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Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, andmotor

decisions based on continuously changing environmental conditions. These plastic

changes include sharpening or broadening of cognitive and motor attention and learning

to match the behavioral demands that are imposed by changing environmental statistics.

This article proposes that a shared circuit design for such flexible decision-making

is used in specific cognitive and motor circuits, and that both types of circuits use

acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to

control thalamocortical choice of the critical features that are cognitively attended and

that are incorporated through learning into prototypes of visual recognition categories.

A cholinergically-modulated process of vigilance control determines if a recognition

category and its attended features are abstract (low vigilance) or concrete (high vigilance).

Homologous neural mechanisms of cholinergic modulation are proposed to focus

attention and learn a multimodal map within the deeper layers of superior colliculus.

This map enables visual, auditory, and planned movement commands to compete for

attention, leading to selection of a winning position that controls where the next saccadic

eye movement will go. Such map learning may be viewed as a kind of attentive motor

category learning. The article hereby explicates a link between attention, learning, and

cholinergic modulation during decision making within both cognitive and motor systems.

Homologs between the mammalian superior colliculus and the avian optic tectum lead to

predictions about how multimodal map learning may occur in the mammalian and avian

brain and how such learning may be modulated by acetycholine.

Keywords: category learning, saccadic eye movement, attention, adaptive resonance theory, superior colliculus,

optic tectum, acetylcholine, vigilance
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1. ATTENTION, LEARNING, AND
VIGILANCE DURING COGNITIVE
CATEGORY LEARNING IN TEMPORAL
CORTEX

Selecting relevant sensory information while interacting with a
changing environment is a key feature of animal intelligence.
This selection is necessary to direct limited sensory, cognitive,
and motor resources toward the important stimuli in the
environment, and to choose a set of motor commands that
correspond to behavioral goals. The present article proposes how
cholinergic modulation of cognitive and sensory-motor circuits
may realize such selectivity in a task-sensitive way. In particular,
a shared circuit design in cognitive and sensory-motor circuits
is proposed to enable acetylcholine to effectively modulate
selectivity during decision-making via a process called vigilance
control (Carpenter and Grossberg, 1987, 1991, 1993). High
vigilance implies greater selectivity, whereas low vigilance implies
lesser selectivity. The proposal of how vigilance may regulate the
degree of selectivity during cognitive andmotor decision-making
builds upon two parallel lines of neural modeling whose results
are unified and extended in the current article.

One line of modeling developed the LAMINART model of
how the laminar circuits of visual cortex see and learn visual
recognition categories (e.g., Grossberg, 1999, 2003; Grossberg
and Raizada, 2000; Raizada and Grossberg, 2001). The second
line of modeling developed the SACCART model of how the
mammalian superior colliculus learns amultimodal map wherein
saccadic target positions can be attended and chosen. Both
of these modeling streams illustrate how Adaptive Resonance
Theory, or ART, design principles and mechanisms are used
to learn recognition categories. The current article unifies both
modeling streams into a more general theory of how brain
categories are learned and used to control visual and sensory-
motor behaviors.

Several key steps in this unification are developed herein.
One step began with the proposal of a further development
of the LAMINART model, namely the Synchronous Matching
ART or SMART model (Grossberg and Versace, 2008). As noted
above, ART had earlier predicted how the selectivity, notably the
concreteness or abstractness, of learned visual cortical categories
is controlled by a process of vigilance control. SMART further
developed this proposal by suggesting that vigilance may be
controlled by mismatch-activated release of acetylcholine via the
nucleus basalis of Meynert. The current article describes how
these results about visual cortical categories may be adapted
to explain the selectivity of learning and choice by sensory-
motor categories. This theme is developed by noting homologs
between the mammalian superior colliculus and the avian optic
tectum in the control of eye movements. It is shown that the key
predictions of the LAMINART, SMART, and SACCART models
are supported by a series of experiments on the optic tectum.
In particular, a refinement of the SACCART model anatomy
enables a detailed explanation of many optic tectum data as
embodiments of LAMINART, SMART, and SACCART design
principles and mechanisms. The theory developed herein also

makes new predictions about sensory-motor categories and their
dynamics in superior colliulus and optic tectum for which no data
seem to be currently available.

Each of these lines of model development about cognitive and
sensory-motor processing has been supported by mathematical
theorems and/or computer simulations that have quantitatively
explained and predicted challenging psychological and
neurobiological data, as well as rigorously demonstrated
key model properties. This foundation of prior modeling results
provides a secure foundation for the theoretical synthesis that
is provided in the current article, without requiring additional
simulations to justify theoretical claims.

In models of how cognitive recognition categories are learned
and recalled (Carpenter and Grossberg, 1987, 1991, 1993;
Grossberg, 2013a), low vigilance leads to learning of a general,
or abstract, recognition category, whereas high vigilance leads
to learning of a specific, or concrete, recognition category. In
the limit of very high vigilance, such a category may learn
to represent a single input exemplar, such as a particular
view of a particular familiar face. Such learning is proposed
to occur in both bottom-up and top-down thalamocortical
and corticocortical pathways, notably the temporal cortex and
its interactions with prefrontal cortex and the thalamus. The
bottom-up learning helps to select a recognition category,
whereas the top-down learning enables read-out of learned
top-down expectations that can focus attention upon expected
combinations of critical features. The critical features that
are learned under high vigilance can only be matched by
very similar input exemplars, thereby controlling a highly
specific attentional focus, whereas the critical features that
are learned under low vigilance can be matched by much
more variable combinations of features, thereby controlling a
broader distribution of objects that can be assimilated into the
attentional focus. Top-down expectation mechanisms achieve
such attentional and choice properties via connections that
are organized as recurrent on-center, off-surround networks
(Grossberg, 2013b). The on-center helps to select and amplify
consistent features that are received within the attentional
focus, while the off-surround suppresses unattended features
or positions outside this focus. Models of this kind are
called Adaptive Resonance Theory or ART models (Grossberg,
1980, 1999, 2007, 2013a; Carpenter and Grossberg, 1987,
1991).

ART proposes a solution of the stability-plasticity dilemma,
or how brains can learn quickly without also catastrophically
forgetting already learned memories just as quickly (Grossberg,
1980). ART explains how top-down attentive matching may
help to solve the stability-plasticity dilemma by regulating
cycles of resonance and reset; that is, of attentive matching
and hypothesis testing, respectively. In particular, when a good
enough match occurs between bottom-up inputs and a top-
down expectation, then a synchronous resonant state emerges
that embodies an attentional focus that is capable of driving
fast learning of the attended critical features in both bottom-
up recognition categories and top-down expectations; hence the
name adaptive resonance. If the match is not good enough,

Frontiers in Neuroscience | www.frontiersin.org 2 January 2016 | Volume 9 | Article 501

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Grossberg et al. Resonant Cholinergic Dynamics in Cognitive and Motor Decision-Making

then the currently active recognition category is reset by a
complementary orienting system, and interactions between the
attentional and orienting systems drive a search for a new or
better-matching category.

All the key predictions of ART, including those about
vigilance control, have received support from psychological
and neurobiological experiments. See below and reviews by
Grossberg (1999, 2003, 2013a,b), Grossberg and Versace (2008),
and Raizada and Grossberg (2003). The potential significance of
the vigilance concept is illustrated by the prediction that various
autistic individuals may have their vigilance stuck at abnormally
high levels, thereby helping to explain the hyper-concreteness
of autistic attention and learning (Grossberg and Seidman,
2006; Church et al., 2010; Vladusich et al., 2010). Grossberg
and Versace (2008) developed the Synchronous Matching ART,
or SMART, model to explain how laminar circuits in visual
cortex whose cells obey spiking dynamics can carry out visual
category learning. SMART additionally predicted how vigilance
in these laminar cortical circuits may be regulated by acetycholine
(ACh) via the nucleus basalis of Meynert. Consistent with this
proposal are data about autistic individuals showing abnormal
ACh activity in the parietal and frontal cortices that is correlated
with abnormalities in the nucleus basalis (Perry et al., 2001; Ray
et al., 2005).

2. ATTENTION, LEARNING, AND
VIGILANCE DURING MOTOR CATEGORY
LEARNING IN SUPERIOR COLLICULUS

Another circuit that seems to embody ART dynamics has been
proposed to exist in the deeper layers of the superior colliculus
(SC). The SACCART model (Grossberg et al., 1997) proposes
how a multimodal map that attentively selects saccadic eye
movement target positions may be learned within the deeper
layers of the SC. Unimodal inputs to the SC come from several
different brain regions, including auditory, visual, and prefrontal
cortical areas. Learning combines all of these inputs into a
multimodal map for saccadic choice. Learning routes the SC
connections of these auditory, visual, and prefrontal planning
inputs so that all these inputs can activate the same target
positions, despite their different inputs sources, using—as in
the case of cognitive category attention, choice, and learning—
a recurrent on-center off-surround network as a choice network.
In the SC, these learned connections enable any combination of
auditory, visual, and cognitive input sources to compete within
the deeper SC layers to select the target position of the next
saccade. These interactions enable the model to quantitatively
simulate the temporal dynamics of SC burst and buildup cells
under a variety of experimental conditions. Burst cells respond
with bursts that decay as the next saccadic position is chosen
and executed. Buildup cells generate a spatially distributed
pattern of activity that begins at the chosen position and then
spreads toward the position of the fovea as the chosen saccadic
command causes the eye to foveate. Because these dynamics are
modeled by a specialized ART circuit, this motor map learning

process may be viewed as a kind of attentive motor category
learning.

The current article proposes that, just as in the case of
cognitive category learning, the SC circuit for motor category
learning uses ACh to sharpen the map loci that make saccadic
choices, and does so in a manner similar to the way that ACh
may modulate the vigilance of cognitive category choice and
learning. Recent neurophysiological results about the avian
equivalent of the SC, the optic tectum (OT), are consistent with
the SACCART model. The OT data also have the advantage that
they include the results of an AChmanipulation that is consistent
with this ART prediction. Thus, the SC and OT may both be
useful experimental models for studying vigilance control during
attentive motor category learning. The current article reviews
key data about the anatomy and neurophysiology of OT to set the
stage for explaining how these OT data support ART predictions
about motor category learning under ACh-modulated vigilance
control.

3. CHOLINERGIC MODULATION OF
ATTENTION AND CHOICE IN THE OPTIC
TECTUM

Indeed, in pigeons, a topographically organized ACh signal to
the OT is part of a midbrain neural circuit that helps to choose
and pay attention to one visual stimulus from among the many
stimuli that occur within their view. Whenever a visual stimulus
activates OT neurons in a given tectal position, this position
receives strong bursting feedback from ACh neurons of the
nucleus isthmi pars parvocellularis (Ipc) that is located under
the tectum. If a second visual stimulus is presented, the feedback
signal to the first tectal position is reduced or suppressed,
while feedback to the second tectal position begins. This long-
range inhibition is received primarily from the nucleus isthmi
pars magnocellularis (Imc), which sends a broad GABAergic
projection to the Ipc and OT.

At least two types of data support the idea that feedback
from the Ipc modulates OT output: First, the thalamic nucleus
rotundus (RtDa), which receives the ascending tectal output,
exhibits visually evoked extracellular responses that are
synchronized to this feedback signal. Second, if the Ipc is
inactivated, then visual responses in RtDa are prevented in
response to visual targets that move in the corresponding
region of space. In summary, the ascending transmission of
visual activity is gated by this ACh feedback signal, whose
position within the OT visual map is dynamically controlled by
competitive interactions (Wang, 2003; Wang et al., 2004; Marín
et al., 2007).

These feedback interactions cause oscillatory bursts and
switch-like properties that rapidly increase cell responses to the
strongest stimulus in their receptive field (Marín et al., 2005;
Asadollahi et al., 2010), both properties of ART resonance and
reset, respectively. As in the SC, there is multimodal fusion of
auditory and visual inputs in the OT-Ipc network (Maczko et al.,
2006), consistent with multimodal map learning of the kind
modeled by SACCART.
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The remainder of this article reviews and refines properties
of cognitive and motor category learning by ART models, and
also uses these theoretical results to explain how OT dynamics
illustrate ART mechanisms for map learning and choice. These
theoretical connections thereby explicate OT dynamics and
facilitate use of the OT as a paradigm for further investigating
motor category learning and ACh-modulated vigilance control.

4. ADAPTIVE RESONANCE THEORY

4.1. Attention, Resonance, and Stable
Category Learning
A comprehensive heuristic review of ART is given in Grossberg
(2013a). Here are reviewed those properties that are needed to
build the bridge between cognitive and motor category learning
and ACh modulation that is the primary focus of the present
article.

Humans and other primates are intentional beings: they
learn expectations and make predictions about what is about to
happen in the world. Humans are also attentional beings: they
restrict processing resources to a limited amount of incoming
information at any time. Why do humans and other primates
carry out both intentional and attentional processing? How are
these processes related? The stability-plasticity dilemma and its
solution using resonant states provides a unified answer.

The role of sensory or cognitive expectations, and of how
a resonant state is activated, are illustrated by the following
task: “find the blue glass as quickly as possible, and you will
win a $10,000 prize.” When an expectation of a “blue glass” is
active, the glass can be more rapidly and energetically detected.
Thus, sensory and cognitive top-down expectations are realized
by a process of excitatory matching with consistent bottom-up
data. When a mismatch occurs between top-down expectations
and bottom-up data, it suppresses the mismatched features of
the bottom-up data, so that attention can be focused upon the
matched, or expected, features.

