network structure across a diverse range
of brain activities demonstrate that the tendency for network
reconfiguration depends on behavior (Shine and Poldrack,
2018).

Another dynamical cognitive phenomenon that makes use of
effective discrete sequential coding is chunking (see Figure 4).
Understanding the joint performance of discrete hierarchical
cognitive processes is a key part of language processing and
behavior programming. The brain solves this problem by
grouping information items in a sequence into chunks at different
levels of the hierarchy. This can happen on the learning stage,
as illustrated in an ecological model displaying heteroclinic
dynamics like (1)–(2) (Fonollosa et al., 2015). It has also been
illustrated in a system of spiking inhibitory recurrent networks
that modeled the mechanisms governing learning in sub-cortical
areas (Maffei et al., 2017). Departing from previous modeling
results of the striatum (Ponzi and Wickens, 2010), authors have
used an anti-Hebbian STDP rule (Fino and Venance, 2010) to
demonstrate sequential memory retrieval to control actions.

SEQUENTIAL MEMORY AND BRAIN
OSCILLATIONS. TEMPORAL
ENTRAINMENT AND COORDINATION

Recent experiments have demonstrated the key role of low-
frequency brain oscillations in information coding. For instance,
using optogenetics and fMRI, authors in Chan et al. (2017)
discovered robust propagation of low frequency (1Hz) neural
activity, which enhances inter-hemispheric connectivity and
mediates sensory processing. Helfrich and Knight in a recent
review highlighted several studies that demonstrated that
oscillatory dynamics, such as phase resetting, cross-frequency
coupling, and entrainment, support the formation of task-
relevant coherent functional networks (Helfrich and Knight,

2016). Berens and Horner have discussed experimental findings
that provided the first direct evidence that episodic memory
formation through binding in humans relies on theta-specific
(4Hz) synchronization mechanisms (Berens and Horner,
2017). Low-frequency oscillations dynamics, in particular
synchronization/desynchronization mechanisms, is one of the
core phenomena underlying episodic memory formation and
reinforcement (Hanslmayr et al., 2016).

It is well known, that our remarkable capacity for language
is provided by the combinatorial richness of functional network
modes. In a recent paper (Schoffelen et al., 2017), authors
showed that communication among language-related areas
in the brain is supported by synchronization that forms
the modes of the corresponding global networks, see also
(Eichenbaum, 2017). Importantly, the different entrainment
rhythms reflect the different direction of the information
flows. Thus, one can hypothesize that different frequency
synchronization phenomena, in fact, control key aspects of the
sequential dynamics in global linguistic network architectures.
Possibly, it is a generic mechanism for many other cognitive
processes that rely on robust sequential activity.

Working memory does not only store information about the
items themselves, i.e., the what of the information, but it also
dynamically keeps the information about when. Thus, it is a two-
modality memory: subject and timing. Recent results show that
such information is stored along a logarithmic timeline (Singh
et al., 2018).

Here we suggest a possible dynamical mechanism
for the effective influence of low-frequency oscillations
on sequential cognitive processes based on heteroclinic
synchronization/chaotization phenomena (Rabinovich et al.,
2006a). In Figure 5A we display a heteroclinic network that
represents sequential episodic memory, which includes three
episodes X, Y, and Z where each episode or chunk is formed
by several events xi, yi, and zi. An external periodic signal with
frequency � excites each episode trough one of the events, see
system (1)–(2). In a general case, the chunk connection matrix
ρab depends on the episode frequency ωx,y,z .
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FIGURE 4 | Model of chunking in winnerless competitive networks. (A) Illustration of a 3-layer network for hierarchical chunking. (B) Time series of the sequences of

the three-level hierarchy—items are grouped in chunks; these chunks form 3 superchunks of 6 elements each displaying reproducible dynamics according to the

model (1)–(2). Different colors correspond to different items inside each group (switching the color means moving from the previous item to the next one). Adapted

from Rabinovich et al. (2014).

FIGURE 5 | Modulation of retrieval dynamics of episodic memory in heteroclinic networks. (A) Networks inside the circles represent the intrinsic architecture of

interacting envelope patterns. � characterizes the frequency of the external forcing. (B) Complex structure of the heteroclinic synchronization: Period T corresponds

to the cyclic winnerless competition switching between episodes X, Y, and Z and is depicted as a function of the forcing frequency � under a small Gaussian noise

with zero correlation in Equation (1). The region in between synchronized regimes displays chaos (Rabinovich et al., 2006a).

