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Actor–Critic Models of Reinforcement Learning in 

the Basal Ganglia: From Natural to Artificial Rats

Mehdi Khamassi1,2, Loïc Lachèze1, Benoît Girard1,2, Alain Berthoz2, Agnès Guillot1
1AnimatLab, LIP6, Paris, France
2LPPA, CNRS–Collège de France, Paris, France

Since 1995, numerous Actor–Critic architectures for reinforcement learning have been proposed as

models of dopamine-like reinforcement learning mechanisms in the rat's basal ganglia. However,
these models were usually tested in different tasks, and it is then difficult to compare their efficiency for

an autonomous animat. We present here the comparison of four architectures in an animat as it per-

forms the same reward-seeking task. This will illustrate the consequences of different hypotheses
about the management of different Actor sub-modules and Critic units, and their more or less autono-

mously determined coordination. We show that the classical method of coordination of modules by

mixture of experts, depending on each module’s performance, did not allow solving our task. Then we
address the question of which principle should be applied efficiently to combine these units. Improve-

ments for Critic modeling and accuracy of Actor–Critic models for a natural task are finally discussed

in the perspective of our Psikharpax project—an artificial rat having to survive autonomously in unpre-
dictable environments.

Keywords animat approach · TD learning · Actor–Critic model · S–R task · taxon navigation

1 Introduction

This work aims at adding learning capabilities in the
architecture of action selection introduced by Girard,
Filliat, Meyer, Berthoz, and Guillot (2005) in this
issue. This architecture will be implemented in the
artificial rat Psikharpax, a robot that will exhibit at
least some of the capacities of autonomy and adapta-
tion that characterize its natural counterpart (Filliat
et al., 2004). This learning process capitalizes on
Actor–Critic architectures, which have been proposed
as models of dopamine-like reinforcement learning
mechanisms in the rat’s basal ganglia (Houk, Adams,
& Barto, 1995). In such models, an Actor network learns

to select actions in order to maximize the weighted
sum of future rewards, as computed on line by another
network, a Critic. The Critic predicts this sum by
comparing its estimation of the reward with the actual
one by means of a temporal difference (TD) learning
rule, in which the error between two successive pre-
dictions is used to update the synaptic weights (Sutton
& Barto, 1998). A recent review of numerous compu-
tational models, built on this principle since 1995, high-
lighted several issues raised by the inconsistency of
the detailed implementation of Actor and Critic mod-
ules with known basal ganglia anatomy and physiol-
ogy (Joel, Niv, & Ruppin, 2002). In the first section of
this paper, we will consider some of the main issues,
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updated with anatomical and neurophysiological knowl-
edge. In the second section, we will illustrate the
consequences of alternative hypotheses concerning the
various Actor–Critic designs by comparing animats
that perform the same classical instrumental learning
(S–R task). During the test, the animat freely moves in
a plus-maze with a reward placed at the end of one
arm. The reward site is chosen randomly at the begin-
ning of each trial and it refers to site-specific local
stimuli. The animat has to autonomously learn to asso-
ciate continuous sensory information with certain val-
ues of reward and to select sequences of behaviors that
enable it to reach the goal from any place in the maze.
This experiment is more realistic than others used to
validate Actor–Critic models, often characterized by an
a priori fixed temporal interval between a stimulus and
a reward (e.g., Suri & Schultz, 1998), by an unchanged
reward location over trials (e.g., Strösslin, 2004), or
by a discrete state space (e.g., Baldassarre, 2002).

We will compare, in this task, four different prin-
ciples inspired by Actor–Critic models trying to tackle
the issues evoked in the first section. The first one is
the seminal model proposed by Houk et al. (1995),
which uses one Actor and a single prediction unit
(model AC: One Actor, one Critic), which is supposed
to induce learning in the whole environment. The sec-
ond principle implements one Actor with several Critics
(model AMC1: One Actor, multiple Critics). The Critics
are combined by a mixture of experts where a gating
network is used to decide which expert—which Critic—
is used in each region of the environment, depending
on its performance in that region. The principle of mix-
ture of experts is inspired from several existing models
(Jacobs, Jordan, Nowlan, & Hinton, 1991; Baldassarre,
2002; Doya, Samejima, Katagiri, & Kawato, 2002).
The third one is inspired by Suri and Schultz (2001)
and also uses one Actor with several Critic experts.
However, the decision of which expert should work in
each sub-zone of the environment is independent of
the experts’ performances, but rather depends on a
partition of the sensory space perceived by the animat
(model AMC2: One Actor, multiple Critics). The fourth
one (model MAMC2: Multiple Actors, multiple Critics)
proposes the same principle as the previous Critic,
combined with several Actors, which latter principle
is one of the features of the model of Doya et al.
(2002), particularly designed for continuous tasks, and
is also a feature of Baldassarre’s model (2002). Here
we implement these principles in four models using

the same design for each Actor component. A com-
parison is made of the learning speed and of their
ability to extend learning to the whole experimental
environment.

The last section of the paper discusses the results
on the basis of acquired knowledge in reinforcement
learning tasks in artificial and natural rodents.

2 Actor–Critic Designs: The Issues

The two main principles of Actor–Critic models that
lead them to be considered as a good representation of
the role of the basal ganglia in reinforcement learning
of motor behaviors are (i) the implementation of a TD
learning rule which leads to progressive translation of
reinforcement signals from the time of reward occur-
rence to environmental contexts that precede the reward,
and (ii) the separation of the model into two distinct
parts: One for the selection of motor behaviors (actions)
depending on the current sensory inputs (the Actor),
and the other for the driving of the learning process via
dopamine signals (the Critic).

