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Armstrong E, Abarbanel HD. Model of the songbird nucleus
HVC as a network of central pattern generators. J Neurophysiol
116: 2405–2419, 2016. First published August 17, 2016;
doi:10.1152/jn.00438.2016.—We propose a functional architecture
of the adult songbird nucleus HVC in which the core element is a
“functional syllable unit” (FSU). In this model, HVC is organized
into FSUs, each of which provides the basis for the production of
one syllable in vocalization. Within each FSU, the inhibitory
neuron population takes one of two operational states: 1) simulta-
neous firing wherein all inhibitory neurons fire simultaneously, and
2) competitive firing of the inhibitory neurons. Switching between
these basic modes of activity is accomplished via changes in the
synaptic strengths among the inhibitory neurons. The inhibitory
neurons connect to excitatory projection neurons such that during
state 1 the activity of projection neurons is suppressed, while
during state 2 patterns of sequential firing of projection neurons
can occur. The latter state is stabilized by feedback from the
projection to the inhibitory neurons. Song composition for specific
species is distinguished by the manner in which different FSUs are
functionally connected to each other. Ours is a computational
model built with biophysically based neurons. We illustrate that
many observations of HVC activity are explained by the dynamics
of the proposed population of FSUs, and we identify aspects of the
model that are currently testable experimentally. In addition, and
standing apart from the core features of an FSU, we propose that
the transition between modes may be governed by the biophysical
mechanism of neuromodulation.

central pattern generator; dynamical systems; dynamics; HVC; win-
nerless competition

NEW & NOTEWORTHY

Building on the observations by Hahnloser et al. of a
remarkable sparse command center for sculpting avian
song production, and accounting for significant input from
the New York University laboratory of M. Long, we have
developed a model of nucleus HVC in the songbird system.
It accounts for many observed properties of song produc-
tion and provides a biophysical foundation for the sparse
firing of projection neurons as well as the occasional
“anomalous neuron” observed by Hahnloser et al.

IN THE SONG SYSTEM OF THE avian brain, nucleus HVC plays a
central role at the junction of the auditory and song production
pathways. The sparse firing of excitatory projection neurons
within HVC into the song production pathway via nucleus RA

(HVCRA cells) has been the subject of both experiments and
model development. A critical role of the inhibitory interneu-
rons (HVCI cells) was suggested by Gibb et al. (2009a)
(hereafter GGA1) and supported by experiments by Kosche et
al. (2015) (hereafter KVL15). In light of those experiments and
earlier observations, we suggest an architecture for HVC that is
consistent with a critical role for both structured inhibition and
excitation. This paper lays out and explores the consequences
of this architecture, which is built on functional units in HVC
that underlie the formation of syllables in vocalization.

We model the nucleus HVC as a pattern-generating network
capable of qualitatively reproducing many observations at the
whole cell, population, and behavioral levels. In doing so, we
offer a biophysical explanation for the sparse firings of HVC
projection neurons established by Hahnloser et al. (2002) and
the experiments that subsequently uncovered details of the
underlying neuronal processes and neural circuit relationships,
particularly the work of KVL15.

We depart from previous modeling efforts by shifting focus
from the sparse firings alone to a broader picture including
other salient features of HVC that complementary lines of
research have illuminated. In particular, we are interested in a
cell’s effect on a circuit at times when it is active and equally
at times when it is not active.

Our model consists of two key components: 1) a subcircuit
that can assume one of two modes of behavior, depending on
inhibitory synaptic coupling strengths, and 2) a mechanism
capable of effecting a rapid transition between these modes.
We find that these aims can be accomplished by invoking
Lotka-Volterra-like dynamics subject to possible neuromodu-
latory mechanisms that have been proposed to explain neuronal
activity in a variety of species but that have been studied
minimally within the context of the avian song generation
system.

Hahnloser et al. (2002) established the pattern-generating
capability of HVC by demonstrating that some HVCRA neu-
rons reliably participate in one sparse pattern during song.
Lesioning studies had previously identified HVC as residing
high on the control pathway for song production, thereby
poised to pass its instructions downstream where the song is
ultimately generated by the syrinx and lungs. The cellular
dynamics in HVC have been significantly illuminated by
KVL15, which focused on the interplay between HVCRA and
HVCI neuronal activity. KVL15 demonstrated via a series of
GABA antagonist (gabazine)-induced responses that the role of
inhibition is central in modulating activity of the HVCRA cells.
They established the importance of both a structured inhibition

Address for reprint requests and other correspondence: E. Armstrong,
BioCircuits Institute, Univ. of California, San Diego, 9500 Gilman Dr., La
Jolla, CA 92093-0374 (e-mail: earmstrong@physics.ucsd.edu).

J Neurophysiol 116: 2405–2419, 2016.
First published August 17, 2016; doi:10.1152/jn.00438.2016.

24050022-3077/16 Copyright © 2016 the American Physiological Societywww.jn.org

Downloaded from journals.physiology.org/journal/jn (222.016.034.176) on June 18, 2020.

mailto:earmstrong@physics.ucsd.edu
123
Highlight

123
Highlight



and structured excitation for song generation, where all activity
is set within an ambient background of excitation. In addition,
KVL15 reported high in vitro rates of reciprocal connectivity
between cell pairs and disynaptic connectivity between
HVCRA cells, which Mooney and Prather (2005) noted are
reminiscent of such rates in pattern-generating networks
throughout the central nervous systems in other species. Pat-
tern-generating activity has also been induced via electrical
stimulations in slice preparations of HVC (Solis and Perkel
2005).

Previous HVC models have focused on producing the ob-
served series of HVCRA neuron activations, by invoking a
feedforward “synfire” chain of excitation (Li and Greenside
2006; Long et al. 2010; GGA1). GGA1 suggested in addition
that inhibition plays a mediating role upon such a chain. One of
the artificial constructs of GGA1 was the introduction of a
neuronal oscillator loop that could transition between an “on”
and “off” state. This functional loop was arrayed in a chain
stimulated in an unspecified manner to excite a signal moving
down the chain, as interneuron activity confined the excitation
to a short temporal window. In this way, GGA1 suggested that
inhibition is integral to the series propagation, yet their pro-
posed mechanism was carefully engineered without biophysi-
cal motivations. Cannon et al. (2015) also proposed a chain
modulated by inhibition, without offering a biophysical moti-
vation for the form of that modulation. Moreover, while chain
models can capture the propagation of series activations, the
chain model is troublesome in that, by its very definition, it
does not represent the picture of a strongly interconnected web,
the picture that emerges from KVL15, where both structured
excitation and structured inhibition play integral roles.

An alternative to the chain model has been offered in terms
of a competition among neurons. Two basic types of compe-
tition have been applied to the modeling of neuronal networks:
winner-take-all (e.g., Verduzco-Flores et al. 2012) and winner-
less (e.g., Yildiz and Kiebel 2011). While the latter authors
proposed no particular connectivity for effecting the function-
ality, we found their invocation of winnerless competition
(WLC) appealing for the relative simplicity with which it can,
in principle, generate activity reminiscent of HVC activity.
More importantly, the WLC formalism describes an identified
biophysical process: the observed phenomenon of mutual in-
hibition. Indeed, the framers of WLC themselves have sug-
gested WLC as a likely underlier of series activity in HVC
(Afraimovich et al. 2004; Rabinovich et al. 2006). We have
taken this idea as a critical component of the model that we
propose in this paper.

We propose a model of HVC in which there exists a basic
architectural element capable of transitioning between two
modes of behavior. We call this element a “functional syllable
unit” (FSU). The modes are “quiescence,” in which the excit-
atory cells are silent above threshold, and “active,” in which
the excitatory cells are permitted to activate in a series and
where the activity is sustained via WLC. Each mode can occur
over a distinct range of values of the synaptic coupling
strengths among the interneurons in the FSU. We attribute a
transition between modes to a neuromodulatory mechanism
that is capable of altering those coupling strengths. If a full
song is taken to be comprised of a population of these FSUs,
then we can illustrate how the observed population activity of
both excitatory and inhibitory neurons during song, and during

quiescence, in HVC can be reproduced. That is: our model
reproduces not only series activity of excitatory cells but, more
broadly, the behavior of both excitatory and inhibitory cells
both during quiescence and during song, at the population
level.