A good enough match between bottom-up and top-down
signal patterns between two or more levels of processing
generates a resonant state in which their positive feedback signals
amplify, prolong, and synchronize the mutual activation between
the attended features and their category. Resonance triggers
learning in the more slowly varying adaptive weights that control
the signal flow along pathways from cell to cell. Resonance is
thus a global context-sensitive state that supports data worthy of
learning, hence the name Adaptive Resonance Theory.

In summary, ART unifies brain mechanisms that enable
advanced brains to quickly and stably categorize information
about currently active feature patterns using bottom-up
pathways, with mechanisms that enable expectations to be
learned about these feature patterns using top-down pathways.
Read-out of such a top-down expectation “tests a hypothesis” that
the currently active category is a sufficiently good representation
of the bottom-up feature pattern that is also then active.
When a sufficiently good match occurs between the currently
active bottom-up feature pattern and the learned top-down
expectation, then resonance can be triggered and focus attention

upon this critical features that are read-out by the expectation.
By learning only attended features, ART clarifies how, in order
to solve the stability-plasticity dilemma, only resonant states can
drive rapid new learning.

ART furthermore predicts that “all conscious states are
resonant states.” This prediction has been supported by many
modeling studies whose computer simulations of behavioral and
brain data using resonant states provide a linking hypothesis
between brain dynamics and conscious experiences. That is,
emergent properties of resonant states map onto parametric
properties of conscious experiences in the simulated experiments.

The type of learning within the sensory, cognitive, and motor
domain that ART mechanizes is match learning: Match learning
is so called because it occurs only if a good enough match occurs
between bottom-up patterns and learned top-down expectations
that are read out by a currently active recognition category. A
good enough match enables previously learned knowledge to be
refined.

4.2. Complementary Computing:
Resonance and Reset
Carpenter and Grossberg (1987, 1991) have mathematically
proved that match learning within an ART model leads to
stable category memories in response to arbitrary lists of
events. However, match learning is insufficient by itself to learn
from a changing world. Indeed, if the brain can only rapidly
learn when there is a good enough match between bottom-
up data and learned top-down expectations, then how does
the brain ever learn anything that is truly novel? ART shows
how this problem may be solved using interactions between
complementary processes of resonance and reset. Resonance
controls properties of attention and learning that have already
been discussed. Reset controls properties of hypothesis testing
and memory search that will be discussed now. Working
together, these complementary processes enable our brains to
balance between the complementary demands of processing
familiar vs. unfamiliar information, and expected vs. unexpected
information.

The resonance process during visual category learning takes
place in theWhat cortical stream, notably the inferotemporal and
prefrontal cortex. As discussed above, it is here that top-down
expectations are matched against bottom-up feature patterns.
When a good enough match occurs, it focuses attention upon the
features in the bottom-up feature pattern that are expected. If the
expected pattern is close enough to the input pattern, then a state
of resonance develops as attention focuses on the expected subset
of features.

Figure 1 illustrates these ART ideas in a simple example. In
Figure 1A, a bottom-up input pattern, or vector, I activates a
pattern X of activity across the feature detectors of the first
level F1. For example, a visual scene may be represented by
boundary and surface features. The differences in the activity
pattern X represent the relative importance of different features
in the input pattern I. In Figure 1A, pattern peaks represent
more activate feature cells, and troughs less activate feature cells.
Activity pattern X triggers signal pattern S within the bottom-
up connections of an adaptive filter to the second level F2.
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Before S can reach level F2, each signal in S is multiplied by
an adaptive weight, or long-term memory trace, thereby giving
rise to the input vector T to F2. Each adaptive weight can be
altered through learning. When T inputs to F2, it activates a
compressed representation, category, or symbol Y in response
to the more distributed input T. Representation Y is compressed
by competitive, or lateral inhibitory, interactions across F2 that
select a small subset of the most strongly activated cells, while
inhibiting cells that receive smaller inputs. The pattern Y in
Figure 1A is drawn to illustrate that the small number of category
cells may be activated to different degrees. The active category
cells Y can then send top-down signals U back to F1. The vector
U becomes a top-down expectation V when it is multiplied
by a matrix of top-down adaptive weights. Matching across F1
occurs between the bottom-up input vector I and the top-down
expectation V. Matching selects the subset X∗ of features within
X that are confirmed by V. These selected features constitute the
“attentional focus.”

4.3. Binding Distributed Feature Patterns
and Symbols during a Conscious
Resonance
If the top-down expectation V is similar enough to the bottom-
up input pattern I, then the pattern X∗ of attended features can
reactivate category Y. Category Y, in turn, reactivates X∗. This
positive feedback cycle leads to a synchronous resonant state that
can enter consciousness.

This coherent state provides a solution of the classical “symbol
grounding problem” (Harnad, 1990). The two levels F1 and
F2 experience complementary types of ignorance: Activating a
category at F2 can represent a distributed feature pattern, but
the category has no information about what these features are.
Activating a feature detector at F1 does provide such information,
but individual features have no meaning by themselves. The
resonant bound state binds the pattern of critical features to the
category that represents them.

A resonance can generate either a stable equilibrium or
a synchronous oscillation. The article that introduced ART
(Grossberg, 1976b) predicted the existence of such synchronous
oscillations. They were called “order-preserving limit cycles”
because they preserve the ordering of activities as they
synchronously oscillate through time. In contrast, order-
reversing oscillations could, for example, support a traveling
wave or epileptic seizure. Grossberg (2003, 2013a) review
psychological and neurobiological data that support all the
main ART predictions, including predictions about synchronous
oscillations.

4.4. Resonance Links Intention and
Attention to Learning
In ART, the resonant state is predicted to drive learning. Its
synchronization, amplification, and prolongation of activity is
sufficient to activate slower learning processes in the adaptive
weights within the bottom-up and top-down pathways between
levels F1 and F2 in Figure 1. Adaptive weights that were
changed through previous learning can hereby regulate current

FIGURE 1 | How ART searches for a recognition category using cycles

of resonance and reset. (A) Input pattern I is instated across feature

detectors at level F1 as an activity pattern X, while it non-specifically activates

the orienting system A with gain ρ, the vigilance parameter. X inhibits A and

generates output pattern S. S is multiplied by learned adaptive weights to form

the input pattern T. T is contrast-enhanced and normalized by recurrent

shunting competition, leading to selection and activation of category cells Y at

level F2. (B) The category activity Y generates the top-down signals U which

are multiplied by adaptive weights to form a prototype V that encodes the

learned expectation of active F2 categories. The top-down expectation V is

added at F1 cells. If V mismatches I at F1, then a new STM activity pattern X*

(the hatched pattern) at cells where the patterns match sufficiently is selected

at F1. X* is active at I features that are confirmed by V. Mismatched features

(white area) are inhibited. When X changes to X*, total inhibition decreases

from F1 to A. (C) If inhibition decreases sufficiently, A releases a non-specific

arousal burst to F2; that is, “novel events are arousing.” Arousal resets F2 by

inhibiting Y. (D) After Y is inhibited, X is reinstated and Y stays inhibited for a

while as X activates a different activity pattern Y*. Search continues until a

better matching or novel category is selected. When search ends, an attentive

resonance triggers learning of the attended data. Adapted with permission

from Carpenter and Grossberg (1993).

information processing, without necessarily learning about the
signals that they process unless they can initiate a resonant
state. Thus, adaptive resonance is a mediating event that solves
the stability-plasticity dilemma and, in so doing, provides a
mechanistic explanation of why humans are intentional beings
who continually predict what may next occur, and why humans
tend to learn about events to which they pay attention.

The fact that humans can also sometimes learn without
attention or conscious awareness, for example during perceptual
learning, is also explained by ART, but how this is proposed
to happen goes beyond the scope of this review. See Grossberg
(2003, 2013a) for reviews.
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4.5. Complementary Attentional and
Orienting Systems Control Resonance and
Reset
When a sufficiently bad mismatch occurs between an active
top-down expectation and a bottom-up input that represents
an unexpected or unfamiliar event, it can drive a memory
search by activating the orienting system. The orienting system
obeys computationally complementary laws from those of the
attentional system that carries out category learning and top-
down attentional matching. In particular, the orienting system
is activated by unexpected and unfamiliar events. ART proposes
that the attentional system includes temporal and prefrontal
cortex, whereas the orienting system includes the non-specific
thalamus and the hippocampal system, among other brain
regions. Output signals from the orienting system rapidly reset
the recognition category within the attentional system that read
out the poorly matching top-down expectation (Figures 1B,C).
The cause of the mismatch is hereby removed. The attentional
system can then activate a different recognition category
(Figure 1D). The reset event hereby triggers memory search, or
hypothesis testing, for a recognition category that better matches
the input pattern.

No such recognition category may currently exist if the
bottom-up input represents a truly novel experience. In this
situation, the search process activates an as yet uncommitted
population of cells, with then learn to categorize the novel
input pattern. The ability to activate an uncommitted population
cannot be taken for granted. It happens within ART because of
the way that the category level F2 is designed. One important
property is that the total activity across F2 tends to be
conserved, due to the recurrent shunting on-center off-surround
interactions that store chosen categories in short-term memory
in F2 (Grossberg, 1973, 1980). This property helps to compensate
for the fact that, after a disconfirmed category is inhibited by
reset, the adaptive weights which activate the new category
will typically be smaller, or worse matched, than those that
activated the inhibited category. Thus, although the inputs to the
newly chosen category can only initially activate it less than its
predecessor, the normalized total activity can amplify this initial
activity to fully activate the newly chosen category.

In addition, the top-down expectation that is activated by
a newly chosen recognition category must be able to match
whatever input feature pattern caused it to be activated, so that
learning can begin. This property is ensured by choosing all top-
down adaptive weights to initially have large values. Learning of
a top-down expectation thus prunes these weights to match the
critical feature pattern that is learned by the category’s bottom-up
adaptive filter.

This learning process works well under both unsupervised
and supervised conditions (Carpenter and Grossberg, 1987,
1991; Carpenter et al., 1992, 2005; Amis and Carpenter, 2009).
Unsupervised learning means that the system can learn to
categorize novel input patterns without an external teacher. Input
patterns are categorized together based upon their similarity
alone, although how the criterion of acceptable similarity is set,
called vigilance control, needs to be understood; see Section 5.

Supervised learning also uses vigilance control. In addition,
when the system predicts an answer, a teaching signal from
the environment can match or mismatch this prediction. If
the prediction causes a big enough mismatch, this can activate
the orienting system and force a memory search for a new
category that can learn a better-matching prediction. Supervised
learning is often important when the answers to be learned are
culturally determined, and are not based on feature similarity
alone. For example, separating the featurally similar letters C and
O, or E and F, into separate recognition categories is culturally
determined. On a learning trial when O is predicted in response
to presentation of C, supervised feedback enables the system to
learn separate categories and top-down expectations for C and O.

In summary, the complementary processes of attentive-
learning and orienting-search can, through their interactions,
enable incremental learning and hypothesis testing that together
can build a self-refining internal model of a changing world.

4.6. Mismatch-Mediated Arousal,
Habituative Synapses, and Reset
How does a reset signal lead to selection of a new category that
can better match and predict the world? How does such a search
work during unsupervised learning when there is no external
teacher? Indeed, how does search work during unsupervised
learning despite the fact that, when the mismatch occurs, the
correct answer is not known, and the orienting system has no
knowledge of which category caused the reset?

This state of affairs illustrates another example of
complementary processing by the brain: Within the attentional
system, the chosen category is known, but there is no knowledge
of whether it is correct enough to support resonance and
learning. Within the orienting system, it is known if an error
occurred within the attentional system, but not which category
caused it. How do the two systems interact to overcome their
complementary deficiencies and discover a better-matching,
possibly entirely new, category?

A solution to this search problem was proposed by Grossberg
(1976b, 1980). This solution predicts that the pathways that
mediate reset utilize habituative transmitter gates, which are
a form of medium-term memory (MTM), distinct from the
short-term memory (STM) that describes rapid cell activation,
and the long-term memory (LTM) that persists after learning
occurs. Laws for habituative gating MTM, as well as of STM and
LTM, were introduced in Grossberg (1968, 1969). These MTM
gating processes may, in principle, occur either at presynaptic
transmitters or postsynaptic receptors. Neurobiological data and
supportive modeling were reported by Abbott et al. (1997)
for visual cortex and by Tsodyks and Markram (1997) for
somatosensory cortex, using the names synaptic depression and
dynamic synapses, respectively.

These gating processes seem to carry out several roles in
the brain. During the processing of sensory inputs, they enable
individual cells to adapt their responses to the average level of
input intensity, and thereby maintain cell sensitivity to changes
in input intensity by contrast-normalizing cell responses to time-
varying inputs; e.g., Carpenter and Grossberg (1981), Gaudiano
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and Grossberg (1991), and Grossberg (1972, 1984b). During
cortical map development, they prevent perseverative activation
of cells, and thereby allow new inputs to learn how to activate new
cells; e.g., Grossberg and Seitz (2003) and Olson and Grossberg
(1998). During percepts of changing visual inputs, they limit
persistent activation of cells after their inputs end, and thereby
prevent moving objects from creating smeared percepts across
a scene; e.g., Francis and Grossberg (1996) and Francis et al.
(1994). During percepts of visual motion, they enable cells to
respond to changing inputs with transient responses; e.g., Baloch
et al. (1999), Berzhanskaya et al. (2007), and Öğmen (1993).
During bistable visual percepts, habituation of the pathways that
support one percept can enable a competing percept to become
dominant for a while; e.g., Grossberg and Swaminathan (2004),
Grossberg and Yazdanbakhsh (2005), Grossberg et al. (2008),
and Wilson (2007). During the learning of ART recognition
categories, they enable a reset signal from the orienting system
to inhibit categories whose top-down expectations mismatch
bottom-up input patterns, and thereby enabling search for better-
matching categories to continue; e.g., Carpenter and Grossberg
(1987, 1991) and Grossberg (1976b, 1980). All of these examples
illustrate how the brain can adapt to variable input intensity
levels and reset its responses to respond to changing inputs in
as unbiased a way as possible.