Schultz’s work on the electrophysiology of dopa-
mine neurons in monkeys showed that dopamine pat-
terns of release are similar to the TD learning rule (see
Schultz, 1998 for a review). Besides, the basal ganglia
are a major input to dopamine neurons, and are also a
privileged target of reinforcement signals sent by these
neurons (Gerfen, Herkenham, & Thibault, 1987). More-
over, the basal ganglia appears to be comprised of two
distinct sub-systems, related to two different parts of
the striatum—the major input nucleus of the basal gan-
glia—one projecting to motor areas in the thalamus,
the other projecting to dopamine neurons, influencing
the firing patterns of these neurons at least to some
extent (Joel & Weiner, 2000).

These properties lead the first Actor–Critic model
of the basal ganglia to propose the matrisomes of the
striatum to constitute the Actor, and the striosomes of
this very structure to be the Critic (Houk et al., 1995,
Figure 1). The classical segregation of “direct” and
“indirect” pathways from the striatum to the dopamin-
ergic system (SNc, substantia nigra pars compacta,
and VTA, ventral tegmental area; Albin, Young, & Pen-
ney, 1989) was used in the model to explain the timing
characteristics of dopamine neurons’ discharges.

Numerous models have been proposed to improve
and complete the model of Houk et al. However, most
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of these computational models have neurobiological
inconsistencies and incompleteness concerning recent
anatomical hypotheses on the basal ganglia (Joel et
al., 2002).

An important drawback is that the Actor part of
these models is often simplistic compared to the known
anatomy of the basal ganglia and does not take into
account important anatomical and physiological char-
acteristics of the striatum. For example, recent works
showed a distinction between neurons in the striatum
having different dopamine receptors (D1-receptors or
D2-receptors; Aizman et al., 2000). This implies at
least two different pathways in the Actor, on which tonic
dopamine has opposite effects, going beyond the clas-
sical functional segregation of “direct” and “indirect”
pathways in the striatum (Gurney, Prescott, & Red-
grave, 2001a,b).

Likewise, some constraints deriving from striatal
anatomy restrict the possible architectures for the
Critic network. In particular, the striatum is constituted
of only one layer of medium spiny neurons—com-
pleted with 5% of interneurons (Houk et al., 1995). As

a consequence, Critic models cannot be constituted of
complex multilayer networks for reward prediction
computation. This anatomical constraint led several
authors to model the Critic as a single-neuron (Houk et
al., 1995; Montague, Dayan, & Sejnowski, 1996), which
works well in relatively simple tasks. For more com-
plicated tasks, several models assign one single Critic
neuron to each subpart of the task. These models differ
in the computational mechanism used to coordinate
these neurons. Baldassarre (2002) and Doya et al.
(2002) propose to coordinate Critic modules with a mix-
ture of experts method: The module that has the best
performance at a certain time during the task becomes
expert in the learning process of this subpart of the task.
Another model proposes an association of experts with
subparts of the task (such as stimuli or events) in an a
priori manner, independently from each expert’s per-
formance (Suri & Schultz, 2001). It remains to assess
the efficiency of each principle, as they have been at
work in heterogeneous tasks (e.g., Wisconsin Card
Sorting Test, Discrete Navigation Task, Instrumental
Conditioning).

These models also question the functional segre-
gation of the basal ganglia in “direct” and “indirect”
pathways (see Joel et al., 2002 for a review). These
objections are built on electrophysiological data (for a
review see Bunney, Chiodo, & Grace, 1991) and ana-
tomical data (Joel & Weiner, 2000) which show that
these two pathways are unable to produce the temporal
dynamics necessary to explain dopamine neurons’ pat-
terns of discharge. These findings lead one to question
the localization of the Critic in the striosomes of the
dorsal striatum, and several models have capitalized
on its implementation in the ventral striatum (Brown,
Bullock, & Grossberg, 1999; Daw, 2003). These works
are supported by recent fMRI data in humans, showing
a functional dissociation between dorsal striatum as
the Actor and ventral striatum as the Critic (O’Doherty
et al., 2004), but they may be controversial for the
rat, as electrophysiological data (Thierry, Gioanni,
Dégénetais, & Glowinski, 2000) showed that an impor-
tant part of the ventral striatum (the nucleus accumbens
core) does not project extensively to the dopamine sys-
tem in the rat brain.

We can conclude that the precise implementation
of the Critic remains an open question, if one takes
also into account a recent model assuming that a new
functional distinction of striosomes in the dorsal stria-
tum—based on differential projections to GABA-A

Figure 1 Schematic illustration of the correspondence
between the modular organization of the basal ganglia in-
cluding both striosomes and matrix modules and the Ac-
tor–Critic architecture in the model proposed by Houk et al.
(1995). F: columns in the frontal cortex; C: other cortical
columns; SPs: spiny neurons striosomal compartments of
the striatum; SPm: spiny neurons in matrix modules; ST:
subthalamic sideloop; DA: dopamine neurons in the sub-
stantia nigra compacta; PD: pallidal neurons; T: thalamic
neurons. (Adapted from Houk et al., 1995.)
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and GABA-B receptors in dopamine neurons—can
explain the temporal dynamics expected (Frank,
Loughry, & O’Reilly, 2001).

Besides these neurobiological inconsistencies,
some computational requirements on which numerous
Actor–Critic models have focused seem unnecessary
for a natural reward-seeking task. For example, as
Houk et al.’s model could not account for temporal
characteristics of dopamine neurons firing patterns,
most of the alternative models focused on the simula-
tion of the depression of dopamine at the precise time
where the reward is expected when it eventually does
not occur. To this purpose, they concentrated on the
implementation of a temporal component for stimulus
description—which is computed outside of the model
and is sent as an input to the model via cortical projec-
tions (Montague et al., 1996; Schultz, Dayan, & Mon-
tague, 1997). These models were tested in the same
tasks chosen by Schultz, Apicella, and Ljungberg (1993)
to record dopamine neurons in the monkey, using a
fixed temporal bin between a stimulus and a reward.
However, in natural situations where a rodent needs to
find food or any other type of reward, temporal charac-
teristics of the task are rarely fixed but rather depend
on the animal’s behavior and on the environment’s
changes/evolution.