In the next section we shall describe this proposed core HVC
element, using Hodgkin-Huxley neurons with calcium dynam-
ics. The individual HVCI neurons have an experimental bio-
physical basis from the dissertation work of Daou et al. (2013)
and subsequent experiments by Daou in the Margoliash labo-
ratory at the University of Chicago (private communication)
(Breen et al. 2016). The model HVCRA neuron is based on
experimentally observed currents (Daou et al. 2013; Long et al.
2010) and is being tested further using protocols of Kadakia et
al. (2016).

The remainder of the paper is structured as follows.
1) CONSTITUENTS OF A FUNCTIONAL SYLLABLE UNIT lays out the

model neurons and synapses used in the functional architec-
ture.

2) In RESULTS, numerical results from the Hodgkin-Huxley
based circuit show how the connectivity can give rise to two
distinct modes of dynamics. Furthermore, there exist narrow
“transition regions” between these modes, within which lie
additional modes that may occur on rare occasion; these modes
should be identifiable in the laboratory.

3) In BUILDING COMPLETE SONGS we offer an example of
creating a species-specific song using these FSUs as building
blocks, thereby demonstrating how the basic qualitative pop-
ulation activity can be reproduced by our model.

4) In DISCUSSION, we examine winnerless competition as a
theoretical framework for the competitive inhibitory neuron
dynamics and our suggestion that neuromodulation is the
biophysical switch sculpting the HVC interneuron activity.
Then we turn to ways in which the model predictions can be
tested experimentally.

A FUNCTIONAL SYLLABLE UNIT

The central constituent of our model is a functional syllable
unit (FSU). We consider HVC to be comprised of numerous
FSUs, each of which is comprised of an “inner” inhibitory loop
that can assume one of two operational modes, depending on
the synaptic coupling strengths among the inhibitory cells: 1) a
state in which all inhibitory neurons fire continually, and 2) a
state in which the inhibitory neurons are forced, via mutual
inhibition, to fire in alternation. We call these modes “quies-
cent” and “active,” respectively.

These two modes are captured in a Lotka-Volterra-like
system, which expresses the quiescent mode when the inhibi-
tory coupling strengths are weak; above some threshold value
of coupling strengths, the circuit makes a bifurcation to the
active mode. This phenomenon of mode switching was for-
malized in another neural context as “winnerless competition”
by Rabinovich et al. (2001).

The inhibitory loop of HVCI neurons is connected to an
“outer” loop of excitatory HVCRA projection neurons as shown
in Fig. 1. Each triangle represents one inhibitory neuron and
each circle represents an ensemble of HVCRA neurons. The
filled-circle- and arrow-headed lines represent inhibitory and
excitatory functional synaptic connections, respectively.

With this connectivity, we can make the following associa-
tions between behavior and FSU activity. When the bird is not
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singing, all FSUs in HVC sit in a background of excitation
sufficient for quiescence: all HVCI cells fire continually,
thereby, via the wiring of Fig. 1, silencing all HVCRA neurons.
The coupling strengths in this FSU then are increased beyond
the threshold required for a bifurcation to active mode. This
switching might be effected via an injection of an inhibitory
neurotransmitter such as GABA, the primary type of inhibitory
neurotransmitter in HVC (Dutar et al. 1998; Schmidt and
Perkel 1998), in the vicinity of a particular FSU. The HVCI
neurons within that particular FSU now are forced into a
winnerless competition, and they fire sequentially. The wiring
of Fig. 1 then effects sequential firings of the HVCRA neurons.
To be clear: during its active state, an FSU represents the
playing of one syllable, where, in the example architecture of
Fig. 1, three HVCRA ensembles fire in sequence. The syllable
can play until the elevated inhibition drops below some thresh-
old, at which point the FSU rapidly returns to quiescence.

To model the full song of a specific species, we consider
HVC to be a collection of such pattern-generating structures.
While “Syllable A” is presumed to be initiated by an incentive
to vocalize, we attribute subsequent syllables to a feedback
loop, most likely from the motor area (e.g., Vallentin and Long
2015), in which a series of FSUs in HVC is targeted by a
succession of inhibitory neurotransmitter injections. Such a
loop was proposed by Gibb et al. (2009b), who suggested the
nucleus Uva as a possible source of the feedback.

CONSTITUENTS OF A FUNCTIONAL SYLLABLE UNIT

Neurons

To build our model, we consider the HVCI and HVCRA
populations. HVC neurons projecting to Area X and the AFP
are not considered. We focus on the HVCRA and HVCI
populations because they have been clearly identified as play-
ing fundamental roles in song generation in the adult.

We consider the neurons to be Hodgkin-Huxley-type neu-
rons all with sodium, potassium, and leak currents. The specific
inhibitory model we take from Breen et al. (2016), and we base
our excitatory model on Kadakia et al. (2016). Both of these
models were constructed in light of recent electrophysiological
data on calcium channels in these cells (Daou et al. 2013). The
HVCI neurons have T-type calcium and hyperpolarization-
activated currents; the HVCRA neurons have L-type calcium
channels and a potassium channel activated by increased in-
tracellular calcium concentrations (hereafter the K/Ca chan-

nel). In addition, the HVCRA neuron is treated as a two-
compartment structure consisting of soma and dendrite. The
time evolution of the membrane potential V(t) of the neurons is
expressed as follows.

Inhibitory interneuron.

C
dVi�t�

dt
� IL,i�t� � INa,i�t� � IK,i�t� � ICaT,i�t� � IH�t�

� �
j�i

Isyn,ij�t� � Ibackground � noise�t� (1)

Excitatory projection neuron: somatic compartment.

C
dVs,i�t�

dt
� IL,i�t� � INa,i�t� � IK,i�t�

� gSD�Vd�t�, Vs�t�� � Ibackground � noise�t�
Excitatory projection neuron: dendritic compartment.

C
dVd,i�t�

dt
� ICaL,i�t� � IKCa,i�t� � gSD�Vs�t�, Vd�t��

where C is the membrane capacitance and noise(t) is a low-
amplitude background noise term. The Isyn terms represent the
synaptic input currents, Ibackground is a DC current representing
ambient background excitation, and the gSD terms couple the
compartments. The ion channel currents for the ith neuron are:

IL,i�t� � gL�EL � Vi�t��
INa,i�t� � gNa,im�t�3h�t��ENa � Vi�t��
IK,i�t� � gK,in�t�4�EK � Vi�t��

ICaT,i�t� � gCaT,ia�t�3b�t�3GHK�Vi�t�, �Ca�i�t��
ICaL,i�t� � gCaL,iq�t�2GHK�Vi�t�, �Ca�i�t��

IKCa,i � gKCa
�Ca�i�t�2

�Ca�i�t�2 � ks
2�EK � Vd,i�t��

IH,i�t� � gHH�t�2�EH � Vi�t��
where “GHK(Vi(t),[Ca]i(t))” is defined as:

GHK�Vi�t�, �Ca�i�t�� � Vi�t�
�Ca�i�t� � Caexte

�2FVi�t�⁄ RT

e�2FVi�t�⁄ RT � 1
.

