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With the rapid accumulation of neuroscientific data

comes a pressing need to develop models that can

explain the computational processes performed by the

basal ganglia. Relevant biological information spans a

range of structural levels, from the activity of neuronal

membranes to the role of the basal ganglia in overt

behavioural control. This viewpoint presents a frame-

work for understanding the aims, limitations and

methods for testing of computational models across all

structural levels. We identify distinct modelling strate-

gies that can deliver important and complementary

insights into the nature of problems the basal ganglia

have evolved to solve, and describe methods that are

used to solve them.

In recent years, an increasing number of computational
models have addressed various aspects of basal ganglia
function. The motivation for constructing such models
derives from a pressing need to interpret the growing
mountain of complex biological data associated with the
basal ganglia. In the past, the qualitative information-flow
(‘box-and-arrow’) models of microcircuitry [1], of internal
connectivity between basal ganglia nuclei [2–4] and of
their interactions with external structures [5–7] have
been useful for interpreting a wide range of experimental
data and have guided much of the recent basal ganglia
research. However, the rapid accumulation of anatomical,
biochemical, physiological, pharmacological and beha-
vioural information is exposing the inadequacy of quali-
tative models to explain current data and predict future
experimental outcomes (Figure 1). To proceed further in
our understanding of the functional dynamics of infor-
mation processing within the basal ganglia, and its
interactions with the rest of the brain, quantitativemodels
of all aspects of basal ganglia biology will be needed. With
the expected proliferation of computational models, all
claiming various degrees of biological plausibility, it
will be important for experimentalists and modellers
alike to appreciate the different kinds and levels of
model, their underlying assumptions and limitations,
how they relate to each other, and how best to validate
them. The principal aim of the present viewpoint is,
therefore, to offer an organising framework within which a
wide spectrum of computational models of the basal
ganglia can be placed.

Our proposed framework rests on two basic ideas. The
first was originally articulated by David Marr [8] when he
proposed that brain functions address the solution of
computational problems and that these decompose into
three levels of analysis: (i) ‘what’ is being computed and
why – the computational task; (ii) ‘how’ the computation is
carried out – the algorithm; and (iii) ‘where’ the com-
putation is carried out – the implementation. The second
idea is that this tri-level analysis of Marr can be applied at
each of several structural levels of description [9] (Box 1).
Thus, computational problems might be solved in neural
components from the level of membranes to entire brain
systems – there is no preferred structural level of
modelling because each can deliver important compu-
tational insights.

The general applicability of this scheme will be
demonstrated by discussing specific examples of recent
models that deal with the analysis of computational issues
at different structural levels of the basal ganglia. We will
start with the highest-level systems models, where it is
apparent that two different but potentially complementary
modelling strategies have developed. We will then show,
with examples, how the proposed framework can also help
evaluate lower level microcircuit and membrane models of
neural function.

System-level models

The nuclei that constitute the basal ganglia are acknowl-
edged to form a functional sub-system within the wider
brain architecture (Figure 1a). Models that have sought to
understand the computational role (or roles) of the basal

Box 1. Hierarchy of structural levels for biological

descriptions of the basal ganglia and their position within

the brain [9]

(i) Central nervous system (whole brain)

(ii) Brain modules (e.g. basal ganglia, cerebellum, cortex and

hippocampus)

(iii) Nuclei within modules (e.g. striatum, globus pallidus and

substantia nigra)

(iv) Small circuits and microanatomy (e.g. mutual inhibition,

convergence and divergence)

(v) Neurons and signal codes (e.g. medium spiny neurons and

interneurons)

(vi) Synapses and membranes (e.g. spine and shaft membranes,

presynaptic and postsynaptic membranes)

(vii) Intracellular signals (e.g. second messenger systems)
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ganglia, taken as a whole, have generally been concerned
with high-level aspects of action selection [10,11], motor
sequence processing [12–15] and/or dimensionality
reduction [16,17]. A common feature of many models is
an adaptive capability involving some form of instru-
mental learning, in which nigrostriatal dopamine signals
are held to play a key role. This development reflects a
striking convergence between empirical studies of the
short-latency dopamine response [18] and reinforcement
learning methods [19], based on reward prediction error
[20], that were originally developed by machine learning
theorists [21]. This work has led to several prominent and
well-established system-level models that have been
reviewed extensively elsewhere [16,17,19,22,23]. These
models are prime examples of a ‘top-down’ strategy of
system-level modelling that we will contrast with a
mainly ‘bottom-up’ approach adopted by us and others to
investigate potential functions of the basal ganglia. To

explain the differences between the two approaches, we
will introduce the concepts of ‘mechanism mapping’ and
‘mechanism mining’ in the context of two contrasting
examples from the recent literature – a model of
reinforcement-driven dimensionality reduction presented
by Bar Gad et al. [17] and a selection model from one of our
own laboratories [10,24]