3 Method

The objective of this work is to evaluate the efficiency
of the main principles on which current Actor–Critic
models inspired by the basal ganglia are designed,
when they are implemented in the same autonomous
artificial system. The main addressed issues are the
following:

• The implementation of a detailed Actor, whose
structure would be closer to the anatomy of the
dorsal striatum, assessing whether reinforcement
learning is still possible within this architecture.

• The comparison of the function of one Critic unit,
versus several alternative ways to coordinate dif-
ferent Critic modules for solving a complex task
where a single-neuron is not enough.

• The test of the models in a natural task involving
taxon navigation where events are not prede-
termined by fixed temporal bins. Instead, the ani-
mat perceives a continuous sensory flow during

its movements, and has to reactively switch its
actions so as to reach a reward.

3.1 The Simulated Environment and Task

Figure 2 shows the experimental setup simulated,
consisting in a simple 2D plus-maze. The dimensions
are equivalent to a 5 m × 5 m environment with 1-m
large corridors. In this environment, walls are made
of segments colored on a 256 grayscale. The effects
of lighting conditions are not simulated. Every wall
of the maze is colored in black (luminance = 0),
except walls at the end of each arm and at the center
of the maze, which are represented by specific colors:
The cross at the center is gray (191), three of the
arm extremities’ walls are dark gray (127) and the
fourth is white (255), indicating the reward location
(equivalent to a water trough delivering two drops—
noninstantaneous reward—not a priori known by the
animat).

The plus-maze task mimics the neurobiological
and behavioral studies that will serve as future vali-
dation for the model (Albertin, Mulder, Tabuchi,
Zugaro, & Wiener, 2000). In this task, at the beginning
of each trial, one arm extremity is randomly chosen to
deliver reward. The associated wall is colored in white
whereas walls at the three other extremities are dark
gray. The animat has to learn that selecting the action
drinking when it is near the white wall (distance < 30
cm) and faces it (angle < 45°) gives it a reward. Here
we assume that reward = 1 for n iterations (n = 2), with-
out considering how the hedonic value of this reward is
determined.

We expect the animat to learn a sequence of con-
text-specific behaviors, so that it can reach the reward
site from any starting point in the maze:

• When not seeing the white wall, face the center of
the maze and move forward.

• As soon as arriving at the center (the animat can
see the white wall), turn to the white stimulus.

• Move forward until being close enough to reward
location.

• Drink.

The trial ends when reward is consumed: The color of
the wall at reward location is changed to dark gray,
and a new arm extremity is chosen randomly to
deliver reward. The animat has then to perform again
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the learned behavioral sequence. Note that there is no
break between two consecutive trials: Trials follow
each other successively.

The more efficiently and fluently the animat per-
forms the above-described behavioral sequence, the
less time it will take to reach the reward. As a conse-
quence, the criterion chosen to validate the models is
the time to goal, plotted along the experiment as the
learning curve of the model.

3.2 The Animat

The animat is represented by a circle (30-cm diame-
ter). Its translation and rotation speeds are 40 cm s–1

and 10° s–1. Its simulated sensors areas follows:

• an omnidirectional linear camera providing at
every 10° the color of the nearest perceived seg-
ment; this results in a 36-color table that consti-
tutes the animat’s visual perception (see Figure 2);

• eight sonars with a 5-m range, an incertitude of
± 5° concerning the pointed direction and an addi-
tional ± 10-cm measurement error.

The sonars are used by a low-level obstacle avoid-
ance reflex which overrides any decision taken by the

Actor–Critic model when the animat comes too close
to obstacles.

The animat is provided with a visual system that
computes 12 input variables ( i  [1;12], 0 < vari < 1)
out of the 36-color table at each time step. These sen-
sory variables constitute the state space of the Actor–
Critic and so will be taken as input to both the Actor
and the Critic parts of the model (Figure 3). Variables
are computed as follows:

• seeWhite (resp. seeGray, seeDarkGray) = 1 if the
color table contains the value 255 (resp. 191, 127),
else 0.

• angleWhite, angleGray, angleDarkGray = (number
of boxes in the color table between the animat’s
head direction and the desired color)/18.

• distanceWhite,distanceGray, distanceDarkGray =
(maximum number of consecutive boxes in the
color table containing the desired color)/18.

• nearWhite (resp. nearGray, nearDarkGray) = 1 –
distanceWhite (resp. distanceGray, distanceDark-
Gray).

Representing the environment with such continuous
variables implies the model permanently receiving
a flow of sensory information and having to learn

Figure 2 Left: the robot in the plus-maze environment. A white arm extremity indicates the reward location. Other arm
extremities do not deliver any reward and are shown in black. Upper right: the robot’s visual perceptions. Lower right:
activation level of different channels in the model.

∀ ∈
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autonomously the events (sensory contexts) that can
be relevant for the task resolution.

The animat has a repertoire of 6 actions: Drinking,
moving forward, turning to white perception, turning
to gray perception, turning to dark gray perception,
and waiting. These actions constitute the output of the
Actor model (described below) and the input to a low-
level model that translates it into appropriate orders to
the animat’s engines.

3.3 The Model: Description of the Actor Part

The Actor–Critic model is inspired by the rat basal gan-
glia. As mentioned in Section 2, the Actor can be hypoth-
esized as implemented in the matrix part of the basal
ganglia, while striosomes in the dorsal striatum are con-
sidered as the anatomical counterpart for the Critic. The

Critic produces dopamine-like reinforcement signals
that help it learn to predict reward during the task, and
that make the Actor learn to select appropriate behaviors
in every sensory context experienced during the task.

