
Dynamics of Sequential Decision Making

Mikhail I. Rabinovich* and Ramón Huerta†

Institute for Nonlinear Science, University of California, San Diego, 9500 Gilman Drive 0402, La Jolla, California 92093, USA‡

Valentin Afraimovich
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We suggest a new paradigm for intelligent decision-making suitable for dynamical sequential activity
of animals or artificial autonomous devices that depends on the characteristics of the internal and external
world. To do it we introduce a new class of dynamical models that are described by ordinary differential
equations with a finite number of possibilities at the decision points, and also include rules solving this
uncertainty. Our approach is based on the competition between possible cognitive states using their stable
transient dynamics. The model controls the order of choosing successive steps of a sequential activity
according to the environment and decision-making criteria. Two strategies (high-risk and risk-aversion
conditions) that move the system out of an erratic environment are analyzed.

DOI: 10.1103/PhysRevLett.97.188103 PACS numbers: 87.18.Sn, 05.45.�a, 87.18.Bb

Introduction.—Information-dependent transient activity
is the most typical behavior of animals and autonomous
intelligent systems [1]. Even in a stationary environment
such behavior may not be unique and the brain or
cognitive-state machine (CSM) has to make choices; i.e.,
the behavior is a series of switching or decision-making
(DM) procedures [2] (see Fig. 1). It is evident that intelli-
gent decisions in a sequential behavior have to be stable
against noise and reproducible to allow memorization and
reuse of successful decision sequences in the future. On the
other hand, it also has to be sensitive to new information
from the environment. These requirements are fundamen-
tally contradictory, and existing approaches [3,4] are not
sufficient to explain DM for sequential activity. Here, we
formulate a new class of models suitable for analyzing
sequential DM based on a generalized winnerless compe-
tition (WLC) principle [5].

Model equations.—Decision-making systems consist of
subsystems that (i) formulate a goal, (ii) create a decision
function, (iii) control the parameters of a CSM, and (iv) are
responsible for the generation of spatiotemporal patterns of
cognitive states that control the behavior according to
incoming information I and DM rules. Here we focused
on a dynamical model of the CSM and its parameters that
are controlled by a decision function and information about
the world, i.e., on items (iii) and (iv) above.

Let us consider a system aiming to realize the maximum
possible number of sequential decisions. We assume that
life courses can be coded as sequences of events [6], i.e.,
decision-making events in our case. For the purposes of
this Letter we will refer to the number of decisions taken
throughout a sequence as the ‘‘length of life.’’ The
decision-making functions are defined algorithmically
(see below). Our model includes ordinary differential
equations for the dynamics of cognitive states and equa-
tions for control parameters given by DM rules:
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Equation (1) is of the Lotka-Volterra type and models
the competitive dynamics of cognitive states ai�t� (it can be
brain modes or competing controllers; see, for example,
[7]), where �ij denotes the strength of the competitive
interaction from the state j to state i, which is based on
genetic and memorized information, �i is external noise,
and N is the number of possible cognitive states. The
working regime of the CSM is a stimulus dependent com-
petition without winner until the system reaches the ‘‘end
of life’’ (a stable equilibrium). Before the CSM reaches this
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FIG. 1. A sequence of cognitive states: thin lines, possible
paths; thick line, realized sequence chosen by the DM according
to information fro the environment; t3, t4, t6, t9 are instants of
choices.
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point the different cognitive states become ‘‘winners’’ just
for a short time. This is the WLC principle for the repro-
ducible transient dynamics of neural systems that is en-
sured by nonsymmetric inhibition (see [5]). The
parameters �i�t; I� control the cognitive-state dynamics
and are governed by the independent gradient system (2).
Given i, the potential function Ui�I; �i� has mk minima

 �� i�I� � �0
i � A

s
i �I�; s 2 f1; . . . ; mkg; (3)

The initial value ��i�t0� contains no memory of the previous
history and is determined by the decision-making rule in
such a way that it chooses the basin of the only minimum.
Asi �I� represent the repertoire of actions determined by
external stimulation, and �0

i is a constant term common
to all stimulus responses. In the following we suppose that
the characteristic time � is so small that the dynamics for
�i can be neglected; i.e., �i take only stable equilibrium
values, ��i�I�. Even in a continuously changing environ-
ment, i.e., if I is continuously changing, the �i can be
changed in a discrete way because perception can be dis-
crete (see, e.g., [6]). Hence, we may assume that the
stimulus I acts in such a way that at the instants of choice
tk � 1; 2; . . . ; the parameters ��i are not unique and may
take several values from (3). The times tk are defined as the
instants of arrival of the system to a neighborhood of the
fixed points of the system (1), and the number of possibil-
ities mk and the values of ��i depend on the stimulus I.
Between the instants of choice, the system (1) evolves
according to the values of ��i chosen from (3) at time tk.

