
is described in the next theorem [19, 23, 31, 212, 233].
THEOREM 2.3 (Canards inR3). For the slow-fast system(2.14)with ε > 0 sufficiently

small the following holds:
(C1) There are no maximal canards generated by a folded focus.
(C2) For a folded saddle the two singular canardsγ̃1,2 perturb to maximal canardsγ1,2.

(C3.1) For a folded node letµ := σw/σs < 1. The singular canard̃γs (“the strong
canard”) always perturbs to a maximal canardγs. If µ−1 6∈ N then the singular
canardγ̃w (“the weak canard”) also perturbs to a maximal canardγw. We callγs

andγw primary canards.
(C3.2) For a folded node supposek > 0 is an integer such that2k + 1 < µ−1 < 2k + 3

andµ−1 6= 2(k + 1). Then, in addition toγs,w, there arek other maximal canards,
which we call secondary canards.

(C3.3) The primary weak canard of a folded node undergoes a transcritical bifurcation for
oddµ−1 ∈ N and a pitchfork bifurcation for evenµ−1 ∈ N.

3. Slow-fast mechanisms for MMOs.In this section we present key theoretical results
of how MMOs arise in slow-fast systems with SAOs occurring in a localized region of the
phase space. The LAOs, on the other hand, are associated with large excursions away from
the localized region of SAOs. More specifically, we discuss four local mechanisms that give
rise to such SAOs:

• passage near a folded node, discussed in Section 3.1;
• singular Hopf bifurcation, discussed in Section 3.2;
• three-time-scale problems with a singular Hopf bifurcation, discussed in Section 3.3;
• tourbillion, discussed in Section 3.4.

Each of these local mechanisms has its distinctive characteristics and can give rise to MMOs
when combined with aglobal return mechanismthat takes the trajectory back to the region
with SAOs. Such global return mechanisms arise naturally in models from applications and
a classic example is an S-shaped slow manifold; see Section 3.2 and the examples in Sec-
tions 4–6. We do not discuss global returns in detail, but rather concentrate on the nature of
the local mechanisms. From the analysis of normal forms we estimate quantities that can be
measured in examples of MMOs produced from both numerical simulations and experimental
data. Specifically, we consider the number of SAOs and the changes in their amplitudes from
cycle to cycle. We also consider in model systems the geometry of nearby slow manifolds
that are associated with the approach to and departure from the SAO regions.

3.1. MMOs due to a folded node.Folded nodes are only defined for the singular
limit (2.4) of system (2.1) on the slow time scale. However, they are directly relevant to
MMOs because forε > 0 small enough, trajectories of (2.1) that flow through a region where
the reduced system has a folded node, undergo small oscillations. Benoit [19, 20] first re-
cognized these oscillations. Wechselberger and collaborators [31, 212, 233] gave a detailed
analysis of folded nodes while Guckenheimer and Haiduc [86] and Guckenheimer [84] com-
puted intersections of slow manifolds near a folded node and maps along trajectories passing
through these regions. From Theorem 2.3 we know that the eigenvalue ratio0 < µ < 1 at
the folded node is a crucial quantity that determines the dynamics in a neighborhood of the
folded node. In particular,µ controls the maximal number of oscillations. The studies men-
tioned above use normal forms to describe the dynamics of oscillations near a folded node.
Two equivalent versions of these normal forms are





ε ẋ = y − x2,
ẏ = z − x,
ż = −ν,

(3.1)

12



and




ε ẋ = y − x2,
ẏ = −(µ + 1)x− z,
ż = 1

2µ.
(3.2)

Note thatµ is the eigenvalue ratio of system (3.2) and thatν 6= 0 andµ 6= 0 imply that no
equilibria exist in (3.1) and (3.2). If we replace(x, y, z) in system (3.1) by(u, v, w) and call
the time variableτ1, then we obtain system (3.2) via the coordinate change

x = (1 + µ)1/2 u, y = (1 + µ) v, z = −(1 + µ)3/2 w,

and the rescaling of timeτ = τ1/
√

1 + µ, which gives

ν =
µ

2(1 + µ)2
or µ =

−1 +
√

1− 8ν

−1−√1− 8ν
.

Therefore, in system (3.1) the number of secondary canards changes with the parameterν.
Whenν is small,µ ≈ 2ν. If the “standard” scaling [212]x = ε1/2 x̄, y = ε ȳ, z = ε1/2 z̄,
andt = ε1/2 t̄, is applied to system (3.1), we obtain





x̄′ = ȳ − x̄2,
ȳ′ = z̄ − x̄,

z̄′ = −ν .

(3.3)

Hence, the phase portraits of system (3.1) for different values ofε are topologically equivalent
via linear maps. The normal form (3.3) describes the dynamics in the neighborhood of a
folded node, which is at the origin here. Trajectories that come fromy = ∞ with x > 0
and pass through the folded-node region make a number of oscillations in the process, before
going off toy = ∞ with x < 0. There are no returns to the folded-node region in this system.

Let us first focus on the number of small oscillations. If2k + 1 < µ−1 < 2k + 3, for
somek ∈ N, andµ−1 6= 2(k + 1) then the primary strong canardγs twists once and the
i-th secondary canardξi, 1 ≤ i ≤ k, twists2i + 1 times around the primary weak canardγw

in anO(1) neighborhood of the folded node singularity in system (3.3), which corresponds
to anO(

√
ε) neighborhood in systems (3.1) and (3.2) [212, 233]. (A twist corresponds to

a half rotation.) We illustrate this in Figure 6 for system (3.3) withν = 0.025. Note that
ν = 0.025 corresponds toµ ≈ 0.0557. Hence,2k + 1 < µ−1 ≈ 17.953 < 2k + 3
for k = 8, so Theorem 2.3 states that there exist eight secondary canardsξi, 1 ≤ i ≤ 8,
along with the strong and weak canardsγs/w. Figure 6 shows the attracting slow manifold
Sa

ε and the repelling slow manifoldSr
ε of (3.3) in a three-dimensional region bounded by

the planes{z = ±α}, denotedΣα andΣ−α, with α = 0.14; see Section 8 for details on
how these computations were done. Even though the rescaled normal form (3.3) does not
depend onε anymore, we still indicate theε-dependence of the slow manifolds to distinguish
them from the attracting and repelling sheets of the critical manifold; furthermore,Sa

ε andSr
ε

can be thought of as the slow manifolds of (3.1) or (3.2). Both manifolds are extensions of
Fenichel manifolds and illustrate how the slow manifolds intersect near the fold curve of the
critical manifold; the fold curve is thez-axis. The intersection curves are the canard orbits;
highlighted are the primary strong canardγs (black) and the first three secondary canardsξ1

(orange),ξ2 (magenta) andξ3 (cyan). The inset shows the intersection curves ofSa
ε andSr

ε

with the planeΣfn := {z = 0} that contains the folded node at the origin; the intersection
points of the highlighted canard orbits are also indicated. Due to the symmetry of the normal
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FIG. 6. Invariant slow manifolds of(3.3) with ν = 0.025 in a neighborhood of the folded node. Both the
attracting slow manifoldSa

ε (red) and the repelling slow manifoldSr
ε (blue) are extensions of Fenichel manifolds.