The architecture implemented in the Actor is a
recent model proposed by Gurney, Prescott, and Red-
grave (2001a,b)—henceforth called the GPR model—
that replaces the simple winner-takes-all which usu-
ally constitutes Actor models and is supposed to be
more biologically plausible.

Like other Actors, the GPR model consists of a
series of parallel channels, each one representing an
action (in our implementation, we used 6 channels
corresponding to the 6 actions used for the task). This
architecture constitutes an alternative view to the pre-
vailing functional segregation of the basal ganglia into
“direct” and “indirect” pathways discussed in Section 1

Figure 3 General scheme of the models tested in this work. The Actor is a group of GPR modules with saliences as
inputs and actions as outputs. The Critic (involving striosomes in the dorsal striatum, and the substantia nigra compacta
(SNc)) propagates towards the Actor an estimate rr of the instantaneous reinforcement triggered by the selected action.
The particularity of this scheme is to combine several modules for both Actor and Critic, and to weight the Critic experts’
predictions and the Actor modules’ decisions with credibilities. These credibilities can be either computed by a gating
network (model AMC1) or in a context-dependent manner (models AMC2 and MAMC2).
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(Gurney et al., 2001a,b). All these channels are com-
posed of two different circuits through the dorsal stria-
tum: The first is the “selection” pathway, implementing
action selection properly via a feed-forward off-center
on-surround network, and mediated by cells in the
dorsal striatum with D1-type receptors. The second is
the “control” pathway, mediated by cells with D2-type
receptors in the same area. Its role is to regulate the
selection by enhancing the selectivity inter-channels,
and to control the global activity within the Actor.
Moreover, a cortex–basal-ganglia–thalamus loop in
the model allows it to take into account each channel’s
persistence in the process of selection (see Gurney et
al., 2001a,b, for detailed description and mathematical
implementation of the model). The latter characteristic
showed some interesting properties that prevented
a robot from performing behavioral oscillations (Mon-
tes-Gonzalez, Prescott, Gurney, Humphries, & Red-
grave, 2000; Girard, Cuzin, Guillot, Gurney, & Prescott,
2003).

In our implementation, the input values of the
Actor model are saliences—i.e., the strength of a given
action—that are computed out of the 12 sensory varia-
bles, a constant implementing a bias, and a persistence
factor—equal to 1 for the action that was selected at
previous timestep (Figure 3). At each timestep t
(timesteps being separated by a 1-s bin in our simula-
tions), the action that has the highest salience is
selected to be performed by the animat, the salience of
action i being

(1)

where var13(t) = 1, t, and the wi, j(t) are the synaptic
weights representing, for each action i, the association
strength with input variable j. These weights are initi-
ated randomly ( i, j, – 0.02 < wi, j(t = 0) < 0.02) and
the objective of the learning process will be to find a
set of weights allowing the animat to perform the task
efficiently.

An exploration function is added that would
allow the animat to try an action in a given context
even if the weights of the Actor do not give a suffi-
cient tendency to perform this action in the consid-
ered context.

To do so, we introduce a clock that triggers explo-
ration in two different cases:

• When the animat has been stuck for a large
number of timesteps (time superior to a fixed
threshold α) in a situation that is evaluated nega-
tive by the model (when the prediction P(t) of
reward computed by the Critic is inferior to a
fixed threshold);

• When the animat has remained for a long time in
a situation where P(t) is high but this prediction
does not increase that much (|P(t + n) – P(t)| < ε)
and no reward occurs.

If one of these two conditions is true, exploration is
triggered: One of the 6 actions is chosen randomly. Its
salience is set to 1 (note that when exploration = false,
sali(t) < 1, i, t, wi, j(t)) and is maintained at 1 for a
duration of 15 timesteps (the time necessary for the
animat to make a 180° turn or to run from the center of
the maze to the end of one arm).

3.4 The Model: Description of the Critic Part

For the Critic part of the model, different principles
based on existing techniques are tested. The idea is to
test the hypothesis of one single Critic unit first, but
also to provide the Critic with enough computational
capacities so that it can correctly estimate the value
function over the whole environment of the task. In
other words, the Critic will have to deal with several
different sensory contexts—corridors, maze center,
extremity of arms, etc., equivalent to different stim-
uli—and will have to associate a correct reward pre-
diction to these contexts.

One obvious possibility would be a multilayer
perceptron with several hidden layers but, as men-
tioned in Section 2, there are anatomical constraints
which prevent us from adopting this choice: Our Critic
is supposed to be situated in the striosomes of dorsal
striatum, which structure is constituted of only one layer
of medium spiny neurons (Houk et al., 1995). Thus we
need a more general method that combines several
Critic modules, each one being constituted of a single
neuron and dealing with a particular part of the prob-
lem space.

The method adopted here is the mixture of experts,
which was proposed to divide a nonlinearly sepa-
rable problem into a set of linearly separable prob-
lems, and to affect a different expert to each consid-
ered sub-problem (Jacobs, Jordan, Nowlan, & Hinton,
1991).

sali t( ) varj t( ) wi j, t( )⋅
j 1–

13

∑=

persist+ i t( ) wi 14, t( )⋅

∀

∀

∀

 © 2005 International Society of Adaptive Behavior. All rights reserved. Not for commercial use or unauthorized distribution.
 at PENNSYLVANIA STATE UNIV on February 7, 2008 http://adb.sagepub.comDownloaded from 

http://adb.sagepub.com


138 Adaptive Behavior 13(2)

The Critics tested in this work differ mainly in the
two following manners:

• the first (model AMC1) implements a mixture of
experts in which a gating network is used to
decide which expert is used in each region;

• the second (model AMC2) implements a mixture
of experts in which a hand-determined partition of
the environment based on a categorization of vis-
ual perceptions is used to decide which expert
works in each subzone.