The mathematical image of the transient dynamics of
cognitive states ai�t� is a stable heteroclinic sequence
(SHS) with steps that are to be chosen according to the
DM rule. What happens after the instant of decision? As
shown in [8], the system (1) has nontrivial equilibria Si �
�0; . . . ; 0; ��i; 0; . . . ; 0� in the absence of noise and �i � ��i.
The eigenvalues of the linearized at Si system are �ji �
��j � �ji ��i, j � 1; . . . ; N, j � i. Depending on the values
of �ji we can find the following possibilities: (i) If all �ji <
0, Si is a stable fixed point; we say the system reaches its
end of life. (ii) If there are at least two values of j, say, j1

and j2, such that �j1i > 0 and �j2i > 0, we call Si the
‘‘panic state.’’ The system at this point has an infinite
numbers of choices (for heteroclinic orbits in such a situ-
ation, see [9]). (iii) If there is only one value j � j0

such that �j0i > 0 and all other eigenvalues are negative,
the saddle Si has an one-dimensional unstable mani-
fold. We will consider only dissipative saddles. Dissi-
pative saddles satisfy the following assumption. Let
��i � maxfmaxj�j0;if�jig;� ��ig; then the number �i �
���i =�j0i is called the saddle value [10]. The saddle is
dissipative if �i > 1. If so, we call Si the ‘‘transient state,’’
and then life continues.

A SHS, say, �, is a collection of saddles fSikg, k �
1; . . . ; K, with a one-dimensional unstable manifold to-
gether with a collection of heteroclinic orbits f�k;k�1g

such that �k;k�1 connects Sik and Sik�1
: � � [K�1

k�1 �Sik [
�k;k�1�. Accordingly, � must be stable: if an initial point of
an orbit lies in a neighborhood of Si1 , then all points of the
piece of the orbit will belong to a vicinity of � until the
arrival time to a neighborhood of SiK .

For the existence and stability of a SHS it is sufficient to
fulfill the following conditions: (i) Every saddle fSikg is a
transient state; we denote the corresponding positive ei-
genvalue by�ik�1;ik � ��ik � �ik�1ik ��ik . (ii) The inequalities

 1� �ik�1ik � �ikik�1
� 0; (4)

 � ��ik < ��ik�1
� �ik�1ik ��ik ; (5)

 �� i � �iik ��ik < ��ik�1
� �ik�1ik ��ik ; i =2 fik�1; ik; ik�1g

(6)

are satisfied (see [8]).
Suppose that an initial condition of the system (1) is

placed in the vicinity of the ai1 axis, and assume that there
is an integer m1 > 0 with possible values of vectors �� �
� ��1; . . . ; ��N�: ��1; . . . ; ��m1 . Before making a decision
among them, the system eliminates the following cases
based on the intrinsic stimuli: (a) For each value s 2
f1; . . . ; m1g, the corresponding point Si is a stable fixed
point. (b) For each value s 2 f1; . . . ; m1g, the point Si is the
panic state. Some trajectories that are passing near such a
saddle may be relevant for the formulated goal. However, if
the CSM is trying to memorize this specific behavior for
future use, it encounters the problem that the unstable
trajectories in the vicinity of the panic state are divergent,
and as a result, the system moves in different directions in
repeated trials (nonreproducibility). Thus a CSM that uses
panic states behaves erratically and has a low probability of
survival compared with a CSM based on the transient
states. (c) There are values of s 2 f1; . . . ; m1g for which
Si is a saddle with a one-dimensional unstable manifold,
but all of these saddles are nondissipative, i.e., the saddle
value � � 1. Case (c) is excluded because it can lead to
instability of the sequential behavior, and the dynamics
cannot be reproducible [as in case (b)] [11].

Now we assume that there is at least one value of s 2
f1; . . . ; m1g, say, s � s0, such that the corresponding point
Ss
0

i1
is a transient state. If such a value is unique, we choose

�� � ��s
0
, substitute it into (1), and allow the system to

evolve. Since the initial point is close to the ai1 axis, the
point on the corresponding trajectory comes to a small
neighborhood of Ss

0

i1
, and because Ss

0

i1
is dissipative, it will

follow the heteroclinic orbit joining Ss
0

i1
and Sj0

�

�0; . . . ; 0; ��s
0

j0
; 0; . . . ; 0� on the plane \k�i0;j0

fak � 0g [8].
Now we consider the main case where there are several
saddles Ss�q�i1

, q � 1; . . . ; p.
Decision-making functions.—DM evidently depends on

the goal. Let us focus on the goal formulated above with
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two extreme strategies often used by animals to survive
[12]. It can be, for example, a risk-aversion DM (stability
requirement) or a high-risk DM (minimal time to reach the
next decision point).

High-risk DM.—Every saddle Ss�q�i1
has only one positive

increment �j0i1 � ��j0
� �j0i1 ��i1 , j0 � j0�q�, q �

1; . . . ; p. We choose q0 in such a way that

 0< �j0�q�i1 < �j0�q0�i1 ; q � q0: (7)

In other words, we choose the maximal increment which
corresponds to the fastest motion away from saddle Si1 , and
therefore to the shortest time for reaching the next saddle in
the SHS.