As one can see in the Figure 5B, the synchronization intervals
(with a linear dependence between the period of the chunk
episode cyclic switching and the forcing frequency) are separated
by intervals with complex dynamics including areas with period-
doubling bifurcations and chaos. In a general case, the individual
dynamics of different episodes will be different and will distinctly
evolve under the action of the periodic forcing. The control
frequency Ω leads to a change of the whole episode dynamics
and, in fact, is equivalent to a dynamical change of the episodic
memory network architecture.

There are several scenarios where rhythmic modulation of
cognitive dynamics occurs. For example, rhythmic breathing
creates electrical activity in the human brain that enhances
emotional judgments and memory recall. Nasal respiration
entrains human limbic oscillations and modulates cognitive
processes (Zelano et al., 2016). In a different context, it
has been shown that specific pieces of music can elicit
strong emotions in listeners and, possibly in connection

with these emotions, specific memories can be remembered
even years later (Eschrich et al., 2008; Jäncke, 2008; Janata,
2009).

Cognitive information processing must contain a mechanism
of binding between different information modalities in the brain.
Here we consider heteroclinic binding of sequences (Rabinovich
et al., 2010a; Varona and Rabinovich, 2016). The basic model (1)–
(2) that we propose is able to explain the origin of the temporal
coordination of competitive dynamics of active brain modes
representing the processing of different cognitive modalities and
resources in parallel. The model describes the coordination of
spatio-temporal patterns in the form of sequential switching
corresponding to different modalities through their dynamical
connections, which are represented in the phase space by
several unstable separatrices (see Figures 3B, 6). We have
previously formulated the conditions for the existence of a
multimodality heteroclinic sequence in the phase space of this
model (Rabinovich et al., 2010a). Such a sequence appears
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FIGURE 6 | (A) An illustration of a 3-modality heteroclinic network and one of the associated trajectories in its vicinity corresponding to the binding process. (B) Joint

dynamics of two temporally coordinated binded modalities (Rabinovich et al., 2010a). The time series is plotted with a color-code representing the evolution of time to

favor the visualization.

FIGURE 7 | Representation of the visual and auditory sequential information

exchange in musical improvisation. Adapted from Walton et al. (2015), (see

also Kugler and Turvey, 1987).

due to inhibitory connections between different networks that
implement a winnerless competition interaction.

Temporal coordination is a key factor in performing all
multimodal cognitive human activities. For example, music
perception and dance creativity, including emotion as a cognitive
resource, requires the temporal binding of all sensory modalities
involved. Here, a challenging problem from the theoretical point
of view is to understand how sequential imagery, attention and
intrinsic rhythms contribute to high precision performance in
musical and dance ensembles. The problem becomes even more
complex when we try to consider the ability of several musicians
to improvise, where they must spontaneously coordinate their
sequential actions with co-performers in order to produce novel
musical expressions (see Figure 7).

Investigations of such behavior have traditionally focused
on describing the creation of cognitive structures and the
ability of the time-evolving patterns to perform inter-musician
movement coordination. Revealing the mechanisms underlying

the coordination of precise movements among improvising
musicians is an very important step toward the understanding of
how creative musical expressions emerge from the spontaneous
coordination of multiple sequential musical bodies (Walton et al.,
2015).

It is known, even across different languages, that our brains
show similar activity or become “aligned” when we see the same
movie or hear the same music (Hasson and Frith, 2016). We can
use this neural phenomenon for a universal modeling of sharing
memories and knowledge. Let us illustrate it for a minimal social
group with two participants keeping in mind two jazz musicians.
In this case, the basic dynamical equations (1) will have the form:

τ xi

dxi
dt

= xi



 σi(S
x,Rx)− xi −

N
∑

j 6=i

ρijxj − q

M
∑

s=1

ϑisys + ξi(t)





(6)

τ
y
k

dy
k

dt
= yk



 δk(S
y,Ry)− yk −

M
∑

s 6=k

ξksys − p

N
∑

s=1

ηksxs + ξk(t)





(7)

For simplicity, we do not represent the dynamics of emotion here,
which could be added as in equation (2). Here xi and yk are
the intensity of different “mind musical modes” of participants
X and Y, σi (S,R) and γ (S,R) are parameters that represent the
auditory and visual sensory mode excitation, and parameters
p and q characterize the strength of the two musician mind
interaction. In the case when the information exchange between
musicians is only mono-directional (p<<q)—this can happen
if Y, for example, does not focus her/his attention on X’s visual
or auditory signals—this model becomes much simpler and the
analytical investigation is possible (see Afraimovich et al., 2018).