Moreover, since the animat has to solve a task in con-
tinuous state space, there could be interferences
between reinforcement signals sent by different Critic
experts to the same single Actor. In this way, whereas
one model will employ only one Actor (model AMC2),
another one will use one Actor module associated to
each expert (model MAMC2). Figure 3 shows the gen-
eral scheme with different modules employed as sug-
gested by the models presented here.

Performances of models AMC1, AMC2 and
MAMC2 will be compared, together with the one
of the seminal Actor–Critic model inspired by the basal
ganglia, proposed by Houk et al. (1995), and using a
single cell Critic with a single Actor (model AC).

We start with the description of the simplest
Critic, the one belonging to model AC.

3.4.1 Model AC In this model, at each timestep, the
Critic is a single linear cell that computes a prediction
of reward based on the same input variables as the
Actor, except for the persistence variable

(2)

where  are the synaptic weights of the Critic.
This prediction is then used to calculate the rein-

forcement signal by means of the TD-rule:

(3)

where r(t) is the actual reward received by the animat,
and g is the discount factor (0 < g < 1) which deter-
mines how far in the future expected rewards are
taken into account in the sum of future rewards.

Finally, this reinforcement signal is used to
update both Actor’s and Critic’s synaptic weights
according to the following equations respectively:

(4)

(5)

where η > 0 is the learning rate.

3.4.2 Model AMC1 As this Critic implements N
experts, each expert k computes its own prediction of
reward at timestep t:

(6)

where the  are the synaptic weights of expert k.
Then the global prediction of the Critic is a

weighted sum of experts’ predictions:

(7)

where credk(t) is the credibility of expert k at timestep
t. These credibilities are computed by a gating network
which learns to associate, in each sensory context, the
best credibility with the expert that makes the smaller
prediction error. Following Baldassarre’s description
(2002), the gating network is constituted of N linear
cells which receive the same input variables than the
experts and compute an output function out of it:

(8)

where  are the synaptic weights of gating cell k.
The credibility of expert k is then computed as the

softmax activation function of the outputs of (t):

. (9)

Concerning learning rules, whereas Equation 3 is used
to determine the global reinforcement signal sent to
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the Actor, each Critic’s expert has a specific rein-
forcement signal based on its own prediction error:

. (10)

The synaptic weights of each expert k are updated
according to the following formula:

(11)

where hk(t) is the contribution of expert k to the global
prediction error of the Critic, and is defined as

(12)

where corrk(t) is a measure of the correctness of the
expert k defined as

(13)

where σ is a scaling parameter depending on the aver-
age error of the experts (see table of parameters in the
Appendix).

Finally, to update the weights of the gating net-
work, we use the following equation:

(14)

with diff(t) = hk(t) – credk(t – 1) where m is a learning
rate specific to the gating network.

So the credibility of expert k in a given sensory
context depends on its performance in this context.

3.4.3 Model AMC2 This Critic also implements N
experts. However, it differs from model AMC1 in the
way the credibility of each expert is computed.

The principle we want to bring about here is to dis-
sociate credibilities of experts from their performance.
Instead, experts are assigned to different subregions of
the environment (these regions being computed as
windows in the perceptual space) remain enchained to
their associate region forever, and progressively learn

to improve the accuracy of their performance during
the experiment. This principle is adopted from Houk et
al. (1995) for the improvement of their model, assum-
ing that different striosomes may be specialized in
dealing with different behavioral tasks. This proposition
was implemented by Suri and Schultz (2001) in using
several TD models, each one computing predictions
for only one event (stimulus or reward) that occurs in
the simulated paradigm.

To test this principle, we replaced the gating net-
work by a hand-determined partition of the environ-
ment (e.g., a coarse representation of the sensory
space): At timestep t, the current zone β depends on
the 12 sensory variables computed by the visual sys-
tem. Example: If (seeWhite = 1 and angleWhite < 0.2
and distanceWhite > 0.8) then zone = 4 (e.g., β = 4).
Then credβ(t) = 1, credk(t) = 0 for all other experts,
and expert β has then to compute a prediction of
reward out of the 12 continuous sensory variables.
Predictions and reinforcement signals of the experts
are determined by the same equations as Critic of
model AMC1.

This was done as a first step in the test of the
considered principle. Indeed, we assume that another
brain region such as the parietal cortex or the hippoc-
ampus would determine the zone (sensory configura-
tion) depending on the current sensory perception
(McNaughton, 1989; Burgess, Jeffery, & O’Keefe,
1999), and would send it to the Actor–Critic model of
the basal ganglia. Here, the environment was parti-
tioned into N = 30 zones, an expert being associated
with each zone. The main difference between this
scheme and the one used by Suri and Schultz is that,
in their work, training of experts in each sub-zone
was done in separated sessions, and the global model
was tested on the whole task only after training of all
experts. Here, experts are trained simultaneously in a
single experiment.

Finally, one should note that this method is dif-
ferent from applying a coarse coding of the state
space that constitutes the input to the Actor and the
Critic (Arleo & Gerstner, 2000). Here, we imple-
mented a coarse coding of the credibility space so as
to determine which expert is the most credible in a
given sensory configuration, and kept the 12 contin-
uous sensory variables, plus a constant described
above, as the state space for the reinforcement learn-
ing process. This means that within a given zone, the
concerned expert has to learn to approximate a con-
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tinuous reward value function, based on the varying
input variables.

3.4.4 Model MAMC2 The Critic of this model is the
same as in model AMC2 and only differs in its associ-
ated Actor.

Instead of using one single Actor, we imple-
mented N different Actor modules. Each Actor module
has the same structure as the simple Actor described in
Section 3.4 and consists of six channels representing
the six possible actions for the task. The difference
resides in the fact that only actions of the Actor associ-
ated with the zone in which the animat is currently are
competing to determine the animat’s current action.

