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Song production in songbirds is controlled by a network of nuclei distributed across

several brain regions, which drives respiratory and vocal motor systems to generate

sound. We built a model for birdsong production, whose variables are the average

activities of different neural populations within these nuclei of the song system. We

focus on the predictions of respiratory patterns of song, because these can be easily

measured and therefore provide a validation for the model. We test the hypothesis that it

is possible to construct a model in which (1) the activity of an expiratory related (ER) neural

population fits the observed pressure patterns used by canaries during singing, and (2) a

higher forebrain neural population, HVC, is sparsely active, simultaneously with significant

motor instances of the pressure patterns. We show that in order to achieve these two

requirements, the ER neural population needs to receive two inputs: a direct one, and

its copy after being processed by other areas of the song system. The model is capable

of reproducing the measured respiratory patterns and makes specific predictions on the

timing of HVC activity during their production. These results suggest that vocal production

is controlled by a circular network rather than by a simple top-down architecture.

Keywords: non-linear dynamics, rate models, birdsong, song system, motor control

Introduction

One of the fundamental problems in motor control is how the instructions for controlling the
peripheral effectors are encoded in the central nervous system (Churchland et al., 2012). Birdsong
production is a complex behavior that presents strong advantages for exploring this issue. First,
the peripheral structures generating the behavior are sufficiently understood (Suthers et al., 1999),
thus allowing assessment of the output of the central nervous system. This output is the set of time
dependent parameters that control the respiratory rhythm and the vocal organ, the syrinx. Second,
the neural brain circuitry for generating these instructions is dedicated to vocal behavior and is
well characterized. The song production circuit (Figure 1) involves telencephalic areas HVC (used
as proper name) and the robust arcopallial nucleus (RA), which projects to the respiratory nuclei
n. retroambigualis (RAm) and n. parambigualis (PAm) and the syringeal motor nucleus (nXIIts).
These hindbrain structures are connected to n. uvaeformis (Uva) and the dorsomedial nucleus
(DM), which in turn provide a direct or indirect connection to HVC (Ashmore et al., 2005). In
this system we can therefore systematically study how different parts of the brain participate in
birdsong production.

One proposed model states that forebrain areas take control of respiratory pattern generators.
In particular this model postulates that nearly all the temporal features of song are encoded
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Alonso et al. Circular model for birdsong production

FIGURE 1 | Diagram of the avian song system. Representation of the song

system as a circular, highly interconnected set of brain areas. We used the

same color code as in Figure 3 for the neural nuclei of our model so that they

can be mapped directly onto nuclei in this architecture. Nuclei in the brainstem

are more difficult to map into our model, as all the reported recordings in those

nuclei were performed in sleeping or anesthetized conditions. Excitatory and

inhibitory populations in our model could be mapped into the analogous

populations in RAm, associated with expiratory related activity. Whether the

initiating area in our model is a subpopulation of either PAm or DM is not clear.

In any case, the model predicts that at least one of those is likely to present

neurons branching to thalamus and medulla. Both connect indirectly to

cortical-like areas via the thalamic nucleus Uva, which in Figures 3B–E

corresponds to the circle enclosing the blue ring. This starts the indirect path

from the initiating area back to the one with expiratory related activity.

in the sparse bursting of projecting neurons in the telencephalic
nucleus HVC (Fee et al., 2004; Long and Fee, 2008; Andalman
et al., 2011). Observation of the distinct activity patterns of dif-
ferent projection neurons in HVC (Hahnloser et al., 2002) show
that these fire sparsely with precisely timed bursts produced at
specific time points in the song motif. It was conjectured that
each observed burst represents only a short subset of a continu-
ous chain of activity patterns and, thus, in combination the bursts
cover the entire duration of the song (e.g., Fee et al., 2004). This
interpretation has been referred to as the “clock hypothesis” of
the song system (Troyer, 2013).