The parameters denoted “g” are the maximum conductances of
each current; the parameters denoted “E” are the respective
reversal potentials. [Ca]i(t) is the intracellular Ca2� concentra-
tion as a function of time. Caext is the extracellular concentra-
tion of Ca2� ions. In the GHK current, F is the Faraday
constant, R is the gas constant, and T is temperature, which we
take as 37°C. The gating variables Ui(t) � [m(t), h(t), n(t), a(t),
b(t), q(t), H(t)] satisfy:

dui�t�
dt

� �u��Vi�t�� � ui�t�� ⁄ �ui�Vi�t��;

u��Vi� � 0.5�1 � tanh��Vi � �u,i� ⁄ 	u,i��
�ui�Vi� � tu0 � tu1�1 � tanh2��Vi � �u,i� ⁄ 	u,i�� .

There is one exception for H(t): H� and �H take different
values of 	H (see Table 1). The calcium dynamics evolve

Fig. 1. A functional syllable unit (FSU), comprised of 3 inhibitory interneurons
(HVCI) and 3 ensembles of nucleus RA (HVCRA) neurons. Triangles and
circles represent the former and latter populations, respectively. Circle- and
arrow-headed lines represent inhibitory and excitatory functional connections,
respectively.
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d�Cai��t�
dt

� 
ICaX �
Ca0 � �Cai��t�

�Ca

where the “X” of the subscript “CaX” represents “T” (for
T-type) and “L” (for L-type), for the inhibitory neuron and
excitatory dendrite, respectively. Ca0 is the equilibrium con-
centration of calcium inside the cell, and ks is a Michaelis-
Menten constant.

We further distinguish the excitatory and inhibitory neurons
via their respective resting potential EL and synaptic reversal
potential Esyn,rev. To preclude possible effects due to symme-
tries, we render the neurons distinguishable via slightly differ-
ent values of their leak maximum conductances gL and resting
potentials EL (for all neurons), CaT, and H current maximum
conductances gCaT and gH (for the interneurons), and CaL and
KCa current maximum conductances gCaL and gKCa (for the
excitatory projection neurons). Values for the Na, K, L, and H
currents and basic cellular properties are listed in Table 1;
values for the calcium dynamics are in Table 2.

Synapses

For the synapse dynamics, we adopt the formalism of
Destexhe and Sejnowski (2001) and Destexhe et al. (1994) for
electrically delivered neurotransmitter pulses, with one altera-
tion: we define the inhibitory synapse coupling strengths gij not
as fixed numbers but rather as functions of the maximum
neurotransmitter concentration Tmax presented to a postsynap-
tic neuron. Within this framework, Tmax itself is a function of
some modulatory process that may be external to HVC. Details

of this formulation are presented in Behavior of an FSU in
terms of Tmax and gij.

Isyn,ij � gij�Tmax�t��sij�t��Esyn,i � Vi�t�� (2)

dsij�t�
dt

� ��Tmax�t�, Vj�t���1 � sij�t�� � �sij�t� (3)

��Tmax�t�, Vj�t�� �
Tmax ⁄ T0

1 � exp��Vj�t� � VP� ⁄ KP
(4)

Isyn,ij is the current seen by postsynaptic cell i as a result of
input from presynaptic cell j. Esyn,i is the synaptic reversal
potential of cell i, Vi(t) is the instantaneous membrane voltage
of cell i, and sij(t) is the gating variable of the synapse entering
(postsynaptic) cell i from (presynaptic) cell j. T0 has units of
ms-mM so that �(Tmax,V), the rate of gate opening, has units
of 1/time; �, the rate of gate closing, also has units of
1/time. Vj(t) is the presynaptic membrane voltage, and VP
and KP are parameters governing the shape of the distribu-
tion of neurotransmitter rise and fall as it drives gating
variables sij. Parameter values for the synapse equations are
given in Table 3.

We consider two broad classes of neurotransmitter: excit-
atory and inhibitory. The maximum concentration of excitatory
neurotransmitter we take to have a constant value of 1.5 mM;1

the maximum concentration of inhibitory neurotransmitter
(Tmax,inh) we permit to vary. We define the inhibitory-to-

1 Throughout this paper, we will adopt the custom of referring to concen-
tration in moles. The custom exists because of the many uncertainties involved
in determining synapse volumes (see DISCUSSION).

Table 1. Parameter values for neuronal Na, K, L, and H
currents

Quantity Value Quantity Value

gL, gH, EL

gL,0 0.00303 S gL,1 0.00302 S
gL,2 0.00299 S gL,3 0.00301 S
gL,4 0.00298 S gL,5 0.00297 S
EL,0 �60.0 mV EL,1 �59.96 mV
EL,2 �59.94 mV EL,3 �80.0 mV
EL,4 �80.05 mV EL,5 �79.95 mV
gH,1 2.0�3 S gH,2 1.99�3 S
gH,3 2.01�3 S

Na, K, and L Current Kinetics and Other Cellular Properties
gNa 1.2 S gK 0.2 S
ENa 50.0 mV EK �77.0 mV
�m �40.0 mV �h �60.0 mV
	m 16.0 mV 	h �16.0 mV
t0,m 0.1 ms t0,h 1.0 ms
t1,m 0.4 ms t1,h 7.0 ms
C 0.01 F �n �55.0 mV
gSD 0.05 nS 	n 25.0 mV

t0,n 1.0 ms
t1,n 5.0 ms

H Current Kinetics
EH �40.0 mV �H �60.0 mV
	H for H� �11.0 mV 	H for �H 21.0 mV
t0,H 0.1 ms t1,H 193.5 ms

Top: neurons are distinguished via slightly different values of gL and EL,
where gL,0 denotes the maximum leak conductance of cell zero (out of 5).
HVCI neurons are further distinguished by different values of gH. Middle:
values for Na, K, and L current kinetics and other cellular properties. Bottom:
values for H current kinetics. Units: mV, millivolts; ms, milliseconds; F,
micro-Farads; S, micro-Siemens.

Table 2. Parameter values for calcium dynamics

Quantity Value Quantity Value

gCaT, gCaL, and gKCa

gCaT,0 1.0�4 S gCaT,1 1.01�4 S
gCaT,2 1.01�4 S gCaL,3 0.00301 S
gCaL,4 0.00298 S gCaL,5 0.00297 S
gKCa,3 �60.0 mV gKCa,4 �59.96 mV
gKCa,5 �59.94 mV

CaT and CaL Current Kinetics and Basic Cellular Properties
�a �70.0 mV �b �65.0 mV
	a 10.0 mV 	b �10.0 mV
t0,a 0.1 ms t0,b 1.0 ms
t1,a 0.2 ms t1,b 5.0 ms
C 0.01 F �q �40.0 mV
Caext 2500 M 	q 10.0 mV
ks 2.5 M t0,q 1.0 ms

 0.06 M·ms·�1 nA�1 t1,q 0.0 ms
�CA 10.0 ms Ca0 0.2 M

Top: neurons are distinguished via slightly different values of gCaT (for
HVCI neurons) and gCaL and gKCa (for HVCRA neurons). Bottom: values for
CaT and CaL current kinetics and basic cellular properties. Values were chosen
based on electrophysiology of HVC neurons in vitro (Daou et al. 2013).

Table 3. Parameter values for synapses

Quantity Value Quantity Value

Esyn, inh �80.0 mV �inh 0.18 ms�1

Esyn, exc 0.0 mV �exc 0.38 ms�1

Vp 2.0 mV T0 1.0 ms-mM
Kp 5.0 mV
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inhibitory coupling strengths (gij,inh-to-inh) so that they increase
with Tmax,inh. Tmax,inh is some function of the activity of a cell
that may be external to HVC. We will discuss the selection of
Tmax,inh, and the dependence of gij on that value, in Behavior of
an FSU in terms of Tmax and gij.

RESULTS

In this section we illustrate, via the time course of membrane
voltages of an FSU’s constituent neurons, how an FSU func-
tions dynamically. The steps are as follows.

1) We will demonstrate that the excitatory neurons of an
FSU will fire when given a low background excitation.

2) We will show that imposing sufficient inhibition upon
these excitatory neurons leads to a quiescent FSU, for a low
range of inhibitory-to-inhibitory coupling strengths.