The computational hypothesis

Both top-down and bottom-up strategies usually begin
with some form of computational hypothesis that can
constrain the search for possible mechanisms. Hence, Bar-
Gad et al. [17] proposed that the primary computational
task of the basal ganglia is to conduct a reinforcement-
driven dimensionality reduction that takes input from
multiple sensory, motor, affective and cognitive sources,
and relays a compressed encoding of this information to
areas of the brain involved in executive planning and

Figure 1. Biological complexity at different structural levels of the basal ganglia. (a) A summary box-and-arrow diagram representing currently known connections between

sub-nuclei of the basal ganglia, the cerebral cortex and the thalamus. Abbreviations: D, dopamine receptors; Glut, glutamatergic connections; GPe, external globus palli-

dus; GPi, internal globus pallidus; SNc, substantia nigra pars compacta; SNr substantia nigra pars reticulata; STN, subthalamic nucleus. (b) A schematic representation of

the connectivity between neuronal elements in the striatum. Reproduced, with permission, from Ref. [59] q (1995) R.G. Landes Co. (c) The equivalent electrical circuit of a

single isopotential patch or ‘compartment’ of a neural membrane in which the conductances of multiple ion species are represented [53]. The complexity of all panels illus-

trates that there is such detail at each level that it is no longer possible to ‘think’ a way through the dynamic information processing of either neurons or circuits.
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selection of action (e.g. frontal cortex). This process is
viewed asmeeting the need formanaged inflow of data into
executive systems, and the requirement to encode agent–
environment state information in a manner conducive to
fast and effective learning of state–action mappings. By
contrast, the selection model of Gurney et al. [10,24] is
based on the hypothesis that the basal ganglia constitute a
generic resource-selection mechanism [25]. Here the basal
ganglia are seen as a biological solution to the problem of
regulating access, by multiple functionally independent
action systems, to the limited and largely shared motor
resources of the ‘final common motor path’. The difference
in approach between these two models emerges at the
algorithmic level of description.

Mechanism mapping

The Bar Gad model invokes a high-level ‘procedurally
transparent’ algorithm – principal component analysis
(PCA) – to perform the required dimension reduction. By
procedurally transparent we mean here an algorithm that
can be defined in general mathematical terms without any
reference to an underlying neural architecture. In this
case, PCA is a classical statistical method that compresses
data with minimal information loss [26]. However, this
model is also typical of its kind in requiring two mappings
between the transparent algorithm and its (neural) imple-
mentation [27]. First, the high-level procedure (PCA) is
mapped into an artificial neural network (ANN) instan-
tiated using mechanisms such as weighted sums of inputs
and Hebbian learning rules. A second mapping is then
required, whereby parallels are drawn between the activ-
ity of elements in the ANN model and details of basal
ganglia biology.

Validating top-down models

Use of a procedurally transparent algorithm brings the
benefit of analytic clarity to understanding the input–
output transformations generated by the ANN. However,
the price to pay for this clarity is that the second-stage
mapping – from the ANN to its hypothesized implemen-
tation in the biological substrate – is more problematic
[16,28]. Neural mechanisms have to be found that fit an
exact prescription defined by a largely top-down analysis.
Thus, although procedurally based models can provide
important insights into the kinds of operation needed to
perform a high-level task, the key aspect of their validation
is a successful ‘mechanism mapping’ from an ANN onto
biological neural circuits. The extent to which this process
is successful reveals whether the brain is likely to use
analogous operations.

Mechanism mining

In contrast to approaches that are inspired by known
mathematical methods, the model of Gurney et al. [10,24]
has no algorithm currently defined that is procedurally
transparent. Instead, it comprises a cluster of biologically
constrained neuronal mechanisms that act in concert to
achieve a computational objective. The methodology
underlying this kind of model is based on ‘mining’ for
potential mechanisms capable of achieving the overall
goal. In the case of Gurney et al. [10,24], simulations and

quantitative analyses demonstrated the disinhibition of
appropriate output targets on the basis of relative
saliences in competing input channels, thus confirming
that the looped channels of the basal ganglia can act as a
plausible substrate for action selection.

