
Several viewpoints have been adopted to study slow-fast systems, starting with asymp-
totic analysis [56, 164] using techniques such as matched asymptotic expansions [118, 148].
Geometric Singular Perturbation Theory (GSPT) takes a geometric point of view and fo-
cuses upon invariant manifolds, normal forms for singularities and analysis of their unfold-
ings [10, 69, 110, 111, 215]. Fenichel’s seminal work [69] on invariant manifolds was an
initial foundation of GSPT and it is also called Fenichel theory. A third viewpoint was ad-
opted by a group of French mathematicians in Strasbourg. Using nonstandard analysis, they
made many important discoveries [19, 20, 22, 23, 47, 48] about slow-fast systems. This paper
adopts the GSPT viewpoint. We only focus on the results of GSPT that are necessary to study
MMOs. There are other important techniques that are part of GSPT, such as the Exchange
Lemma [110, 112], the blow-up method [55, 142, 233] and slow-fast normal form theory [10]
that are not described in this paper.

2.1. The critical manifold and the slow flow. Solutions of a slow-fast system fre-
quently exhibit slow and fast epochs characterized by the speed at which the solution ad-
vances. Asε → 0, the trajectories of (2.1) converge during fast epochs to solutions of thefast
subsystemor layer equations

{
x′ = f(x, y, λ, 0),
y′ = 0.

(2.3)

During slow epochs, on the other hand, trajectories of (2.2) converge to solutions of
{

0 = f(x, y, λ, 0),
ẏ = g(x, y, λ, 0), (2.4)

which is a differential-algebraic equation (DAE) called theslow flowor reduced system. One
goal of GSPT is to use the fast and slow subsystems, (2.3) and (2.4), to understand the dy-
namics of the full system (2.1) or (2.2) forε > 0. The algebraic equation in (2.4) defines the
critical manifold

S := {(x, y) ∈ Rm × Rn | f(x, y, λ, 0) = 0}.
We remark thatS may have singularities [141], but we assume here that this does not hap-
pen so thatS is a smooth manifold. The points ofS are equilibrium points for the layer
equations (2.3).

Fenichel theory [69] guarantees persistence ofS (or a subsetM ⊂ S) as a slow manifold
of (2.1) or (2.2) forε > 0 small enough ifS (or M ) is normally hyperbolic. The notion of
normal hyperbolicity is defined for invariant manifolds more generally, effectively stating
that the attraction to and/or repulsion from the manifold is stronger than the dynamics on the
manifold itself; see [66, 67, 68, 95] for the exact definition. Normal hyperbolicity is often
difficult to verify when there is only a single time scale. However, in our slow-fast setting,
S consists entirely of equilibria and the requirement of normal hyperbolicity ofM ⊂ S
is satisfied as soon as allp ∈ M are hyperbolic equilibria of the layer equations, that is, the
Jacobian(Dxf)(p, λ, 0) has no eigenvalues with zero real part. We call a normally hyperbolic
subsetM ⊂ S attracting if all eigenvalues of(Dxf)(p, λ, 0) have negative real parts for
p ∈ M ; similarly M is calledrepelling if all eigenvalues have positive real parts. IfM is
normally hyperbolic and neither attracting nor repelling we say it is ofsaddle type.

Hyperbolicity of the layer equations fails at points onS where its projection onto the
space of slow variables is singular. Generically, such points are folds in the sense of singu-
larity theory [10]. At a fold pointp∗, we havef(p∗, λ, 0) = 0 and(Dxf)(p∗, λ, 0) has rank
m−1 with left and right null vectorsw andv, such thatw · [(D2

xxf)(p∗, λ, 0) (v, v)] 6= 0 and
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w · [(Dyf)(p∗, λ, 0)] 6= 0. The set of fold points forms a submanifold of codimension one in
then-dimensional critical manifoldS. In particular, whenm = 1 andn = 2, the fold points
form smooth curves that separate attracting and repelling sheets of the two-dimensional crit-
ical manifoldS. In this paper we do not consider more degenerate singular points of the
projection ofS onto the space of slow variables.