The primary strong canardγs (black curve) and three secondary canardsξ1 (orange),ξ2 (magenta) andξ3 (cyan)
are the first four intersection curves ofSa

ε and Sr
ε ; the inset shows how these objects intersect a cross-section

orthogonal to the fold curve{x = 0, y = 0}.

form (3.3), the two slow manifoldsSa
ε andSr

ε are each other’s image under rotation byπ
about they-axis in Figure 6(a).

A trajectory entering the fold region becomes trapped in a region bounded by strips
of Sa

ε and Sr
ε and two of their intersection curves. The intersection curves are maximal

canards, and the trajectory is forced to follow the oscillations of these two bounding canard
orbits. Figure 6 does not show very clearly how many canards there are, nor does it indicate
the precise number of oscillations. We calculate the flow map of (3.3) withν = 0.025 to
illustrate this better. Due to the strong contraction alongSa

ε , the flow map through the fold
region is strongly contracting in one direction for trajectories that do not extend alongSr

ε .
Hence, the flow map will be almost one dimensional and can be approximated by following
trajectories starting on the critical manifold far away from the fold curve. Figure 7(a) shows
the result of integrating500 equally-spaced initial values on the line segment{x = 20, y =
x2 = 400, −3.25 ≤ z ≤ −0.75} until they reach the planex = −10; plotted are the
z-coordinates of the final values versus the initial values. One can see ten segments in this
flow map that are separated by discontinuities. These discontinuities mark sectors on the
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FIG. 7. Numerical study of the number of rotational sectors for system(3.3) with ν = 0.025. Panel (a)
illustrates the flow map through the folded node by plotting thez-coordinatesz out of the first return to a cross-
sectionx = −10 of 500 trajectories with equally-spaced initial values(x, y, z) = (20, 400, z in), where−3.25 ≤
z in ≤ −0.75. Panels (b1)–(b4) show four trajectories projected onto the(x, y)-plane that correspond to the points
labeled in panel (c), wherez in = −1.25 in panel (b1),z in = −1.5 in panel (b2),z in = −2 in panel (b3), and
z in = −2.25 in panel (b4).

line segment{x = 20, y = x2 = 400, −3.25 ≤ z ≤ −0.75} that correspond to an
increasing number of SAOs; in fact, each segment corresponds to a two-dimensional sector
Ii, 0 ≤ i ≤ 9, on the attracting sheetSa

ε of the slow manifold. The outer sectorI0 on the right
in Figure 7(a) is bounded on the left by the primary strong canardγs; sectorI1 is bounded
by γs and the first maximal secondary canardξ1; sectorsIi, i = 2, . . . , 8, are bounded by
maximal secondary canard orbitsξi−1 andξi; and the last (left outer) sectorI9 is bounded
on the right byξ8. On one side of the primary strong canardγs and each maximal secondary
canardξi, 1 ≤ i ≤ 8, trajectories follow the repelling slow manifoldSr

ε and then jump with
decreasing values ofx. On the other side ofγs andξi, trajectories jump back to the attracting
slow manifold and make one more oscillation through the folded node region before flowing
towardx = −∞. The four panels (b1)–(b4) in Figure 7 show portions of four trajectories
projected onto the(x, y)-plane; their initial values are(x, y, z) = (20, 400, z in) with z in as
marked in panel (a), that is,z in = −1.25, z in = −1.5, z in = −2 andz in = −2.25 for
(b1)–(b4), respectively. The trajectory in panel (b1) was chosen from the sectorI2, bounded
by ξ1 andξ2; this trajectory makes two oscillations. The trajectory in panel (b2) comes from
I5 and, indeed, it makes five oscillations. The other two trajectories, in panel (b3) and (b4),
make seven and nine oscillations, respectively, but some of these oscillations are too small to
be visible.

The actual widths of the rotational sectors in Figure 7 are very similar due to theε-
dependent rescaling used to obtain (3.3). When the equations depend onε as in (3.1) and
(3.2), however, the widths of the sectors depend onε. In fact, every sector is very small
except for the sector corresponding to maximal rotation, which is bounded byξk and the fold
curve. For an asymptotic analysis of the widths of the rotational sectors that organize the
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FIG. 8. Schematic diagram of the candidate periodic orbitΓc that gives rise to MMOs with SAOs produced by
a folded node singularity. The candidateΓc approaches the folded node along the attracting sheetSa (red) of the
critical manifold (red) in the sector of maximal rotation associated with the weak singular canardγ̃w. The distance
to the strong singular canard̃γs is labeledδ. When the trajectory reaches the folded node (filled circle) it jumps
along a layer and proceeds to make a global return.

oscillations, system (3.2) is more convenient, because the eigenvalues of the desingularized
slow flow are−µ and−1. Brøns, Krupa and Wechselberger [31] found the following.

THEOREM 3.1. Consider system(2.14) and assume it has a folded node singularity.
At an O(1)-distance from the fold curve, all secondary canards are in anO(ε(1−µ)/2)-
neighborhood of the primary strong canard. Hence, the widths of the rotational sectorsIi,
1 ≤ i ≤ k, is O(ε(1−µ)/2) and the width of sectorIk+1 is O(1).

Note that, asµ → 0 (the folded saddle-node limit), the number of rotational sectors
increases indefinitely, and the upper bounds on their widths decrease toO(ε1/2).

3.1.1. Folded node with a global return mechanism.A global return mechanism may
reinject trajectories to the folded node funnel to create an MMO. Assuming that the return
happensO(1) away from the fold curve, Theorem 3.1 predicts the number of SAOs that
follow. We create a candidate trajectory by following the fast flow starting at the folded
node until it returns to the folded node region; this is sketched in Figure 8. The global
return mechanism produces one LAO. Letδ denote the distance of the global return point
of a trajectory from the singular strong canardγ̃s measured on a cross-section at a distance
O(1) away from the fold; we use the convention thatδ > 0 indicates a return into the funnel
region. Providedδ is large enough, so that the global return point lands in the sectorIk+1 of
maximal rotation, one can show the existence of astableMMO with signature1k+1, where
k is determined byµ [31]. We summarize this existence result (in a more general setting) in
the following theorem.

THEOREM 3.2 (Generic1k+1 MMOs). Consider system(2.14)with the following as-
sumptions:

(A0) Assume that0 < ε ¿ 1 is sufficiently small,ε1/2 ¿ µ and k ∈ N is such that
2k + 1 < µ−1 < 2k + 3.