Recently, an alternative coding strategy by HVC neurons has
been proposed, where the sparse bursts of action potentials in
RA-projecting HVC neurons are not viewed as an under-sampled
set of recordings of a continuous representation of time. Instead,
they are viewed as sparse sets of bursts that code for events in
the motor control sequence that are associated with key transi-
tions in the acoustic structure of the behavioral output (Amador
et al., 2013). This alternative interpretation has been referred to
as the “gesture-transition” hypothesis (Troyer, 2013). This obser-
vation poses a challenge to the “clock hypothesis,” which assumes
a pre-motor function of HVC in that each burst is assumed to
provide instruction to be executed into acoustic behavior after a
delay. This delay is required for the signals to pass through the
downstream nuclei of the circuit and the execution of movement

by muscles. If the bursts in HVC projection neurons occur
temporally close to significant motor instances (like the begin-
ning of the syllables), it is tempting to conjecture that there is a
relationship between these events. However, if the burst occurs
simultaneously with the acoustic gesture, causality seems to be
violated. In a top down view of the architecture of the song sys-
tem, this paradox is difficult to resolve. It has been stressed, how-
ever, that the song system is a highly interconnected network with
significant bottom up connectivity between the brainstem and
song control areas in the telencephalon. Because microstimula-
tion delivered to PAm (a pre-motor area in the lateral medulla
that drives inspiration) during singing causes disruptions of song
sequencing, these connections have been suggested to play a
critical role in the execution of the motor program for singing
(Ashmore et al., 2005, 2008). Is it possible to have sparse activity
in the telencephalon concurrent with significant motor instances
in such architecture?

In order to address this question, we built a model whose
variables are the average activity (Hoppensteadt and Izhikevich,
1997) of different neural populations of the song system. The
model’s architecture is designed to incorporate observations in
several areas of the song motor control circuit and we there-
fore explicitly represented the telencephalic song-control nuclei
HVC and RA as well as the thalamic nucleus Uvaeformis (Uva)
which connects PAm to HVC. The difficulty for obtaining elec-
trophysiological measurements during singing from respiratory
brainstem nuclei, such as RAm which control expiratory drive,
prevents us frommakingmore specific associations to these areas
and we therefore define it in our model as a generic expiratory
related area (ER). In this way, one variable controls expiratory
activity during song production, and we require that its activity
fits the respiratory patterns observed during song in the canary
(Trevisan et al., 2006; Alliende et al., 2010).

Song arises from combined activity between the respiratory
system and syrinx and we therefore choose ER activity as a key
variable in our model because it controls many of the tempo-
ral and acoustic features of song. Specifically, the syrinx, which
is a bipartite structure between the bronchi and the trachea that
holds two pairs of internal labia, modulates the airflow generat-
ing sound waves. The configuration of this device can be con-
trolled by the activation of specific muscles, whose contraction
is ultimately transduced into acoustic modulations of the gen-
erated sounds (Laje and Mindlin, 2005). Because the generation
of sound requires establishing airflow between the vibratory tis-
sue, the labia, a bird has to exquisitely coordinate respiratory and
syringeal muscles to produce specific acoustic features. There-
fore, a central aspect of the motor control of birdsong production
is the capacity to generate diverse respiratory rhythms, which
determine the coarse temporal pattern of song. The neural mech-
anisms that underlie this diversity of respiratory gestures and the
resulting acoustic syllables are largely unknown. Yet, an inter-
active model has been proposed, where these motor instruc-
tions emerge from the non-linear interaction between timescales
of different components of the motor control network (Alonso
et al., 2009; Goldin et al., 2013). Support for this integrative view
comes from the specific shapes of pressure patterns used to gen-
erate the different syllables found in canary song (Figure 2). In
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FIGURE 2 | Experimental respiratory patterns of a canary song.

During song, the air sac pressure is monitored through a cannula

inserted through the abdominal wall into the anterior thoracic air sac,

which is connected to a miniature piezoresistive pressure transducer.

Four basic respiratory patterns form the canary song: the pulsatile,

consisting of small pressure fluctuations mounted on a DC value; the

P1 (or period 1) patterns, which consist of almost harmonic fluctuations;

the P2 (or period 2) patterns last approximately twice as the P1

patterns and typically display a relative minimum during the expiratory

gesture. Finally, the P0 patterns are long expiratory gestures

characterized by a brief pulse followed by a long expiratory gesture

presenting a slow decay until the abrupt end of the pulse.

canary song, respiratory patterns generating different syllables
are highly characteristic and can be reproduced using a simple
model (Alonso et al., 2009; Goldin et al., 2013).

The success of the presented model in reproducing the mea-
sured respiratory patterns and its specific predictions on the
timing of HVC activity during their production, which are con-
sistent with recently reported observations (Amador et al., 2013),
support a model for control of vocal production by a circular
network rather than by a simple a top-down architecture.

Materials and Methods

Experiments were performed using adult male canaries in accor-
dance with a protocol approved by the University of Buenos
Aires, (FCEN-UBA) Institutional Animal Care and Use Commit-
tee (C.I.C.U.A.L.).

