
transition to relaxation oscillations.
To end this case study, we report the existence of a different type of MMO not found

by Koper; it is shown in Figure 22. The MMO has SAOs both near the maximum and the
minimum of the LAO. Hence, this MMO passes near folded nodesna

± on both fold curves.
The parameter region where this occurs is quite small, so that it is difficult to locate such an
MMO using simulation; it is the region in Figure 16 neark = −2 that can only be seen in
the enlargement in panel (b). We found the MMO by selecting parametersk = −2.1 and
λ = −0.063 in this region and chooseε1 = 0.01 rather small; a more detailed study of the
range of parameters for which such MMOs with two SAO epochs remains future work.

5. MMOs in a reduced Hodgkin–Huxley system.As the next case study we consider
a three-dimensional reduced version of the famous Hodgkin–Huxley equations [102] that
describe the generation of action potentials in the squid giant axon; see [115, 196] for the
derivation and also [43], where the same example was used. The reduced model only de-
scribes the dynamics for voltage (V ), the activation of the potassium channels (n) and the
inactivation of the sodium channels (h); the activation of the sodium channels (m) is very
fast and it reaches its equilibrum statem = m∞(V ) (almost) instantaneously which can be
justified mathematically by a center-manifold reduction [196]. The evolution of the gatesn
andh is considered slow while the evolution of the voltageV is considered fast. To justify
this time-scale separation, we nondimensionalize the Hodgkin–Huxley equations by introdu-
cing a dimensionless voltage variablev = V/kv and a dimensionless timeτ = t/kt where
kv = 100 mV is a reference voltage scale andkt = 1 ms is a fast reference time scale; this
gives





εv̇ = f(v, h, n) := Ī −m3
∞(v)h (v − ĒNa)

− ḡk n4 (v − ĒK)− ḡl (v − ĒL),

ḣ = g1(v, h) :=
kt

τh

(h∞(v)− h)
th(v)

,

ṅ = g2(v, n) :=
kt

τn

(n∞(v)− n)
tn(v)

,

(5.1)

with dimensionless parameters̄Ex = Ex/kv, ḡx = gx/gNa, with x ∈ {m, n, h}, Ī =
I/(kvgNa) andε = C/(ktgNa) =: τv/kt. The original Hodgkin–Huxley parameter values
are given in Table 5.1. Thus,ε = 1

120 ≈ 0.01 ¿ 1 and system (5.1) represents a singularly
perturbed system withv as a fast variable and(n, h) as slow variables. The functionsx∞(v)
andtx(v), with x ∈ {m, n, h}, describe the (dimensionless) steady-state values and time
constants of the gating variables, respectively; they are given by

x∞(v) =
αx(v)

αx(v) + βx(v)
and tx(v) =

1
αx(v) + βx(v)

,

with

αm(v) = (kvv+40)/10
1−exp(−(kvv+40)/10) , βm(v) = 4 exp(−(kvv + 65)/18),

αh(v) = 0.07 exp(−(kvv + 65)/20), βh(v) = 1
1+exp(−(kvv+35)/10) ,

αn(v) = (kvv+55)/100
1−exp(−(kvv+55)/10) , βn(v) = 0.125 exp(−(kvv + 65)/80).

The orginal Hodgkin–Huxley equations with scaling parametersτh = τn = τm = 1
shows no MMOs [102], but ifτh > τh,e > 1 or τn > τn,e > 1 are beyond certain threshold
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gNa gk gl ENa EK EL τh τn C

120.0 36.0 0.3 50.0 −77.0 −54.4 1.0 1.0 1.0
TABLE 5.1

Original parameter values of the Hodgkin–Huxley equations(5.1).

values then MMOs are observed [43, 196, 197]. Here, we focus on a specific case with
τh = 6.0, τn = 1.0 andC = 1.2 (so thatε = 0.01). We use the applied currentI (in units
of µA/cm2) of the original Hodgkin–Huxley equations, that is, the rescaledĪ in (5.1), as the
only free parameter. Furthermore, in order to facilitate comparison with other studies, we
represent output in terms of the non-rescaled voltageV = 100 v, which is in units of mV.