Sub-component functions

In addition to providing a platform on which to test a
high-level computational hypothesis, system-level models
with architectures tightly constrained by biological
data are also in a position to provide insights into the
functional properties of network sub-components. For
example, a new hypothesis for the role of the feedback
loop between the subthalamic nucleus and globus
pallidus (Figure 1a) was an unanticipated result of
the Gurney et al. model [10,24]. In analysis and
simulation, this loop ensured that signals from the output
nuclei (substantia nigra pars reticulata and entopedun-
cular nucleus) remained within strict operating limits,
independent of the number of actively competing
channels. When the loop is absent (‘lesioned’), excitatory
drive from the subthalamic nucleus increased with the
number of active channels, ultimately overwhelming the
ability of the striatum to impose selective disinhibition.
This emergent property of ‘capacity scaling’ was entirely
unpredicted and would have been difficult to discern from
current biological data.

Validating bottom-up models

It is the case with all models that their output should
resemble that of the corresponding biological systems.
However, in contrast to the additional methods used to
validate procedurally inspired models that have been
already discussed here, different strategies are required to
evaluate system-level models in which the model archi-
tecture is constructed directly from biological data. They
can be enumerated as follows:

(i) In all current models, the biological features repre-
sented are highly selected and simplified. Thus, a powerful
evaluative strategy is to add further biologically con-
strained detail, and re-test the ability of the model to
perform the nominated computational function. In cases
where functionality remains intact, or actually improves,
strong support will accrue to the original computational
hypothesis. Where performance deteriorates, the validity
of original conjecture will be questioned. Control pro-
cedures, which comprise the addition of ‘non-biological’
features to the model, would be expected to impair
performance. It is with these considerations in mind that
the selection model of Gurney et al. has been subjected to
further tests of ‘added biological realism’: the addition of
basal ganglia–thalamocortical loops [29], the inclusion of
collaterals from the ‘direct pathway’ to globus pallidus
[30], the addition of lateral inhibitory connections between
elements in the globus pallidus and output nuclei [31] and,
more recently, the replacement of leaky integrating
elements with spiking neurons. In each case, the overall
selection capability of the model was found to improve. In
examples where we tested the effects of adding ‘non-
biological’ versions of connectivity, overall selection per-
formance of the model was impaired.
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(ii) A further, more stringent test of a system-level
model is to embed it within the control architecture of an
autonomous agent. Under these circumstances the model
is exposed to more realistic sequences of sensory input via
the tight dynamic coupling between the robot and its
environment. Embedding within a wider system also
forces consideration of how the model will contribute to
overt behaviour, and how it should be interfaced with
sensory and motor systems external to the basal ganglia.
Again, it is with these considerations in mind that the
biologically constrained model of Gurney et al. has been
shown successfully to select the actions of a mobile robot
engaged in a simulated foraging task [11,32] (Figure 2).

Summary

Two different and complementary strategies of system-
level modelling of the basal ganglia have developed: a top-
down strategy, where the performance of procedurally

transparent algorithms are ‘mapped’ onto biological
systems, and amore bottom-up approach where functional
capabilities are ‘mined’ from biologically constrained
architectures. We turn now to show how the analysis
proposed by Marr [8] can apply equally well to compu-
tational models at lower levels of description in the
structural hierarchy [9] (Box 1). These models generally
deploy the bottom-up approach with the intention of
discovering (‘mining’) potential mechanisms and compu-
tational hypotheses.

Microcircuit models

There is currently little formal analytical knowledge
that allows us to deduce the operations of a neural circuit
from the details of its component neurons and their
interconnections. Even with a complete schematic of the
connectivity within a circuit, together with a full descrip-
tion of the physiological properties of the component
neurons, we are usually unable to infer the operational
properties of the circuit in question [33] (consider
Figure 1b). However, by modelling the same circuit it
becomes possible to examine input–output relationships
distributed over whole networks, and insights about what
is being computed can result. This approach is a further
instance of ‘mechanism mining’. In turn, the resulting
mechanisms can be used as clues to the overall compu-
tation(s) being performed. This bottom-up strategy for
generating circuit-level hypotheses can be seen as a
powerful complementary method for validating hypoth-
eses derived from lesion evidence or from theoretical
analyses. Consequently, a range of computational models
has been used to investigate the properties of microcircuits
within and between basal ganglia nuclei including the
striatum, globus pallidus and subthalamus [4,34–36]. To
illustrate the applicability of the proposed framework to
this substantial body of work we will consider the single
example of intrastriatal circuitry.