How does this search process work? As shown in Figure 1C,
when there is a big enough mismatch, the orienting system A
is activated. This activation generates an output burst that is
delivered with equal strength to all targeted thalamocortical cells.
This is thus a burst of non-specific arousal. It is delivered equally,
or non-specifically, to all cells because the orienting system does
not know what categories read out the expectation that caused
the mismatch. Any of them could have been responsible. It
is called an arousal signal because it mechanizes the intuition
that “novel events are arousing.” This equal signal to all target
cells can selectively reset the cells that are responsible for
a predictive mismatch. It does so using the MTM property
of habituative gates (Grossberg, 1968, 1969). Grossberg (1972,
1980) proved mathematically that a burst of non-specific arousal
can selectively shut off currently active cells and boost the
activities of cells that were previously activated but partially
suppressed. That is, if non-specific arousal boosts the activation
of pathways that are habituatively gated, it can drive a selective
memory search for a better-matching category. The laminar
cortical circuits in which this is predicted to happen will be
described in Section 8 after a summary is given of how big a
mismatch is needed to trigger a non-specific arousal burst from
the orienting system. These laminar cortical circuits also specify
the pathways through which top-down attention modulates cell
activations.

5. LEARNING EXEMPLARS AND
PROTOTYPES: VIGILANCE CONTROL

How general is the featural information that is compressed within
a recognition category? Some scientists espouse the view that
exemplars, or individual experiences, are learned, corresponding

to the fact that some memories are specific and concrete. For
example, humans and various other primates can recognize
particular views of familiar faces. However, if all memories were
stored as exemplars of individual experiences, a combinatorial
explosion of memory could ensue, leading to unmanageable
problems of memory retrieval. An alternative proposal is that
humans learn prototypes that represent general and abstract
properties of objects and events (Posner and Keele, 1968). For
example, most humans can recognize that other humans have
faces. How does the brain learn both specific and concrete
exemplars and general and abstract prototypes? ART provides an
answer to this question that overcomes problems faced by earlier
models. It does so using interactions between its complementary
attentional and orienting systems.

ART does learn a kind of prototype, but ART prototypes
are not merely averages of the exemplars that are classified by
a category, as has been assumed in many prototype models.
Instead, ART prototypes are critical feature patterns upon which
learned top-down expectations of the category focus attention.
These critical feature patterns are subsets of the features that
have activated the corresponding category in the past. The
concreteness or generality of the information that is coded
by a critical feature pattern is determined by a gain control
process that is called vigilance control (Carpenter and Grossberg,
1987, 1993). Vigilance can be altered by different kinds of
information, including environmental feedback that is triggered
by a predictive error, internal volition, or valued reinforcers. Low
vigilance permits the learning of general categories with abstract
prototypes. High vigilance forces a memory search to occur for a
new category when even small mismatches exist between an input
exemplar and the category that it initially activates. In the limit of
high vigilance, the category prototype may encode an individual
exemplar. In this way, ART regulates the generality of a category
to match the predictive demands of each environment in which
it learns.

Vigilance is computed within the orienting system. For it to
do its job, the bottom-up input pattern I to F1 also activates the
orienting system (Figure 1A). Here, the total excitation due to
I is reduced by inhibition from all the active features across F1.
In particular, the total excitatory input to the orienting system
is ρ |I| , where |I| is the total size of the featural input and ρ is
the vigilance parameter. When no top-down expectation is active,
the total activity across the active features in F1 is X. Then the
total inhibition of |X| is subtracted from ρ |I| , The inequality
ρ |I| − |X| ≤ 0 always occurs when no top-down expectation
is active because then |I| = |X|, since the total number of active
inputs equals the total number of activated cells in this case, and
ρ ≤ 1. When a top-down expectation is active (Figure 1B),
then X is transformed into X∗, so that |X∗| is subtracted
within the orienting system. When inequality ρ |I| − |X∗| ≤ 0
holds, it signifies that the match between the bottom-up input
pattern I and the learned top-down expectation is good enough
to keep the orienting system inhibited. The active category
can therefore resonate with the attended features X∗ to drive
new learning.

The inequality ρ |I| − |X∗| > 0 holds when the input pattern
I is so poorly matched, and thus novel, to require new learning
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of a different category with which to adequately represent it. The
orienting system is then activated and triggers a non-specific reset
wave, or arousal burst (Figure 1C). This arousal burst initiates a
memory search for a different category with which to classify the
exemplar.

The vigilance parameter hereby controls how bad a match
will be tolerated before search for a new category is initiated.
If vigilance is low, it is easier to prevent an arousal burst
from occurring. Under these circumstances, many exemplars can
resonate with the same category, leading to learning of a general
and abstract prototype that is represented in all these exemplars.
In contrast, if vigilance is high, then relatively small differences
between a new exemplar and the prototype that was learned in
response to the first exemplar can activate the orienting system.
In particular, a small difference between a new exemplar, such as
O, and a previously learned prototype, such as for C, can drive
search for a new category with which to represent O.

When a given environment contains both specific and general
information, a fixed value of vigilance may not be sufficient
to eliminate all predictive errors. To overcome this problem,
vigilance may vary through time to realize match tracking.
Then, in response to a predictive error, the vigilance parameter
ρ increases until it is just big enough to make ρ |I| − |X∗|

positive, and thus to drive a memory search for another category
(Figures 1C,D). For example, if the letter O activates the category
for the previously learned letter C, the network may erroneously
predict C. This predictive error can increase vigilance just enough
to drive a search for a new category with which to represent O.

Match tracking thus works by making ρ just big enough to

exceed the ratio |X∗|
|I| of the number |X∗| of active features in F1

to total features |I| in the input pattern I. In other words, vigilance
then “tracks” the degree of match between input exemplar
and matched prototype. By just exceeding the minimal level of
vigilance that can trigger a memory search for a new category,
match tracking acts like a Minimax Learning Rule: It conjointly
maximizes category generality as itminimizes predictive error. In
so doing, match tracking uses the fewest memory resources that
are needed to overcome predictive errors. This property clarifies
how, for example, children tend to overgeneralize.

6. VIGILANCE CONTROL BY
ACETYCHOLINE VIA NUCLEUS BASALIS
DURING VISUAL CATEGORY LEARNING

More recent versions of ART have shown how predicted
ART mechanisms may be embodied by identified cells in
laminar microcircuits of the cerebral cortex. Laminar cortical
models for vision (Figure 2), called LAMINART models (e.g.,
Grossberg, 1999; Grossberg and Raizada, 2000; Raizada and
Grossberg, 2003; Grossberg and Swaminathan, 2004; Cao and
Grossberg, 2005, 2012; Grossberg and Yazdanbakhsh, 2005);
for cognitive information processing, called the LIST PARSE
model (Grossberg and Pearson, 2008); and for conscious speech
processing, called the cARTWORD model (Grossberg and
Kazerounian, 2011; Kazerounian and Grossberg, 2014), have
all been developed using variations of the same canonical

laminar circuitry. A variant of the LAMINART model, called
the Synchronous Matching ART, or SMART, model (Grossberg
and Versace, 2008), proposed how a thalamocortical mismatch
that is mediated by the non-specific thalamus and the nucleus
basalis of Meynert may increase vigilance via a non-specific burst
of arousal that releases ACh to wide areas of neocortex. Before
detailing how this is proposed to happen, some of the basic
circuitry for realizing top-down attentional matching needs to
be specified.

7. ATTENTION IS REALIZED BY
TOP-DOWN, MODULATORY ON-CENTER,
OFF-SURROUND NETWORKS

What kind of top-down attentional matching circuits support
a self-stabilizing memory, and thus a solution of the stability-
plasticity dilemma? Grossberg (1980) proposed that top-
down on-center off-surround networks carry out the requisite
matching properties. Carpenter and Grossberg (1987) went
further to mathematically prove that the simplest matching
circuit that can solve the stability-plasticity dilemma is a
top-down, modulatory on-center, off-surround network. The
modulatory on-center can sensitize, or prime, cells within
the category prototype, but not fully fire them under most
conditions, whereas the off-surround can inhibit cells that are
not in the on-center. This kind of circuit realizes the excitatory
matching that was described in Section 4.1 and Figure 1. Circuits
of this type are said to obey the ART Matching Rule.

All the predicted properties of the ART Matching Rule have
received behavioral, anatomical, and neurophysiological support;
see Raizada and Grossberg (2003) for a review. The competitive
dynamics of attention are popularly called “biased competition”
(Desimone, 1998). There is also a growing consensus about the
exact mathematical form that attentional circuits should take.
For example, the form that was used for such attentive matching
in explaining perceptual categorization data (e.g., Gove et al.,
1995; Bhatt et al., 2007) was also used in the “normalization
model of attention” (Reynolds and Heeger, 2009). Reynolds
and Heeger (2009) expressed ART matching as an algebraic
equilibrium equation. Bhatt et al. (2007) expressed it in terms of
real-time neural dynamics from which its equilibrium equation
was derived.

The LAMINART model predicts how the ART Matching
Rule may be realized in laminar visual cortical circuits by
identified neurons (Grossberg, 1999; Raizada and Grossberg,
2003). As shown in Figures 2B,E, corticocortical feedback axons
from layer 6 of a higher area terminate in layer 1 of a lower
cortical area, where they excite apical dendrites of layer 5
pyramidal cells whose axons send collaterals into layer 6. The
feedback is then “folded” back from layer 6 to layer 4 via
a modulatory on-center, off-surround network. This “folded
feedback” circuit realizes the top-down, modulatory on-center,
off-surround circuit of the ART Matching Rule. A variety of
anatomical and neurophysiological data support the predicted
properties of this circuit; see Grossberg and Raizada (2000),
Grossberg andVersace (2008), and Raizada andGrossberg (2001)
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FIGURE 2 | Model LAMINART circuitry for perceptual grouping and

attention in cortical areas V1 and V2. Inhibitory interneurons are shown

filled-in black. (A) Two bottom-up input pathways from the lateral geniculate

nucleus (LGN) to layer 4 of V1. A strong driving connection goes directly from

LGN to layer 4. LGN axons send collaterals into layer 6, and thereby also

activate layer 4 via a layer 6 4 modulatory on-center, off-surround network.

The combined effect of the bottom-up LGN pathways is to drive layer 4 via an

on-center off-surround network which also divisively contrast-normalizes the

input pattern (Grossberg, 1973; Heeger, 1992). (B) How attention from a

higher cortical area reaches layer 4 of a lower cortical area: corticocortical

feedback axons tend to originate in layer 6 of the higher area and terminate in

layer 1 of the lower cortex, where they can excite apical dendrites of layer 5

pyramidal cells whose axons send collaterals into layer 6. The triangle in the

figure represents such a layer 5 pyramidal cell. Several other routes through

which feedback can pass into V1 layer 6 exist. Having arrived in layer 6, the

feedback is then “folded” back up into the feedforward stream by passing

through the 6 4 on-center off-surround path. This circuit realizes the

top-down, modulatory on-center, off-surround circuit of the ART Matching

Rule. (C) Perceptual boundary choice and completion: like-oriented layer 4

simple cells with opposite contrast polarities compete (not shown) before

generating half-wave rectified outputs that converge onto layer 2/3 complex

cells in the column above them. Long-range interactions within layer 2/3 realize

a law for boundary choice and completion that is called the bipole grouping

property (Grossberg, 1984a; Grossberg and Mingolla, 1985). Just like

attentional signals from higher cortex, as shown in (B), boundary groupings

that form among bipole cells in layer 2/3 also send activation into the folded

feedback path, to enhance their own positions in layer 4 beneath them via the

6 4 on-center, and to suppress input to other groupings via the 6 4

off-surround. There exist direct layer 2/3 6 connections in macaque V1, as

well as indirect routes via layer 5. (D) Top-down corticogeniculate feedback

from V1 layer 6 to LGN also has an on-center off-surround anatomy, similar to

the 6 4 path, and realizes the ART Matching Rule from V1 to LGN. The

on-center feedback selectively enhances LGN cells that are consistent with the

activation that they cause, and the off-surround contributes to length-sensitive

(endstopped) responses that facilitate grouping perpendicular to line ends. (E)

The entire V1/V2 circuit: V2 repeats the laminar pattern of V1 circuitry, but at a

larger spatial scale. In particular, the horizontal layer 2/3 connections have a

longer range in V2, allowing above-threshold perceptual groupings between

(Continued)

FIGURE 2 | Continued

more widely spaced inducing stimuli to form. V1 layer 2/3 projects up to V2

layers 6 and 4, just as LGN projects to layers 6 an 4 of V1. Higher cortical

areas send feedback into V2 which ultimately reaches layer 6, just as V2

feedback acts on layer 6 of V1. Feedback paths from higher cortical areas

straight into V1 (not shown) can complement and enhance feedback from V2

into V1. Top-down attention can also modulate layer 2/3 pyramidal cells

directly by activating both the pyramidal cells and inhibitory interneurons in that

layer. The inhibition tends to balance the excitation, leading to a modulatory

effect. These top-down attentional pathways tend to synapse in layer 1. Their

synapses on apical dendrites in layer 1 are not shown, for simplicity. Reprinted

with permission from Raizada and Grossberg (2001).

for descriptions and simulations of these data. In particular,
habituative transmitter gates (Section 4.6) are predicted to
occur at the synapses of the layer 4 on-center off-surround
network, among other parts of the cortex, where their reset
properties help to explain and simulate several different types
of developmental, perceptual, and learning data (Francis and
Grossberg, 1996; Grossberg and Seitz, 2003; Grossberg and
Versace, 2008).