To record respiratory activity, we monitored subsyringeal
air sac pressure through a flexible cannula (silastic tubing, o.d.
1.65mm), which was inserted through the abdominal wall into
the anterior thoracic air sac under isoflurane anesthesia. The
free end of the cannula was connected to a miniature piezoresis-
tive pressure transducer (Fujikura model FPM-02PG), which was
mounted on the bird’s back (for a more detailed description see
Goller and Suthers, 1996). The voltage from the transducer was
amplified and recorded with a data acquisition device (National
Instruments BNC2110). Typically, birds start singing 1 or 2 days
after the surgery. Songs and the pressure transducer signal were
recorded continuously and simultaneously.

Empirical models for the nervous system arise when we search
for a simple dynamical system reflecting one or more important
physiological observations (Hoppensteadt and Izhikevich, 1997).
In our case, we want to test the hypothesis that it is possible
to reproduce the shapes of the air sac pressure patterns in area
ER (Figure 3) of the nervous system, while HVC displays sparse
activity at significant motor instances.

We built our empirical model in a modular way. The vari-
ables are the averaged activities of the neurons in a set of
interconnected areas (Hoppensteadt and Izhikevich, 1997). The

dynamics for these variables will be ruled by a simple time
continuous additive neural network model of the form:

dxi

dt
= −xi + S



ρi +
∑

j

aijxj



 ,

S(x) =
1

1+ e−x

where xi describes the averaged activity of the neurons in the ith

area, ρi the external input to the ith area, and aij describe the
connectivity between the regions. The connectivity parameters
describe both the strength of the connections as well as the size
of the driving populations. The additive model implements the
observation that the more excitatory input a neuron receives, the
more active the neuron will be.

Previously we reported that a simple model could reproduce
the pressure patterns used by canaries during song production
(Trevisan et al., 2006; Alonso et al., 2009; Amador and Mindlin,
2014). This model consisted of a neural motif with an excitatory
population, an inhibitory population, and a simple time periodic
input. Following this work, the first building block of our model
is an excitatory population coupled to an inhibitory one, and we
require that the activity of the excitatory population fits the mea-
sured pressure patterns. In Figure 3A, these two populations are
ER_e and ER_i.

One of the significant motor instances mentioned in Amador
et al. (2013) is the start of the syllables. One way to account for
activity in the telencephalic nucleus HVC that occurs simulta-
neously with this onset is a common input to the ER area and
HVC. In our model, this common input is provided by a neu-
ral population that we call initiating area (IA), whose activity
consists of bursts of spikes that we represent mathematically
as a square function a few milliseconds long (see Figure 3A,
blue circle labeled IA, and blue traces in Figures 3B–E). We
assume that this IA is somewhere in the brainstem. The ratio-
nale for this hypothesis is that non-oscine birds lack the com-
plex telencephalic structures found in oscines and yet are capable
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FIGURE 3 | Elements of the empirical model of the song

system and activities of the simulated patterns. (A)

connectivity network of different brain regions of the song system.

The expiratory system is modeled as two coupled populations,

sketched as interconnected circles at the bottom of the figure,

and labeled as ER_e and ER_i. The circle with a black ring

represents the excitatory part (ER_e), and the other the inhibitory

one (ER_i). In our model, a brainstem area (represented by the

circle enclosing a blue ring, labeled IA) is responsible for the

initial burst received by both the ER area and nucleus HVC

(represented by the circle with the green ring). The passage from

the brainstem to the telencephalic structures is represented by

the activation of Uva (yellow ring), delayed with respect to the

burst in IA. Further processing of this burst is performed in the

nucleus RA, which we model by two neural populations: an

excitatory (red ring labeled RA_e) and an inhibitory one (labeled

RA_i). The input of these populations is the activity of the area

representing HVC, and the activity of the excitatory population is

sent to ER. (B–E) represent the activities produced at the

different areas of the model (following the color code of the

network) that reproduce the observed expiratory patterns used by

canaries in Figure 2, in such a way that HVC is sparsely

active, simultaneously with significant motor instances of these

patterns. In the framework of additive models, the variables

represent the averaged activity of local populations of neurons,

i.e., the average number of action potentials generated by the

neurons in the population. In this representation, the square

pulses consequently denote bursts.

of generating song-like vocalizations. In oscine birds, brainstem
activity is conveyed to the telencephalic structures through the
thalamus, similar to efferent copies that are conveyed to corti-
cal or cortical-like areas in other systems (Wolpert et al., 2001).
We represent participation of this thalamic pathway by the acti-
vation of Uva (Figure 3A yellow circle labeled Uva), delayed
with respect to the burst in IA. The green circle represents the
nucleus HVC, and we simulate its activity by a burst that is math-
ematically expressed as a square function 10ms wide, delayed
with respect to the burst in the thalamic area. In this way we
ensure that the burst in HVC and the start of activity in the
expiratory related areas will occur approximately at the same
time.