3) We will show that a higher range of these coupling
strengths, combined with a higher value of Tmax, can effect a
regime in which the inhibitory neurons alternate their firing
patterns; this scenario represents an active FSU.

4) By exploring the behavior of an FSU over ranges of both
Tmax and the synapse coupling strengths gij, we will demon-
strate: 1) the quiescent and active modes are robust to small
variations in these parameter values; and 2) there exist addi-
tional transient modes of behavior, which one might expect to
occasionally encounter in the laboratory.

5) We will note that connections from the excitatory to
inhibitory cells are critical for the stable propagation of a series
in active mode.

For all voltage time series shown in this paper, the dynam-
ical model was written in Python, and the equations of motion
were integrated using Python’s adaptive fourth-order Runge-
Kutta “odeINT” with a step of 0.1 ms.

Essential Architecture of an FSU

Our FSU is constructed as depicted in Fig. 1. The essential
features of the connectivity are these:

1) There is all-to-all connectivity among the HVCI neurons.
2) Each HVCI neuron synapses to neurons in two out of

three of the HVCRA ensembles as shown, where no two HVCI
neurons “omit” the same HVCRA ensemble.

3) Neurons within each HVCRA ensemble synapse to all
three HVCI neurons as shown.

With this connectivity, each HVCRA ensemble connects disyn-
aptically, via an interneuron, to both of the other HVCRA
ensembles. There are no monosynaptic connections between
HVCRA ensembles in an FSU.

We leave unspecified 1) the rate of excitatory-to-excitatory
connections within an ensemble, 2) the number of neurons
within each ensemble to which one HVCI neuron projects, and
3) the number of neurons within an ensemble that project to a
particular HVCI neuron. The number of HVCRA neurons per
ensemble may be taken to be eight, for agreement with the
observed �8:1 ratio of HVCRA to HVCI neurons in the
nucleus; however, our model does not require any particular
value.

HVCRA Neurons Spike in Absence of Inhibition

We first sought to simulate an environment in which HVCRA
neurons will, in the absence of inhibition, fire above the
threshold required to generate an action potential, the environ-
ment that is indicated by the results of KVL15. To this end, we
gave the three HVCRA ensembles of Fig. 1 an injected current
of 0.3 nA with a random variation of 3%. Figure 2 shows the
voltage traces of three HVCRA cells, one in each ensemble. All
projection cells spike.

A Quiescent FSU

Now we involve the interneurons. First, we connect the
interneurons all-to-all and set these synapse strengths at values
near 0.01 mS (see Table 4) and with the value of Tmax at an
initial low value of 0.5 mM. With these choices, the HVCI cells
fire continually.

Next, we permit each HVCI neuron to synapse directly to
two of the three HVCRA ensembles, where no two HVCI
neurons “omit” the same HVCRA ensemble. We set these
inhibitory-to-excitatory connection strengths to be of order 1.0
S. With these choices, the inhibition is sufficiently strong to
overpower the background stimulation of 0.3 nA and silence
all the HVCRA ensembles. That is: each HVCI neuron actively
suppresses two of the HVCRA ensembles.

Figure 3 illustrates this result. The voltage traces of the
HVCI cells (Fig. 3, top) shows that they are firing continually.
As each HVCI neuron projects to two HVCRA ensembles, the

Fig. 2. Voltage traces of three HVCRA projection neurons, one in each of the
three ensembles. They fire when given a low background current, in the
absence of inhibition. The background current is a constant 0.3 nA with a
random 3% variation.

Table 4. Synapse strengths gij for the voltage traces in Fig. 3 for
a quiescent FSU

Cell 0 1 2 3 4 5

0 0.0 0.011 0.011 1.11 1.1 1.11
1 0.011 0.0 0.01 1.11 1.1 1.1
2 0.011 0.011 0.0 1.11 1.1 1.1
3 1.1 1.11 0.0 0.0 0.0 0.0
4 0.0 1.11 1.1 0.0 0.0 0.0
5 1.11 0.0 1.11 0.0 0.0 0.0

Units are micro-Siemens (S). The value of 0.011 S in (row 0, column
1) corresponds to g01: the synapse entering cell 0 from cell 1. Here, the
inhibitory-to-inhibitory coupling strengths are of order 0.01 S (they must
be below �0.5 S for continual firing of the HVCI neurons to occur); the
inhibitory-to-excitatory coupling strengths must be above �1 S to over-
power the background excitation and silence the HVCRA neurons; the
excitatory-to-inhibitory connections here are of order 1 S, but they need
not be any particular value for continual activity of the HVCI neurons in the
FSU to occur.
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three previously uninhibited HVCRA ensembles are sup-
pressed. The corresponding schematic is shown in Fig. 3,
bottom, where black- and white-filled symbols represent neural
activity above and below threshold, respectively. This regime
we call quiescence.

An Active FSU

To transition from quiescent to active mode, our FSU
requires two modifications:

1) The HVCI-to-HVCI coupling strengths must increase by
roughly two orders of magnitude: from �0.01 to 2.0 mS (see
Table 5).

2) Tmax must increase by a factor of roughly three: from
�0.5 to 1.8 mM.

This second requirement implies the direct correlation between
synapse coupling strengths and neurotransmitter concentration
that we have embodied in Eqs. 7 and 8.

With these adjustments, and with the same background
current, the HVCI cells now alternate their spiking activity.
Given the wiring, the activity of the HVCRA ensembles also
alternates. The alternations are a particular repeating series.
Figure 4 illustrates this activity in a three-frame “movie.”

Figure 4, left, shows three pairs of voltage traces. Each pair
represents the activity of one HVCI neuron and one HVCRA
ensemble, where the HVCRA ensemble in each pair is the one
HVCRA ensemble in the FSU to which that particular HVCI
neuron does not project. Figure 4, right, shows the correspond-
ing schematics, where each pair is sequentially highlighted by
a specific color. Cells in each pair may fire simultaneously. By
this wiring, series activity of the HVCI neurons effects a series
of activity of the HVCRA ensembles.

First, the “green pair” fires (Fig. 4, top row). Here, the green
HVCI neuron has activated and is able to suppress the other
two HVCI neurons, which are colored in white in the schematic
to indicate that they are currently inactive above threshold. The
active (green) HVCI neuron projects to two of the three HVCRA
ensembles; these two are colored in white in the schematic to
indicate that they are not active above threshold. The third HV-
CRA ensemble, to which the active HVCI neuron does not project,
is the only uninhibited ensemble. In the presence of the back-
ground excitation, this HVCRA ensemble bursts (starting around
t � 250 ms); hence, it is also colored green.

Next, activity in the “inner loop” of inhibitory neurons
proceeds clockwise, to the “blue” HVCI neuron. An analo-
gous situation to the above is now established, wherein the
active (blue) HVCI neuron suppresses the other two HVCI
neurons and two of the HVCRA ensembles, and the one
unsuppressed HVCRA ensemble (also blue) may burst (at
t �315 ms). Finally, in the third row, the third “red pair”
bursts at t �375 ms.

This active FSU represents one syllable of song during
which three ensembles of HVCRA neurons fire in a sequence.
Note again that to effect this series, along with the increase in
the inhibitory coupling strengths, an increase in Tmax from 0.5
to 1.8 mM was required.

Figure 5 demonstrates that this particular series repeats, as
long as there are elevated values of gij and Tmax. The six
voltage traces are shown, now over three times the duration
of Fig. 4. In Fig. 5, the panels are arranged so that the

Table 5. Synapse strengths gij for the voltage traces in Fig. 4 of
an active FSU

Cell 0 1 2 3 4 5

0 0.0 2.1 2.0 1.11 1.1 1.11
1 2.1 0.0 2.1 1.11 1.1 1.1
2 2.0 2.1 0.0 1.11 1.1 1.1
3 1.1 1.11 0.0 0.0 0.0 0.0
4 0.0 1.11 1.1 0.0 0.0 0.0
5 1.11 0.0 1.11 0.0 0.0 0.0

Units are micro-Siemens (S). The value of 0.011 S in (row 0, column 1)
corresponds to g01: the synapse entering cell 0 from cell 1. Here, the inhibitory-
to-inhibitory coupling strengths must reach a threshold �2 S for a stable
series of bursting activity of HVCRA neurons to occur. The inhibitory-to-
excitatory strengths may remain of order 1 S; the excitatory-to-inhibitory
strengths must reach a value of order 1 S for the series of HVCI to occur.