As a consequence, if the animat is in zone β at
time t and performed action i, the reinforcement signal

(t + 1) computed by the Critic at next timestep will
be used to update only weights of action i from the
Actor β according to the following equation:

. (15)

Other equations are the same as those used for Critic
of model AMC2. As mentioned above, this principle
(using a specific controller or a specific Actor for each
module of the Actor–Critic model) is inspired by the
work of Doya et al. (2002).

3.5 Results

In order to compare the learning curves of the four
simulated models, and so as to evaluate which models
manage to solve the task efficiently, we adopt the fol-
lowing criterion: After 50 trials of training (out of 100
for each experiments), the animat has to achieve an
equivalent performance to a hand-crafted model that
can already solve the task (Table 1). To do so, we sim-
ulated the GPR action selection model with appropri-
ate hand-determined synaptic weights and without any
learning process, so that the animat can solve the task
as if it had already learned it. With this model, the ani-
mat performed a 50-trial experiment with an average
performance of 142 iterations per trial. Since each
iteration lasted approximately 1 s, as mentioned above,
it took a little bit more than 2 min per trial for this
hand-crafted animat to reach the reward.

Table 1 shows the performance of each model,
measured as the average number of iterations per trial

after trial #50. Figure 4 illustrates results to the four
experiments performed in the 2D environment, one
per model. The x-axis represents the successive trials
during the experiments. For each trial, the y-axis
shows the number of iterations needed for the animat
to reach the reward and consume it. Figure 4a shows
the learning curve of model AC. It can be seen that the
model rapidly increased its performance until trial 7,
and stabilized it at trial 25. However, after trial 50, the
average duration of a trial is still 587 iterations, which
is nearly 4 times higher than the chosen criterion. We
can explain this limitation by the fact that model AC
consists of only one single neuron in the Critic, which
can only solve linearly separable problems. As a con-
sequence, the model could learn only a part of the task
(in the area near the reward location), and was unable
to extend learning to the rest of the maze. So the ani-
mat has learned to select appropriate behaviors in the
reward area, but it still performs random behaviors in
the rest of the environment.

Model AMC1 is designed to mitigate the compu-
tational limitations of model AC, as it implies several
Critic units controlled by a gating network. Figure 4b
shows its learning curve after simulation in the plus-
maze task. The model has also managed to decrease its
running time per trial at the beginning of the experi-
ment. However, it can be seen that the learning process
is more unstable than the previous one. Furthermore,
after the 50th trial, the model has a performance of 623
iterations, which is no better than model AC. Indeed,
the model could not extend learning to the whole maze
either. We can explain this failure by the fact that the
gating network did not manage to specialize different
experts in different subparts of the task. As an exam-
ple, Figure 5 shows the reward prediction computed by
each Critic’s expert during the last trial of the experi-
ment. It can be noticed that the first expert (dark curve)
has the highest prediction throughout the whole trial.
This is due to the fact that it is the only one the gating
network has learned to consider as credible—its credi-
bility remains above 90% during the whole experi-
ment. As a consequence, only one expert is involved in
the learning process and the model becomes computa-

r̂

wk i j, , t( ) wk i j, , t 1–( ) η r̂ t( ) varj t 1–( )⋅⋅+←

Table 1 Performance of each model.

Model GPR AC AMC1 AMC2 MAMC2

Performance 142 587 623 3240 97
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tionally equivalent to model AC: It cannot extend
learning to the whole maze, which is confirmed by the
absence of any reward prediction before the perception
of the reward site (stimulus occurrence) in Figure 5.

Figure 4c shows the learning curve of model AMC2
which implements another principle for experts coor-
dination. This model does not suffer from the same
limitations as model AMC1, since each expert was a
priori assigned to a specific area of the environment.
As a consequence, it quickly managed to extend learn-
ing to the whole maze. However, the consequence of

this process is to produce interferences in the Actor’s
computations: The same Actor receives all experts’
teaching signals, and it remains unable to switch prop-
erly between reinforced behaviors. For example, when
the action drinking is reinforced, the Actor starts
selecting this action permanently, even when the ani-
mat is far from reward location. These interferences
explain the very bad performances obtained with
model AMC2.

The last simulated model (model MAMC2) per-
formed best. Its learning curve is shown in Figure 4d.
This model implements several Actor modules (an
Actor module connected to each Critic expert). As a
consequence, it avoids interferences in the learning
process and rapidly converged to a performance of 97
iterations per trial. This good performance cannot be
reached with the multi-Actor only; we tried to com-
bine several Actor modules to model AMC1 and got a
performance of 576 iterations per trial. So the achieve-
ment of the task implies a combination of multi-Actor
and a good specialization of experts.

To check the ability of model MAMC2 to learn
the same task in more realistic conditions, we simu-
lated it in a 3D environment, working in real time and
implementing physical dynamics (Figure 7). This exper-
iment involved an intermediary step favoring the
implementation into an actual Pekee robot (Wany
Robotics). The animat is still able to learn the task in
this environment and gets good performances after 35
trials (Figure 6; corresponding average performance

Figure 4 Learning curves of the four models simulated
in the 2D plus-maze task over 100 trials experiments:
x-axis, trials; y-axis, number of iterations per trial (truncat-
ed to 10000 for better readability). (a) Model AC, (b) mod-
el AMC1, (c) model AMC2, (d) model MAMC2.

Figure 5 Reward prediction computed by each Critic’s
expert of model AMC1 during trial #100 of the experi-
ment. Time 0 indicates the beginning of the trial. S: per-
ception of the stimulus (the white wall) by the animat. R:
beginning of reward delivery. The dark curve represents
the prediction of expert 1. The other experts’ predictions
are melted into the light curve or equal to 0.
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of the animat between trials 35 and 65: 284 iterations
per trial).