Away from fold points the implicit function theorem implies thatS is locally the graph
of a functionh(y) = x. Then the reduced system (2.4) can be expressed as

ẏ = g(h(y), y, λ, 0). (2.5)

We can also keep the DAE structure and write (2.4) as the restriction toS of the vector field

{
ẋ = − (Dxf)−1 (Dyf) g,
ẏ = g,

(2.6)

on Rm × Rn by observing thatf = 0 and ẏ = g imply ẋ = − (Dxf)−1 (Dyf) g. The
vector field (2.6) blows up whenf is singular. It can bedesingularizedby scaling time by
− det (Dxf), at the expense of changing the direction of the flow in the region where this
determinant is positive. This desingularized system plays a prominent role in much of our
analysis. IfS is normally hyperbolic, not onlyS, but also the slow flow onS persists for
ε > 0; this is made precise in the following fundamental theorem.

THEOREM 2.1 (Fenichel’s Theorem [69]). SupposeM = M0 is a compact normally
hyperbolic submanifold (possibly with boundary) of the critical manifoldS of (2.2)and that
f, g ∈ Cr, r < ∞. Then forε > 0 sufficiently small the following holds:

(F1) There exists a locally invariant manifoldMε diffeomorphic toM0. Local invariance
means thatMε can have boundaries through which trajectories enter or leave.

(F2) Mε has a Hausdorff distance ofO(ε) fromM0.
(F3) The flow onMε converges to the slow flow asε → 0.
(F4) Mε is Cr-smooth.
(F5) Mε is normally hyperbolic and has the same stability properties with respect to the

fast variables asM0 (attracting, repelling or saddle type).
(F6) Mε is usually not unique. In regions that remain at a fixed distance from the bound-

ary ofMε, all manifolds satisfying (F1)–(F5) lie at a Hausdorff distanceO(e−K/ε)
from each other for someK > 0 with K = O(1).

The normally hyperbolic manifoldM0 has associated local stable and unstable manifolds

W s
loc(M0) =

⋃

p∈M0

W s
loc(p), and Wu

loc(M0) =
⋃

p∈M0

Wu
loc(p),

whereW s
loc(p) andWu

loc(p) are the local stable and unstable manifolds ofp as a hyperbolic
equilibrium of the layer equations, respectively. These manifolds also persist forε > 0
sufficiently small: there exist local stable and unstable manifoldsW s

loc(Mε) andWu
loc(Mε),

respectively, for which conclusions (F1)–(F6) hold if we replaceMε andM0 by W s
loc(Mε)

andW s
loc(M0) (or similarly byWu

loc(Mε) andWu
loc(M0)).

We callMε a Fenichel manifold. Fenichel manifolds are a subclass ofslow manifolds,
invariant manifolds on which the vector field has speed that tends to0 on the fast time scale
asε → 0. We use the convention that objects in the singular limit have subscript0, whereas
the associated perturbed objects have subscriptsε.

2.1.1. The critical manifold and the slow flow in the Van der Pol equation.Let us
illustrate these general concepts of GSPT with an example. One of the simplest systems in
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FIG. 2. Phase portraits of the Van der Pol equation(2.7) for λ = 0 (a) and forλ = 1 (b). Shown are
the critical manifoldS (grey solid curve) and they-nullcline (dashed line); double arrows indicate the direction
of the fast flow and single arrows that of the slow flow. Panel (a) shows a candidate for a relaxation oscillation
(black) surrounding an unstable equilibrium. Panel (b) is the moment of the singular Hopf bifurcation with a folded
singularity at the local minimump+.

which the concepts are manifest, and historically perhaps also the first, is the Van der Pol
equation [222, 223, 224] with constant forcingλ ∈ R given by

{
ε ẋ = y − 1

3x3 + x,
ẏ = λ− x.

(2.7)

This slow-fast system has only one fast and one slow variable, but it already exhibits com-
plicated dynamics that were truly surprising when they were first discovered [48]. By setting
ε = 0 in (2.7), we obtain the reduced system with an algebraic equation that defines the
critical manifold of (2.7) as the cubic curve

S = {(x, y) ∈ R2 | y = 1
3x3 − x =: c(x)}. (2.8)

It is normally hyperbolic away from the local maximum and minimump± = (±1,∓ 2
3 ) of

the cubic, whereS has a fold with respect to the fast variablex. At p± normal hyperbolicity
fails, since ∂

∂xf(x, y, λ, 0) = 1 − x2 is zero atp±. Hence,p± are the fold points and they
naturally decompose the critical manifold into three branches,

S = Sa,− ∪ {p−} ∪ Sr ∪ {p+} ∪ Sa,+,

whereSa,− := S ∩ {x < −1}, Sa,+ := S ∩ {x > 1} andSr = S ∩ {−1 < x < 1}. From
the sign of ∂

∂xf(x, y, λ, 0) we conclude that the two branchesSa,− andSa,+ are attracting,
and the branchSr is repelling. The critical manifoldS is shown as the grey cubic curve in
Figure 2; note thatS and its attracting/repelling nature does not depend onλ, so it is the same
both in panel (a), whereλ = 0, and panel (b), whereλ = 1. The dynamics of any point not on
S is entirely controlled by the direction of the fast variablex, which is indicated in Figure 2
by the horizontal double arrows; observe that the middle branch ofS is repelling and the two
unbounded branches are attracting.