Cognitive dynamical process can be considered as a sequential
switching from one event or mode in the network to another one
and so on according to the “winnerless competition” principle.
In Afraimovich et al. (2018) authors have proved that in this
“master-slave” case a new dynamical object emerges: a non-
smooth invariant torus that is an image of the heteroclinic
entrainment. The observed bifurcations there demonstrate
dynamics with different levels of complexity and also chaos.
Symmetric interactions between musicians usually lead to
synchronization, see (Walton et al., 2015).
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DISCUSSION AND CONCLUSION

In any environment, the human brain perceives continuous
streams of information and automatically segments experiences
into a set of discrete events or patterns, see for example
(Schapiro et al., 2013; Baldassano et al., 2017). Discrete
sequential coding supports most aspects of cognitive activity and
brain functions. Global network approaches to modeling and
analyses of temporal information dynamics predict emergent
cognitive metastable states in hierarchical brain networks. Such
prediction of the temporal hierarchical organization of large
scale brain networks has been analyzed in fMRI experiments
(Vidaurre et al., 2017). The authors showed that the transitions
between different metastable states are not random and that
the corresponding nonrandom sequencing is itself hierarchically
organized revealing two metastable states that demonstrate the
brain’s tendency to cyclic switching.

Discrete sequential dynamics in the brain are also observed
in modern EEG experimental studies (see for review Michel and
Koenig, 2018). In particular, it has been reported that prototypic
EEG microstates occur in a repetitive sequence across time.
These states are reliably identified across subjects. Researchers
have proposed that such microstates represent the basic building
blocks of a chain of spontaneous conscious mental processes,
and that their occurrence and temporal dynamics determine the
quality of thinking.

Based on the idea of organized series of conscious states,
Dehaene and Changeux formulated the neuronal workspace
model (Dehaene et al., 1998, 2003; Dehaene and Changeux, 2011)
that, in fact, builds upon Baars model (Baars, 1988, 2002, 2005).
They posit that workspace neurons from multiple brain areas
become spontaneously co-activated and form discrete spatio-
temporal patterns of global activity. Only one such episode of
coherent activity is thought to occur at any given moment,
i.e., episodes are separated by sharp transitions. In our view,
consciousness itself can be parceled into sequential episodes
or chunks represented by complex metastable states that form
hierarchical heteroclinic networks in the mind space (Rabinovich
et al., 2008b, 2015). From a neurophysiological perspective, the
robustness of such sequential processes is based on the inhibitory
interaction of spontaneously excited metastable states (see also
Meehan and Bressler, 2012).

The principles and models that we discussed above can be
applied in a wide variety of areas in cognitive science. One
of them is language generation and processing. The discrete
coding of speech as a coding of sequential thinking is based on
“event cell” networks in the hippocampus that can sequentially
organize memory for events in temporal order as well as in places
(Terada et al., 2017). Linguistic sentences unfold sequentially like
a chain of words along time; the underlying syntactic structure
can be more complex, in particular, hierarchically organized, and
remind a tree of phrases using bothmechanisms, i.e., binding and
chunking (Nelson et al., 2017).

Finally, we wish to emphasize one more time that discrete
sequential information coding is a key mechanism that allows

transforming complex cognitive activity into low-dimensional
dynamical processes based on the sequential switching between
finite (moderate) numbers of patterns or metastable states. The
capacity of the corresponding information process can be very
large because of the available permutations in ensembles of
these states (Rabinovich et al., 2001). Extracting low-dimensional
dynamics from multiple large-scale neural populations is
currently a hot topic both in cognitive- and neuro- science studies
(Gao and Ganguli, 2015; Schneidman, 2016; Nonnenmacher
et al., 2017), and will also impact artificial cognitive system
approaches. In general, results in this area over the last decade
represent a solid base for the creation of low-dimensional models
of many types of cognitive functions and allow moving toward a
dynamical theory of consciousness.