4 Discussion and Future Work

In this work, we have compared learning capabilities
on a S–R task of several Actor–Critic models of the

basal ganglia based on distinct principles. Results of
simulations with models AC, AMC1, AMC2 and
MAMC2 demonstrated that

• a single-component Critic cannot solve the task
(model AC);

• several Critic modules controlled by a gating net-
work (model AMC1) cannot provide good spe-
cialization, and the task remains unsolved;

• several Critic modules a priori associated with
different subparts of the task (model AMC2) and
connected to a single Actor (an Actor component
being composed of a 6-channel GPR) allow learn-
ing to extend to areas that are distant from reward
location, but still suffer from interferences between
signals sent by the different Critic to the same
single Actor.

Model MAMC2, combining several Critic modules
with the principle of model AMC2, and implementing
several Actor components, produces better results in the
task, spreading learning in the whole maze and reduc-
ing the learning duration. However, there are a few

Figure 6 Learning curve in the 3D environment: x-axis,
trials; y-axis, number of iterations per trial.

Figure 7 Simulation of the plus-maze task in a 3D environment. Like the 2D environment, one random arm extremi-
ty is white and delivers reward. The animat has to perform taxon navigation so as to find and consume this reward.
Gray stripes arising from the animat’s body represent its sonar sensors used by its low level obstacle avoidance
reflex.
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questions that have to be raised concerning the biolog-
ical plausibility and the generalization ability of this
model.

4.1 Biological Plausibility of the Proposed 
Model

When using a single GPR Actor, each action is repre-
sented in only one channel—an Actor module consisting
of one channel per action (Gurney et al., 2001a,b)—
and the structural credit assignment problem (which
action to reinforce when getting a reward) can be sim-
ply solved: The action that has the highest salience
inhibits its neighbors via local recurrent inhibitory cir-
cuits within D1 striatum (Brown & Sharp, 1995). As a
consequence, only one channel in the Actor will have
enough pre- and post-synaptic activity to be eligible
for reinforcement.

When using several Actor modules, this property
is no longer true: Even if only one channel per Actor
module may be activated at a given time, each
Actor module will have its own activated channel,
and several concurring synapses would be eligible for
reinforcement within the global Actor. To solve this
problem, we considered in our work that only one
channel in the entire Actor is eligible at a given time.
However, this implies that the basal ganglia has
one of the two following characteristics: Either there
should exist non-local inhibition between Actor mod-
ules within the striatum, or there should be some kind
of selectivity in the dopamine reinforcement signals
so that even if several channels are activated, only
those located in the target module receive dopamine
signals.

To the best of our knowledge, these characteris-
tics have not been found in the basal ganglia, and
some studies tend to refute the dopamine selectivity
(Pennartz, 1996).

4.2 Computational Issues

Several computational issues need also to be addressed.
First, the results presented here show that the learning
process was not perturbed by the fact to use an Actor
detailing the action selection process in the basal gan-
glia. This Actor has the property to take into account
some persistence provided by the cortex–basal-gan-
glia–thalamus–cortex loops. The way this persistence
precisely influence the learning process in the different

principles compared in this work was not thoroughly
studied here. However, we suspect that persistence
could probably challenge the way different Actors
interact with Critic’s experts, as switching between
actions does not exactly follow switches in sensorimo-
tor contexts with this model. This issue should be
examined in a future work.

4.2.1 Generalization ability of the multi-module
Actor. Another issue that needs to be addressed here
is the generalization ability of the multi-module Actor
model used in this experiment. Indeed, model MAMC2
avoids interferences in the Actor because hand-deter-
mined subzones of the maze are absolutely disjoint. In
other words, learned stimulus–response associations in
a given zone cannot be performed in another zone, and
do not interfere with the learning process is this sec-
ond zone even if visual contexts associated with each
of them are very similar. However, this also leads to
an inability to generalize from one zone to the other:
Even if the distinction we made between two zones
seemed relevant for the plus-maze task, if these two
zones were similar and implied similar motor responses
in another task, the animat would have to learn the
same sensorimotor association twice—one time in
each zone. As a consequence, the partition we set in this
work is task-dependent.

Alternatively, the model would need a partition-
ing method that autonomously classifies sensory
contexts independently from the task, can detect simi-
larities between two different contexts and can gener-
alize learned behaviors from the first experienced
context to the second one.

4.2.2 About the precise time of reward delivery.
In the work presented here, the time of reward deliv-
ery depends exclusively on the animat’s behavior,
which differs from several other S–R tasks used to
validate Actor–Critic models of the basal ganglia. In
these tasks, there is a constant duration between a
stimulus and a reward, and several Actor–Critic mod-
els have been designed to describe the precise tempo-
ral dynamics of dopaminergic neurons in this type of
task (Montague et al., 1996). As a consequence, numer-
ous Actor–Critic models focused on the implementa-
tion of a time component for stimulus representation,
and several works capitalized on this temporal repre-
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sentation for the application of Actor–Critic models of
reinforcement learning in the basal ganglia to robotics
(Perez-Uribe, 2001; Sporns & Alexander, 2002). Will
we need to add such a component to our model to be
able to apply it to a certain type of natural task, or sur-
vival task?

In the experiments presented here, we did not
need such a temporal representation of stimuli because
there was sufficient information in the continuous sen-
sory flow perceived by the animat during its moves,
so that the model could dynamically adapt its reward
predictions, as observed also by Baldassarre and
Parisi (2000). For example, when the animat is at the
center of the maze, perceives the white wall (stimulus
predicting reward) and moves towards reward loca-
tion, the latter stimulus becomes bigger in the visual
field of the animat, and the model can learn to
increase its reward prediction, as shown in Figure 8.
We did not aim to explain the depression of dopamine
neurons’ firing rates when a reward does not occur;
nevertheless, we were able to observe this phenome-
non in cases where the animat was approaching the
reward site, was about to consume it, but finally turned
away from it (R events in Figure 8).