Fig. 3. A quiescent FSU. Voltage traces of the three HVCI neurons (top) and
three HVCRA neurons each representing 1 ensemble (middle), all within a
quiescent FSU, where the inhibitory-upon-inhibitory coupling strengths (see Table
4) are sufficiently low to permit the HVCI neurons to fire continually, and Tmax is
0.5 mM. Bottom: corresponding schematic, where triangles (cells 0, 1, and 2) and
circles (cells 3, 4, and 5) represent HVCI and HVCRA neurons, respectively. The
cell numbers on the schematic correspond to the numbering of the voltage traces.
Black and white shapes indicate activity above and below threshold only, respec-
tively. Each HVCI projects to two HVCRA neurons. When all three HVCI neurons
are active simultaneously, the three HVCRA ensembles are suppressed.

2410 MODEL OF AVIAN NUCLEUS HVC

J Neurophysiol • doi:10.1152/jn.00438.2016 • www.jn.org

Downloaded from journals.physiology.org/journal/jn (222.016.034.176) on June 18, 2020.



voltage traces of the three inhibitory and excitatory neurons
are shown at top and bottom, respectively. This organization
is intended to facilitate recognition that the inhibitory (ex-
citatory) cells all possess roughly identical waveforms with
phase offsets.

Table 5 lists the synapse strengths for this active FSU,
showing that the strengths of the inhibitory-to-inhibitory con-
nections are roughly two orders of magnitude greater than their
quiescence values. We note one concern regarding the relative
weights of these strengths in active mode: they had to be close,
to one part in 20, for the series WLC to occur. This point is
addressed in DISCUSSION.

Behavior of an FSU in Terms of Tmax and gij

We have noted that the activity of an FSU can be altered by
effecting changes in the couplings among HVCI neurons and
the maximum neurotransmitter concentration Tmax in the syn-
aptic gating variable driving function �(Tmax,V), where we use

“Tmax” to refer to the concentration of neurotransmitter gov-
erning inhibitory activity.2

In this framework, Tmax itself is a function of some unspec-
ified mechanism that may be external to HVC (see DISCUSSION).
To characterize the range and stability of an FSU’s behavioral
modes, we examined the activity of the FSU’s cells over a
broad set of values for Tmax and the inhibitory-to-inhibitory
coupling strengths gij. Figure 6 shows these results. It depicts
FSU behavior over the ranges Tmax: [0.5,10.5] mM and gij:
[0.01,10.5] nS, where we characterize “behavior” in terms of
the HVCRA ensemble activity. The symbols that represent this
activity are defined in Fig. 6, right.

We note three items regarding Fig. 6. First, the quiescent
(solid blue circles) and active WLC bursting (green plus signs)

2 As noted earlier, in this model we assume that the maximum neurotrans-
mitter concentration governing the excitatory connections is a constant. It is, of
course, possible that a modulation of the excitatory synaptic connections is also
occurring. This consideration will enter into the construction of a more
generalized model.

Fig. 4. An active FSU, represented in a 3-frame
“movie.” Here, the inhibitory-to-inhibitory coupling
strengths are roughly 2 S (Table 5) and Tmax � 1.8
mM, so that the inhibitory neurons may engage in
competitive dynamics. Left: three “pairs” of voltage
traces, each representing one HVCI neuron (top in each
pair) and the one HVCRA ensemble to which that
particular HVCI neuron does not directly project (bot-
tom in each pair). Cells designated as “pairs” may fire
simultaneously. Thus, series activity of the HVCI neu-
rons effects a series of activity of the HVCRA ensem-
bles. Right: the corresponding schematic of each pair,
where a currently active pair is highlighted by a specific
color. The activity proceeds clockwise, beginning with
the “green pair” (top), followed by the “blue pair”
second (middle), and “red pair” third (bottom). The
numbering of cells on the schematic corresponds to the
numbering of the voltage traces.
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modes are the most common behaviors, and they are robust to
small variations in Tmax and gij: both span wide ranges of these
parameter values. In fact, Fig. 6, top, at Tmax � 10.5, looks the
same up to a Tmax value of 50 mM. Second, while the transition
regions between quiescent and active mode are narrow com-
pared with the permitted parameter ranges for these two dom-
inant modes, the regions do possess a finite area, within which
lie additional modes of behavior. We will return to these
additional modes later. Third, we have drawn a black line on
the plot. This line represents a “path” through (Tmax,gij) space,

parameterized by time, that is capable of representing an FSU’s
transition between quiescent and active mode. We shall now
discuss the significance of such a path and the method used to
construct the particular path depicted in Fig. 6.

Using the known characteristics of a single song syllable as
our guide, we sought to construct an equation for Tmax(t) and a
relation between Tmax(t) and gij(t) that might permit an FSU to
transition seamlessly between the quiescent and active states
described earlier in this paper. Any such path in (Tmax,gij)
space will produce a particular waveform of voltage behavior
in both the HVCI and HVCRA neurons in an FSU, depending
on which modes (the symbols in Fig. 6) are visited over the
course of that path, and the rate at which they are traversed.

A detailed exploration of the classes of paths and their
manifestations as voltage activity in HVC is beyond the scope
of this paper; however, it will constitute a major topic of future
investigations of FSUs. In this paper we explore a single path
in this space, which, again, we selected by requiring that it be
capable of effecting the quiescent and active behavior de-
scribed earlier.

We began our path design by first asking that Tmax(t) sit at
some minimum value until the FSU receives a neurotransmitter
injection at time t � 0. At t � 0, Tmax should then rise rapidly
with time. Tmax reaches a maximum value at some time t1, and
then it instantly begins to decay more gradually. This process
is captured by the following three steps:

Tmax�t� � Tmax
lowerbound �t � 0� (5)

Tmax�t� � Tmax
lowerboundet ⁄�r �0 � t � t1� (6)

Tmax�t� � �Tmax
lowerbounde�t ⁄�f �t � t1� , (7)

where �r and �f are constants dictating the rates of rise and fall,
respectively, t1 is the time of transition from rise to fall:

t1 � �r log�Tmax
upperbound

Tmax
lowerbound� ,

and � is a constant chosen for continuity at t1:

Fig. 5. Three rotations of the series activity represented in Fig. 4, where the
three inhibitory cells and excitatory ensembles are each grouped together at top
and bottom, respectively. Color coding is as defined in Fig. 4.

Fig. 6. FSU behavior as a function of Tmax and gij, where
“behavior” is defined in terms of the HVCRA activity. The
symbols defining behavior are listed at right. The overlaid
black path represents the trajectory for one neurotransmitter
injection, as dictated by Eqs. 5–8. The two chief modes
[quiescence and active bursting series winnerless competi-
tion (WLC)] dominate the space and are robust to small
changes in these parameter values. In fact, the top row, at
Tmax � 10.5 mM, looks the same through a Tmax value of 50
mM. In addition, there exist (at least) five modes of behav-
ior within the transition regions between the two dominant
modes, which one might expect to occasionally encounter
in the laboratory. The few locations on the grid that contain
no symbol showed some combination of rarer modes and
quiescence, and were difficult to characterize.
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� �
Tmax

lowerbound

Tmax
upperbounde�t1⁄�r�t1⁄�f� .