(A1) The critical manifoldS is (locally) a folded surface.
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(A2) The corresponding reduced problem possesses a folded node singularity.
(A3) There exists a candidate periodic orbit (as constructed in Figure 8) which consists of

a segment onSa (red) within the singular funnel (bounded byF and γ̃s such that it
containsγ̃w) with the folded node singularity as an endpoint, fast fibers of the layer
problem and a global return segment.

(A4) A transversality hypothesis is satisfied that is not stated here because it is cumber-
some to formulate precisely in a general setting; see e.g., [31] for the case of a
cubic-shaped critical manifold.

Then there exists a stable MMO with signature1k+1.
Theorem 3.2 not only requires sufficiently small0 < ε ¿ 1 but alsoµ À ε1/2 (while

0 < µ < 1). However,ε is usually of the orderO(10−2) in applications, so thatµ must be
close to 1 in order for the theorem to apply. Therefore, such maximal MMO signatures are
seldom seen in applications. Furthermore, the SAOs for an MMO with signature1k+1 tend
to be too small to be readily visible.

Figure 7 illustrates that the amplitudes of the SAOs are much larger for trajectories that
approach the folded node close to the strong canard and lie in one of the sectorsIi with
i ≤ k rather thanIk+1. We know from Theorem 3.1 that the maximal width of a sectorIi

with i ≤ k is bounded from above byO(ε(1−µ)/2) with µ < 1/3. Whenδ is O(ε(1−µ)/2)
one can, indeed, find MMOs withi ≤ k SAOs that are stable. Geometrically, different
stable MMOs are selected as one moves the flow map in Figure 7(a) up or down; since the
rotational sectorIk+1 for generalε-dependent systems has much larger width than the other
sectors, one should expect that the transitions throughIi with i ≤ k happen rather quickly
during a parameter-induced variation ofδ. We have the following result [31].

THEOREM 3.3. Suppose system(2.14)satisfies assumptions (A0)–(A3) of Theorem 3.2
and additionally:

(A5) For δ = 0, the global return point is on the singular strong canardγ̃s and asδ
passes through zero the return point crossesγ̃s with nonzero speed.

Suppose now thatδ = O(ε(1−µ)/2) > 0. Then, for sufficiently small0 < ε ¿ 1 and
k ∈ N such that2k + 1 < µ−1 < 2k + 3 the following holds. For eachi, 1 ≤ i ≤
k, there exist subsectors̃Ii ⊂ Ii with corresponding distance intervals(δ−i , δ+

i ) of widths
O(ε(1−µ)/2), which have the property that ifδ ∈ (δ−i , δ+

i ) then there exists a stable MMO
with signature1i.

Theorem 3.3 says that we should observe a succession of stable1i MMOs with increas-
ingly more SAOs asδ increases (assuming thatµ remains fixed in such a parameter variation).
In the transition from a1i to a1i+1 MMO signature, that is, in the regions in between intervals
(δ−i , δ+

i ) and(δ−i+1, δ+
i+1) we expect to find more complicated signatures, which are usually

a mix of 1i and1i+1. As with Theorem 3.2, the amplitudes of most SAOs will be tiny ifε is
small, except for those MMOs that have only a few SAOs after each LAO.

If µ = O(ε1/2), that is, assumption (A0) does not hold, then we may still expect stable
MMO signatures of type1k+1, as soon as the global returns falls inside the funnel region and
δ = O(1) [143]; note thatk = O(1/ε1/2) and the amplitudes of the SAOs for such an MMO
will again be tiny. Ifµ = O(ε1/2) andδ = O(ε1/2) as well, the mixed MMO signatures
with larger-amplitude SAOs are more likely to occur. For example, Figure 20 in Section 4
displays an MMO of type1213 in the Koper model. Here, global returns come very close to
the secondary maximal canardξ2, first slightly to the left (hence, into the rotational sectorI2

with two SAOs) and then slightly to the right (hence, into the rotational sectorI3 with three
SAOs), creating this MMO signature.

The theory described so far does not capture all of the possible dynamics near a folded
node. If higher-order terms are included in the normal forms (3.1)-(3.2), then equilibria may
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appear in anO(ε1/2) neighborhood of the folded node as soon asµ = O(ε1/2) or smaller.
This observation motivates our study of the singular Hopf bifurcation in three dimensions.

3.2. MMOs due to a singular Hopf bifurcation. Equilibria of a slow-fast system (2.1)
always satisfyf(x, y, λ, ε) = 0; generically, they are located in regions where the associated
critical manifoldS is normally hyperbolic. However, in generic one-parameter families of
slow-fast systems, the equilibrium may cross a fold ofS. In generic families with two slow
variables, the fold point (including the specific parameter value) at which the equilibrium
crosses the fold curve of the critical manifold has been called afolded saddle-node of type
II [161]. Folded nodes and saddles of the reduced system are not projections of equilibria of
the full slow-fast system, but the folded saddle-nodes of type II are. Whenε > 0, the system
has a singular Hopf bifurcation, which occurs generically at a distanceO(ε) in parameter
space from the folded saddle-node of type II [85].

In order to obtain a normal form for the singular Hopf bifurcation, we follow [85] and
add higher-order terms to the normal form (3.1) of the folded node, to obtain





ε ẋ = y − x2,
ẏ = z − x,
ż = −ν − a x− b y − c z.

(3.4)

As with (3.1), we apply the standard scaling [212]x = ε1/2 x̄, y = ε ȳ, z = ε1/2 z̄, and
t = ε1/2 t̄; system (3.4) then becomes





x̄′ = ȳ − x̄2,
ȳ′ = z̄ − x̄,

z̄′ = −ν − ε1/2 a x̄− ε b ȳ − ε1/2 c z̄.

(3.5)

This scaled vector field provides anO(ε1/2)-zoom of the neighborhood of the folded sin-
gularity where SAOs are expected to occur. The scaling removesε from the first equations
while the coefficientsa, b andc of the third equation becomeε-dependent;ν remains fixed.
Note that the coefficient of̄y tends to0 faster than those of̄x, z̄ asε → 0. This feature makes
the definition of normal forms for slow-fast systems somewhat problematic: scalings of the
state-space variables and the singular perturbation parameterε interact with each other. These
ε-dependent scalings play an important role in “blow-up” analysis of fold points and folded
singularities.

In contrast to the normal form (3.1) of a folded node, system (3.5) possesses equilibria
for all values ofν. If ν = O(1) then these equilibria are far from the origin, with coordinates
that areO(ε−1/2) or larger. Since we want to study the dynamics near a folded singularity,
theε-dependent terms in (3.5) play little role in this parameter regime and the system can be
regarded as an inconsequential perturbation of the folded node normal form (3.3) and Theor-
ems 3.2 and 3.3 apply. On the other hand, ifν = O(ε1/2) or smaller then one equilibrium
lies within anO(1)-size domain of the phase space. This equilibrium is determined by the
coefficientsa andc (to leading order) and plays an important role in the local dynamics near a
folded singularity [85, 143]. In particular, the equilibrium undergoes a singular Hopf bifurca-
tion for ν = O(ε) [85]. Thus, for parameter valuesν = O(ε1/2) or smaller, the higher-order
terms in the third equation of (3.5) are crucial.