Risk-aversion DM.—Another possibility to make a
choice is based on stability considerations. For every q �
1; . . . ; p, the corresponding saddle value �qi1 is well defined.
We choose q0 in such a way that

 1< �qi1 < �q0
i1
; q � q0: (8)

After making a decision the system replaces the corre-
sponding value of �� � ��s�q0� in Eq. (1) and evolves on an
orbit close to a heteroclinic until it reaches a neighborhood
of the saddle (0; . . . ; 0, ��j0�q0�

, 0; . . . ; 0). If this point is
fixed as the initial point for the next stage of the process,
we denote j0�q0� by i2, taking into account a number m2 of
different vectors �� and their values. If the saddle Si2 is a
transient state, the procedure is repeated again.

Simulation method and parameter values.—The model
parameters are chosen as in [8], where ��0

i are chosen
randomly from the range ��0

i 2 �5; 10	 according to a uni-
form probability distribution. Without loss of generality we
set the sequence order from 0 to N in the connectivity
matrix so that �i�1i � ��0

i�1= ��0
i � 0:51 for i � 2; . . . ; N,

�i�1i � ��i�10= ��0
i � 0:5 for i � 1; . . . ; N � 1, and �ij �

�j�1j � � ��0
i � ��0

j�1�= ��0
j � 2 for i =2 fj� 1; j; j� 1g.

Finally, each of the Asi is selected randomly from the range
Asi 2 ��4; 9	 according to a uniform distribution. Then,
the possible decisions As are statistically independent.

The system (1) is integrated using a Runge-Kutta
method for additive noise [13]. When the trajectory
reaches a saddle, Si within a ball of radius 0.1, the
decision-making function is applied. We assume that the
number of choices at instants tk is mk � M.

Results of the modeling.—We calculated the evolution of
ai�t; tk� by using two antagonistic DM rules, i.e., high-risk
and risk-aversion DM. Each DM produces different typical
behaviors. A small amount of noise introduces a rich
variety of behavior. The noise added to the system is never
larger than h��t���t0�i � 10�2��t� t0�.

We calculated the median of the length of life L for
different complexity levels of the cognitive states N and
number of possible choices M. We first analyzed the high-
risk DM function; see Figs. 2 and 3. As shown in Fig. 2 the
system can opt to end the sequence soon or wander around

until it reaches the last stable fixed point, SN. It is surpris-
ing to find that the system undergoes something like a
phase transition for a given number of choices M when
its size is large enough (see Fig. 3). Before the transition all
the simulations reach fixed points, and after the transition
the system either repeats parts of the sequence in a random
fashion or enters limit cycles. For N � 10 this ‘‘phase
transition’’ where the system starts wandering around is
not present and it always reaches a stable fixed point. It is
also interesting to note that the phase-transition point is not
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FIG. 3 (color online). Phase transition for the high-risk DM.
Median of the length of life L (dashed lines) and median of the
number of nodes involved in the sequence (solid lines) versus the
number of choices M for the CSM with numbers cognitive
states: N � 10, 25, 50.
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FIG. 2 (color online). High-risk DM dynamics of a system
with N � 20 and M � 5: (a) Most commonly observed DM
behavior. (b) An example of the repetitive decisions that can be
found in a system with repetitive environment and small per-
centage of uncertainty. Different tones represent different ai.
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strongly dependent on the number of choices or the number
of cognitive states. These simulations were obtained with
10 000 runs for each N and M. High-risk strategies with
sufficiently large numbers of choices last longer.

The risk-aversion DM rule generates completely differ-
ent results. As our calculations show there is no phase
transition in this case. We find that the most important
conclusions are the following: First, the system behavior
does not depend on the number of available choicesM, and
second, the length of the sequence decays exponentially (as
shown in Fig. 4).

Discussion.—Decision making is a very diverse function
of cognitive-state machines, and it may need different
approaches for modeling it in different cases. Here we
introduced a class of models that describe an uncertainty
of the stimulus dependent sequential behavior as a multi-
variance of the parameters that control the generation of
the spatiotemporal patterns responsible for the behavior. To
illustrate the potential ability of such models we compared
the resulting behaviors of two antagonistic decision func-
tions, i.e., a high-risk and a risk-aversion rule. We showed
that high-risk decisions are more effective in increasing the
longevity of a behavioral sequence. Despite considering a
simple strategy this result is supported by recent psycho-
physical experiments. In particular, macaque monkeys
consistently show faster reactions for larger rewards [14]
and good investors, who are not carried away by emotions,
avoid risk-aversion strategies [15].
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FIG. 4. Probability of finding a sequence of length L as a
function of the size of the system N � 75 for the risk-aversion
DM function. M � 5, 10, 15 are used in this figure. All of the
curves for different M are on top of each other. We do not display
the median here because there is no phase transition unlike in
Fig. 3.
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