Tmax
lowerbound and Tmax

upperbound are the lower and upper bounds of
Tmax, respectively. We chose Tmax

lowerbound to be 0.5 mM so that
when the stimulating neurotransmitter signal arrives, the FSU
will be in quiescent mode. We chose Tmax

upperbound to be 5.0 mM,
a value that falls well within the permitted range for active
behavior (Fig. 6). The rise and fall constants were chosen, in
light of the relation between Tmax and gij to be discussed below,
to mimic the time course of a typical syllable of song. The rise
constant �r was taken to be 1 ms for a rapid transition from
quiescent to active mode. The fall constant �f was taken to be
4 ms so that active mode would be sustained for �200 ms, the
typical duration of a song syllable.

To model the response of the synapse strengths gij to Tmax(t),
we have taken the form:

gij�Tmax� � Tmax
� , (8)

and we require that gij rise no farther than a preselected value,
which occurs when Tmax rises above a critical value of Tsatura-

tion. We have imposed this requirement to achieve the rapid rise
in the strengths gij with Tmax while avoiding the (otherwise
inevitable) exponential increase of gij to values that are too
strong for active mode to occur; such is the case for gij greater than
�6. We selected the parameter values in Eq. 8 by imposing the
Tmax-gij relations for generating the quiescent- and active-mode
time series that were presented earlier in this section. Those
relations were as follows: gij(Tmax � 0.5 mM) � 0.01 nS, and
gij(Tmax � 1.8 mM) � 2.0 nS, for quiescent and active mode,
respectively. The selected parameter values are Tsaturation � 2.0
mM, m � 0.18, and g � 4.2.

The time courses of Tmax and gij that correspond to the path
of Fig. 6 are displayed in Fig. 7. The values of all parameters
governing the Tmax-gij relation are listed in Table 6.

While our choice has some desirable features and allows us
to probe the consequences of following a path in (Tmax,gij)
space, it is clear that the degrees of freedom here are numerous.
As noted, we plan to return to examine the possibilities.

We now return to our examination of the modes present in
Fig. 6. As noted, in addition to the two dominant modes
pictured in the diagram, we have identified five additional
modes that inhabit a small but finite area. Each of these “rarer

modes” occurs reliably given the respective values of Tmax and
gij indicated in the diagram. These modes are 1) alternating
(winnerless competition) bursts, where the alternations occur
in no particular repeating series (magenta plus signs), 2)
alternating bursts of two out of the three HVCRA neurons,
while the third is suppressed (yellow plus signs), 3) alternating
single spikes of two out of the three HVCRA neurons, while the
third is suppressed (yellow stars), 4) transition from purely
spiking to purely bursting activity (cyan left-pointing triangle),
and 5) transition from series winnerless competition bursting to
quiescence (blue rightpointing triangle).

One might expect, then, to occasionally encounter in the
laboratory an HVCRA neuron exhibiting one of these alterna-
tive modes of behavior, rather than simply quiescence or
simply a one-time burst. In light of this discovery of additional
modes, in BUILDING COMPLETE SONGS, we will examine an un-
usual and unexplained HVCRA voltage trace of Hahnloser et al.
(2002).

Importance of the Excitatory-to-Inhibitory Connections

In our simulations of an active FSU, we found an unex-
pected result regarding the excitatory-to-inhibitory connections
(as pictured in Fig. 1): the series of HVCI neuron firings cannot
occur without them. We discovered this requirement when,
while maintaining the minimum value of 1.8 mM for Tmax and
2 mS for the inhibitory-to-inhibitory coupling strengths that are
required for active mode, we lowered the excitatory-to-inhib-
itory connections from 1.0 to 0.01 nS. The series of HVCI
neuron firings then failed to occur. Rather, one HVCI neuron
continuously suppressed the other two. We noted a similar
failing of the series when we removed any one of the excitatory
connections independently. An increase in the inhibitory-to-
inhibitory coupling strengths did not remedy this effect: similar
results occurred for all values of inhibitory-upon-inhibitory
connections from 1 to 20 S. We conclude the following: in
our model circuit, mutual inhibition alone is insufficient to
achieve winnerless competition; feedback from the excitatory
cells is required. We find this result to be extremely interesting,
with the possible implication that variable concentrations of
excitatory neurotransmitters are also contributing to HVC dy-
namics (see DISCUSSION).

Model Scalability

Our FSU model is, in principle, generalizable to an arbitrary
number of HVCI neurons and HVCRA ensembles. For small

Fig. 7. The time course of neurotransmitter injection, in terms of Tmax(t) (top)
and gij(t) (bottom) according to Eqs. 5–8, corresponding to the black path of
Fig. 6.

Table 6. Parameter values for the Tmax-gij relation

Quantity Value Quantity Value

Tmax
lowerbound 0.5 mM  0.18

Tmax
upperbound 5.0 mM � 4.2

Tmax
saturation 2.0 mM �r 1.0 ms

�f 4.0 ms

The lower bound on Tmax of 0.5 mM yields quiescent, but not active, FSU
behavior. The upper bound on Tmax was chosen to lie within the permitted
range for generating active mode (see Fig. 6). Tsaturation was chosen so that the
initial fast rise in gij as a function of Tmax, which was observed in simulations,
would be obeyed. Similarly,  and � were chosen so that gij assumes values of
0.01 and 2.0 nS for Tmax values of 0.5 and 1.8 mM, respectively. The rise and
decay constants �r and �f were chosen so that the time course mimics the time
course during song: a rapid transition from quiescence to active state and a
sustaining of the active state for a typical syllable duration of �200 ms.
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networks (with neuronal populations on the order of tens to
hundreds), the following rules work to effect the bimodal
behavior that we have described:

1) The all-to-all inhibitory-to-inhibitory connectivity must
be preserved.

2) Each HVCI neuron projects to all but one HVCRA en-
semble.

3) Each HVCI neuron “chooses” a distinct HVCRA ensemble
to deny a projection; that is: no two HVCI neurons omit the
same HVCRA ensemble.

To examine how the model might scale for networks of
biological size is beyond the scope of this paper. We also have
yet to examine how the excitatory-to-inhibitory projections
scale.3

BUILDING COMPLETE SONGS

We now demonstrate how multiple FSUs can be used to
build a complete song. We use as our example the highly
stereotyped song “motif” of the zebra finch. In doing so, we
will show how the observed qualitative behavior of both
excitatory and inhibitory populations in HVC during song are
reproduced.

A trained male zebra finch sings a motif consisting of an
invariant number of syllables separated by gaps corresponding
to inhalation. Each recorded HVCRA neuron is observed to fire
once during each motif, and reliably at a particular temporal
location. Each HVCI neuron is observed to fire relatively
continually throughout the song, with intermittent silences.
During normal, uninterrupted singing, the syllable order is
invariant and both syllables and the silent inter-syllable gaps
are precisely timed upon repeated renditions of the song. This
information is represented in the experimental raster plot by
Hahnloser et al. (2002), which we have reproduced in Fig. 8.

Within the “FSU framework”, the full motif could be attrib-
utable to a chain-like propagation linking FSU to FSU within
HVC. In light of various lines of evidence that the syllables
represent relatively independent structures in HVC, we seek
another explanation. Studies of learning in juveniles have
shown that syllables become stabilized by inhibition indepen-
dently as they are learned (Vallentin et al. 2016). Attempts to
interrupt song have indicated that individual syllables are
relatively robust compared with the full motif: the motif can be
interrupted by noninvasive techniques (Cynx 1990), but sylla-
ble interruption requires direct electrical interference (Ashmore
et al. 2005; Vu et al. 2005). Finally, KVL15 found that global
GABA antagonist infusions to HVC degraded song while local
GABA infusions affected the activity of certain cells in the
region of infusion but the overall song was preserved. These
three lines of evidence suggest that, within our model frame-
work, the FSUs function relatively independently. In our ex-
ample model of a zebra finch four-syllable motif, then, we take
the inter-FSU connectivity to be essentially nonexistent and
instead invoke a neural feedback loop as a mechanism for
activations of a succession of four FSUs.