We would like to end with a remark on the popular view
that brain computational models need to be extremely high
dimensional to be predictive. This view is based on the fallacy
that computational dimension is related to the complexity of
the brain itself as a “hardware” system with different interacting
spatial scales from which cognition emerge1. Such modeling is
unfeasible yet, as the brain remains only partially observable.
However, we may not need it to explain key aspects of
cognitive processes because we are talking about mind dynamics
with finite resources, i.e., specific kinds of brain activity such
as attention, memory retrieval, decision making, etc. A top-
down mathematical model of such processes can be built
using the following dynamical principles that we discussed
above: (i) clusterization the neural activity in space and time
and formation of information patterns; (ii) discrete sequential
information coding; (iii) robust sequential coordinated dynamics
based on heteroclinic chains of metastable clusters; and
(iv) sensitivity of such sequential dynamics to intrinsic and
external informational signals. These principles open a new
direction for the understanding of the observed brain dynamics
and the creation of the basis of a mathematical theory of
consciousness.
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1This popular view is not shared by scientists who subscribe to the Bayesian brain

hypothesis or any form of inference. This follows from the fact that in maximizing

Bayesian model evidence inherently maximizes the difference between accuracy

and complexity. This means that a Bayes optimal dynamics necessarily requires

the least complicated, lowest dimensional explanation for high dimensional data.
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GLOSSARY

Binding: The process of combining informational features from
different sources into one unified object. Heteroclinic binding
is a phenomenon represented in phase space by a heteroclinic
network formed by metastable states and multi-dimensional
unstable separatrices linking them.

Chunking: The reduction of hierarchical complexity through
the subgrouping of similar proximal pieces of information into
singular units to allow further processing. Heteroclinic chunking
is a process realized within multiple time scale heteroclinic
dynamics.

Dissipative dynamical system: If a system is closed, it does
not exchange flows of energy, mass, information, etc. with the
environment, and the intrinsic volume of the flow is preserved
in the phase space. A system with internal friction, inhibition,
or radiation is called a dissipative system. In such open systems,
the volume of the flow contracts in the phase space. When time
goes to infinity, the activity of this system can be represented by
attractor dynamics. Dynamical models of cognition as the ones
discussed in this paper are exclusively dissipative systems.

Metastability: In a metastable state, the variables of a
dynamical system reach and temporarily hold stationary values.
This is characterized by a slowing down of the motion in
the vicinity of the stationary state. On the time series, this
phenomenon is represented by a plateau or pause. The image
of a metastable state in the phase space is a saddle point and its
neighborhood.

Multistability: The presence of multiple stable attractors in
the phase space of a dissipative dynamical system with their

basins of attraction. Such a system serves as a map from the
given initial state to an attractor and can be a good model for
an associative memory.

Phase space of a dynamical system: A space in which all
possible states of the system are represented. Each possible state
of the system corresponds to one point in the phase space, and
close points in the phase space represent close system states. The
system evolving over time forms a phase space trajectory. As a
whole, the phase portrait represents all behaviors that the system
can demonstrate.

Robust transients: Trajectories in a phase space of a
dynamical model that are disposed in the vicinity of each other
when initial conditions are varied. These trajectories are robust
against noise (Ventsel and Freidlin, 1970; Freidlin and Wentzell,
2012). Examples of such transients are the trajectories inside a
stable heteroclinic channel.

Stable heteroclinic channel (SHC): A transient attractor
formed by a sequence of saddle states and their vicinity. If
the compressing of the phase volume around the SHC is
stronger than the stretching of the volume along the SHC, the
trajectories that are attracted by the SHC cannot leave it. SHC
denotes the image of robust transient behavior in a dynamical
system.

Winnerless competition (WLC): A general dynamical
phenomenon that denotes sequential switching of prevalence
among participants. For example, if in a head-to-head
competition, boxer A beats boxer B, boxer B beats boxer C,
and finally boxer C beats boxer A, all participants are “winners”
for a finite time, but there is no overall winner such as in “winner
takes all.
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