Models of the striatum

Models of striatal microcircuitry were initially constrained
by the morphology of spiny projection neurons and their
collaterals. In general, each spiny neuron axon makes an
extensive arbour of collateral branches in the region of its
own dendritic tree, providing inhibitory synaptic connec-
tions with other spiny neurons [37,38]. Initial models
assumed that this anatomical arrangement would produce
a mechanism consisting of a lateral-inhibition-type net-
work with strong, reciprocal connections between neurons
forming the basic computational unit. Models based on
this assumption exhibited a competitive dynamic such
that, under high-gain conditions, the most active cells
suppressed activity in their weaker neighbours [39]. In
cases of perfect symmetry, such networks show stable
peaks of high activity surrounded by valleys of
inactivity [40]. The computational task of striatal circuits
suggested by these models was consistent with the
selection hypothesis already described here [25]; namely,
that they perform the selection of a single action from
among competing, mutually exclusive alternatives.

Subsequent experimental biology has shown, however,
that inhibitory interactions among spiny projection

Figure 2. Action selection in a robot controlled by a biologically constrained com-

putational model of the basal ganglia [24] including basal ganglia–thalamocortical

loops [60]. The selection competition between action sub-systems (photographs)

is resolved at a rate of ,8 cycles s21. Input to the model encodes the instan-

taneous salience of the different actions based on their perceptual and motiva-

tional affordances. The outcome of each cycle is the removal of ‘nigral inhibition’

from the motor command generated by the winning sub-system. The behaviour of

the robot shows emergent organization both into bouts of specific behaviours

(shown by the colour-coded time-bar) and into higher-order sequences of inte-

grated behaviour (avoidance and foraging), interspersed with inactivity (coded

black). The temporal organization of behaviour reflects the motivational priorities

of the robot encoded by the levels of simulated ‘fear’ and ‘hunger’ – the relative

intensities of which are represented in arbitrary values over time in the central

graph.
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neurons are not as strong as assumed in these earlier
models. In fact, the connections are generally sparse in
nature – with probability of contact between adjacent cells
much less than one, and primarily asymmetric [35,41–44].
In addition, it has become clear that inhibitory inter-
neurons, although numerically ,1% of the cells in the
striatum, contribute close to 10% of the inhibitory
synapses, and could thus play a significant role in
feedforward inhibition [44,45]. Modelling studies based
on these newdata have shown that disruption of symmetry
can lead to cycles of activity and travelling waves [35,46]
that could play a more sophisticated role in the selection
and serial organization of behaviour in normal and
pathological conditions. For example, other results sug-
gest that feedforward interneurons could have a signifi-
cant part to play in initializing networks to perform
extended sequences [40].

This example demonstrates that studying the dynamics
of models based on the best available biological data can
produce functional hypotheses that would be difficult to
intuit from biological data alone. The history of micro-
circuit modelling of the neostriatum also shows that the
usefulness of such models depends crucially on the
accuracy of the biological observations from which they
are derived. Detailed quantitative anatomy [47–50] is
therefore invaluable in constraining possible connectivity
schemes.

Conductance-based models of single neurons

To capture functionality at even lower levels of description,
it is necessary to model the dynamics of individual
membrane currents in compartments that represent
different parts of a single neuron. Ionic current dynamics
are usually captured using the Hodgkin–Huxley formal-
ism and expressed via a set of ordinary differential
equations [51]. The complexity of interactions between
these currents makes it almost impossible to predict out-
comes without a model (Figure 1c). A range of biophysical
conductance-based models of prominent cell types in the
basal ganglia have therefore been presented, including
the medium spiny neurons of the striatum [34,52–54], the
globus pallidus [55], and the dopamine neurons of sub-
stantia nigra pars compacta [56,57]. To illustrate how
Marr’s scheme can apply at the neuron level we will use as
an example a short-term facilitation (STF) effect observed
in striatal medium spiny neurons [58].

Short- term facilitation in striatal neurons

When two supra-threshold current pulses are applied to a
medium spiny striatal cell, the second pulse is associated
with a reduced time to first spike and an increase number
of elicited spikes (Figure 3). To try and explain this
STF effect, Mahon et al. [58] constructed a single-
compartment conductance-based model of the medium
spiny neuron incorporating several Kþ and Naþ currents.
By adopting a modelling approach, the contributions of
different membrane currents to a phenomenon such as
STF can be investigated using simulations that deliber-
ately omit specific currents. Using this strategy, Mahon
et al. [58] showed that the slowly inactivating A-current
(IAs) was likely to be the most important mechanism for

engendering this facilitation (Figure 3b). The consequent
suggestion by Mahon et al. [58] that the function of STF in
the medium spiny neuron could be to prolong the window
for detecting temporally distributed inputs is a good
example of howmechanismmining can be used to generate
a computational hypothesis.