To simulate a full song consisting of four syllables, we
sequentially exposed a set of four FSUs to an identical injec-
tion of neurotransmitter according to our formulation of the

path described by Eqs. 5–8 (the black path of Fig. 6), with the
corresponding shapes of rise and fall of Tmax and gij with time
depicted in Fig. 7. The decay constant for Tmax (�f in Eq. 7) was
chosen so that the permitted duration of series WLC bursting
activity is �200 ms, a typical syllable duration. This value
permits time for all three HVCRA ensembles in one FSU to
burst exactly once.

Figure 9 shows the simulated raster plot that results when
four unconnected FSUs are sequentially given the injection
pictured in Fig. 7. In Fig. 9, top, a sequence of four neu-
rotransmitter injections is represented. We assume that the
first injection is initiated by an external stimulus, while the
subsequent three are sustained by a neural feedback loop.
Just below the Tmax(t) illustration in Fig. 9, top, the four
corresponding FSUs are depicted, where electrodes labeled
1-10 have been attached by an experimenter to neurons
whose identities are not known to the experimenter. The first
eight electrodes attach to HVCRA neurons; electrodes 9 and
10 attach to HVCI neurons.

Below the FSU diagrams is the raster plot of firings of the
ten neurons over the course of the song, where the vertical
numberings correspond to the numberings of the electrodes at
Fig. 9, top. neuron 1, whose spike timings occur first, corre-
sponds to one HVCRA neuron in the “top” ensemble of FSU 1.
Neurons 2 and 3 correspond to different HVCRA neurons in the
same “left” ensemble of FSU 1.

We make three specific notes regarding the simulated raster
plot. First, the spike timings of neurons 2 and 3 line up in
nearly the same temporal window but are offset slightly by
different noise terms in the voltage time course of the somatic

3 In addition, not all HVCRA neurons in one active FSU must receive a turn
to fire. We suspect that a given FSU contains a reservoir of HVCRA ensembles:
significantly more than are required to generate one syllable in the trained bird.

Fig. 8. A raster plot of spike times of HVCRA and HVCI neurons during
repeated renditions of the zebra finch motif, reproduced from Hahnloser et al.
(2002). The reader may find it of interest to compare this figure to the
simulated raster plot of Fig. 9. [Reprinted from Nature by permission from
Macmillan Publishers (Hahnloser et al. 2002)].
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compartment for each neuron.4 The reader might find it of
interest to compare these simulated plots for neurons 2 and 3
to the observed raster plots of neurons 2 and 3 in the plot of
Hahnloser et al. (2002) (Fig. 8).

Second, note the atypically long simulated spike train of
neuron 7, which belongs to FSU 2. The rotation of activity
around FSU 2 was timed to reach this neuron during the decay
stage of Tmax, such that FSU 2 entered one of the “rarer modes”
that may occur within a transition region: the mode in which
two HVCRA ensembles are spiking in alternation while the
third is suppressed. This mode is represented by a yellow star
in Fig. 6; note that the black path passes directly through it. The
reader may find it of interest to compare these simulated
timings of neuron 7 to the observed timings of neuron 5 in
Hahnloser et al. (2002) (Fig. 8). Those authors found neuron 5
to reliably exhibit activity that was not describable as a single
burst, upon repeated song renditions. To date, a satisfying
explanation of that behavior has not been offered. Our model
predicts that activity reminiscent of that behavior, that is,
neither strictly quiescence nor strictly active WLC, should be
observed in HVCRA neurons upon occasion.

Finally, note the behavior of the two HVCI neurons (9 and
10) in Fig. 9, bottom. For the majority of the song, when the

FSU to which each HVCI belongs is quiescent, the HVCI
neuron spikes continually. This is also the case for population
activity of HVCI cells when the awake bird is not singing: the
HVCI neurons are active continually and HVCRA neurons are
essentially silent (Kozhevnikov and Fee 2007). Then, when the
FSU to which a particular HVCI neuron belongs becomes
active, there appear occasional lapses in the simulated activity
of that HVCI neuron, consistent with observations.

The songs of other species might be constructed via similar
considerations of the relationships among syllables. The star-
ling sings a more complicated pattern that reflects a richer
interplay among syllables. A model of the starling song thus
might embody more complicated connectivities among FSUs.
We look forward to investigating this possibility. In general,
for the song of any species, we expect that inter-FSU connec-
tivity is significantly less extensive than within-FSU connec-
tivity.

DISCUSSION

Central-Pattern-Generator-Like Activity as a “Winnerless
Competition”

The observed phenomenon of patterned activity among
inhibitory neurons has been explained in terms of an interplay
between competition and background excitation. The phenom-
enon was formalized in a framework called “winnerless com-
petition” (WLC) by Rabinovich et al. (2001). WLC has been
used to model some biological circuits that display central-
pattern-generator-like (CPG) behavior, including a pyloric cir-

4 Regarding the noise terms and the consistency with which neuron 3 fires
slightly before neuron 2 across trials in Fig. 9: For the creation of Fig. 9, each
ensemble contained two HVCRA neurons. Within each ensemble, one of the
HVCRA neurons received a noise term of mean magnitude 0.005 nA, and the
second received a noise term of mean magnitude 0.03 nA; each noise term was
assigned a variation of 10%. It is the difference in mean magnitude that
simulated the consistent offset in firing times of neurons 2 and 3.

Fig. 9. A simulated raster plot of bursting
HVCRA and spiking HVCI neurons during
song. Top: 4 neurotransmitter injections se-
quentially target 4 FSUs. Ten electrodes (ar-
rowheads) have each been inserted into one
neuron, by an experimenter who is blind to
the neurons’ identities. The resulting action
potential timings are shown at bottom. See
text for important notes.
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cuit (Huerta et al. 2001), molluscan hunting behavior (Varona
et al. 2002), and olfactory processes in locusts (Laurent et al.
2001).

Rabinovich et al. (2001) describe a “node” as a cooperative
ensemble of neural clusters in state space; they showed that
one can alter the stabilities of nodes by altering the synapse
strengths. For low values of coupling strengths all nodes are
stable attractors, corresponding to neurons (or ensembles) that
may all be active simultaneously. For higher coupling values,
each node can correspond to a saddle fixed point, where a
trajectory in state space is a closed heteroclinic orbit that
sequentially traverses stable limit cycles in the vicinity of each
saddle fixed point. This configuration represents sequential
switching of activity among the three nodes. (See Rabinovich
et al. 2013 for pictorial illustrations of these two modes of
activity.) The neuronal interactions are defined in terms of
competitive Lotka Volterra dynamics. (See Zeeman 1993 for a
bifurcation analysis of a competitive three-dimensional Lotka
Volterra system, and Afraimovich et al. 2004 for a phase space
analysis of a “winnerless” Lotka Volterra system).

The dynamics of our model are consistent with this frame-
work, save one feature: the reliance of stable series activa-
tions on feedback from the excitatory HVCRA neurons. In
our simulations, this feedback was a necessary condition for
series propagation in an active FSU, in addition to threshold
values of Tmax and inhibitory-to-inhibitory couplings. Such
dynamics are not considered within the context of WLC
theory. We are uncertain of the biophysical implications of
this feature; we suspect that the excitatory feedback serves
to stabilize the competitive mode of behavior so that pat-
terns of alternating activity can occur.

Plausibility of a Chemically Delivered Signal to Alter
Synaptic Coupling Strengths

We have suggested that a bird’s need to vocalize leads to an
injection of inhibitory neurotransmitter in the vicinity of an
FSU, which in turn initiates the first syllable of song. We have
further suggested that a feedback loop triggers sequential
releases of neurotransmitter, to play a complete song. Here we
examine the plausibility of such a neuromodulatory mechanism
and its timescale of action.