From a mathematical point of view, the MMOs are generated due to the presence of a
(subcritical) singular Hopf bifurcation atI = IH ≈ 8.359 and a folded node in the singular
limit ε = 0. The critical manifold of (5.1) is defined by,

n4(v, h) =
Ī −m∞(v)3 h (v − ĒNa)− ḡL (v − Ēl)

ḡk (v − Ēk)
,

which is a cubic-shaped surfaceS = Sa,−∪F−∪Sr∪F+∪Sa,+ for physiologically relevant
values ofI. The outer sheetsSa,± are stable, the middle sheetSr is unstable, andF± denote
fold curves [196]. The desingularized reduced system on this manifold is given by

{
v̇ =

(
∂

∂hf
)

g1 +
(

∂
∂nf

)
g2,

ḣ = − (
∂
∂v f

)
g1.

A phase-plane analysis of the desingularized reduced flow in the physiologically relevant
range shows that there exists a folded node singularity onF− for I > IFSN ≈ 4.83. Fur-
thermore, it can be shown that the global-return mechanism projects into the funnel region
for I < Ir ≈ 15.6; see [196, 197]. Hence, the folded node theory predicts the existence of
stable MMOs for a range ofI-values that converges toIFSN < I < Ir in the singular limit
asε → 0.

Figure 23(a) shows the folded node singularity forI = 12, where it lies approximately
at (v, h, n) = (−0.593, 0.298, 0.407), in projection onto the(n, V )-plane. The two black
curves are the strong singular canardγ̃s and the primary weak canardγw that pass through
the folded node. The other two curves are maximal secondary canardsξ5 andξ6 that were
found as intersections of extended slow manifolds computed near the folded node; see also
Section 8 and [43, Figure 6]. Their projections onto the(h, V )-plane, which illustrate the
oscillating nature ofξ5 andξ6, are shown in Figure 23(b). Notice that the final oscillations
of the primary weak canardγw in Figure 23(a) show the distinct characteristics of saddle-
focus-induced SAOs. Indeed, a saddle-focus equilibriumq ≈ (−0.589, 0.379, 0.414) exists
relatively close to the folded node, due to the singular Hopf bifurcation atIH ≈ 8.359.
DecreasingI from I = 12 towardI = IH causesq to move closer to the folded node and the
mix of folded node induced SAOs and saddle-focus induced SAOs will be more pronounced;
compare with Figure 21(c).

The equilibriumq for I = 12 persists whenI is varied. A partial bifurcation diagram is
shown in Figure 24(a), where we plot the maximum ofV versusI. Similar to the analysis
in [43], a unique equilibrium exists for allI and it is stable forI < IH and, approximately,
I > 270.772. The (singular) Hopf bifurcation (labeledH) at IH gives rise to a family of
saddle-type periodic orbits. This family of periodic orbits undergoes three fold bifurcations
(SL) at I ≈ 6.839, I ≈ 27.417 andI = ISL ≈ 14.860, after which both non-trivial Floquet
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FIG. 23. Maximal secondary canard orbitsξ5 and ξ6 of the three-dimensional reduced Hodgkin–Huxley
equations(5.1) with τh = 6.0, τn = 1.0, C = 1.2 and I = 12. Panel (a) shows the two canard orbits in
projection onto the(n, V )-plane; also shown are the strong singular canardγ̃s and the weak primary canardγw.
The projection ofξ5 and ξ6 onto the(h, V )-plane in panel (b) shows that they make five and six oscillations,
respectively.
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FIG. 24. MMO periodic orbits of the three-dimensional reduced Hodgkin–Huxley equations(5.1) with τh =
6.0, τn = 1.0 and C = 1.2. Panel (a) shows a bifurcation diagram where the maximalV -value is plotted
versus the applied currentI. Isolas of MMO periodic orbits exist over a range ofI bounded by a period-doubling
bifurcation PD and a saddle-node of limit cycle bifurcationSL. The isolas are colored in alternating light and
dark blue. Panel (b) shows an enlargement near the Hopf bifurcation. All isolas shown have a fold bifurcation for
ISL ≈ 8.087. The periodic orbitΓ shown in panel (c) is the stable MMO forI = 12; panel (d) showsΓ when it
has a maximalV -value of−20 mV.
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multipliers are less than 1 in modulus and the associated stable periodic orbits correspond to
tonic spiking. Figure 24(a) shows that the firstSL is quickly followed by a period-doubling
bifurcation (PD) atI ≈ 7.651, where one of the Floquet multipliers, which are both unstable
after this firstSL, passes through−1. Hence, the periodic orbits afterPD are non-orientable
and of saddle type. Note that a secondPD (not shown in Figure 24(a)) must take place before
the secondSL.