To obtain the slow flow (2.5) onS in the Van der Pol equation (2.7) it is not actually
necessary to solve the cubic equationy = c(x) for x on Sa,−, Sr andSa,+. It is more
convenient to write the slow (reduced) flow in terms of the fast variablex. To this end, we
differentiatef(x, y, λ, 0) = y − c(x) = 0 with respect toτ and obtain

ẏ = ẋ x2 − ẋ = ẋ (x2 − 1).
6



Combining this result with the equation forẏ we get:

(x2 − 1) ẋ = λ− x or ẋ =
λ− x

x2 − 1
. (2.9)

The direction of the slow flow onS is indicated in Figure 2 by the arrows on the grey curve;
panel (a) is forλ = 0 and panel (b) forλ = 1. The slow flow does depend onλ, because the
direction of the flow is partly determined by the location of the equilibrium atx = λ on S.
The slow flow is well defined onSa,−, Sr andSa,+, but not atx = ±1 (as long asλ 6= ±1).
We can desingularize the slow flow nearx = ±1 by rescaling time with the factor(x2 − 1).
This gives the equatioṅx = λ − x of thedesingularized flow. Note that this time rescaling
reverses the direction of time on the repelling branchSr, so care must be taken when relating
the phase portrait of the desingularized system to the phase portrait of the slow flow.

Let us now focus specifically on the case forλ = 0, shown in Figure 2(a), because it is
representative for the range|λ| < 1. They-nullcline of (2.7) is shown as the dashed black
vertical line (thex-nullcline isS) and the origin is the only equilibrium, which is a source for
this value ofλ. The closed curve is a singular orbit composed of two fast trajectories starting
at the two fold pointsp± concatenated with segments ofS. Such continuous concatenations
of trajectories of the layer equations and the slow flow are calledcandidates[20]. The singular
orbit follows the slow flow onS to a fold point, then itjumps, that is, it makes a transition
to a fast trajectory segment that flows to another branch ofS. The same mechanism returns
the singular orbit to the initial branch ofS. It can be shown [142, 164] that the singular orbit
perturbs forε > 0 to a periodic orbit of the Van der Pol equation that liesO(ε) close to this
candidate. Van der Pol introduced the termrelaxation oscillationto describe periodic orbits
that alternate between epochs of slow and fast motion.

2.2. Singular Hopf bifurcation and canard explosion. The dynamics of slow-fast sys-
tems in the vicinity of points on the critical manifold where normal hyperbolicity is lost can
be surprisingly complicated and nothing like what we know from systems with a single time
scale. This section addresses the phenomenon known as acanard explosion, which occurs
in planar slow-fast systems after asingular Hopf bifurcation. We discuss this first for the
example of the Van der Pol equation (2.7).

2.2.1. Canard explosion in the Van der Pol equation.As mentioned above, the phase
portrait in Figure 2(a) is representative for a range ofλ-values. However, the phase portrait
for λ = 1, shown in Figure 2(b), is degenerate. Linear stability analysis shows that for
ε > 0 the unique equilibrium point(x, y) = (λ, 1

3λ3 − λ) is a source for|λ| < 1, but a
sink for |λ| > 1. Supercritical Hopf bifurcations occur atλH = ±1. The analysis of how
the observed stable dynamics of the Van der Pol equation (2.7) changes withλ from a stable
focus to relaxation oscillations whenε > 0 is small was a major development in the theory of
slow-fast systems. Figure 3(a) shows the result of a numerical continuation in the parameter
λ of the periodic orbit forε = 0.05 that emerges from the Hopf bifurcation. Close to the
Hopf bifurcation atλH = 1.0 the periodic orbit is small (cyan curve), as is to be expected.
However, asλ decreases, the periodic orbit grows very rapidly, where it follows the repelling
slow manifoldSr

ε for a long time. In fact, the values ofλ for all orange orbits in Figure 3(a)
areλ ≈ 0.993491, that is, they agree to six decimal places. Note that we show the growing
orbits only up to a characteristic intermediate size: the largest periodic orbit in Figure 3(a) just
encompasses the fold pointp−. Upon further continuation inλ this periodic orbit continues to
grow rapidly until it reaches the shape of a relaxation oscillation; compare with Figure 2(a).