8. MISMATCH, RESET, AND SEARCH IN
LAMINAR CORTICAL CIRCUITS

The SMART model (Grossberg and Versace, 2008) further
develops the LAMINART explanation of how laminar cortical
circuits can reset ongoing activity to search for a better-
matching visual category in response to a predictive mismatch,
and additionally proposes how acetylcholine can modulate
vigilance, and thus the criteria that trigger search. The SMART
model (Figure 3) refines the LAMINART circuits in Figure 2 by
subdividing layer 6 into the two sublamina, namely 6I and 6II.
It also models a hierarchy of cortical levels (e.g., V1 and V2) as
they interact via spiking neurons with first-order (e.g., LGN) and
second-order (e.g., pulvinar; Sherman and Guillery, 2001; Shipp,
2003) specific thalamic nuclei and non-specific thalamic nuclei
(van der Werf et al., 2002).

In the SMART model, a bottom-up input from a layer 6I cell
activates a direct excitatory pathway to layer 4 and to layer 6I-to-4
inhibitory interneurons. The signals in these pathways are gated
by activity-dependent habituative transmitters: Neurotransmitter
in these pathways is released in an activity-dependent way to
activate layer 4 target cells, and transmitter recovery is slow
relative to its release rate. The net post-synaptic EPSP thus
decreases through time to a habituated firing level after an
initial activity burst (Beierlein et al., 2002). Despite the fact that
larger inputs cause greater habituation, synaptic transmission
remains unbiased, and stronger inputs produce bigger steady-
state EPSPs, as was proved mathematically in Grossberg (1972,
1980).

As in earlier ARTmodels, top-down corticothalamic feedback
in SMART obeys the ART Matching Rule. In other words,
it is realized by a top-down, modulatory on-center, off-
surround circuit whose on-center determines the attentional
focus that selects, enhances, and synchronizes behaviorally
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FIGURE 3 | The SMART model. The specific thalamus (for example, the lateral geniculate nucleus, or LGN, and pulvinar) receives bottom-up (BU) input from the

periphery, and top-down feedback from the cerebral cortex, where bottom-up and top-down information is matched. For example, LGN receives feedback from V1

and pulvinar from V2. Top-down feedback from the cerebral cortex also excites the thalamic reticular nucleus which provides global inhibition to the specific thalamic

nucleus to suppress mismatching features in the sensory input. The non-specific thalamic nucleus receives a copy of the bottom-up sensory information, as well as

inhibition from the thalamic reticular nucleus. When a mismatch occurs, the inhibition from the thalamic reticular nucleus decreases, leading to an arousal burst (dotted

arrow from non-specific thalamic nucleus) that is broadly distributed across layer 1 of the cerebral cortex. This arousal burst leads to reset and search for alternative

recognition codes in the cerebral cortex. Repeated mismatches achivate projections of the non-specific thalamic nucleus to the Nucleus Basalis of Meynert (see

Figure 4), which in turn release ACh in the cerebral cortex. Modified with permission from Grossberg and Versace (2008).

relevant, bottom-up sensory inputs (match), and whose off-
surround suppresses inputs that are irrelevant (mismatch).

Thalamocortical dynamics repeat key properties, albeit with
suitable specializations, at multiple levels of processing in
SMART. In particular, the processing dynamics that occur
between LGN and V1 are homologous to the dynamics between
the pulvinar nucleus and V2, and beyond (Salin and Bullier, 1995;
Callaway, 1998). Thus, top-down feedback from layer 6 of V2 to
the pulvinar can match the bottom-up input pattern from V1 to
the pulvinar in a manner similar to how top-down feedback from
layer 6 of V1 to LGN matches retinal input to the LGN.

SMART refines the long-standing ART proposal (Grossberg,
1980) that the thalamic reticular nucleus (TRN) realizes the off-
surround that is used during thalamic matching. The TRN forms
a shell around the lateral and dorsal portions of the thalamus,
that lies within the axonal path connecting the thalamus and the
cortex (Guillery and Harting, 2003). TRN afferents are mainly
derived from branches of bottom-up axons from the thalamus
to the cortex, or branches of top-down axons from cortical layer
6 to its specific thalamic nucleus. TRN cells are GABAergic, and
are reciprocally linked by both chemical inhibitory projections
and electrical synapses (Landisman et al., 2002). Inhibitory
top-down TRN feedback to the thalamus balances top-down
cortical layer 6 excitatory signals at their shared target cells. As
a result, the excitatory signals have only a modulatory effect
on these cells (Guillery and Harting, 2003) when there are no

other active inputs. The TRN hereby plays an important role in
suppressing unmatched sensory features during visual learning
and recognition.

SMART proposes how a memory search may be controlled
by interactions between specific thalamic nuclei, non-specific
thalamic nuclei, and the cerebral cortex, in particular how a burst
of mismatch-mediated non-specific arousal may be triggered.
The non-specific thalamus—notably, the midline and central
lateral thalamic nuclei—is sensitive to the degree of mismatch
between cortical expectations and sensory stimuli (Kraus et al.,
1994). A big enough mismatch at a specific thalamic nucleus
can generate a novelty-sensitive activity burst at a non-specific
thalamic nucleus (van der Werf et al., 2002) that is broadcast
non-specifically to the superficial layers of the cerebral cortex,
notably layer 1. This non-specific signal propagates from layer
1 dendrites to their layer 5 cells, then to layer 6, and finally to
layer 4 via habituatively-gated signals. The activity-dependence
of habituation in different pathways enables the non-specific
arousal burst to cause selective reset of active layer 4 cells
(Section 4.6).

Grossberg and Versace (2008) did model simulations showing
that the human mismatch negativity (MMN) event-related
potential has features that are consistent with these mismatch-
mediated events. Indeed, MMN properties are related to an
earlier ART prediction that the mismatch, arousal, and reset
events that occur during an ART search (Figure 1) correspond
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to different human scalp-recorded Event Related Potentials, or
ERPs, and that these ERPs should co-occur, as they do in the
ART search cycle, if they occur at all. In particular, Processing
Negativity, N200 (a component of which is MMN), and P300
ERPs were predicted to correspond to match, arousal, and
STM reset events at various levels of thalamocortical processing
(Grossberg, 1978, 1980, 1984c). This prediction was tested
and supported by ERP experiments (Banquet and Grossberg,
1987). In these experiments, an oddball paradigm used low and
high tones within a choice reaction time task. As predicted,
components of the P120, N200, and P300 ERPs co-occurred and
behaved like mismatch, arousal, and STM reset events.

9. ACETYLCHOLINE MODULATES
VIGILANCE, LEARNING, AND
GENERALIZATION VIA THE NUCLEUS
BASALIS

SMART also further specified how vigilance control, and thus
the learning of concrete vs. or abstract recognition categories, is
realized in laminar cortical circuits. As noted above, an arousal
burst can sometimes activate layer 5, leading to reset of layer 4
and search for a new recognition category. If the sensitivity of
layer 5 to such an arousal burst can be modulated by predictive
success, then a process like match tracking can be realized.

SMART provides testable predictions about how this
happens (Figure 4). These predictions already have considerable
experimental support, albeit support that is not generally
described in terms of vigilance control and the generality of
category prototypes: The non-specific thalamic nucleus can
activate the nucleus basalis of Meynert (van der Werf et al.,
2002), which is an important main source of cholinergic input
to the cerebral cortex. Both in vitro data (Saar et al., 2001) and
computer simulations of isolated model layer 5 pyramidal cells
show how ACh can regulate after-hyperpolarization (AHP)
currents and, with them, the excitability of layer 5 cortical cells.
Indeed, a steady depolarization current causes rat pyramidal
cell firing to rapidly habituate. In opposition to this, injection of
the ACh agonist carbachol reduces the adaptation (Saar et al.,
2001). ACh can hereby modulate, through the reduction of
AHP and the prevention of spike adaptation, the excitability
of layer 5 pyramidal neurons. In so doing, ACh can regulate
the amount of thalamic mismatch that can be tolerated by the
cortical area before excitability increases. Vigilance may be
increased by high levels of ACh through its effect of reducing
spiking adaptation and thereby facilitating reset. By imposing
a more demanding criterion of match between bottom-up and
top-down representations before resonance and learning can
occur, higher levels of ACh force learning of more concrete
categories than would occur without it. For this to work, ACh
concentration transients must act on the timescale of behavioral
episodes, as they have been report to do (Parikh et al., 2007;
Sarter et al., 2009). They must also vary in a task-dependent
manner that correlates with attentional demands. This property
has been confirmed by microdialysis (Marrosu et al., 1995;
Arnold et al., 2002) and newer techniques (Parikh et al., 2007).

A role for ACh in vigilance control is also consistent with the
fact that the cholinergic blocker scoplamine reduces novelty
discrimination in rats (Ballaz, 2009), and that lesions in rats of
the nucleus basalis of Meynert have little impact on learning rate,
except when a high degree of featural overlap occurs between
the categories to be learned (Botly and De Rosa, 2007, 2009),
and thus higher vigilance is required. Also consistent is the fact
that the cholinergic blocker scopolamine diminishes learning of
overlapping word pairs more than non-overlapping pairs (Atri
et al., 2004).

Recent modeling work demonstrates how acetylcholine can
control the shape of neural input/output transfer functions
by regulating AHP currents, defined as spike-dependent,
hyperpolarizing currents that occur following action potentials
(Palma et al., 2012a,b). Three main classes of AHP currents
have been identified in a variety of mammalian species and
brain regions: fast (fAHP), medium (mAHP), and slow (sAHP,
Storm, 1987; Schwindt et al., 1988; Lorenzon and Foehring, 1992;
Lee et al., 2005). Simulations in multi-compartment, spiking
cortical cells show that ACh can shift the neuron’s transfer
function by diminishing sAHP and mAHP, while boosting fAHP
(Palma et al., 2012a,b), as supported by physiological recordings
directly (Storm, 1987; Lorenzon and Foehring, 1992; Vogalis
et al., 2003) or indirectly (Prakriya et al., 1996; Bordey et al.,
2000; Matthews et al., 2009). The net effect of ACh stimulation
is a leftward shift of the transfer function of neurons. This
lowers the range of competition and temporally expands the
number of competitive candidates in a target neural population,
as was earlier demonstrated in rate-based models (Grossberg,
1973; Ellias and Grossberg, 1975). It also accelerates the rate of
competition. These effects could promote pattern differentiation,
as observed in the primary auditory cortex of the rat (Pandya
et al., 2005). Spiking network models (Palma et al., 2012b)
confirm that the net result of an increase of ACh release is
a “choice,” or code sharpening, in the target network. This
mechanism provides the modulatory control necessary to ensure
that the sharpness of the neural code that is learned in a cognitive
or motor area supports the behavioral success of the organism.

10. LEARNING A MULTIMODAL
MOVEMENT MAP

10.1. Merging Visual, Auditory, and Planned
Movement Commands by Learning
How does the brain implement attentive category learning and
vigilance control in sensory-motor circuits? The SACCART
model (Figures 5, 6; Grossberg et al., 1997) proposes how
multiple sources of saccadic eye movement signals learn to
interact to select a single position to which a saccadic eye
movement will be directed. There are at least four types of
saccadic movement signals: visually reactive, visually attentive,
auditory, and planned (Figure 7; Gancarz and Grossberg, 1999).
Visually reactive saccades are reflexive movements generated
by areas of rapid visual change. Visually attentive saccades are
activated by signals from an attentively-modulated region of
the parietal cortex, as modeled in Fazl et al. (2009) during the
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FIGURE 4 | How the SMART model refines ART and LAMINART search mechanisms. (A) Arousal: In response to a mismatch, the non-specific thalamic nuclei

activation non-specific projections to apical dendrites in layer 1 of layer 5 cells; (B) reset: habituative synapses in the layer 6I → 4 pathways respond to arousal

increases in the layer 5 → 6I → 4 pathways with reset of previously active cells; (C) search: reset enables new cells to get activated that, possibly after several reset

cycles, can better represent the current inputs; (D) vigilance control: ACh release occurs in the cortex due to mismatch-activated signals from the nucleus basalis of

Meynert. High levels of ACh can increase the excitability of layer 5 pyramidal neurons by reducing afterhyperpolarization currents and spike adaptation, thereby

increasing vigilance and facilitating reset by requiring a higher degree of match between bottom-up and top-down representations to keep the arousal signal small.

Reprinted with permission from Grossberg and Versace (2008).

learning of invariant object categories. Auditory saccades direct
the eyes toward acoustic stimuli, and may be processed by the
inferior colliculus and parietal cortex, among other brain regions.
Planned saccades involve storage of a saccadic command in
a prefrontal cortical short-term working memory, even after
the cue that signals future performance of the saccade itself
terminates. Read-out of such stored commands can activate
saccades at a later time to intended targets; they “direct the
eye at objects selected beforehand from the visual environment”
(Becker, 1989).