So what is the most appropriate normal form of a system that undergoes a singular Hopf
bifurcation? Several groups have derived system (3.4), but drop the termby because it has
higher order inε after the scaling. However, this term appears in the formula for the lowest-
order term inε of the first Lyapunov coefficient of the Hopf bifurcation of (3.4) and, hence,
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FIG. 9. Phase portrait of an MMO periodic orbitΓ (black curve) for system(3.6) with (ν, a, b, c, ε) =
(0.0072168,−0.3872,−0.3251, 1.17, 0.01). The critical manifoldS (grey) is the S-shaped surface with folds at
x = 0 andx = − 2

3
. The orbitΓ is composed of two slow segments near the two attracting sheets ofS and two fast

segments, with SAOs in the region near the equilibriump on the repelling sheetSr of S just past the fold atx = 0.
Panel (a) shows a three-dimensional view and panel (b) the projection onto the(x, y)-plane.

must be retained if we hope to determine a complete unfolding of the singular Hopf bifurca-
tion [85].

The MMOs that occur close to the singular Hopf bifurcation have a somewhat dif-
ferent character than those generated via the folded node mechanism. Guckenheimer and
Willms [93] observed that a subcritical (ordinary) Hopf bifurcation may result in large regions
of the parameter space being funneled into a small neighborhood of a saddle equilibrium with
unstable complex eigenvalues. After trajectories come close to the equilibrium, SAOs grow
in magnitude as the trajectory spirals away from the equilibrium. Similar MMOs may pass
near a singular Hopf bifurcation. Then the equilibrium is a saddle-focus and trajectories on
the attracting Fenichel manifold are funneled into a region close to the one-dimensional stable
manifold of the equilibrium. SAOs occur as the trajectory spirals away from the equilibrium.
We review here our incomplete understanding of singular Hopf bifurcations and the MMOs
passing nearby.

The normal form (3.4) does not yield MMOs because there is no global return mech-
anism; trajectories that leave the vicinity of the equilibrium point and the fold curve flow to
infinity in finite time. This property can be changed by adding a cubic term to the normal
form that makes the critical manifold S-shaped, similar to the Van der Pol equation:





ε ẋ = y − x2 − x3,
ẏ = z − x,
ż = −ν − a x− b y − c z.

(3.6)

This version of the normal form for singular Hopf bifurcation with global reinjection has been
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FIG. 10. A chaotic MMO trajectory of system (3.6) with (ν, a, b, c, ε) =
(0.004564,−0.2317, 0.2053, 1.17, 0.01). Panel (a) shows the time series of thex-coordinate of the tra-
jectory fromt = 100 to t = 200, and panel (b) the projection of the trajectory onto the(x, y)-plane.

derived repeatedly as a “reduced” model for MMOs [122, 138]. An example of the overall
structure of MMOs in system (3.6) with smallν is shown in Figure 9 for(ν, a, b, c, ε) =
(0.0072168,−0.3872,−0.3251, 1.17, 0.01); note thatν = O(ε). The S-shaped critical man-
ifold S is the grey surface in Figure 9(a); a top view is shown in panel (b). The manifoldS has
two fold curves, one atx = 0 and one atx = − 2

3 , that decomposeS into one repelling and
two attracting sheets. For our choice of parameters there exists a saddle-focus equilibriump
on the repelling sheet that is close to the origin (which is the folded node singularity). The
equilibriump has a pair of unstable complex conjugate eigenvalues. A stable MMO periodic
orbit Γ, shown as the black curve in Figure 9, interacts withp as follows. Starting just past
the fold atx = 0, that is, in the region near the origin withx < 0, the orbitΓ spirals away
from p along its two-dimensional unstable manifold and repeatedly intersects the repelling
sheetSr of S. As soon asΓ intersects the repelling slow manifold (not shown), it jumps to
the attracting sheet ofS with x < − 2

3 . The orbitΓ then follows this sheet to the fold at
x = − 2

3 , after which it jumps to the attracting sheet ofS with x > 0. ThenΓ returns to the
neighborhood ofp and the periodic motion repeats.

The MMO periodic orbitΓ displayed in Figure 9 is only one of many types of complex
dynamics present in system (3.6). One aspect of the complex dynamics in system (3.6) is
the fate of the periodic orbits created in the Hopf bifurcation. There are parameter regimes
for (3.6) with stable periodic orbits of small amplitude created by a supercritical Hopf bi-
furcation. Subsequent bifurcations of these periodic orbits may be period-doubling or torus
bifurcations [85]. Period-doubling cascades can give rise to small-amplitude chaotic invariant
sets that may be associated with chaotic MMOs. For example, Figure 10 plots a chaotic MMO
trajectory for (3.6) with(ν, a, b, c, ε) = (0.004564,−0.2317, 0.2053, 1.17, 0.01) that arises
from such a period-doubling cascade of the periodic orbit emerging from the singular Hopf
bifurcation. It appears that it is chaotic because of the nonperiodicity of its time series, shown
for the x-coordinate in Figure 10(a). A two-dimensional projection onto the(x, y)-plane
is shown in panel (b). Note that this trajectory does not come close to either the equilibrium
pointp or the folded singularity at the origin. Asν decreases from the value used in Figure 10
(whereν is already of orderO(ε)), the large-amplitude epochs of the trajectories become less
frequent and soon disappear, resulting in a small-amplitude chaotic attractor. Section 4 dis-
cusses a rescaled subfamily of (3.6), giving further examples of complex dynamics and some
analysis of the organization of MMOs associated with this system.