The challenge for this model is whether the further process-

ing of this burst by the nucleus RA and its output that forces the

ER area are capable of eliciting features in the respiratory activ-
ity that matches those found in recorded air sac pressure during

song. In order to test this hypothesis, we model the area repre-
senting RA by two neural populations: an excitatory (RA_e in

Figure 3A) and an inhibitory one (RA_i in Figure 3A), follow-
ing the neural architecture reported in the literature (Spiro et al.,
1999). The input of these populations is the HVC activity, and the

activity of the excitatory population is sent to the ER area as an
input ρ.

Mathematically, this model is represented as follows:

deer

dt
= 149.5 (−eer + S (−7.5+

αeer,raera + αeer,FF + 10eer − 10ier
))

dier

dt
= 149.5 (−ier + S (−11.5+

αier,raera + 10eer + 2ier
))

dera

dt
= 20

(

−era + S
(

ρe,ra + αera,FdFdelayed+

αera,Fd2Fdelayed2 + αera,raera + βera,raira
))

dira

dt
= 20

(

−ira + S
(

ρi,ra + αira,FdFdelayed+

αira,Fd2Fdelayed2 + αira,raera + βira,raira
))

(1)

where the variables eer , ier , era, ira stand for the excitatory and
inhibitory populations in the ER area and RA, respectively. F is a
square function, and stands for the activity in the IA. Notice that
it constitutes one of the inputs to the ER area. Fdelayed is a square
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function as well, but one that is delayed with respect to F. In our
simulations, both Fdelayed and Fdelayed2 stand for bursts of activity
in HVC. As the pulses represent burst of activity, the amplitude
of the square function was set equal. The height of the pulses was
set to 10 (arb. units) for all the simulated patterns. These delays
were introduced to account for the processing taking place in the
thalamus. Otherwise, transmission delays between directly con-
nected nuclei were neglected, which is the usual approximation
in additive models (Hoppensteadt and Izhikevich, 1997).

Results

Canaries generate different song syllables with respiratory pat-
terns that can be classified using singular value decomposition
(SVD) into four basic patterns (Trevisan et al., 2006; Alliende
et al., 2010). Pulsatile patterns consist of sustained expiratory
pressure pulses, which display small modulations where each
peak corresponds to a sound pulse. In Figure 2, a pulsatile
sequence is followed by a sequence of period 1 pattern (P1),
which consists of fluctuations that are almost harmonic in nature.
In contrast a period 2 (P2) is a pattern in which pulses are approx-
imately twice as long as those of the P1 and where each expira-
tory pulse typically displays a pressure modulation with a relative
minimum. Finally, period 0 patterns (P0) are sustained expi-
rations that are used to generate tonal whistles. They are long
expiratory gestures that typically contain a brief pressure peak
followed by a second, long expiratory gesture with a slow decay
until the abrupt end of the pulse. The model proposed above dis-
plays solutions reproducing these patterns. The time series data
used in Figure 2 are included in the Supplementary Materials.

P0 Solutions
P0 solutions can be reproduced in the following way (Figure 3B).
The ER area is built out of two populations: an excitatory (black
circle labeled ER_e) and an inhibitory one (open circle labeled
ER_i). Their activities are eer and ier , ruled by the first two equa-
tions in Equation (1) (see Materials and Methods). In the frame-
work of additive models, the variables represent the averaged
activity of local populations of neurons, i.e., the average number
of action potentials generated by the neurons in the population
(Hoppensteadt and Izhikevich, 1997). The excitatory population
in the ER area first receives a brief pulse of activity of 20ms (rep-
resented by F in Equation 1) from the IA, represented by the
blue circle in Figure 3. The pulse is also sent upstream to the
cortical-like areas, arriving at HVC (green circle). This is then
conveyed to RA after a 10ms delay through the HVC-RA pro-
jection neurons (represented by Fdelayed in Equation 1). RA has a
set of excitatory and inhibitory populations that process the input
from HVC and generate an output, which constitutes a second
drive to the ER area of the song system (notice era within the
arguments of the sigmoid function, in the first equation of Equa-
tion 1). The parameters defining the internal connectivity of RA
and its connectivity with other brain regions were chosen so that
RA activity (as defined at the beginning of this section), after the
input fromHVC, consists of a sharp growth followed by an expo-
nential decay (the red time trace in Figure 3B). In this way, the
ER area receives two inputs: a direct one, and a processed copy of

that input from the telencephalon. The copy might be processed
by the contralateral nuclei. In that case, the brief peak of the expi-
ratory pulse and the longer pulse give rise to sounds uttered by
the opposite sides of the syrinx. In this way, the model allows a
reproduction of the shape of the respiratory gesture, including (1)
sparse activity in HVC and (2) a precise prediction on the timing
of the activity of the projection population inHVC, i.e., right after
the brief pulse in the expiratory gesture.