Visually attentive, auditory, and planned representations are
all computed in head-centered coordinates. A parietal head-
centeredmap (Stricanne et al., 1996) allows visually attentive cues
to cooperate or compete for attention with auditory cues. Head-
centered representations do not change when eye movements
occur in the absence of head or body movements. For this
reason, head-centered target representations are also useful for
storing several sequential target positions in short-term working
memory in the prefrontal cortex and frontal eye fields, whose

working memory capabilities can be used for saccadic planning
(Zingale and Kowler, 1987; Goldman-Rakic, 1990, 1995; Wilson
et al., 1993; Fuster, 1996).

Gancarz and Grossberg (1999) model how head-centered
representations of visually attended and planned eye positions
can be formed and calibrated through learning. Their model,
and the subsequent refinements in articles such as Chang et al.
(2014), Fazl et al. (2009), and Silver et al. (2011), also clarifies how
competition within head-centered representations can choose
a single target position of each type to send to the superior
colliculus.

Signals for visually reactive, visually attentive, auditory, and
planned saccades converge in the deeper layers of the superior
colliculus, or SC (Figures 5–7), where they compete for attention
in a shared multimodal target position map (Schlag-Rey et al.,
1992; Stein and Meredith, 1993). To accomplish this multimodal
merging of signals, the brain solves a challenging problem,
since visual cues are registered in retinotopic coordinates,
whereas visually attentive, auditory, and planned cues are
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FIGURE 5 | (A) Initially, saccades are executed reactively to targets that are registered on the retina. These retinotopic signals map topographically into a motor error

map (Grossberg and Kuperstein, 1986, Chapter 3). Motor error signals activate map locations in the peak decay (PD) layer of burst cells that, in turn, topographically

excite the spreading wave (SW) layer of buildup cells. The term “spreading wave” designates the spreading activity that occurs at buildup cells during an eye

movement. The adaptive gain (AG) properties of the cerebellum enable accurate reactive saccades to be made via the saccade generator (SG) in the peripontine

reticular formation. (B) A corollary discharge from tonic cells of the SG provide an accurate measure of current eye position. The eye position signal combines with a

target position signal from the retina, coded in retinotopic coordinates, to generate a head-centered representation of the target position. Such a head-centered

spatial map can be used as a source of auditory, intentional and memory-based movement commands, since these signals are also coded in head-centered

coordinates. (C) Target positions in head-centered coordinates are adaptively mapped to a gaze motor error in retinotopic coordinates in order to map onto the SC

motor error map in a dimensionally consistent way. This transformation takes place in the model in three steps. First, the transformation between a head-centered

target position and a motor error vector (viz., the direction and amplitude of the desired eye movement) is learned. This transformation is learned by computing the

difference between the head-centered target position and the final eye position after a reactive movement terminates. This computed difference is a motor error

vector. Because reactive movements are rendered accurate by cerebellar learning, the final eye position is the same as the target position after such a movement. In

other words, the motor error vector between the stored head-centered target position and the final eye position should equal zero. Learning of the transformation is

thus accomplished by a process that reduces the error vector to zero (Grossberg and Kuperstein, 1986, Chapter 4). This is accomplished by using the error vector as

a teaching signal that alters the adaptive weights in the pathway from the cells that compute the head-centered spatial map to those that compute the motor error.

Weight learning continues until the error equals zero. After learning is complete, the head-centered target position can be transformed into the corresponding motor

coordinates at the motor error vector cells. The second step converts these motor vectors into locations on a topographic map, which is called the motor error map.

This step transforms large activity levels in the motor vector code to caudal positions in the topographic map and small activity levels to rostral positions (Grossberg

and Kuperstein, 1986, Section 6.3). (D) The third step is a learned transformation from the maps of the auditory, visually attentive, and planned motor errors to the

map of visually reactive motor errors at the buildup cell or SW layer of the SC. Reprinted with permission from Grossberg et al. (1997).

registered in head-centered coordinates. How are these distinct
coordinate systems transformed so that a particular SC map
location can represent a given target position, whether it be
commanded by vision, audition, or a cognitive plan? The
transformation that aligns these several different types of input
sources must be learned, since the parameters that characterize
an individual’s visual, auditory, and planning systemsmay change
with experience throughout life. Through this map learning
process, unimodal inputs to SC are aligned within the deeper
layers of SC so that competitive selection, attentional focusing,
decision making, and action can occur (Kowler et al., 1995;
Deubel and Schneider, 1996; Grossberg et al., 1997).

The SACCARTmodel explains how this map learning process
may work (Figure 6), and hereby provides a natural functional
explanation for both the peak decay and wave-like activity
patterns exhibited by the burst and buildup cells, respectively,
that are found in the superficial and deeper layers of the SC
(Moschovakis et al., 1988; Munoz et al., 1991; Waitzman et al.,

1991; Guitton, 1992; Munoz and Wurtz, 1995a,b). SACCART
also explains why buildup, but not burst, cells show activation
well in advance of planned saccades.

10.2. Calibrating Visually Reactive
Movements with Visual Error Signals
How do saccadic eye movements from multiple types of
signals learn to become accurate? Early in development, visual
cues trigger saccades via a visually reactive saccadic system.
These reactive eye movements are made by topographically
transforming retinotopic visual signals into a motor error map
(Grossberg and Kuperstein, 1986, Chapter 3). In other words, a
reactive movement target signal is processed by the retina, which
in turn maps it topographically into a localized activation on
a motor error map in the superior colliculus (Figure 5A). This
coordinate change converts positions activated on the retina into
motor commands for contracting each eye’s opponent muscles in
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FIGURE 6 | (A) Functional names of SACCART model connections and processes. (B) Anatomical and neurophysiological interpretation of SACCART model

processes in (A). SC, superior colliculus; superficial SC, superficial layers of the SC; deeper SC, deeper layers of the SC; SNr, substantia nigra pars reticulate; PPRF,

paramedian pontine reticular formation; MRG, mesencephalic reticular formation. Reptinted with permission from Grossberg et al. (1997).

approximately the direction and distance that will move the eye
to that position.

The motor error signals accomplish this by activating map
locations in the peak decay (PD) layer (Figure 5A) of burst
cells (Figure 6) in the superficial SC layers. Burst cells then
topographically excite the spreading wave (SW) layer of buildup
cells in the deeper SC layers (Figures 5, 6). The term “spreading
wave” is used to describe the spread of activity across the SC map
that occurs continuously at buildup cells during a saccade. These
reactive target coordinates at PD and SW cells are consistent with
the motor error coordinates that are coded in collicular maps
(Davson, 1990). Their outputs move the eyes.

These reactive movements are not necessarily accurate at first.
Accuracy is achieved by compensatory signals that are computed
via a side path through the cerebellum, namely the Adaptive

Gain, or AG, stage in Figure 5A, which adds a learned gain to the
reactive movement signal that is learned in response to a visual
error signal. If a saccade is not accurate, it does not foveate the
eye. Its non-foveal landing position generates visually-activated
error-based teaching signals that alter cerebellar gains until the
eye can make accurate visually reactive saccades, at which time
the error signal equals zero (Ito, 1984; Grossberg and Kuperstein,
1986, Chapter 3; Goldberg et al., 1991; Fiala et al., 1996).

10.3. Auditory and Planned Movements
Base Their Accuracy on Visually Reactive
Learning
As modeled in the SACCART model (Grossberg et al., 1997;
Figures 5, 6), the accuracy of visually attentive, auditory, and
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FIGURE 7 | Saccades can be made reactively to visual cues, attentively

to visual or auditory cues, or planned in response to memory cues

using attentive visual, parietal, and prefrontal cortical signals, as well

as in response to superior colliculus, cerebellum, and reticular

formation output. Gancarz and Grossberg (1999) model how these three

processing streams (reactive, attentive, and planned) learn to control accurate

saccadic eye movements, despite having different maps and parameters. VC,

visual cortex; PPC, posterior parietal cortex; PFC, prefrontal cortex; FEF,

frontal eye fields; SC, superior colliculus; PPRF, paramedian pontine reticular

formation; CBLM, cerebellum. Modified with permission from Gancarz and

Grossberg (1999).

planned saccades through the SC builds on accurate visually
reactive movement commands (e.g., Knudsen, 2002) by all
activating the same SC map position to command a saccade to
a given position, and thereby all benefiting from the learned
cerebellar gain that is activated from each SC map position.
For this to occur, a transformation needs to be learned from
the head-centered coordinates in which auditory and visually
attentive commands occur from the parietal cortex, and planned
commands occur from the frontal eye fields, into the motor error
coordinates into which visual signals are transformed (Jay and
Sparks, 1984, 1987a,b, 1990; Schlag-Rey et al., 1992). Then targets
in retinotopic and head-centered coordinates are dimensionally
consistent and can compete for attention (Kowler et al., 1995;
Deubel and Schneider, 1996) to choose a movement target
location in motor error coordinates. That such a transformation
is learned by the brain is consistent with data wherein the
latency of auditory saccades depends on retinotopic motor error,
as is also the case for latency to a visual target presentation

(Zambarbieri et al., 1995). Gilmore and Johnson (1997) have
proposed that this transformation is complete by 6 months of age
in human infants.

How is this multi-modal transformation learned? When
auditory, visually attentive, or planned movement vectors
represent the same position as a visual target, then the former
vectors learn how to map onto the SC map locations that
represent the same visually reactive movement command. This
map learning process occurs within the spreading wave layer
(Figure 5D). At SC map positions where the signals from these
auditory or planned targets disagree with the visually reactive
target, then learning between these different representations
is suppressed by competition by the recurrent on-center off-
surround interactions across the SC. Competition across map
locations helps to stabilize the map learning process by
suppressing all but the winning cells. The learned map is thus
not eroded by interference frommultiple possible target positions
and their corresponding teaching signals.

Map learning in the SACCART model may be understood
in greater detail as follows: Each active burst cell outputs a
topographic teaching signal to the buildup cell layer (Figures 5,
6). This teaching signal is a Gaussian distributed input centered
at the position of maximal activation of the burst cell. Maximal
learning occurs at the position of the Gaussian peak, whereas
less learning occurs along the Gaussian flanks. Each error
vector is hereby associated with a population of SC cells. The
most active cell occurs at the map location that codes the
correct saccadic direction and amplitude. New target locations
that have not been practiced during development can also
generate accurate saccades by using the Gaussian distribution
of learning to interpolate locations that have been practiced
(Sparks and Nelson, 1987; Sparks and Mays, 1990). Two
other consequences that are observed in data are that saccadic
averaging can occur when Gaussians that are activated by
two target locations overlap (Schiller and Sandell, 1983), and
buildup activity is distributed across a broad expanse of SC
cells.

In order for head-centered auditory or planned movement
commands to learn from this teaching signal, they need first to be
converted through learning into coordinates that are compatible
with the motor error coordinates within the SC deeper layers.
The next section proposes how this may be done. Assuming
that it has already been done, map learning takes place when a
visual cue onset is coded by both the head-centered and visually
reactive pathways (Figure 5B). Consistent simultaneous activity
in both pathways allows the head-centered representation (after
being transformed into coordinates that are compatible with
motor error, as in Figure 5C) to activate adaptive connections
that sample the Gaussian teaching signal (Figure 5D) on a
number of learning trials, as statistically uncorrelated locations
get suppressed by competition across the layers. An auditory or
planned target may hereby be adaptively transformed from a
head-centered representation to the corresponding gaze motor
error in the visually reactive motor error map. The motor
error map in this model layer has properties that resemble the
directional maps that are found in deep layers of the SC (Sparks
and Mays, 1980).
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After learning occurs, when these various input sources on
later occasions do not represent the same target positions, they
compete across the SC map (Kowler et al., 1995; Deubel and
Schneider, 1996) to select winning cells whose activity generates
a focus of attention and an output that drives a saccadic eye
movement to the winning position (Figure 8). In particular,
Figure 8A illustrates how a resonance that is supported by
reciprocal connections between the peak decay and spreading
wave layers (cf., Ghitani et al., 2014) can choose a winning
motor map position; drive learning of the multimodal map
adaptive synapses from auditory, planned, and visually-attentive
motor error maps to the SC motor error map; and inhibit other
SC map positions via the ART Matching Rule off-surround.
In particular, Figure 8B illustrates how, when the positions
encoded by a reactive and planned eye movement command are
not the same, whether during map learning or the unfolding
of a saccadic movement, the buildup-to-burst inhibitory
feedback can erode the mismatched activity at the peak decay
layer.

10.4. Transforming a Head-Centered
Representation into a Motor Error Vector
through Learning
How are auditory, visually attentive, and planned signals, that
are coded in head-centered coordinates, transformed through
learning into coordinates that can be consistently mapped into
the visually-activated position of the same object in the SC motor
error map? The SACCART model predicted and simulated how
this may be accomplished (Figures 5, 6). The current article
refines the description of the anatomical connections whereby
multiple simultaneously active head-centered representations
carry out such a learned transformation without degrading
map learning (Figure 9). This anatomical description preserves
all the functional properties of the previous analysis, but also
is consistent with data about the parabigeminal nucleus in
mammals (Graybiel, 1978; Baleydier and Magnin, 1979; Sherk,
1979; Watanabe and Kawana, 1979; Cadusseau and Roger, 1985;
Mufson et al., 1986) and the isthmic nuclei in birds (Major
et al., 2000; Wang, 2003; Wang et al., 2004; Maczko et al., 2006;
Marín et al., 2007; Asadollahi et al., 2010), and suggests testable
predictions about the functional roles played by the anatomy
and neurobiology of these structures. The main anatomical
refinement (Figure 9) is to segregate the excitatory and inhibitory
feedback signals between the multimodal maps and the SC
motor error map into two separate motor error map regions
(labeled motor error map 1 and motor error map 2 in Figure 9),
respectively. Finally, it enables a more refined discussion to be
given of the possible role of ACh modulation in supporting
saccadic choice and reset.