We would like to characterize the parameter regimes with MMOs for which the SAOs
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FIG. 11. Tangency between the unstable manifoldW u(p) of the equilibrium and the repelling slow manifold
Sr

ε of (3.6) with (ν, a, b, c, ε) = (0.007057, 0.008870,−0.5045, 1.17, 0.01). Panel (a) shows trajectories of
W u(p) (red) andSr

ε (blue) that are terminated on the green cross-sectionΣ defined byy = 0.3. The intersections
W u(p) ∩ Σ (with points on computed trajectories marked ’o’) andSr

ε ∩ Σ (with points on computed trajectories
marked ’x’) are shown in panel (b).

are solely or partially due to spiraling along the unstable manifoldWu(p) of a saddle-focus
p. Analysis of this issue appears to be significantly more complicated than that for folded
nodes and has barely begun. We offer a few insights in locating these parameter regimes.
First, we think ofν in the normal form (3.6) of the singular Hopf bifurcation as the “primary”
bifurcation parameter and seek ranges ofν where MMOs are found. If the Hopf bifurca-
tion at ν = νH is supercritical then, for parameters close enough to the Hopf bifurcation,
the limit set ofWu(p) is just the bifurcating stable periodic orbit. The onset of MMOs is
observed to occur at a distanceν = O(ε) from the Hopf bifurcation due to a new type
of bifurcation [85]. This bifurcation occurs at parameters wherep is a saddle-focus and
Wu(p) is tangent to the two-dimensional repelling Fenichel manifoldSr

ε . At first glance
one might think that two unstable objects in a dynamical system cannot intersect. However,
recall thatWu(p) consists of trajectories that approachp as t → −∞ while Sr

ε consists
of forward trajectories that remain slow for anO(1) time on the slow time scale. Con-
sequently, it is possible for a single trajectory to satisfy the criteria to belong to both of these
objects. Figure 11 illustrates an example of a tangency betweenWu(p) andSr

ε for (3.6) with
(ν, a, b, c, ε) = (0.007057, 0.008870,−0.5045, 1.17, 0.01) (note thatν = O(ε) and, hence,
very close toνH ≈ −8.587 × 10−5). Shown are a collection of trajectories onWu(p) (red)
that start close top and end in the cross-sectionΣ := {y = 0.3}, together with a collection
of trajectories onSr

ε that start on the repelling sheet of the critical manifold and also end in
Σ; see Section 8.1 for details of the method used to compute these manifolds. Figure 11(b)
shows the tangency of the two intersection curves ofWu(p) andSr

ε with Σ. The manifold
Sr

ε is a surface that separates trajectories that make large-amplitude excursions from ones that
remain in the vicinity ofp. For values ofν such thatWu(p) andSr

ε do not intersect, the limit
set ofWu(p) remains small. By varyingν such that we move further away fromνH , the
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MMOs arise as soon asWu(p) andSr
ε begin to intersect; see also Section 4.

The number of SAOs that an MMO periodic orbitΓ makes alongWu(p) is determined
by how closeΓ comes top and by the ratio of real to imaginary parts of the complex eigen-
values ofp. The only way to approachp is along its stable manifoldW s(p), so an MMO
like that displayed in Figure 9 must come very close toW s(p). The minimum distanced
between an MMO andW s(p) is analogous to the distanceδ of a trajectory from the primary
strong canard in the case of folded nodes. Unlike the case of a folded node, the maximal
amplitude of the SAOs observed nearWu(p) is largely independent ofd. What does change
asd → 0 is that the epoch of SAOs increases in length and begins with oscillations that are
too small to be detectable. There has been little investigation of how the parameters of the
normal form (3.6) influenced, but Figure 8 in Guckenheimer [85] illustrates thatd depends
upon the parameterc in a complex manner. There are parameter regions where the global
returns of MMO trajectories are funneled close toW s(p). Since MMOs are not found im-
mediately adjacent to supercritical Hopf bifurcations, the ratio of real to imaginary parts of
the complex eigenvalues remains bounded away from0 on MMO trajectories. This prevents
the appearance of extraordinarily long transients with oscillations that grow arbitrarily slowly
like those found near a subcritical Hopf bifurcation; see Section 5 and also [87, Figure 5].

The singular-Hopf and folded-node mechanisms for creating SAOs are not mutually ex-
clusive and can be present in a single MMO in the transition regime withν = O(ε1/2). The
specific behavior that one finds depends in part on whether the equilibriump near the singular
Hopf bifurcation is a saddle-focus with a pair of complex eigenvalues or a saddle with two
real eigenvalues. The MMO displayed in Figure 21 contains some SAOs that lie inside the
rotational sectors between the attracting and repelling slow manifolds and some SAOs that
follow the unstable manifold of the saddle-focus equilibrium. On the other hand, we note
that SAOs cannot be associated with a saddle equilibrium that has only real eigenvalues; this
occurs in a parameter region withν > (a + c)ε1/2 (to leading order), butν = O(ε1/2).
In this case, SAOs are solely associated with the folded node-type mechanism described for
ν = O(1) (that is,µ = O(1)). Krupa and Wechselberger [143] analyzed the transition regime
ν = O(ε1/2) and showed that the folded node theory can be extended into this parameter re-
gime provided the global return mechanism projects into the funnel region.

3.3. MMOs in three-time-scale systems.When the coefficientsν, a, b and c in the
normal forms (3.4) and (3.6) of the singular Hopf bifurcation are of orderO(ε) or smaller,
thenz evolves slowly relative toy and the system actually has three time scales: fast, slow
and super slow. Krupa et al. [138] studied this regime with geometric methods and asymptotic
expansions for the casea = c = 0. They observed MMOs for which the amplitudes of the
SAOs remain relatively large. Their analysis is based upon rescaling the system such that it
has two fast variables and one slow variable. To make the three-time-scale structure explicit,
we setν = εν̂, a = εâ, b = εb̂ andc = εĉ. Rescaling the singular-Hopf normal form (3.6) of
Section 3.2 byx = ε1/2 x̄, y = ε ȳ, z = ε1/2 z̄, andt = ε1/2 t̄ yields





ẋ = y − x2 − ε1/2x3,
ẏ = z − x,

ż = ε(−ν̂ − ε1/2 â x− ε b̂ y − ε1/2 ĉ z),
(3.7)

which is still a singularly perturbed system, but now with two fast variables,x andy, and a
slow variablez. An equilibrium lies within anO(1)-size domain around the origin if̂ν =
O(ε1/2) or smaller, i.e.,ν = O(ε3/2) or smaller. This equilibrium plays an important role in
the dynamics if it is of saddle-focus type. In particular, it undergoes a Hopf bifurcation for
ν̂ = O(ε), i.e.,ν = O(ε2).
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FIG. 12. Phase portraits of system(3.8) for three different values ofz. Shown are several trajectories (blue)
and one trajectory (red) that approximates a separatrix. For eachz, there is a single equilibrium pointp at (x, y) =
(z, z2). Panels (a)–(c) are forz = 2, z = 0.25 and z = 0, for whichp is a stable node, a stable focus and a
center surrounded by a continuous family of periodic orbits, respectively. The boundary of this family is the maximal
canard.

The two-dimensional layer problem of (3.7)




ẋ = y − x2,
ẏ = z − x,
ż = 0,

(3.8)

in which z acts as a parameter, is exactly the same system obtained in the analysis of the
planar canard problem, where the parameterλ is replaced byz; compare with system (2.7).