The Hopf bifurcation atλH = 1 occurs when the equilibrium moves over the fold point
p+. It is called a singular Hopf bifurcation. The eigenvalues at the Hopf bifurcation have
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FIG. 3. Numerical continuation of periodic orbits in the Van der Pol’s equation(2.7) for ε = 0.05. Panel (a)
shows a selection of periodic orbits: the cyan orbit is a typical small limit cycle near the Hopf bifurcation atλ = λH ,
whereas all the orange orbits occur in a very small parameter interval atλ ≈ 0.993491. Panels (b) and (c) are
sketched bifurcation diagrams corresponding to supercritical and subcritical singular Hopf bifurcations; hereA
denotes the amplitude of the limit cycle.

magnitudeO(ε−1/2), so that the periodic orbit is born at the Hopf bifurcation with an inter-
mediate period between the fastO(ε−1) and slowO(1) time scales. The size of this periodic
orbit grows rapidly from diameterO(ε1/2) to diameterO(1) in an interval of parameter val-
uesλ of lengthO(exp(−K/ε)) (for someK > 0 fixed) that isO(ε) close toλH . Figures 3(b)
and (c) are sketches of possible bifurcation diagrams inλ for the singular Hopf bifurcation
in a supercritical case (which one finds in the Van der Pol system) and in a subcritical case,
respectively; the vertical axis represents the maximal amplitude of the periodic orbits. The
two bifurcation diagrams are sketches that highlight the features described above. There is a
very small interval ofλ where the amplitude of the oscillation grows in a square-root fashion,
as is to be expected near a Hopf bifurcation. However, the amplitude then grows extremely
rapidly until it reaches a plateau that corresponds to relaxation oscillations.

The rapid growth in amplitude of the periodic orbit near the Hopf bifurcation is called a
canard explosion. The name canard derives originally from the fact that some periodic orbits
during the canard explosion look a bit like a duck [48]. In fact, the largest periodic orbit in
Figure 3(a) is an example of such a “duck-shaped” orbit. More generally, and irrespective of
its actual shape, one now refers to a trajectory as acanard orbitif it follows a repelling slow
manifold for a time ofO(1) on the slow time scale. A canard orbit is called amaximal canard
if it joins attracting and repelling slow manifolds. Since the slow manifolds are not unique,
this definition depends upon the selection of specific attracting and repelling slow manifolds;
compare (F6) of Theorem 2.1. Other choices yield trajectories that are exponentially close to
one another. In the Van der Pol equation (2.7) the canard explosion occursO(e−K/ε)-close in
parameter space to the point where the manifoldsSa,+

ε andSr
ε intersect in a maximal canard.

It is associated with the parameter valueλ = 1 where the equilibrium lies at the fold point
p+ of the critical manifoldS; see Figure 2(b).

2.3. Singular Hopf bifurcation and canard explosion in generic planar systems.In
the Van der Pol equation (2.7) the singular Hopf bifurcation takes place atλ = 1 where the
equilibrium lies at a fold point. In a generic family of slow-fast planar systems a singular
Hopf bifurcation does not happen exactly at a fold point, but at a distanceO(ε) in both phase
space and parameter space from the coincidence of the equilibrium and fold point. One can
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obtain a generic family by modifying the slow equation of the Van der Pol equation (2.7) to

ẏ = λ− x + a y.

In this modified system the equilibrium and fold point still coincide atx = 1, but the Hopf
bifurcation occurs forx =

√
1 + ε a. A detailed dynamical analysis of canard explosion and

the associated singular Hopf bifurcation using geometric or asymptotic methods exists for
planar slow-fast systems [12, 13, 55, 56, 140, 142]; we summarize these results as follows.

THEOREM 2.2 (Canard Explosion inR2 [142]). Suppose a planar slow-fast system has
a generic fold pointp∗ = (xp, yp) ∈ S, that is,

f(p∗, λ, 0) = 0,
∂

∂x
f(p∗, λ, 0) = 0,

∂2

∂x2
f(p∗, λ, 0) 6= 0,

∂

∂y
f(p∗, λ, 0) 6= 0.