MMOs exist as isolated families of periodic orbits for a range ofI; Figure 24(a) shows
eleven of these isolas colored in alternating light and dark blue. All periodic orbits on a
single isola have the same number of oscillations. Each isola contains a short plateau with
large maximalV nearV = 40 mV where the associated MMOs are stable and have signatures
1s. For our specific choiceε = 0.01, we found that the stable MMO interval appears to be
bounded byIH on the left and byISL on the right, that is,8.359 < I < 14.860. Recall that
the theory based on the singular limit asε → 0 predicts the existence of stable MMO periodic
orbits with signatures1s for 4.83 ≈ IFSN < I < Ir ≈ 15.6; the match is surprisingly good,
even thoughε is relatively large. AsI ↓ IH , the numbers in the stable1s MMO signatures
approaches infinity, since a homoclinic orbit through the Hopf singularity is formed; see
also [43]. Furthermore, there exist stable MMO signatures with more complicated signatures
1s11s2 · · · ; see [197]. The MMO periodic orbits go through several bifurcations along the
isolas (mostly period-doubling and/or saddle-node of limit cycle bifurcations); compare also
Figure 19 for the Koper model in Section 4. The maximalV -value indicates the amplitude of
the largest of the oscillations of the respective MMO periodic orbit. Note the folded structure
of the isolas forV = VF+ ≈ −20 mV which is approximately the repolarization threshold
value for action potentials. This value also corresponds to theV -value of the upper fold curve
F+, at which a trajectory jumps back. For MMOs on a plateau, the LAOs correspond to a full
action potential, while thes SAOs that follow are subthreshold oscillations.

Figure 24(b) shows an enlargement of how the isolas of MMO periodic orbits accumulate
near the Hopf bifurcation, which is the region where theory predicts a signature1s, that
is, an MMO with one large excursions ands SAOs. This is organised by how the global-
return mechanism projects onto the critical manifoldS asI varies. If the return projects onto
a secondary canard then part of the periodic orbit follows the secondary canards onto the
unstable branchSr,ε of the slow manifold. However, only canard periodic orbits that reach the
region of the upper fold curveF+ are maximal secondary canards. Hence, the corresponding
family of secondary canards can be split into two groups: we call the secondary canards with
maximumV < VF+ jump-backcanards and those with maximumV > VF+ jump-away
canards. This is an important distinction in this application, because the jump-away canards
will create action potentials, the jump-back canards will not.

We illustrate the canards along one of the isolas in Figures 24(a) and (b). The stable
MMO periodic orbitΓ that exists on the plateau forI = 12 is shown in Figure 24(c); its
signature is16 and it lies on the isola that corresponds to periodic orbits with a total of seven
oscillations. Note that the large excursion ofΓ is above threshold. The six SAOs ofΓ are due
to the fact that the global return lands on the rotational sector bounded by the maximal sec-
ondary canardsξ5 andξ6 for I = 12 (not shown); compare Figures 23(b). When the periodic
orbit Γ is continued in the direction of increasingI, the maximalV -value decreases and the
LAO changes from an action potential to a sub-threshold oscillation. Figure 24(d) showsΓ
(which is now unstable) when its maximalV -value is approximately−20 mV. Observe that
Γ still has a total of seven oscillations, but now two of them have a fast segment. These fast
segments are jump-back canards. More precisely, the periodic orbitΓ consists of a segment of
a jump-back canard of theξ6 canard family that connects to a segment of a jump-back canard
of the strong canard family, which in turn connects to the former segment, hence, closing the
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FIG. 25. Continuation of a family of periodic orbits that consist of ten oscillations. The continuation starts and
ends atI = 12 with a fold atI ≈ 8.087. Panel (a) shows a three-dimensional “waterfall diagram” visualization
of the time series ofV for 90 computed periodic orbits along this part of the isola; the boldface periodic orbit lies
at the fold point. The orbits in blue correspond to the part of isola in between the fold point and theI-value that
corresponds to the Hopf bifurcation, that is,IH ≈ 8.359. Panel (b) shows the maximalV -value along the branch
in the(I, V )-plane, where the arrows indicate the direction of the continuation. Panel (c) shows the periodic orbit
at the fold together with a coexisting small periodic orbit in projection onto the(n, v)-plane.

loop. One could classifyΓ in Figure 24(d) as an MMO with signature25, because only five
of its oscillations have really small amplitude due to the passage near the folded node, while
there are two clearly distinguishable larger oscillations with fast segments due to jump-back
canards. However, none of these larger canard oscillations ofΓ are full action potentials,
meaning that all oscillations are classified as SAOs in this application context.