Note that (3.8) has a unique equilibriump for each value ofz, given by(x, y) = (z, z2).
Figure 12 shows phase portraits of (3.8) in the(x, y)-plane for three different values ofz,
namelyz = 2, z = 0.25 andz = 0 in panels (a), (b) and (c), respectively. Forz > 0,
the equilibriump is an attracting fixed point in the(x, y)-plane; it is a node forz > 1 and
a focus for0 < z < 1; note that this information also determines the type of equilibrium
of (3.7) obtained for̂ν = O(ε1/2) to leading order — the same argument can also be used
to determine the basin boundary of the saddle-focus equilibrium in Section 3.2. The basin
boundary ofp is an unbounded trajectory that is shown in red in panels (a) and (b). When
z = 0, the vector field (3.8) has a time-reversing symmetry that induces the existence of
a family of periodic orbits. Indeed, the functionH(x, y) = exp(−2y) (y − x2 + 1

2 ) is an
integral of the motion and the level curveH = 0 is a parabola that separates periodic orbits
surroundingp (the origin) from unbounded orbits that lie below the parabola and become
unbounded withx → ±∞ in finite time.

System (3.7) can be viewed as a perturbation of (3.8) whenz remains small and is slowly
varying compared tox andy. In this case, changes inH can be used to monitor the SAOs of
trajectories. We focus on the casea = c = 0 studied in [138]. To find parameters for which
system (3.6) has MMOs, we fixb = −0.005 andε = 0.01 and varyν so thatz increases
when y is large but decreases when the system has SAOs. More precisely, we want the
average value ofz to increase during epochs of SAOs and decrease during epochs of LAOs.
The changes inz should be of sufficient magnitude to drive the trajectory across the slow
manifolds and trigger a transition between these epochs. Figure 13(a) displays a periodic
MMO with signature14 found atν = 0.00015 (which is of orderO(ε2)). The projection
in panel (a2) of the orbit onto the(z, y)-plane shows thatz decreases approximately from
−0.003713 to −0.004143 while the trajectory makes four SAOs, andz increases during a
single LAO. Note thatż = 0 on the planey = 0.03. System (3.6) also possesses two
equilibria withz-coordinates given by±

√
−ν/(b ε), which equals±√3 in this case. Since

the MMO signature shown in Figure 13(a2) is confined to the area near the origin (in the
z-direction), these two equilibria have no influence on the dynamics.

As ν increases, the value ofy for which ż = 0 increases, and trajectories have a
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FIG. 13. Stable periodic MMOs of system(3.6) with (a, b, c, ε) = (0,−0.005, 0, 0.01). Row (a) shows the
periodic MMO with signature14 for ν = 0.00015 as a time series ofx in panel (a1) and in projection onto the
(z, y)-plane in panel (a2); similar projections are shown in row (b) forν = 0.00032, where the periodic MMO has
signature91.

propensity to pass more quickly through the region of SAOs. Figure 13(b) shows a peri-
odic MMO with signature91 obtained forν = 0.00032. This value ofν lies close to the
upper end of the range in which MMOs seem to exist for the chosen values of(a, b, c, ε) =
(0,−0.005, 0, 0.01). As the projection in panel (b2) illustrates, the average value ofz in-
creases (|z| decreases) during each LAO, but it takes nine LAOs before it crosses the threshold
into the region of SAOs. On the other hand, a single SAO takes the trajectory back to the re-
gion of LAOs.

For intermediate values ofν ∈ (0.00015, 0.00032), the system displays aperiodic MMOs
as well as periodic MMOs with a variety of signatures. These signatures can be analyzed via
an approximately one-dimensional return map to a cross-section atx = 0. Returns to this
cross-section withx decreasing appear to lie along a thin strip; this is illustrated in Fig-
ure 14(a) forν = 0.0003, for which the system appears to have aperiodic MMOs. The thin
strip in Figure 14(a) is approximately given by the liney = 0.1153 z−0.004626 (andx = 0).
If we take600 initial conditions on this line withz ∈ [−0.0043,−0.004] then their next return
to the cross-section fall onto two segments that are close to the initial line and within the seg-
mentz ∈ [−0.0043,−0.004]. Figure 14(b) graphs these returns, showing thez-coordinates
z out of returns of the600 initial conditions versus their initalz-coordinatesz in; the diagonal
z out = z in is also pictured. This figure suggests that the return map near the line segment
can be approximated by a rank-one map with two segments of slopes close to one, separated
by a steep segment for initial valuesz in ≈ −0.004055. The return map increasesz on the
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FIG. 14. Return map of system(3.6)with (ν, a, b, c, ε) = (0.0003, 0,−0.005, 0, 0.01) to the sectionx = 0.
Panel (a) shows that the return is almost one dimensional along a line that is approximately given byy = 0.1153 z−
0.004626. Thez-coordinates of the returns for initial conditions along this line withz ∈ [−0.0043,−0.004] are
plotted versus their initialz-values in panel (b).

left “branch” of this map and decreasesz on the right branch. This is the behavior described
above since larger values ofz correspond to SAOs, the smaller values to LAOs. Trajectories
that do not hit the steep section of the map go back and forth repeatedly between the two
branches. Asν varies, the “shape” of the return map remains qualitatively the same: the two
branches still have slopes close to one, but their off-set from the diagonal varies. Approx-
imately forν < 0.00013, the image of the right branch, representing SAOs, maps to itself,
while for ν > 0.00034, the image of the left branch maps to itself, and the system only has a
large periodic relaxation oscillation with no SAOs. In the range ofν where MMOs do exist,
kneading theoryfor one-dimensional maps [38] can be applied to the numerically generated
return maps to predict the signatures of the MMOs.

Further insight into the steep segment of the return map atz = z in ≈ −0.004055
comes from computing intersections of the attracting and repelling slow manifolds. We com-
puted forward trajectories from initial conditions on the attracting sheet (withx < − 2

3 )
and backward trajectories from initial conditions on the repelling sheet of the critical man-
ifold to their intersection with the cross-section{x = 0}. Since the trajectories quickly
converge to the attracting and repelling slow manifolds, their intersections with{x = 0}
give a good approximation of the intersection curves of the slow manifolds with{x = 0}.
These two intersection curves have one point in common, which is approximately(y, z) =
(−0.0050941,−0.0040564). Hence, this point lies in the region that gives rise to the steep
segment shown in Figure 14(b). By definition, the intersection of the attracting and repelling
slow manifolds is a maximal canard. Initial conditions on the cross-section{x = 0} to one
side of the repelling manifold result in SAOs while trajectories on the other side result in fast
jumps to the other sheet of the attracting slow manifold (withx > 0). Thus, we have con-
firmed numerically that canard orbits separate the two branches of the return map displayed
in Figure 14(b); compare also with Figure 7(a), which illustrates that the one-dimensional
return map calculated near a folded node has several steep sections that correspond to the
primary strong canard and the maximal secondary canards of the problem.