(2.10)
Assume the critical manifold is locally attracting forx < xp and repelling forx > xp and
there exists a folded singularity forλ = 0 at p∗, namely,

g(p∗, 0, 0) = 0,
∂

∂x
g(p∗, 0, 0) 6= 0,

∂

∂λ
g(p∗, 0, 0) 6= 0. (2.11)

Then a singular Hopf bifurcation and a canard explosion occur at

λH = H1 ε + O(ε3/2) and (2.12)

λc = (H1 + K1) ε + O(ε3/2). (2.13)

The coefficientsH1 andK1 can be calculated explicitly from normal form transformations [142]
or by considering the first Lyapunov coefficient of the Hopf bifurcation [144].

In the singular limit we haveλH = λc. For anyε > 0 sufficiently small, the linearized
system [88, 147] at the Hopf bifurcation point has a pair ofsingular eigenvalues[27]

σ(λ; ε) = α(λ; ε) + i β(λ; ε),

with α(λH ; ε) = 0, ∂
∂λα(λH ; ε) 6= 0 and

lim
ε→0

β(λH ; ε) = ∞, on the slow time scaleτ , and

lim
ε→0

β(λH ; ε) = 0, on the fast time scalet.

2.4. Folded singularities in systems with one fast and two slow variables.A canard
explosion for a planar system happens in an exponentially small parameter interval. However,
as soon as there is more than one slow variable, canard orbits can exist forO(1) ranges of a
parameter. To illustrate this, we consider (2.1) for the special casem = 1 andn = 2, and
write it as





ε ẋ = f(x, y, λ, ε),
ẏ1 = g1(x, y, λ, ε),
ẏ2 = g2(x, y, λ, ε).

(2.14)

We assume that the critical manifoldS = {f = 0} of (2.14) has an attracting sheetSa and a
repelling sheetSr that meet at a fold curveF as is shown in Figure 4. We also assume that
the fold pointsp∗ ∈ F onS are generic in the sense of singularity theory, that is,

f(p∗, λ, 0) = 0,
∂f

∂x
(p∗, λ, 0) = 0,

∂2f

∂x2
(p∗, λ, 0) 6= 0, Dyf(p∗, λ, 0) has full rank one.
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FIG. 4. The critical manifoldS with attracting sheetSa (red) and repelling sheetSr (blue) that meet at a fold
curveF (grey). The fast flow transverse toS is indicated by double (large) arrows and the slow flow onS near a
folded node by single (small) arrows; see also Figure 5(b).

The slow flow is not defined on the fold curve before desingularization. At most fold points,
trajectories approach or depart from both the attracting and repelling sheets ofS. In generic
systems, there may be isolated points, calledfolded singularities, where the trajectories of
the slow flow switch from incoming to outgoing. Figure 4 shows an example of the slow flow
on S and the thick dot onF is the folded singularity at whichF changes from attracting to
repelling (with respect to the slow flow).

Folded singularities are equilibrium points of the desingularized slow flow. As described
above, the desingularized slow flow can be expressed as





ẋ =
(

∂
∂y1

f
)

g1 +
(

∂
∂y2

f
)

g2 ,

ẏ1 = − (
∂
∂xf

)
g1,

ẏ2 = − (
∂
∂xf

)
g2,

(2.15)

restricted toS. A fold point p∗ ∈ F is a folded singularity if

g1(p∗, λ, 0)
∂f

∂y1
(p∗, λ, 0) + g2(p∗, λ, 0)

∂f

∂y2
(p∗, λ, 0) = 0.

There are different possibilities for the stability ofp∗ in (2.15). Letσ1 andσ2 denote the
eigenvalues of the Jacobian matrix restricted toS and evaluated at a folded singularityp∗.
We callp∗ a





folded saddle, if σ1 σ2 < 0, σ1,2 ∈ R,
folded node, if σ1 σ2 > 0, σ1,2 ∈ R,
folded focus, if σ1 σ2 > 0, Im(σ1,2) 6= 0.