4.2.3 Using Critics dependent or independent from
the performance. In our experiments, model AMC1,
implementing a gating network for experts’ credibili-
ties computation, did not solve the task. We saw in
Section 2 that, during the simulations, one expert
became rapidly the most credible, which forced the
model to use only one neuron to solve the task. The
use of gating networks in the frame of mixture of

experts methods has already been criticized (Tang,
Heywood, & Shepherd, 2002). According to these
authors, this approach works well on problems com-
posed of disjoint regions but does not generalize well,
suffering from effects on boundaries of regions.

In our case, we explain the failure in the experts’
specialization with model AMC1 by the observation
that until the model has started to learn the task, and
so can propagate teaching signals to the rest of the
maze, only reward location has a value. As a conse-
quence, it is the only area where the gating network
tries to train an expert, and the latter rapidly reaches a
high credibility. Then, as reward value starts to be
extended to a new zone, this same expert still has the
best credibility while getting bad performances. Other
experts do not have significantly better perform-
ances—since they were not trained yet and since the
new area and the first one are not disjoint. As a conse-
quence, they remain noncredible and the model starts
having bad performances.

Baldassarre (2002) managed to obtain a good spe-
cialization of experts. This may be partly explained
by the fact that his task involved three different
rewards located in three different sensory contexts.
The simulated robot had to visit all rewards alternately
from the very beginning of the task. This may have
helped the gating network to attribute good credibilities
to several experts. However, reward locations in Bald-
assarre’s task are not perfectly disjoint, which results in
a difficult specialization: One of the experts is the
most credible for two of the three rewards (see Bald-
assarre, 2002).

Another model (Tani & Nolfi, 1999) proposes a
different mixture of experts where the gating network

Figure 8 Reward prediction (light curve) and dopamine reinforcement signal (dark curve) computed by Critic of model
MAMC2 in the 3D environment: x -axis, time; y-axis, Critic’s signals. S: perception of the stimulus (white wall) by the an-
imat; R: Reward missed by the animat.
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is replaced with a dynamical computation of experts’
credibilities. Their model managed to categorize the
sensory–motor flow perceived by a simulated robot
during its movements. However, their method does
not use any memory of associations between experts’
credibilities and different contexts experienced during
the task. As a consequence, experts’ specialization is
even more dependent on each expert’s performance
than Baldassarre’s gating network, and suffers from
the same limitation when applied to reinforcement
learning in our plus-maze task—as we have found in
experiment (unpublished work).

4.2.4 Combining self-organizing maps with mix-
ture of expert. To test the principle of dissociating
the experts credibility from their performance, we par-
titioned the environment into several sub-regions.
However, this method is ad hoc, lacks autonomy, and
suffers generalization abilities if the environment is
changed or becomes more complex. We are currently
implementing self-organizing maps (SOMs) as a method
of autonomous clustering of the different sensory con-
texts that will be used to determine these zones. Note
that this proposition differs from the traditional use of
SOMs to cluster the state space input to experts or to
Actor–Critic models (Smith, 2002; Lee & Kim, 2003).
It is rather a clustering of the credibility space, which
was recently proposed by Tang et al. (2002). We
would also like to compare the use of SOMs with the
use of place cells. Indeed models of hippocampal place
cells have already been used for coarse coding of the
input state space to the Actor and the Critic (Arleo &
Gerstner, 2000; Foster, Morris, & Dayan, 2000; Ströss-
lin, 2004) but, in our case, we would like to use place
cells to determine experts’ credibilities.

4.3 Future Work

As often mentioned in the literature, and as confirmed
in this work, the application of Actor–Critic architec-
tures to continuous tasks is more difficult than their
use in discrete tasks. Several other works have been
done on the subject (Doya, 2000). However, these archi-
tectures still have to be improved so as to decrease
their learning time.

Particularly, the learning performance of our ani-
mat seems still far from the learning speed that real rat
can reach in the same task (Albertin et al., 2000), even

if the high time constant that we used in our model
does not allow a rigorous comparison yet (see the table
of parameters in the Appendix). This could be at least
partly explained by the fact that we implemented only
S–R learning (or habit learning), whereas it has
recently been known that rats are endowed with two
distinct learning systems related to different cortex–
basal-ganglia–thalamus loops: A habit learning system
and a goal-directed learning one (Ikemoto & Pank-
sepp, 1999; Cardinal, Parkinson, Hall, & Everitt, 2002).
The latter would be fast, used at the early stages of learn-
ing, and implies an explicit representation of rewarding
goals or an internal representation of action-outcome
contingencies. The former would be very slow and
takes advantage of the latter when the animat achieves
good performance and becomes able to solve the task
with a reactive strategy (S–R) (Killcross & Coutureau,
2003; Yin, Knowlton, & Balleine, 2004).

Some theoretical work has already been started to
extend Actor–Critic models to this functional distinc-
tion (Dayan, 2001). In the practical case of our artifi-
cial rat, both such systems could be useful in two
different manners.

First, it could be useful to upgrade the exploration
function. This function could have an explicit repre-
sentation of different places of the environment, and
particularly of the reward site. Then, when the animat
gets reward for the first time, the exploration function
would guide it, trying behaviors that can allow it to
reach the explicitly memorized reward location. The
function could also remember which behaviors have
already been tried unsuccessfully in the different areas,
so that untried behaviors are selected instead of ran-
dom behaviors in the case of exploration. This would
strengthen the exploration process and is expected to
increase the animat’s learning speed.

The second possible use of a goal-directed behav-
ior component is to represent the type of reward the
animat is working for. This can be useful when an ani-
mat has to deal with different rewards (food, drink) so
as to satisfy different motivations (hunger, thirst). In
this case, a component that chooses explicitly the cur-
rent reward the animat takes as an objective can select
sub-modules of the Actor that are dedicated to the
sequence of behaviors that leads to the considered
reward. This improvement would serve as a more real-
istic validation of the artificial rat Psikharpax when it
has to survive in more natural environments, satisfying
concurrent motivations.
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