3.4. MMOs due to dynamic Hopf bifurcation and tourbillion. Recall from Sec-
tion 3.3 that the abrupt transitions between SAOs and LAOs in system (3.7) are a consequence
of the three-time-scale structure, which allows us to view the system as having two fast vari-
ables and only one slow variable. Such a system with two or more fast variables may have
a Hopf bifurcation in the layer equations. We now consider this situation, and assume that a
pair of complex eigenvalues of the layer equations cross the imaginary axis as one follows a
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trajectory of the reduced system. Whenε 6= 0 one observes a slow motion or drift of traject-
ories through the region near the Hopf bifurcation in the layer equations. Due to the complex
eigenvalues in the fast directions, trajectories spiral around the slow manifold, which gives
rise to oscillations. The amplitude of such an oscillation initially decreases (while the real
part of the complex eigenvalues is negative) and then increase again (after the real part be-
comes positive). We refer to this situation as adynamic Hopf bifurcation. Our primary goal
is to determine when MMOs have SAOs that are associated with a dynamic Hopf bifurcation.
Note that, unlike in systems with a single fast variable, this type of SAO is neither associated
with a folded singularity of the critical manifold nor with a (singular) Hopf bifurcation of the
system forε 6= 0.

A well-known example of a dynamic Hopf bifurcation is the phenomenon of delayed
Hopf bifurcation. For simplicity, we discuss it here for a system with one slow and two fast
variables, the lowest dimensions possible. Consider a segmentL on the one-dimensional
critical manifoldS along which the layer equations undergo a Hopf bifurcation. That means
that the linearization of the layer equations alongL has a pair of complex eigenvaluesα± iβ
that cross the imaginary axis transversally. In the case of a supercritical Hopf bifurcation, a
one-parameter family of attracting periodic orbits of the layer equations, parameterized by the
slow variable, emanates from the pointL0 ∈ L whereα = 0. If a trajectoryu(t) of the full
system comes close toL near a pointLu ∈ L that lies at a distanceδ = |Lu − L0| = O(1)
from L0, thenu(t) will come exponentially close toL on the slow time scale. The layer
equations undergo a Hopf bifurcation, but, in analytic systems,u(t) remains close toL for
anO(1)-distanceafter the Hopf bifurcation has occurred [168]. Thisdelayhappens because
it takes anO(1) time for u(t) to be repelled away fromL. In particular,u(t) does not
immediately follow the periodic orbits of the layer equations emanating fromL0. The slow-
fast analysis identifies a definite “jump” point (called abuffer point) at whichu(t) leaves
L and approaches the periodic orbits, if it has not done so earlier. There are SAOs along
L in a delayed Hopf bifurcation, but they are exponentially small nearL0 and the jump
from L to the periodic orbits may occur within a single period of the SAOs. Thus, SAOs
near a delayed Hopf bifurcation are typically so small that they are unobservable in practical
examples. This situation is reminiscent of MMOs associated with folded nodes withδ =
O(1). More specifically, Theorem 3.2 predicts maximal1k+1 MMO signatures but, due to
strong contraction toward the primary weak canardγw on Sa,ε, only the final rotation is
actually observed; see Figure 7(b4).

In a number of examples, such as those in Sections 6 and 7, one actually observes MMOs
with SAOs near a dynamic Hopf bifurcation whose amplitudes remain observably large. We
adopt the termtourbillion from Wallet [232] to describe the trajectories passing through a
dynamic Hopf bifurcation with oscillations whose amplitude remains above an observable
threshold. We discuss the tourbillion and how it gives rise to MMOs also in systems with one
slow and two fast variables. Consider the model system





ẋ = −y + z x,
ẏ = x + z y,
ż = ε,

(3.9)

that is obtained by linearization of the layer equations for a dynamic Hopf bifurcation. This
equation is separable in polar coordinates, yieldingṙ = ε t r for trajectories that have initial
conditions in the plane{z = 0}. Hence, the general solution isr(t) = r(0) exp(ε t2/2),
which means that the amplitude of a solution decreases forz < 0 and then increases for
z > 0. We conclude thatr(1/

√
ε)

r(0) = exp( 1
2 ) and that the oscillations have almost constant

amplitude over a time interval of1/
√

ε. If the r coordinate of a trajectory decreases tor = 1
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FIG. 15. Time series of thex-coordinate of a trajectory of(3.10) with initial point (x, y, z) =
(−1, 0.8,−0.12). Panels (a)–(c) are forλ = 0.1 and forε = 0.006, ε = 0.012 andε = 0.02, respectively.

at a value ofz that isO(
√

ε), then the minimum amplitude of the oscillations associated with
the dynamic Hopf bifurcation will still be observable. The amplitudes of these oscillations
and the coupling ofε with the distance of approach to the dynamic Hopf point characterize the
tourbillion regime and distinguishes it from a delayed Hopf bifurcation. In a delayed Hopf
bifurcation, a trajectory approaches the slow manifold at distanceO(1) from the dynamic
Hopf point, while in a tourbillion, the approach to the slow manifold occurs withinO(

√
ε)

of the layer containing the dynamic Hopf point. Whenε is fixed in a system, the distinction
between a delayed Hopf point and a tourbillion becomes blurred, but the distinction is clear
in many examples.

The system (3.9) describes SAOs with distinctly nonzero amplitudes locally near the
point where the dynamic Hopf bifurcation occurs in the layer not account for characteristic
abrupt transitions at the beginning and end of an SAO epoch within an MMO, such as those in
Sections 6 and 7, because these transitions depend upon mechanisms that are not part of the
local analysis of system (3.9) . There is as yet no comprehensive study of possible geometric
mechanisms that determine the sudden start and the end of a section of SAOs arising from
a tourbillion. This paper largely avoids this issue and concentrates on local mechanisms for
generating the SAOs of MMOs. Nevertheless, the following example illustrates one mech-
anism for an abrupt jump away from SAOs of a tourbillion. Consider a “dynamic” section
through the unfolding of the codimension-two Bogdanov-Takens bifurcation [88], defined as





ẋ = y,
ẏ = λ + z y − x2 − x y,
ż = ε.