The parameters of the expiratory area are set to: (αeer,F, αeer,ra,
αier,ra)= (1, 10, 0). The parameters of the RA network are: (ρe,ra,
αera,Fd, αera,Fd2, αera,ra, βera,ra) = (−3, 5, 0, 6, −3) and (ρi,ra,
αira,Fd, αira,Fd2, αira,ra, βira,ra)= (−6, 0.05, 0, 6, 6).

Pulsatile Solutions
Pulsatile pressure patterns consist of small amplitude oscilla-
tions superimposed on a sustained expiratory pressure pulse. In
Figure 3Cwe display a plausible mechanism for their generation.
The ER area receives a pulse of 50ms from the IA, to which it is
weakly coupled. A copy of this activity is sent to HVC.We assume
that this first pulse has an excitatory effect on the excitatory pop-
ulation of RA (RA_e in Figure 3A), and a second peak in HVC is
assumed to project to the inhibitory population in RA (RA_i in
Figure 3A). The result is a finite amount of time in which RA
is active, driving the expiratory related area into an oscillating
regime.

In this model, activity of HVC projection neurons is required
right before the beginning and right before the end of the pul-
satile segment. We are not providing a model for HVC, therefore
the second burst (represented by the pulse Fdelayed2, and act-
ing as input at the inhibitory population of RA) could either be
the result of HVC dynamics, or it could be a delayed response
to activity in the IA. In this implementation, both of these
bursts originate at the IA, and the time interval between Fdelayed2
and Fdelayed is the duration of the pulsating segment. In this
implementation of the model, we are not considering additional
periodic activity in HVC, although similar solutions would be
obtained provided its frequency is similar to the one of the
oscillations induced in the respiratory network.

The parameters used in the simulations are set to: (αeer,F,
αeer,ra, αier,ra) = (0.25, 10, 6). For the RA network the parame-
ters are set to: (ρe,ra, αera,Fd, αera,Fd2, αera,ra, βera,ra)= (−5.25, 15,
0, 10,−10) and (ρi,ra, αira,Fd, αira,Fd2, αira,ra, βira,ra)= (−12, 0, 25,
10, 2).

P2 Solutions
This model can also reproduce P2 patterns (Figure 3D), which
are expiratory pulses displaying a local minimumwith a duration
approximately twice that found in the simplest, almost harmonic
patterns (P1). The relative amplitude of the local maxima can
vary in different syllables generated by P2 solutions. These pres-
sure patterns are used in vocalizations involving sequential use of
the two sides of the syrinx, similar to bilateral contributions in
syllables generated by P0 solutions (Suthers et al., 2004). As in P0
solutions, we make the assumption in the model that the part of
the pulse between its beginning and the local minimum is used
to generate sound with one of the two sound sources, while the
rest of the pulse is used to generate sound with the second source.
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In our implementation of the P2 solution, the rapid growth of the
peak is the result of the driving from the IA, a pulse of 20ms. After
this brief pulse of activity, the activity decays until the input from
the telencephalon arrives, 22ms after the first one. The difference
between these solutions and the P0 is that the activity from RA is
not strong enough to drive the ER area into the “on” fixed point
(compare the red traces for B and D in Figure 3), and therefore
its contribution to the expiratory pattern is a small modulation
in pressure. The implementation shows the plausibility of gen-
erating a time trace with the shapes of the measured patterns,
together with sparse activity in HVC at significant instances of
the motor gesture; in this case, at the beginning of the syllable
and the transition between the two sources. As before, the key to
reproducing this pattern is the dual forcing that arrives at the ER
area, (1) the direct one from the IA and (2) the one processed by
the telencephalon.