Figure 25 illustrates the characteristics of the periodic orbits along the lower parts of
the isolas in Figure 24(a), where they are very close to the branch of saddle periodic orbits
bifurcating from the Hopf bifurcation. More specifically, Figure 25(a) shows a “waterfall
diagram” representation of the time series of 90 periodic orbits along the lower part, for
I ≤ 12, of the isola along which one finds a total of ten oscillations. This part of the branch is
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TABLE 6.1
Parameter values used in the four-dimensional Olsen model(6.1)

k1 k2 k3 k4 k5 k6 k7 k−7 k8 α
0.28 250 0.035 20 5.35 0 0.8 0.1 0.825 1

shown in Figure 25(b). The fold point for this isola is atI = ISL ≈ 8.087, and the associated
periodic orbit is drawn in boldface in Figure 25(a). The periodic orbits on the part of the
branch forISL ≤ I ≤ IH are highlighted in blue. The periodic orbits along this part of the
isola are quite different from the MMOs one finds near the plateaux of the isolas; Namely,
they consist of a mix of SAOs and jump-back canards, ten in total. Figure 25(c) shows the
projection of the periodic orbit at the fold onto the(n, V )-plane; also shown is the coexisting
small periodic orbit that lies on the branch emanating from the Hopf bifurcation. This figure
suggests that the periodic orbit at the fold is approaching a homoclinic cycle of the small
periodic orbit.

6. MMOs in Olsen’s four-dimensional model of the PO reaction.Many applications
do not lead to models that have a clear split into slow and fast time scales. Often some
assumptions to that extent can be made, but most variables will be slow in certain regions
of phase space and fast in others. The following case study illustrates how the geometrical
ideas from slow-fast systems can be used in such a context. We study a four-dimensional
model of the peroxidase-oxidase (PO) biochemical reaction that was introduced by Olsen
and collaborators [37, 172]; see also [42], where this same example was used. The Olsen
model describes dynamics of the concentrations of two substrates (O2 andNADH) and two
free radicals, denotedA, B, X andY , respectively; it is given by the differential equations





A′ = −k3ABY + k7 − k−7A,
B′ = α(−k3ABY − k1BX + k8),
X ′ = k1BX − 2k2X

2 + 3k3ABY − k4X + k6,
Y ′ = −k3ABY + 2k2X

2 − k5Y.

(6.1)

Note thatα is an artificial time-scale parameter that we introduced for the purpose of this
case study;α = 1 in [37, 172]. The other parameters are reaction rates and we chose their
values as given in Table 6.1, such that the periodic orbits that exist for these parameter values
are representative for the Olsen model (6.1). We focus our study on a stable MMO periodic
orbit, denotedΓ; its time series of the variableA is shown in Figure 26(b). We observe that
Γ has signature1s, and we estimate thats is about15. Below, we show that the SAOs of
this example occur during passage through a dynamic Hopf bifurcation, and we analyze the
global return mechanism of this trajectory.

6.1. Bifurcations of the fast subsystem.There is no clear split between the different
time scales in the Olsen model (6.1), but it is known thatB evolves on a slower time scale
than the other variables [153]. Hence, it makes sense to consider the fast subsystem obtained
by settingα = 0, that is,B′ = 0 and B acts as a parameter in (6.1). The bifurcation
diagram is shown in projection onto the(A, B)-plane in Figure 26(a), which is invariant
becausek6 = 0; see Table (6.1). There are two branches of equilibria that intersect at a
transcritical bifurcationT for B = k4/k1 ≈ 71.426; solid lines indicate stable and dashed
lines unstable equilibria. The equilibria that are colored black in Figure 26(a) are physically
relevant because they have non-negative values ofX andY ; for grey equilibria, on the other
hand,X or Y is negative. One branch is the black horizontal line atA = 8; it lies in the
(A,B)-plane (whereX = Y = 0), which is invariant sincek6 = 0. Equilibria along this
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