This anatomical refinement uses a variant of the ART
Matching Rule that is supported by anatomical data (e.g.,
Wang et al., 2004). In this variant, the modulatory property
of the on-center feedback is achieved by having no positive
feedback at all, thereby realizing the modulatory balance between
excitation and inhibition in the on-center feedback signal in
the simplest possible way. The off-surround provides negative

feedback to all other map positions than the on-center of the
chosen target position (Figure 10). In other words, it defines an
“anti-topographic projection” (Gutiérrez-Ibáñez et al., 2014). See
Section 10.7 for further discussion.

This simplest variant of the ART Matching rule has been
used to successfully model other parts of the brain. For
example, the 3D FORMOTION model proposes how the brain
computes a globally consistent representation of object motion
direction and speed out of the many locally inconsistent
directional and speed signals that are initially computed due
to computational limitations that are caused by the aperture
problem (Berzhanskaya et al., 2007). This simplest ARTMatching
Rule enables the correct object motion direction and speed to be
co-selected by a resonant ART Matching Rule feedback loop that
occurs between model cortical areas MT and MST. Here, too,
there is a type of multimodal map learning. In the case of visual
motion perception, this multimodal learning occurs within V2-
to-MT connections between representations of 3D visual form
in cortical area V2 and representations of 3D visual motion
in MT. Such a formotion interaction enables representations of
3D form that are computed in the What cortical processing
stream, including cortical areas V1 and V2, to be tracked as they
move through time by motion mechanisms in theWhere cortical
processing stream, including cortical areas MT and MST.

In order to learn the multimodal SC map, first a
transformation is learned between a head-centered target
position and the corresponding motor error vector, which
represents the direction and amplitude of the desired eye
movement needed to foveate the target. Such vectors are an
important computational strategy for downloading movement
commands by the cerebral cortex; e.g., Georgopoulos (1994).
This transformation is learned by computing the difference
between an attended target position in a head-centered spatial
map and a motor representation of the final eye position
after an accurate visually reactive eye movement foveates
that target (Figure 5C). To understand how this happens,
suppose for definiteness that the attended input is auditory.
Then the inhibitory “corollary discharge,” or efference copy,
signals representing the final eye position are subtracted from
adaptive excitatory signals from the auditory head-centered map
source at the motor error vector processing stage (Figure 5C).
This computed difference is a motor error vector. It is a
motor error vector because it is computed in the same motor
coordinates as the commands to move the opponent eye
muscles within the saccade generator (SG) in the peripontine
reticular formation (PPRF). These motor coordinates are
imposed by subtracting the efference copy signals of the eye
movement commands at the stage that computes the motor
error vector. The movement commands are head-centered
because the eyes move within the head. The target position
in the head-centered spatial map is transformed into a vector
of oculomotor coordinates that represent the current eye
position by the learning process that is described in the next
paragraph. By this learned transformation, the head-centered
auditory, visually attentive, or planned input vectors, as well
as their efference copies, are computed in head-centered motor
coordinates.
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FIGURE 8 | (A) When the peak decay and spreading wave layers represent the same target position, they can resonate via a positive feedback loop. In addition, the

spreading wave layer inhibits activities that represent other target positions within the peak decay layer. The total recurrent shunting on-center off-surround network

embodies the ART Matching Rule, and can rapidly choose a preferred target position while inhibiting less activated ones. (B) How a planned target position command

can inhibit a reactive movement command that represents a different target position by using the off-surround of the ART Matching Rule. Reprinted with permission

from Grossberg et al. (1997).

Because visually reactive movements are rendered accurate
by cerebellar learning, the head-centered and efference copy
motor vectors both represent the same position in space after
the movement to the external target occurs. If both sets of
signals are calibrated correctly as a result of learning, the motor
error vector should equal zero after the efference copy motor
vector is subtracted from the learned motor vector that is read-
out from the head-centered target position. If it is not zero,
then the motor error vector serves as a mismatch teaching
signal that changes the adaptive weights in the pathway from
the head-centered representation until the motor error vector
is reduced to zero. After such mismatch learning is complete,
the auditory and motor vectors are calibrated to consistently
represent target position in motor coordinates. This kind of
vector mismatch learning is called vector associative map, or
VAM, learning (Grossberg and Kuperstein, 1986, Chapter 4;

Gaudiano and Grossberg, 1991). Such a transformation into
motor coordinates can be learned, in parallel circuits, by any
number of head-centered maps, including auditory, visually
attentive, and planned movement maps.

VAM learning occurs only after an eye movement occurs,
when the eyes maintain a steady posture, albeit one that may
exhibit microsaccades. Movement gates enable learning to occur
only at these times.

Suppose that learning has already occurred and a new target
position is instated. Before a movement occurs, the new target
position is read out at motor error vector cells, and the present
eye position in motor coordinates is subtracted from it. This
difference vector codes the desired movement direction and
distance to the new target. In other words, the difference vector is
a motoric representation of the motor error needed to move the
eyes toward the desired target. Motor error vector cells hereby
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FIGURE 9 | A variant of Figures 5, 8 in which the recurrent on-center and off-surround of the ART Matching Rule are embodied in different brain

regions, called motor error map 1 and motor error map 2, respectively. Symbols: semi-disk synapses, adaptive excitatory synapses that learn vector-to-map

and map-to-map associations; reverse triangle synapses, inhibitory synapses that calibrate map-to-vector motor gains using the motor error vector as a teaching

signal; triangular synapses, excitatory non-adaptive synapses; circular synapses, inhibitory non-adaptive synapses; dashed lines, recurrent pathways that support

resonant matching and choice; open circles, inputs from the substantia nigra pars reticulata that open movement gates; open triangle, postural gate (e.g., signal from

a pauser cell) that enables motor error vector learning when the system is at a fixed posture.

accomplish two things: they learn to transform a head-centered
representation of a movement target location into motor
coordinates, and, in so doing, they compute a difference vector
that represents the direction and distance that the eyes need to
move to foveate a new target. Otherwise expressed, the motor
error vector processing stage accomplishes a learned coordinate
change from a target’s head-centered positional coordinates into
retinotopically-consistent motor error coordinates. Moreover,
this difference vector represents the same motor error as the
position that the target activates on the SC motor error map.

10.5. Transforming a Motor Error Vector
into the SC Motor Error Map
In order to transform, through learning, an auditory- or plan-
derived motor error vector into the corresponding position on
the SC motor error map, the model uses two stages of learning.
The first learning stage converts amotor error vector into amotor
error map. The second stage associates positions in this motor
error map with the corresponding positions in the SC motor
error map.

The first stage converts a motor error vector into a motor
error map using a biologically-plausible instantiation of a self-
organizing map, or SOM (e.g., Grossberg, 1976a, 1978; Grossberg
and Kuperstein, 1986). This transformation is called vector-to-
map learning. The usual instar gated steepest descent learning
rule for SOMs is used (Grossberg, 1976a, 1980) whereby, when
a motor error map cell is maximally activated and thereby wins
the competition within the SOM, the activity of such a winning

cell enables learning to occur within its abutting synapses from
the motor error vector cells. The adaptive weight within each
such synapse becomes proportional to the signal within its
pathway from the corresponding motor error vector cell. In this
way, learning maximizes the response of each winning motor
error map cell. This vector-to-map learning process ensures
that different motor error vectors get transformed into different
motor error map positions.

The second learning stage associates the positions on the SOM
with the corresponding motor error map positions in the deeper
layers of the SC (Figure 5C).

These successive learned transformations were demonstrated
through computer simulations in Grossberg et al. (1997). Their
computational properties are consistent with the following
anatomical refinement that brings these concepts into line with
known SC and OT anatomy.

Figure 9 refines the Grossberg et al. (1997) proposal of how
these two learning stages work (Figure 5C) by expanding the
description, into separate excitatory and inhibitory multimodal
nuclei, of how attentive ART matching and resonance helps to
make positional choices that guide the map learning process,
and dynamically stabilize it after learning occurs. This model
variant enables the first vector-to-map learning stage to be
compared with data concerning the parabigeminal nucleus in
mammals and the isthmic nuclei in birds. The second map-
to-map learning stage is interpreted to take place from these
multimodal nuclei to the SC in mammals and the OT in
birds.
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Our analysis considers the case where the eyes can move
in the head, even as the head moves in the body, to orient
to movement targets, which is characteristic of mammals with
a superior colliculus. However, some birds, such as barn owls,
cannot move the eyes in the head by more than a few degrees
(Knudsen, 1989). Some models have simplified the analysis of
map learning by assuming that no eye movements at all occur
in the barn owl, and that the eyes foveate straight ahead at
all times in the head (e.g., Rucci et al., 1997). This simplifying
assumption renders retinotopic and head-centered coordinates
the same, since the eyes move rigidly with the head, but it does
not deal with the issues that are raised by the more challenging
case of eyes that can freely move in the head. Our analysis focuses
on this more challenging case. Grossberg et al. (1997) discusses
other properties that are missing from the Rucci et al. (1997)
model.

10.6. Adaptive Resonance, Attention,
Choice, Gamma Oscillations, and
Normalization
In all self-organizing maps, the following basic question arises:
How are stable learning and memory assured? As noted in
Section 4, ART proposes how this happens using top-down
attentive feedback. In the present case, a winning vector-to-map
cell can activate a top-down, modulatory on-center, off-surround
network that can focus attention upon the corresponding map
position within the spreading wave layer of the SC (Figure 9).
Topographically organized modulatory on-center, off-surround
feedback from the spreading wave layer to the peak decay
layer can also occur (Figure 9). These cooperative-competitive
feedback loops trigger a synchronous resonant state between
corresponding locations in motor error map, spreading wave,
and peak decay cells. This attentive resonant state, which ART
predicted can support synchronous oscillations, also called order-
preserving limit cycles (Grossberg, 1976b, 1999), can be realized
by gamma oscillations in the visual cortex (Grossberg and
Versace, 2008) and the optic tectum (Knudsen, 2011; Sridharan
et al., 2011). These gamma oscillations support the attentional
focus upon the winning category representations and, at least
in the SACCART model, drive self-stabilizing multimodal map
learning by the corresponding synaptic weights.

In ART, the competitive interactions that control such
attentional focusing are defined by recurrent on-center off-
surround interactions between cells that obey membrane
equation, or shunting dynamics. Such network interactions cause
divisive normalization of cell activities (Grossberg, 1973, 1980).
Such a divisive effect of lateral inhibition has been reported
during feedback interactions between the OT and the Ipc in
the owl (Asadollahi et al., 2011). Grossberg et al. (1997) also
showed how such a recurrent shunting on-center off-surround
network simulates the observed amplification of SC responses
by positionally-convergent visual and auditory inputs, and their
reduction by positionally-competing visual and auditory inputs
(Stein and Meredith, 1993). As will be noted more completely
below, the anatomical homolog of the model motor error map
1 is the Ipc and of the model motor error map 2 is the Imc.

FIGURE 10 | Summary of the neuronal circuitry of the TeO (OT), Imc,

Ipc, and SLu. (A) Imc receives a coarse topographical input from the radial

tectal neurons in layers 10–11. Imc-Is neurons (A) and Imc-Te neurons (B)

project widely upon Ipc/SLu and TeO, respectively. (B) Ipc and SLu are

retinotopically and reciprocally connected with the TeO. The paintbrush

endings of Ipc and SLu neurons terminate within retinorecipient and

non-retinorecipient tectal layers, respectively, ending in proximity to type I and

type II stratu griseum central (SGC) neurons (Luksch et al., 1998; Major et al.,

2000; Marín et al., 2003). (C) Summary of the intercircuitry among the TeO,

Imc, Ipc, and SLu. The gray shadings of the TeO indicate retinorecipient tectal

layers. The green shadings within Imc, Ipc, and SLu indicate the tectal terminal

projection. The Ipc neuron is based on the reconstruction of an intracellular

filled neuron (Y. Wang, unpublished observations). The SLu neuron is

reproduced from the Güntürkün (1987) Golgi study. The motor error map 1 in

Figure 9 plays the role of Ipc and the motor error map 2 plays the role of Imc.

TeO, optic tectum, also OT; Ipc, nucleus isthmi pars parvocellularis; Imc,

nucleus isthmi pars magnocellularis; SLu, nucleus isthmi pars semilunaris; nRt,

nucleus rotundus. Reprinted with permission from Wang et al. (2004).
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A second source of inhibition comes from the basal ganglia
(Hikosaka andWurtz, 1983a,b), notably the substantia nigra pars
reticulata (SNr). SNr inhibition gates the release of movement
commands from the SC (Figures 6, 9). The burst and buildup
cells cannot fire until the SNr inhibition is withdrawn. ART
models of perception and cognition have proposed how opening
of basal ganglia gates enables top-down modulatory on-center
signals to become driving, and to thereby enable visual imagery,
working memory storage, and internal thought to occur in
different brain areas (Grossberg, 2000, 2013a; Grossberg and
Pearson, 2008). In the case of movement control, opening these
gates enables the release of chosen movement commands. Brown
et al. (1999, 2004) and Silver et al. (2011) have developed
the TELOS and lisTELOS models to quantitatively simulate
neurophysiological and behavioral data about how the opening
of basal ganglia movement gates learns to balance between
the release of reactive and planned eye movements in a task-
appropriate way.