In this implementation, we used (αeer,F, αeer,ra, αier,ra) =

(1, 10, 0) for the expiratory system. The network describing RA
for the generation of this syllable is (ρe,ra, αera,Fd, αera,Fd2, αera,ra,
βera,ra) = (−7, 2, 0, 3.5, −5) and (ρi,ra, αira,Fd, αira,Fd2, αira,ra,
βira,ra ) = (−4.5, 0.05, 0, 16, 6). The change in these parameters
affects the shapes of the pressure pattern and thus simulates the
observed differences in relative amplitude betweenmaxima in the
recorded pressure patterns.

P1 Solutions
P1 solutions occur in canary song typically right after sylla-
bles arising from pulsatile pressure patterns. For this reason, we
looked for a mechanism that represents the smallest departure
from the one generating the pulsatile patterns (Figure 3E). Pul-
satile solutions were found with activity in RA displaying contin-
uously increasing amplitude (see Figure 3C), while P1 solutions
were obtained when RA reached and sustained constant asymp-
totic amplitude. It is parsimonious to assume that a continuous
process would start with pulsatile solutions and with minimal
adjustment change to a P1 pattern, in agreement with sequences
observed in canary songs (see Figure 2). In this way, a constant
input into the expiratory related area allows generating a peri-
odic expiratory activity. This does not exclude the possibility of
reinforcing this periodic behavior with a periodic input arriving
from HVC.

In the simulations of Figure 3E, the parameters used are
(αeer,F, αeer,ra, αier,ra) = (0.25, 4.65, 4.5) for the expiratory sys-
tem. For the RA network we used (ρe,ra, αera,Fd, αera,Fd2, αera,ra,
βera,ra) = (−5.25, 35, 0, 10, −10) and (ρi,ra, αira,Fd, αira,Fd2,
αira,ra, βira,ra) = (−12, 0, 25, 10, 2). The pulses are 40, 140, and
100ms long for F, Fdelayed and Fdelayed2 respectively. C code for
the numerical integration of the equations along with the sim-
ulated time series described in this section is included in the
Supplementary Material.

Reproducing Cooling Experiments
Support for a paradigm in which the telencephalon takes over
downstream circuitry has been provided by an experiment per-
formed in zebra finches, in which mild cooling of HVC led to
song stretching (Long and Fee, 2008). Recently, work in canaries

also showed song stretching under mild cooling, and a progres-
sive restructuring of song under further cooling. Particularly,
long pressure patterns (like the P0 patterns discussed in this
work) disassembled into patterns with shorter pulses. This is an
observation that cannot be accounted for by a top downmodel of
the song system. In this section we show that the circular model
parsimoniously accounts for the breaking of the long syllables
reported in canaries.

In order to introduce the effect of cooling into our simula-
tions, we assumed that locally reducing the temperature in HVC
would have at least two effects. First, it would slow down the bio-
physical processes controlling the dynamics within HVC. This
would specifically imply the stretching of the bursts that could
be elicited in the neurons of this nucleus. Second, it would slow
down recurrent inputs from Uva to HVC. In this way, the sim-
ulations of patterns for normal and lowered HVC temperatures
would involve the same circuit parameters, they would be started
by identical pulses from the initiating area, but in the second case,
the bursts in HVC would be both longer (first effect) and would
start slightly later than in the normal temperature case (second
effect). The later effect will be particularly important in those
patterns whose shapes preserve the fingerprints from both the
direct brainstem drive as well as from the drive imposed by the
telencephalon. For this reason, we will discuss the P0 patterns in
detail.

Figure 4 illustrates the mechanism of syllable deformation
according to the circular model. The first panel displays a sim-
ulation for the normal temperature case. The parameters are set
so that the expiratory related activity is a P0 pattern, i.e., it shows
a small peak, a local minimum, and a final longer pulse. The sec-
ond panel displays the simulations for the cooled HVC case. The
second time trace in this panel (representing the activity of the
initiating area) is identical to the one used in the upper panel.
Yet, we use for HVC activity a longer pulse than in the nor-
mal temperature case (15ms longer), starting slightly later (5ms).
This additional delay is represented in the second panel as the
width of the small segment bounded by arrows. The other param-
eters are (αeer,F, αeer,ra, αier,ra)= (1, 10, 0), (ρe,ra, αera,Fd, αera,Fd2,
αera,ra, βera,ra)= (−3, 5, 0, 6,−3) and (ρi,ra, αira,Fd, αira,Fd2, αira,ra,
βira,ra)= (−6, 0.05, 0, 6, 6).