(3.10)

As before, we regardz as a slowly varying parameter. Forλ > 0 andε = 0, the system has
two straight lines of equilibria defined byx = ±

√
λ andy = 0. A supercritical Hopf bifurc-

ation occurs along the line of equilibria withx > 0. The family of periodic orbits born at
this bifurcation terminates at a homoclinic orbit. Moreover, there is always a bounded region
of the(x, y)-plane in which oscillations around the equilibrium occur; this is the tourbillion
region. The line of (saddle) equilibria withx < 0 of the layer equations perturbs to a Fenichel
manifold of saddle type and its stable and unstable manifolds guide the entrance and exit to
the tourbillion in this example. As we have seen, the number of oscillations and their min-
imum amplitude is determined both by the magnitude of the initial condition and ofε. This
is illustrated in Figure 15 with trajectories of system (3.10) forλ = 0.1 and different values
of ε — all starting from the initial condition(x, y, z) = (−1, 0.8,−0.12) that lies outside the
tourbillion region. Note thatx andy areO(1) quantities, and so the condition for a tourbil-
lion is that|z| is of order

√
ε. In Figure 15(a) forε = 0.006 we do not find a tourbillion but
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observe oscillations that decay rapidly, are very small for a while and then grow rapidly again
before the trajectory jumps away. In panel (b) forε = 0.012, on the other hand, the oscil-
lations decay and then grow more gradually and they remain of observable size throughout.
We conclude thatε is now just about large enough to speak of a tourbillion region, passage
through which results in seven SAOs before the jump occurs. For even larger values ofε the
same initial condition results in oscillations that maintain an almost constant amplitiude; see
Figure 15(c) forε = 0.02. Observe that, owing to the faster drift through the region near the
Hopf bifurcation in the layer system, we now find only four SAOs before the trajectory jumps
away.

It is interesting to compare the SAOs associated with a tourbillion with those occurring
near a folded node or near a singular Hopf bifurcation. One difference is that the period of the
oscillations isO(ε) (slow time) for the tourbillion, while it isO(

√
ε) for the other two cases.

In each of the cases, the data that determines the number of SAOs is slightly different. For
the folded node, the eigenvalue rationµ determines the number of rotational sectors, and the
distance of the global return to the weak canard relative to the singular perturbation parameter
determines which rotational sector a trajectory enters. For the singular Hopf bifurcation, the
distance of the global return to the stable manifold of the saddle-focus equilibrium sets the
minimum amplitude and duration of the SAOs. For a tourbillion, the number of SAOs is
governed by the singular perturbation parameter and the distance of the global return to the
delayed Hopf bifurcation point. Moreover, the termination of the SAOs for a tourbillion
depends upon either a global mechanism or an arbitrary threshold for the amplitude of SAOs.
In contrast, the oscillations of a folded node end “on their own,” while the intersections of
the unstable manifold of the equilibrium and the repelling slow manifold typically limit the
amplitude of SAOs near a singular Hopf bifurcation.

3.5. Summary of local mechanisms for SAOs.We now summarize the main results
of this review section on the local mechanisms that give rise to MMOs. For systems with a
single fast variable, the local mechanisms responsible for SAOs must involve a mixture of the
two time scales. We distinguish three regions near folded nodes and folded saddle-nodes that
yield MMOs:

1. Folded Nodes:If the parameters satisfy suitable order conditions (ν = O(1)) so
that no equilibrium of the full system is near the folded node then the theory of
Section 3.1 applies and SAOs are due to thetwisting of slow manifolds.

2. Singular Hopf:As is shown in the Section 3.2, the dynamics near a singular Hopf bi-
furcation (ν = O(ε)) tends to be quite complicated. SAOs occur when the trajectory
follows theunstable manifold of a saddle-focus.

3. Transition Regime:The folded-node and singular-Hopf regimes are separated by a
transition regime with intermediate values ofν = O(

√
ε). Extensions of the folded

node theory have been developed in [143]; note that the parameterµ in [143] not
only represents the eigenvalue ratio but also describes the distance of the equilibrium
to the folded node in a blown-up system. In this transition regime, it is possible for
the SAOs to pass through the rotational sectors of the folded nodeas well asspiral
along the unstable manifold of the saddle-focus equilibrium.

In systems with at least two fast variables the tourbillion provides a different local mech-
anism that generates SAOs. Here, the layer equations have complex eigenvalues and the
SAOs are aligned with the fast directions of the system. Little systematic study of the tour-
billion as a mechanism that generates MMOs has been carried out, and the theory remains
fragmentary.

Finally, three-dimensional systems with three time scales can exhibit all of the mech-
anisms discussed in this section. Namely a three-time-scale system may be considered as
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having two slow variables, in which case the folded-node and singular-Hopf mechanisms
may be found, or, alternatively, as having two fast variables, which allows for the possibility
of a tourbillion.

The following sections are case studies that illustrate these different local mechanisms
for MMOs:

• TheKoper modelin Section 4 is a three-dimensional slow-fast system with a folded
node and a supercritical singular Hopf bifurcation.

• The three-dimensionalreduced Hodgkin–Huxley modelin Section 5 also features a
folded node, but has a subcritical singular Hopf bifurcation.

• The four-dimensionalOlsen model of the peroxidase-oxidase reactionin Section 6
displays MMOs associated with a tourbillion.

• The Showalter–Noyes–Bar-Eli modelin Section 7 is a seven-dimensional system
that exhibits MMOs. The global mechanism that organizes these MMOs is un-
known, but we show here that their SAOs are due to a tourbillion.

4. MMOs in the Koper model of chemical reactors. Our first case study is a system
introduced by Koper [122]. We use it to illustrate how MMOs arise near a folded node and
near a (supercritical) singular Hopf bifurcation in a specific model equation. The equations
of the Koper model are





ε1 ẋ = k y − x3 + 3 x− λ,
ẏ = x− 2 y + z,
ż = ε2 (y − z),

(4.1)

whereλ andk are parameters. Koper studied this three-dimensional idealized model of chem-
ical reactions with MMOs. While this example is well known, we revisit its analysis and
enhance it by using the recently developed theory outlined in the previous sections. When
ε1 andε2 are both small, system (4.1) has three time scales; when onlyε1 is small, it is a
slow-fast system with two slow variablesy andz and one fast variablex. We note that a
two-dimensional variant of (4.1) was first studied by Boissonade and De Kepper [26] in their
efforts to understand bistability and oscillations of chemical systems. The first analysis of
MMOs in the three-dimensional extended model was carried out by Koper who explained the
MMOs by invoking the presence of a Shil′nikov homoclinic bifurcation.

As mentioned in Section 3.2, the Koper model (4.1) is a rescaled subfamily of the cubic
normal form (3.6) for the singular Hopf bifurcation. To see this, replace(x, y, z) in sys-
tem (4.1) by(u, v, w) and consider the affine coordinate change

x =
u− 1

3
, y =

k v − λ + 2
27

, z =
2 v − w − 1

3
.

Now also scale time by the factor−k
9 , where we assume thatk < 0. Then (4.1) becomes (3.6)

with ε = −k ε1/81, a = 18/k, b = 81 ε2/k2, c = −9 (ε2 + 2)/k andν = (3 ε2 λ − 6 ε2 −
3 k ε2/k2. Note that the coefficients of the normal form satisfy

2 b− a c + a2 = 0,

which means that the Koper model (4.1) is only equivalent to a subfamily of the singular-Hopf
normal form (3.6). However, (4.1) still has a folded node and a singular Hopf bifurcation in
certain parameter regimes.

Let us first analyze the parameter regimes where SAOs are organized by a folded node.

29