Evaluation of conductance-based models

It is a characteristic of biophysical neuron models that
they are rarely inspired by any initial ‘top-down’ compu-
tational requirement; rather, they try to replicate the
dynamic behaviour of membrane phenomena in a manner
that is constrained by observed biology. In pursuing these
constraints, a major problem is the requirement to find the
particular configuration of multiple and interacting model
parameters that best fit the biological data. This issue has
been addressed recently by Wood et al. [54] who have
developed a deterministic parameter search technique to
find the maximal conductances in biophysical models and
have applied this technique to modelling the membrane
properties of medium spiny neurons [54].

The accurate replication of biological data can be
seen as a prior step, to enable subsequent selective modu-
lation of individual features within the model to deter-
mine relative contributions to the overall phenomenon

Figure 3. Simulation results from a conductance-based model demonstrating

short-term facilitation (STF) in neostriatal medium spiny projection neurons.

Adapted, with permission, from Ref. [53]. (a) Membrane behaviour of the model

under current clamp comprised of two identical pulses. STF is demonstrated by a

change in the time to first spike (Dt) and the number of spikes elicited per pulse.

(b) Dt for the intact model and a series of simulations in which single currents

were omitted. The slowly inactivating A-current (IAs) produced the most dramatic

reduction in Dt, indicating that this is the most likely mechanism for inducing STF.

The Kþ currents used included a slowly inactivating A-current (IAs), a fast A-current

(IAf), and a persistent current (IKrP). The Naþ currents included a slowly inactivating

current (INaS) and a persistent current (INaP).
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(see the STF case already described). Conductance-based
models of this type are therefore particularly useful for:
(i) providing mechanistic explanations for known mem-
brane behaviour; (ii) through the use of virtual manipula-
tions, positing further mechanisms that, so far, have not
been observed in vivo or in vitro but that can be tested
experimentally; and (iii) using the mechanisms discovered
in (i) and (ii) to develop computational hypotheses about
neural function.

Inter-relationships between models

Models at all levels should be evaluated, primarily, by their
ability to explain observed physiological and behavioural
properties of the basal ganglia. As the field develops,
however, models should be expected to show increased
consistency across levels. The components of higher-level
models, for example, should be sufficiently realistic
abstractions of their lower level counterparts. Thus, a
further important use for biophysical models of basal
ganglia neurons will be to inform and optimise the
operating characteristics of ‘simplified’ neuronal elements
used in higher microcircuit and system-level models.
Although such analyses will lead to increased realism at
higher levels, the computational hypotheses that emerge
at higher levels of abstraction will provide useful starting
points in the search for plausible computational mechan-
isms further down. Finally, it is important to note that the
styles of information representation available at different
levels could permit mechanisms at one level that do
not translate effectively to another; for example, model
neurons using firing rates cannot be expected to support
mechanisms that rely on spike codes. Ultimately, this
means that accurate models at the highest level might
need explicitly to incorporate relatively low-level
elements.

Concluding remarks

In this article we have attempted to show how the dis-
tinctions introduced by Marr [8,27] provide a useful basis
for understanding the aims, limitations and strategies for
testing of computationalmodels across all structural levels
of the basal ganglia (Box 1). In addition, at the system
level, an important distinction has been made between
models based on two-stage mapping from transparent
procedures to the neural substrate and those that base
their development on mining algorithms more directly
from the anatomical and physiological data. The process of
mapping algorithms onto the biological substrate can
illuminate our understanding of the basal ganglia with
powerful, tried-and-tested insights from themathematical
sciences. At the same time, this method could lead to the
rethinking or refining of these procedures that generates
benefits for engineering as well as neuroscience. The
mechanism-mining approach, however, appears to bemore
readily applicable across many structural levels and, by
producing models closely fitted to neurobiological con-
straints, will help unravel the functional mechanisms
embodied in neural tissue. This approach also offers the
intriguing possibility of the discovery of hitherto unknown
procedures that could eventually lead to advances across
all the sciences of intelligent systems. Finally, it is to be

hoped that a better understanding of the variousmodelling
approaches will encourage often-sceptical experimental
neuroscientists to engagewith their computational counter-
parts in a collaborative effort to explain better the
increasingly complex datasets that describe the biological
features of the basal ganglia.
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