In both simulations, an asterisk indicates the local minimum.
This feature of the pattern emerges from adding the (decaying)
activity of the respiratory gesture induced by the direct action
of the initiating area, and the (growing) activity arriving from
the telencephalon. The decrease of the value of the pressure at
the minimum leads to the “breaking” of the pattern as the min-
imum reaches phonation threshold: the initial pattern becomes
a set of two separate pressure pulses. This decrease originates
in the temperature-induced increase in processing time in HVC.
In fact, simulations involving only the first effect (burst stretch-
ing without onset delay) lead to stretching without breaking of
the pressure patterns. It is the second effect (onset delay) that
generates the separation between the directly driven expiratory
pulse and the second part of the pulse which is driven by the
telencephalon. In our simulation, the longer pulse in HVC (first
effect) also leads to a longer period of activity in RA, resulting in
a pattern that was also stretched.
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FIGURE 4 | Syllable stretching and breaking under HVC cooling. (A)

displays the time traces of activity in HVC, IA, RA, and ER during the

production of a P0 solutions under normal conditions. (B) displays the time

traces of the activities in the same brain regions, assuming that the burst

representing HVC activity starts slightly delayed and stretched. The rationale

for the delay is the slowing down of the synapses involved in the connection

between Uva and HVC. The rationale for the stretching is the slowing down of

the internal dynamics within the cooled HVC. When both effects are present,

the model reproduces the observed stretching and breaking of P0 patterns.

The asterisk indicates the position of the minimum.

Discussion

Here we present an operational model that proposes a neural
mechanism for how the apparently paradoxical observation
of concurrent bursting activity of HVC projection neurons
and changes in behavioral state (Amador et al., 2013) could
represent a plausible motor strategy in the song control circuitry
of songbirds. We propose song production in the canary as a
suitable model, because its song is composed of relatively simple
and repeated syllables that present relatively long and regular
intervals between acoustic state changes such as syllable onset
and offset and switching between left and right sound sources.
These features make canary song more amenable to modeling
than the temporally more complex and less regular features
of zebra finch song. The model does not only account for the
observations of HVC neurons and the respiratory patterns of
song, but it also makes clear predictions for information flow in
the song circuitry that can be tested.

In this model, the activity of the expiratory related area
receives two inputs. The first input originates from a neural

population (here called IA), and the second represents a copy of
this initial drive processed by telencephalic centers and therefore
contains a time delay. The model assumes integrated processing
in different areas in contrast to an alternative view of the song
system in which HVC output dictates all the time scales in the
behavioral output (Fee et al., 2004; Long and Fee, 2008; Andal-
man et al., 2011). The integrated processing that is distributed
across all nuclei of the circuitry in this model emphasizes that
telencephalic inputmodulates structures that are involved in gen-
eration of all vocal behavior, including non-learned vocalizations
for which telencephalic areas are not required. Such a layered
organization in song motor control is important in light of the
evolutionary progression from vocal control based entirely on
mid- and hindbrain structures in non-vocal learners to one where
telencephalic circuitry is involved in producing part of the reper-
toire and in its acquisition during song ontogeny. Considering
this evolutionary trajectory is even more important in light of
the vital functions (respiration) of the preexisting, evolutionary
older neural circuitry into which vocal control gets integrated. It
is highly unlikely that telencephalic input evolved to “usurp” this
circuitry.

Correspondence of specific nuclei of the song system with the
various areas in the model cannot be established in all cases at the
present time, although we suggest areas based on their currently
known roles (HVC, Uva, and RA are explicitly considered). The
sparse activity in nucleus HVC, synchronized with significant
motor events, is assumed as a hypothesis in this work. The repre-
sentation of the song system as a circular, highly interconnected
set of brain areas was advanced by Schmidt and collaborators
(Ashmore et al., 2005) and others (Gibb et al., 2009). The map-
ping of nuclei of the song system onto the architecture used in
our model is more firmly established by known cytoarchitecture
and neural behavior for some areas than others. Precise mapping
for nuclei in the brainstem is more difficult because recordings
in those nuclei are only available for sleep or anesthetized condi-
tions but not in spontaneously singing birds. However, we make
suggestions based on our current understanding of the respective
roles. The excitatory and inhibitory populations for respiratory
control in our model can most likely be mapped onto the analo-
gous populations in RAm, since this nucleus is associated with
expiratory related activity. Whether the IA in our model is a
subpopulation of either PAm or DM is not clear. In any case,
the model predicts that at least one of these is likely to present
neurons branching to thalamus and medulla. Both connect to
telencephalic areas through the thalamic nucleus Uva. This con-
nection starts the indirect path from the IA via the telencephalic
areas back to the ER area.