10.7. Multimodal Map Learning Implies
Spreading Wave and Peak Decay Cell
Properties
Map learning leads to a spread of activity across the buildup cell
layer during saccades for the following reasons. A gaze motor
error signal to the saccade generator (Figures 5A, 9) initiates
an eye movement. As the eye moves, the corollary discharge
of the changing eye position causes the motor error vector to
decrease (Figure 5C). The decreasing error vector excites a series
of positions on the motor error map. The motor error map then
activates corresponding cell positions in the SC spreading wave,
or buildup cell, layer. As the eye moves to foveate the target
position, these SC positions represent movements closer to the
fovea (Figures 5D, 9). During the eye movement, the sequence
of activated positions of buildup cells hereby shifts across the SC
map toward the foveal representation. Said in another way, the
spreading wave is caused by continuous updating of the motor
error map as the movement progresses. This view of buildup cell
dynamics links spreading wave properties to the multimodal map
learning process that enables auditory, visually attentive, planned,
and visually reactive commands that represent the same position
in space tomaximally activate the samemotor error map position
within the SC.

How are peak decay cell properties related to this process?
The spread of activity from its original location toward the fovea
erodes feedback excitation to the burst cell map at which the
visually reactive target was stored (Figure 9). This erosion is due
to off-surround inhibition from the map position that represents
the current eye position to the map position that represents the
initial target position. This inhibitory feedback is part of the
ART Matching Rule feedback loop that helps to dynamically
stabilize the learned multimodal map. This explanation links the
peak decay property to resonant multimodal map learning and
motoric choice.

Each SC motor error map position codes the direction and
amplitude (or length) of a saccadic movement. Such an encoding
is needed to generate outflow movement commands, but it does

not, in itself, accurately calibrate the ensuing saccades (e.g., see
Stanford and Sparks, 1994; White et al., 1994; Stanford et al.,
1996). Several other processes also need to be activated, and
properly calibrated. For starters, the motor error map signal
needs to converted to a temporal code that controls the firing
rate of saccade generator cells (Robinson, 1973; Grossberg and
Kuperstein, 1986, Chapter 7). There is a rich literature of
models of how this conversion occurs. Gancarz and Grossberg
(1998, 1999), for example, developed the FOVEATE model
of the saccade generator, used it to quantitatively simulate
psychophysical and neurophysiological data about saccadic
eye movements, and compared FOVEATE with various other
saccade generator models.

10.8. Cholinergically-Modulated
Multimodal Map Learning in the Avian
Optic Tectum
The optic tectum (OT or TeO) plays a role in birds similar
to that played by the SC in mammals. How well do the above
results about multimodal map learning in the primate SC carry
over to the avian OT (Knudsen and Brainard, 1995)? The nuclei
isthmi pars parvocellularis (Ipc) and pars magnocellularis (Imc)
are both reciprocally connected to the OT (Figure 10; Wang,
2003; Wang et al., 2004). The anatomy in Figure 10 of OT,
Ipc, and Imc interactions is consistent with the SACCART
model circuit in Figure 9, as well as those in Figures 5–8,
which provide mechanistic explanations and predictions about
the following types of data. Indeed, the predictions within the
original Grossberg et al. (1997) SACCART article on attention,
choice, and multimodal map learning in the SC have been
strongly supported by subsequent data about the OT, as the
following exposition will describe.

The Ipc connections with the OT are topographic and
excitatory, whereas the Imc delivers broadly distributed
inhibition to both the OT and Ipc (Marín et al., 2007), thereby
together forming a recurrent on-center off-surround network
that is capable of choosing the most salient target position
(Grossberg, 1973; Koch and Ullman, 1985; Wang et al., 2004).
In addition, the forebrain gaze control area (AGF), which is
homologous to the mammalian frontal eye fields, also projects to
the Ipc (Knudsen et al., 1995; Winkowski and Knudsen, 2008),
and lesioning the AGF in behaving owls disrupts memory-
guided saccades, much as a similar lesion to FEF affects behaving
monkeys (Knudsen et al., 1995; Dias and Segraves, 1999).

Cells in the Ipc are multimodal (Maczko et al., 2006;
Asadollahi et al., 2010), and AGF microstimulation modulates
auditory as well as visual responses in the OT (Winkowski
and Knudsen, 2008). AGF microstimulation sharpens auditory
receptive fields at aligned OT positions, increasing their ability
to resolve multiple sound stimuli while decreasing firing rates
of cells at non-aligned OT positions. Changing inputs leads to
a switch in the cells in Ipc and OT that fire briskly, and are
consistent with the hypothesis that the recurrent Ipc on-center
and Imc off-surround network helps to cause synchronized firing
(i.e., resonance) across a broad domain of cells (Marín et al., 2007;
Asadollahi et al., 2010). These and similar properties suggest that
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the Ipc plays a role in birds that may be functionally similar to
the vector-to-map cells in the SACCART model, that the Imc
supplies the off-surround in the on-center off-surround selection
circuit, and that the reciprocal interactions of Ipc and Imc with
OT are part of an adaptive resonance dynamic. In Figure 9, the
motor error map 1 plays the role of the Ipc, whereas the motor
error map 2 plays the role of the Imc.

It has been hypothesized that these feedback interactions help
to create a winner-take-all circuit for the purpose of focusing
spatial attention (Wang et al., 2004; Maczko et al., 2006) and lead
to periodic bursts of spikes in the low gamma band (Asadollahi
et al., 2010). This hypothesis for the OT is consistent with
a similar SACCART hypothesis for the SC (see above, and
Grossberg et al., 1997). Ipc neurons are cholinergic, and feedback
from Ipc to OT initiates the bursting dynamics in the OT
(Sorenson et al., 1989; Maczko et al., 2006; Marín et al., 2007) that
exhibit the properties of an ART resonance.

The SACCART hypothesis predicts, in addition, how this
circuitry, as a special case of ART dynamics, may control
learning of the multimodal map that enables the OT and SC
to focus spatial attention on the positions of chosen movement
targets from other modalities than vision, notably audition and
planned movement targets. Indeed, Marín et al (2012) have
shown how synchronized feedback signals from the Ipc boost
retinal signals to higher visual areas, hereby illustrating how
the representations of movements to target positions and of the
target cues themselves may be resonantly synchronized.

The hypothesis that SC and OT multimodal integration
illustrates ART learning mechanisms is also consistent with
evidence showing the importance of NMDA receptors for
multimodal learning and integration in the deep layers of the cat
superior colliculus (Schnupp et al., 1995; Binns and Salt, 1996;
Huang and Pallas, 2001). Thus, the SC and OT seem to embody
all the predicted ART linkages between processes of learning,
expectation, attention, resonance, and synchrony.

10.9. Habituation and Reset: Is There SC
Mismatch Reset and Vigilance Control?
Resonance brings with it the benefits of efficient neuronal
processing and choice, as well as of self-stabilizing learning.
However, because of the positive feedback loops in any
resonance, there is also the risk of perseverative activation
of winning cells. In a part of the brain’s orienting system
such as the SC and OT, it is particularly important that
rapid changes in stimulus conditions lead to correspondingly
rapid changes in saccadic targets to support successful survival.
Neurophysiological data show that the SC and OT can, indeed,
respond with rapid switching of their attended target locations
(e.g., Goldberg and Wurtz, 1972; Ignashchenkova et al., 2003;
Asadollahi et al., 2010). How does a flexible balance between
resonance and reset occur? This is the type of question for which
ART proposes two related solutions using novelty-sensitive
mechanisms.

There are two different types of novelty mechanisms, but
they share a key synaptic process. The first mechanism is the
local habituative response that occurs whenever signals are
gated by an activity-dependent habituative transmitter gate, or

depressing synapse, as noted in Section 4.6. Previously habituated
positions are at a competitive disadvantage during the bottom-
up selection of a newly stimulated target position. Such activity-
dependent habituation, or medium term memory (Grossberg,
1969, 1972, 2013a,b; Francis et al., 1994; Francis and Grossberg,
1996; Grossberg and Versace, 2008), is one of the mechanisms
that contributes to flexible reset. One way that SC neurons
can distinguish between novel and persistent stimuli is thus by
habituating in an activity-dependent way after an initially strong
response to a visual stimulus (Oyster and Takahashi, 1975; Stein,
1984; Sparks and Nelson, 1987; Cirone and Salt, 2001; Boehnke
et al., 2011). Indeed, neurons in the SC respond preferentially
to the sudden onset of a novel or behavioral significant stimulus
and generate appropriate behavioral and avoidance responses to
these events (Sparks and Nelson, 1987; Cirone and Salt, 2001).
Perrault et al. (2011) noted, in addition, that SC responses that
are initially weak tend to potentiate, whereas responses that are
initially strong tend to habituate, and a subset of active neurons
responded to a novel event with dishabituation late in the visual
response profile for both brighter and dimmer stimuli (Boehnke
et al., 2011).

The second kind of novelty mechanism is the mismatch-
mediated kind of novelty response that occurs when a currently
active top-down expectation mismatches a bottom-up input
pattern. Such a mismatch can trigger a burst of activation that
is non-specifically broadcast across multiple brain areas. When
such an arousal burst is gated by habituative synapses, it can
rapidly reset ongoing activity to enable a response appropriate
to the novel stimulus to rapidly take hold (Figure 3; Grossberg,
1972, 1984c). This mismatch-mediated type of reset is what
vigilance control regulates (Sections 1, 2, and 5). Moreover, the
level of vigilance, and thus the conditions under whichmismatch-
mediated reset occurs, has been hypothesized to be influenced by
acetylcholine (Section 9).

Is there experimental data to support the hypothesis that
cholinergically-modulated mismatch-mediated arousal bursts
help to reset attended target positions in the SC and OT? The
following experimental facts lead credence to this hypothesis,
which needs further testing to be fully supported or disconfirmed:
The pedunculopontine tegmental nucleus (PPTN), a part of the
brain’s ascending activating system, is a brainstem cholinergic
nucleus, and facilitates generation of SC motor outputs for the
initiation of saccades (Krauthamer et al., 1995; Kobayashi and Isa,
2002). In addition, the SC projects to the intralaminar thalamus,
which in turn projects to motor cortex and the basal ganglia, and
is part of the brain’s arousal system (Grunwerg and Krauthamer,
1992).

One way to further test this hypothesis is to study the timing
of the reset of a visually-activated target location in the deeper
layers of the SC or OT in response to a sudden, unexpected, and
loud auditory stimuli from a different location in space. Is there
an arousal component to the reset of the visually-activated target
location, or is it entirely driven by competition within the SC by
the incoming auditory signal? If the former is true, then it will be
of great interest to test whether there is a homolog in the SC and
OT of the kind of nucleus basalis regulation of vigilance and reset
that goes on in the neocortex.

Frontiers in Neuroscience | www.frontiersin.org 21 January 2016 | Volume 9 | Article 501

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Grossberg et al. Resonant Cholinergic Dynamics in Cognitive and Motor Decision-Making

11. CONCLUDING REMARKS

The current article describes how feedback interactions in both
cognitive and motor circuits can regulate resonant attention
and choice, which in turn can trigger self-stabilizing category
learning. The cognitive categories learn to recognize objects
in the world. The motor categories learn a multimodal map
for the selection of saccadic eye movement targets. Both types
of circuits seems to share similar features that are needed to
achieve a flexible balance between resonance and reset, where
resonance focuses attention and drives learning of categories and
expectations, whereas reset enables a flexible shift of attention in
response to an unexpected event toward the objects and positions
that are needed to deal with this event. Both types of circuits use
habituative synapses and cholinergically-modulated interactions
to achieve the resonance-reset balance. Accumulating evidence

supports the prediction that cholingerically-mediated vigilance
control can modulate the concreteness of cognitive category
attention and learning. The nucleus basalis seems to play an
important role in this type of mismatch-mediated reset. Although
available data are consistent with the possibility that a similar type
of modulation occurs in the SC and OT, further experiments are
needed to clarify whether this homology is complete, experiments
that can profitably exploit the multimodal convergence of
conflicting signals from both visual and auditory cues in the
deeper layers of the superior colliculus.
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Öğmen, H. (1993). A neural theory of retino-cortical dynamics. Neural Netw. 6,
245–273. doi: 10.1016/0893-6080(93)90020-W

Olson, S., and Grossberg, S. (1998). A neural network model for the development
of simple and complex cell receptive fields within cortical maps of orientation
and ocular dominance. Neural Netw. 11, 189–208. doi: 10.1016/S0893-
6080(98)00003-3

Oyster, C. W., and Takahashi, E. S. (1975). Responses of rabbit superior colliculus
neurons to repeated visual stimuli. J. Neurophysiol. 38, 301–312.

Palma, J., Grossberg, S., and Versace, M. (2012a). Persistence and storage of activity
patterns in spiking recurrent cortical networks: modulation of sigmoid signals
by after-hyperpolarization currents and acetylcholine. Front. Comput. Neurosci.