Figure 5 shows phase portraits of the (linearized) slow flow, in panels (a) and (b), and the
associated desingularized slow flow, in panels (c) and (d), respectively. Panels (a) and (c) are
for the case of a folded saddle and panels (b) and (d) of a folded node. For the case of a folded
node one generically has an inequality of the form|σ1| > |σ2|, and we write|σs| > |σw|,
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FIG. 5. Phase portraits of the locally linearized slow flow near a folded saddle (a) and a folded node (b); the
singular canards defined by the eigendirections are shown as thick lines. The corresponding desingularized slow
flow is shown in panels (c) and (d), respectively.

replacing the numeric labels withs andw to emphasize the strong and weak eigendirections.
Note that the phase portraits for the slow flow in Figure 5(a) and (b) are obtained by reversing
the direction of the flow onSr where ∂

∂xf > 0, that is, by reversing the arrows aboveF in
the phase portraits of the desingularized slow flow in panels (c) and (d). It is an important
observation that the trajectories of the slow flow that lie along the eigendirections of the folded
saddle or node connect the two sheets of the critical manifold through the folded singularity
in finite (slow) time; such a trajectory is called asingular canard. We remark that there
are no singular canards for the case of a folded focus, which is why it is not shown here.
Notice further for the case of the folded node in Figure 5(b) that the strong singular canard
γ̃s and the fold curve bound a full (shaded) sector of trajectories that cross fromSa to Sr by
passing through the folded node. The linearized system in Figure 5(b) should be compared
with Figure 4, which shows a nonlinear slow flow near a folded node and, hence, also has a
full sector of trajectories that pass through the folded singularity.

Singular canards act as candidates of maximal canards of the full system forε > 0. This
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is described in the next theorem [19, 23, 31, 212, 233].
THEOREM 2.3 (Canards inR3). For the slow-fast system(2.14)with ε > 0 sufficiently

small the following holds:
(C1) There are no maximal canards generated by a folded focus.
(C2) For a folded saddle the two singular canardsγ̃1,2 perturb to maximal canardsγ1,2.

(C3.1) For a folded node letµ := σw/σs < 1. The singular canard̃γs (“the strong
canard”) always perturbs to a maximal canardγs. If µ−1 6∈ N then the singular
canardγ̃w (“the weak canard”) also perturbs to a maximal canardγw. We callγs

andγw primary canards.
(C3.2) For a folded node supposek > 0 is an integer such that2k + 1 < µ−1 < 2k + 3

andµ−1 6= 2(k + 1). Then, in addition toγs,w, there arek other maximal canards,
which we call secondary canards.

(C3.3) The primary weak canard of a folded node undergoes a transcritical bifurcation for
oddµ−1 ∈ N and a pitchfork bifurcation for evenµ−1 ∈ N.

3. Slow-fast mechanisms for MMOs.In this section we present key theoretical results
of how MMOs arise in slow-fast systems with SAOs occurring in a localized region of the
phase space. The LAOs, on the other hand, are associated with large excursions away from
the localized region of SAOs. More specifically, we discuss four local mechanisms that give
rise to such SAOs:

• passage near a folded node, discussed in Section 3.1;
• singular Hopf bifurcation, discussed in Section 3.2;
• three-time-scale problems with a singular Hopf bifurcation, discussed in Section 3.3;
• tourbillion, discussed in Section 3.4.

Each of these local mechanisms has its distinctive characteristics and can give rise to MMOs
when combined with aglobal return mechanismthat takes the trajectory back to the region
with SAOs. Such global return mechanisms arise naturally in models from applications and
a classic example is an S-shaped slow manifold; see Section 3.2 and the examples in Sec-
tions 4–6. We do not discuss global returns in detail, but rather concentrate on the nature of
the local mechanisms. From the analysis of normal forms we estimate quantities that can be
measured in examples of MMOs produced from both numerical simulations and experimental
data. Specifically, we consider the number of SAOs and the changes in their amplitudes from
cycle to cycle. We also consider in model systems the geometry of nearby slow manifolds
that are associated with the approach to and departure from the SAO regions.

3.1. MMOs due to a folded node.Folded nodes are only defined for the singular
limit (2.4) of system (2.1) on the slow time scale. However, they are directly relevant to
MMOs because forε > 0 small enough, trajectories of (2.1) that flow through a region where
the reduced system has a folded node, undergo small oscillations. Benoit [19, 20] first re-
cognized these oscillations. Wechselberger and collaborators [31, 212, 233] gave a detailed
analysis of folded nodes while Guckenheimer and Haiduc [86] and Guckenheimer [84] com-
puted intersections of slow manifolds near a folded node and maps along trajectories passing
through these regions. From Theorem 2.3 we know that the eigenvalue ratio0 < µ < 1 at
the folded node is a crucial quantity that determines the dynamics in a neighborhood of the
folded node. In particular,µ controls the maximal number of oscillations. The studies men-
tioned above use normal forms to describe the dynamics of oscillations near a folded node.
Two equivalent versions of these normal forms are





ε ẋ = y − x2,
ẏ = z − x,
ż = −ν,

(3.1)
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