In the present model, HVC receives inputs initiated at the
brainstem. However, despite its proposed role as only playing one
part in the integrated and distributed motor control of song pro-
duction, HVC activity is necessary and critical for reproducing
specific features in the respiratory patterns. This role is there-
fore still consistent with data from experiments in which HVC
has been lesioned and song patterns are disrupted (Halle et al.,
2003). If the contribution from RA to the ER area were inter-
rupted, many of the pressure gestures described in this work
would be seriously affected. For example, the large pulse in the
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P0 solutions would not occur. The brief, direct input from the
IA to the ER area would only lead to a brief pulse. It is interest-
ing to conjecture that the relative simpler vocal patterns found in
non-oscines correspond to less complex gestures that are gener-
ated only with the brainstem without the additional input from
the copy processed in the telencephalon. The learned aspects of
song production therefore would be represented in this part of
the input to the expiratory related activity.

In the present model we make no attempt at modeling the
dynamics in HVC after arrival of the input from the thalamus
(Daou et al., 2013; Basista et al., 2014). It is likely that the sub-
sequent activity, needed for some syllables to stop the expiratory
patterns (Figures 3C,E), emerges from the interaction between
excitatory and inhibitory populations of neurons. It is also plau-
sible that P1 and pulsatile solutions involve a periodic activity
in HVC that follows the initiating pulse. It is noteworthy that
once the sequence of activity patterns in HVC is learned, it could
be simply generated without the input from IA. In that case,
the patterns would be slightly different, with the most signifi-
cant differences occurring during the first few milliseconds of the
gesture.

Cooling of specific brain areas has been used to investigate the
temporal coding of birdsong production (Long and Fee, 2008).
The rationale behind these experiments is that a nucleus cooled
by a few degrees Celsius would exhibit slower neural dynam-
ics. We mentioned that period 1 and pulsatile patterns could be
generated with or without additional periodic activity in HVC,
and further experimental work is required to decipher the actual
mechanism. In the first case, assuming that cooling lowers the
frequency of the periodic activity in HVC, the locking of the res-
piratory oscillations leads to stretching of the pressure patterns
(Goldin et al., 2013). Without additional forcing, it is still the case
that lower HVC activity leads to lower RA activity, which gives
rise to oscillations of lower frequency in the ER area (Amador
andMindlin, 2014). Both mechanisms are compatible with either
a top down description of the song system or the circular model
presented in this work. It is in the description of the deforma-
tions of P0 patterns under cooling that the circular model departs
from predictions in a top down paradigm. By increasing the time
between the brainstem forcing and telencephalic forcing to the
ER area, the circular model recovers the breaking of long res-
piratory patterns under cooling. This is an observation that a
top down paradigm cannot account for. In this way, the circular
model is not only compatible with the breaking of syllables but it
importantly also predicts that patterns that break do so at specific
locations. These locations are consistent with patterns seen in the
experimental data (Goldin and Mindlin, 2013).

The advantage of an operational model, implemented through
differential equations, is that it allows performing specific

predictions on the timing of the signals in the different areas.
These are needed in order to reproduce the shapes of the recorded
respiratory time traces (air sac pressure signals). Beyond these
predictions, the model already accounts for unilateral sound pro-
duction in pulsatile and P1 solutions, and sequential contribu-
tions from the two independently controlled sound sources in
P0 and P2 solutions. These solutions do require both the direct
input from ipsilateral brainstem drive and the processed copy

through the telencephalon, which requires a contralateral con-
necting signal, possibly via Uva (Halle et al., 2003). This second
signal arrives at the respiratory areas, which are always synchro-
nized. In this way, some syllables require precise coordination
between the activities in both brain hemispheres. In our model,
the existence of an IA responsible for both activities provides a
parsimonious coordination mechanism.

In recent years, the song system has been interpreted as a top
down circuitry where the telencephalon controls all the down-
stream structures. Here we have shown that a circular archi-
tecture can reconcile the observed respiratory shapes used by
canaries during song production with the reported observation
that activity of projection neurons in HVC occurs simultane-
ously with significant motor instances such as syllable onset and
offset. A circular architecture provides an explanation for this
observation by supposing a common source for both activities.
The expiratory control area therefore receives both signals from
the brainstem as well as from the telencephalon. This model of
complex motor control presents the first example where the spe-
cific temporal characteristics of a motor pattern result from a
processed efferent copy as a secondary input. It is highly likely
that complex motor control of different behaviors may use con-
served neural mechanisms, and this model may therefore provide
a useful theoretical framework for interpreting and testing motor
control strategies in other complex motor systems.
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