6:42. doi: 10.3389/fncom.2012.00042
Palma, J., Versace, M., and Grossberg, S. (2012b). After-hyperpolarization currents

and acetylcholine control sigmoid transfer functions in a spiking cortical
model. J. Comput. Neurosci. 1–28. doi: 10.1007/s10827-011-0354-8

Pandya, P. K., Moucha, R., Engineer, N. D., Rathbun, D. L., Vazquez, J., and
Kilgard, M. P. (2005). Asynchronous inputs alter excitability, spike timing,
and topography in primary auditory cortex. Hear. Res. 203, 10–20. doi:
10.1016/j.heares.2004.11.018

Parikh, V., Kozak, R., Martinez, V., and Sarter, M. (2007). Prefrontal acetylcholine
release controls cue detection on multiple timescales. Neuron 56, 141–154. doi:
10.1016/j.neuron.2007.08.025

Perrault, T. J. Jr., Stein, B. E., and Rowland, B. A. (2011). Non-stationarity in
multisensory neurons in the superior colliculus. Front. Psychol. 2:144. doi:
10.3389/fpsyg.2011.00144

Perry, E. K., Lee, M. L., Martin-Ruiz, C. M., Court, J. A., Volsen, S. G.,
Merrit, J., et al. (2001). Cholinergic activity in autism: abnormalities in the
cerebral cortex and basal forebrain. Am. J. Psychiatry 158, 1058–1066. doi:
10.1176/appi.ajp.158.7.1058

Posner, M. I., and Keele, S. W. (1968). On the genesis of abstract ideas. J. Exp.
Psychol. 77, 353–363. doi: 10.1037/h0025953

Prakriya, M., Solaro, C. R., and Lingle, C. J. (1996). [Ca2+]i elevations detected by
BK channels during Ca2+ influx andmuscarine-mediated release of Ca2+ from
intracellular stores in rat chromaffin cells. J. Neurosci. 16, 4344–4359.

Raizada, R. D. S., and Grossberg, S. (2001). Context-sensitive bindings
by the laminar circuits of V1 and V2: a unified model of perceptual
grouping, attention, and orientation contrast. Vis. cogn. 8, 431–466. doi:
10.1080/13506280143000070

Raizada, R. D. S., and Grossberg, S. (2003). Towards a theory of the laminar
architecture of cerebral cortex: computational clues from the visual system.
Cereb. Cortex 13, 100–113. doi: 10.1093/cercor/13.1.100

Ray, M. A., Graham, A. J., Lee, M., Perry, R. H., Court, J. A., and Perry,
E. K. (2005). Neuronal nicotinic acetylcholine receptor subunits in autism:

an immunohistochemical investigation in the thalamus. Neurobiol. Dis. 19,
366–377. doi: 10.1016/j.nbd.2005.01.017

Reynolds, J. H., and Heeger, D. J. (2009). The normalization model of attention.
Neuron 61, 168–185. doi: 10.1016/j.neuron.2009.01.002

Robinson, D. A. (1973). Models of the saccadic eye movement control system.
Kybernetik 14, 71–83. doi: 10.1007/BF00288906

Rucci, M., Tononi, G., and Edelman, G. M. (1997). Registration of neural
maps through value-dependent learning: modeling the alignment of
auditory and visual maps in barn owl’s optic tectum. J. Neurosci. 17,
334–352.

Saar, D., Grossman, Y., and Barkai, E. (2001). Long-lasting cholinergic modulation
underlies rule learning in rats. J. Neurosci. 21, 1385–1392.

Salin, P. A., and Bullier, J. (1995). Corticocortical connections in the visual system:
structure and function. Physiol. Rev. 75, 107–154.

Sarter, M., Parikh, V., and Howe, W. M. (2009). Phasic acetylcholine release and
the volume transmission hypothesis: time to move on. Nat. Rev. Neurosci. 10,
383–390. doi: 10.1038/nrn2635

Schiller, P. H., and Sandell, J. H. (1983). Interactions between visually and
electrically elicited saccades before and after superior colliculus and frontal
eye field ablations in the rhesus monkey. Exp. Brain Res. 49, 381–392. doi:
10.1007/BF00238780

Schlag-Rey, M., Schlag, J., and Dassonville, P. (1992). How the frontal eye field
can impose a saccade goal on superior colliculus neurons. J. Neurophysiol. 67,
1003–1005.

Schnupp, J. W. H., King, A. J., Smith, A. L., and Thompson, I. D. (1995). NMDA-
receptor antagonists disrupt the formation of the auditory space map in the
mammalian superior colliculus. J. Neurosci. 15, 1516–1531.

Schwindt, P. C., Spain, W. J., Foehring, R. C., Stafstrom, C. E., Chubb, M.
C., and Crill, W. E. (1988). Multiple potassium conductances and their
functions in neurons from cat sensorimotor cortex in vitro. J. Neurophysiol. 59,
424–449.

Sherk, H. (1979). A comparison of visual-response properties in cat’s
parabigeminal nucleus and superior colliculus. J. Neurophysiol. 42, 1640–1655.

Sherman, S. M., and Guillery, R. (2001). Exploring the Thalamus. San Diego, CA:
Academic Press.

Shipp, S. (2003). The functional logic of cortico-pulvinar connections. Philos.
Trans. R. Soc. Lond. 358, 1605–1624. doi: 10.1098/rstb.2002.1213

Silver, M. R., Grossberg, S., Bullock, D., Histed, M. H., and Miller, E. K. (2011). A
neural model of sequential movement planning and control of eye movements:
item-order-rank working memory and saccade selection by the supplementary
eye fields. Neural Netw. 26, 29–58. doi: 10.1016/j.neunet.2011.10.004

Sorenson, E. M., Parkinson, D., Dahl, J. L., and Chiappinelli, V. A. (1989).
Immunohistochemical localization of choline acetyltransferase in the chicken
mesencephalon. J. Comp. Neurol. 281, 641–657. doi: 10.1002/cne.9028
10412

Sparks, D. L., and Mays, L. (1980). Movement fields of saccade-related burst
neurons in the monkey superior colliculus. Brain Res. 190, 39–50. doi:
10.1016/0006-8993(80)91158-0

Sparks, D. L., and Mays, L. (1990). Signal transformations required for the
generation of saccadic eye movements. Annu. Rev. Neurosci. 13, 309–336. doi:
10.1146/annurev.ne.13.030190.001521

Sparks, D. L., and Nelson, I. S. (1987). Sensory and motor maps in
the mammalian superior colliculus. Trends Neurosci. 10, 312–317. doi:
10.1016/0166-2236(87)90085-3

Sridharan, D., Boahen, K., and Knudsen, E. I. (2011). Space coding by gamma
oscillations in the barn owl optic tectum. J. Neurophysiol. 105, 2005–2017. doi:
10.1152/jn.00965.2010

Stanford, T. R., Freedman, E. G., and Sparks, D. L. (1996). Site and parameters
of microstimulation: evidence for independent effects on the properties of
saccades evoked from the primate superior colliculus. J. Neurophysiol. 76,
3360–3381.

Stanford, T. R., and Sparks, D. L. (1994). Systematic errors for saccades to re-
membered targets: evidence for a dissociation between saccade metrics and
activity in the superior colliculus. Vision Res. 34, 93–106.

Stein, B. E. (1984). Development of the superior colliculus. Annu. Rev. Neurosci. 7,
95–125. doi: 10.1146/annurev.ne.07.030184.000523

Stein, B. E., andMeredith, M. A. (1993). TheMerging Senses. Cambridge, MA:MIT
Press.

Frontiers in Neuroscience | www.frontiersin.org 25 January 2016 | Volume 9 | Article 501

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Grossberg et al. Resonant Cholinergic Dynamics in Cognitive and Motor Decision-Making

Storm, J. F. (1987). Action potential repolarization and a fast after-
hyperpolarization in rat hippocampal pyramidal cells. J. Physiol. (Lond).

385, 733–759. doi: 10.1113/jphysiol.1987.sp016517
Stricanne, B., Andersen, R. A., and Mazzoni, P. (1996). Eye-centered, head-

centered, and intermediate coding of remembered sound locations in area LIP.
J. Neurophysiol. 76, 2071–2076.

Tsodyks, M., and Markram, H. (1997). The neural code between neocortical
pyramidal neurons depends on neurotransmitter release probability. Proc. Natl.
Acad. Sci. U.S.A. 94, 719–723. doi: 10.1073/pnas.94.2.719

van derWerf, Y. D.,Witter, M. P., andGroenewegen, H. J. (2002). The intralaminar
and midline nuclei of the thalamus. Anatomical and functional evidence for
participation in processes of arousal and awareness. Brain Res. Rev. 39, 107–140.
doi: 10.1016/S0165-0173(02)00181-9

Vladusich, T., Lafe, F., Kim, D.-S., Tager-Flusberg, H., and Grossberg, S. (2010).
Prototypical category learning in high-functioning autism. Autism Res. 3,
226–236. doi: 10.1002/aur.148

Vogalis, F., Storm, J. F., and Lancaster, B. (2003). SK channels and the varieties of
slow after-hyperpolarizations in neurons. Eur. J. Neurosci. 18, 3155–3166. doi:
10.1111/j.1460-9568.2003.03040.x

Waitzman, D., Ma, T., Optican, L., and Wurtz, R. (1991). Superior colliculus
neurons mediate the dynamic characteristics of saccades. J. Neurophysiol. 66,
1716–1737.

Wang, S. R. (2003). The nucleus isthmi and dual modulation of the receptive
field of tectal neurons in non-mammals. Brain Res. Rev. 41, 13–25. doi:
10.1016/S0165-0173(02)00217-5

Wang, Y., Major, D. E., and Karten, H. J. (2004). Morphology and connections of
nucleus isthmi pars magnocellularis in chicks (Gallus gallus). J. Comp. Neurol.

469, 275–297. doi: 10.1002/cne.11007
Watanabe, K., and Kawana, E. (1979). Efferent projections of the parabigeminal

nucleus in rats: a horseradish peroxidase (HRP) study. Brain Res. 168, 1–11.
doi: 10.1016/0006-8993(79)90123-9

White, J. M., Sparks, D. L., and Stanford, T. R. (1994). Saccades
to remembered target locations: an analysis of systematic and
variable errors. Vision Res. 34, 79–92. doi: 10.1016/0042-6989(94)
90259-3

Wilson, F. A., Scalaidhe, S. P., and Goldman-Rakic, P. S. (1993). Dissociation of
object and spatial processing domains in primate prefrontal cortex. Science 260,
1955–1958. doi: 10.1126/science.8316836

Wilson, H. R. (2007). Minimal physiological conditions for binocular rivalry
and rivalry memory. Vision Res. 47, 2741–2750. doi: 10.1016/j.visres.2007.
07.007

Winkowski, D. E., and Knudsen, E. I. (2008). Distinct mechanisms
for top-down control of neural gain and sensitivity in the owl
optic tectum. Neuron 60, 698–708. doi: 10.1016/j.neuron.2008.
09.013

Zambarbieri, D., Beltrami, G., and Versino, M. (1995). Saccadic latency toward
auditory targets depends on the relative position of the sound source
with respect to the eyes. Vision Res. 35, 3305–3312. doi: 10.1016/0042-
6989(95)00065-M

Zingale, C. M., and Kowler, E. (1987). Planning sequences of saccades. Vision Res.

27, 1327–1341. doi: 10.1016/0042-6989(87)90210-0

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Grossberg, Palma and Versace. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 26 January 2016 | Volume 9 | Article 501

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Resonant Cholinergic Dynamics in Cognitive and Motor Decision-Making: Attention, Category Learning, and Choice in Neocortex, Superior Colliculus, and Optic Tectum
	1. Attention, Learning, and Vigilance during Cognitive Category Learning in Temporal Cortex
	2. Attention, Learning, and Vigilance during Motor Category Learning in Superior Colliculus
	3. Cholinergic Modulation of Attention and Choice in the Optic Tectum
	4. Adaptive Resonance Theory
	4.1. Attention, Resonance, and Stable Category Learning
	4.2. Complementary Computing: Resonance and Reset
	4.3. Binding Distributed Feature Patterns and Symbols during a Conscious Resonance
	4.4. Resonance Links Intention and Attention to Learning
	4.5. Complementary Attentional and Orienting Systems Control Resonance and Reset
	4.6. Mismatch-Mediated Arousal, Habituative Synapses, and Reset

	5. Learning Exemplars and Prototypes: Vigilance Control
	6. Vigilance Control by Acetycholine via Nucleus Basalis during Visual Category Learning
	7. Attention is Realized by Top-down, Modulatory On-Center, Off-Surround Networks
	8. Mismatch, Reset, and Search in Laminar Cortical Circuits
	9. Acetylcholine Modulates Vigilance, Learning, and Generalization via the Nucleus Basalis
	10. Learning a Multimodal Movement Map
	10.1. Merging Visual, Auditory, and Planned Movement Commands by Learning
	10.2. Calibrating Visually Reactive Movements with Visual Error Signals
	10.3. Auditory and Planned Movements Base Their Accuracy on Visually Reactive Learning
	10.4. Transforming a Head-Centered Representation into a Motor Error Vector through Learning
	10.5. Transforming a Motor Error Vector into the SC Motor Error Map
	10.6. Adaptive Resonance, Attention, Choice, Gamma Oscillations, and Normalization
	10.7. Multimodal Map Learning Implies Spreading Wave and Peak Decay Cell Properties
	10.8. Cholinergically-Modulated Multimodal Map Learning in the Avian Optic Tectum
	10.9. Habituation and Reset: Is There SC Mismatch Reset and Vigilance Control?

	11. Concluding Remarks
	Acknowledgments
	References