Sources of neuromodulation. Sources of transient changes in
synaptic action (commonly called “synaptic agonist transients”
or “transients”) have been identified throughout the central
nervous systems of many species. In some mammalian brains,
the ventral tegmental area (VTA) has been identified as a
reservoir of dopaminergic cells (Phillipson 1979) that, in the
avian brain, project to and impose neuromodulatory effects
upon regions throughout the central nervous system and are a
common source of transients. The VTA mediates a variety of
tasks in the brain, including inhibitory action in some locations
(e.g., Stamatakis et al. 2013). While direct projections from
VTA to HVC in the avian brain have not been identified, there
does exist some evidence for a role of VTA in mediating
birdsong: multineuron activity in the VTA of Bengalese
finches has been found to consistently increase before the
initiation and termination of song bouts (Kapur 2008). We
consider it reasonable to postulate that VTA affects HVC, even
indirectly, as the VTA serves numerous brain areas in a
neuromodulatory role. We do not make any claim that VTA is

involved in HVC modulation, but rather we suggest that it
merits an examination.

Mechanisms of neuromodulation and effects on synapses.
Both the mechanisms of neuromodulatory action and their
effects on synapses are difficult to study experimentally, due to
the inaccessibility of narrow synaptic clefts, uncertainties in
the geometry of the synapse structure, and the observation that
synapses vary widely in geometry (Scimemi and Beato 2009).
Rise times are coupled to receptor dynamics; decay times can
be mediated by diffusion, reuptake, binding to receptors, and
enzymic breakdown.

The magnitude over which a neurotransmitter concentration
can change in a synaptic cleft varies widely. Most sources cite
a saturating value on the order of 1 mM before dropping over
two to three orders of magnitude (Scimemi and Beato 2009;
Barberis et al. 2011). The effects of such changes on synaptic
coupling are generally measured via current responses (e.g.,
Mozrzymas 2004), but no direct methods are available to
measure the transient at synapses.

For a coarse idea, we look to behavioral studies. Here, we
implicitly assume that a change in macroscopic behavior re-
flects a change, on the cellular level, in circuit modality. Much
work in this area has focused on dopamine as a modulator of
behavior. Dopamine levels in Area X of zebra finches have
been found to be significantly lower during undirected com-
pared with sexually motivated song (Heimovics and Riters
2008), which suggests that dopaminergic neurotransmission
may differentially modulate vocal behavior depending on
context.

We distill from this information that it is reasonable to
propose neuromodulation as a mechanism for transitioning
between a circuit’s modes of activity and that the mechanism
may involve a change of synaptic coupling strengths. We
further infer that our model’s requirement of a roughly three-
fold increase in Tmax to effect such a change falls well within
the bounds set by the current level of understanding.

Timescales of neuromodulatory action. Burst times of
HVCRA neurons during song have a typical precision of �1 ms
(Kozhevnikov and Fee 2007). Our model thus implies that
neurotransmitter rise and decay timescales must be that precise
if neuromodulation is to serve as the mode-switching mecha-
nism. We also have implied that the temporary elevation of
neurotransmitter can sustain an FSU’s active mode for hun-
dreds of milliseconds, a typical syllable duration. How reason-
able are these requirements?

Rise times of neurotransmitter concentrations on the order of
milliseconds have been reported (e.g., Robinson et al. 2003). In
addition, routine injected neurotransmitter “pulses” that are
designed to simulate real synaptic action typically are delivered
over 0.1 ms, implying that neurotransmitter concentrations in
real biological circuits are believed to be capable of changing
significantly over 0.1 ms.

How long can a transient’s effect on a circuit last? The time
course can vary from one to hundreds of milliseconds, depend-
ing on the magnitude of the initial injection and other modu-
latory factors such as the presence of particular receptors.
Scimemi and Beato (2009), for example, showed that the
duration of postsynaptic glutamatergic currents can vary over
two orders of magnitude, depending on whether they are
mediated by AMPA receptors alone (tdecay �2 ms) or if
NMDA receptors are also recruited (tdecay �200 ms).
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Finally, we are concerned about the temporal precision of
neurotransmitter decay. Can such a process occur reliably with
a precision of 1 ms, upon the sounding of each syllable? The
consideration here is not the shape of neurotransmitter fall-off,
but rather that the fall-off reach one critical value at a reliable
time following injection. That is: in our model, the series that
occurs during active mode does not slow gradually as neu-
rotransmitter concentration decreases. Rather, the series occurs
at a constant rate above the threshold concentration, below
which there occurs a sharp transition back to quiescence. An
answer to our question here would be speculative, however,
given the current experimental uncertainties.

Possible Use of Excitatory-to-Excitatory Connections

Some monosynaptic connections between HVCRA neurons
have been identified experimentally (KVL15), although at a
rate roughly 100 times lower than that of the reciprocal
inhibitory-excitatory connections. While our model does not
require excitatory-excitatory monosynaptic connections, it
does allow for them. Here we note how excitatory-excitatory
connections might arise within our FSU framework, and we
offer a possible biophysical use for such connections.

We have identified two possible locations for excitatory-
excitatory connections in our model. One is within a particular
ensemble of an FSU. Such connections do not strike us as
important, however, as unconnected HVCRA neurons in one
ensemble may be active simultaneously even if not directly
connected. A second, and possibly useful, location for such
connections could be as follows: between FSUs.

Consider two FSUs, where there exists a unidirectional
monosynaptic connection from FSU 1 to FSU 2. Imagine that
FSU 1 lies within the spatial region receiving a neurotransmit-
ter injection, while FSU 2 does not. When FSU 1 receives the
injection, its ensembles may now participate in the correspond-
ing syllable. Given the connection to FSU 2, the ensembles of
FSU 2 may also be recruited to participate in the syllable, even
though FSU 2 has not received the injection directly. In this
way, excitatory-to-excitatory connections might serve to re-
duce the required spatial extent of the injection. This sugges-
tion constitutes little more than speculation; we offer it to
address the observed low rate of such connections.

Attempts to Incite FSU Mode Switching via Electrical
Manipulation

We describe briefly an alternative method we investigated to
achieve an active series of firings of HVCI neurons: electrical
stimulation. Electrical signaling can occur faster than chemical
signaling and on a timescale whose precision has been estab-
lished well beyond the current state of understanding of the
temporal precision of neuromodulatory action. We initially
considered it to be the most likely candidate for an FSU
mode-switching mechanism.

Beginning from the quiescence regime, we attempted to
incite series activity via current pulses delivered to particular
cells in the circuit. We gave a current pulse (shorter than 10
ms) atop the background current to various subsets of neurons
in one FSU. The pulse-receiving neuron(s) spiked once in
response; the other neurons did not respond to the pulse for any
biophysically realistic values of injected current (�700 pA) or
synapse strength (�100 S). The circuit activity resumed its

previous behavior within 10 ms. We concluded that if electrical
stimulation is to effect mode-switching, more elaborate injec-
tion designs would be required. Seeking a simpler solution, we
looked elsewhere.

The Silent Intersyllable Gaps

We chose not to include the silent intersyllable gaps in our
model of HVC, because at this time we find no particularly
compelling representation for a gap. We suspect, however, that
the gaps are integral to song production and have a temporal
representation at the level of HVC. Cooling HVC uniformly
stretches syllables and gaps while cooling the nucleus RA had
no effect on song (Long and Fee 2008). More importantly,
correlations between respiratory action and activity in HVC
have been demonstrated (Andalman et al. 2011; Amador et al.
2013). We speculate that the duration of each silence conveys
part of the informational content of song.

Structural vs. Functional Connectivity Rates

We comment briefly on relating our model’s functional
connectivity to structural connectivity rates, where functional
connections are defined as the subset of structural connections
that are currently in use by the circuit. Our model requires high
rates of functional connectivity within an FSU. We would like
to directly compare these rates to observed structural connec-
tivity rates (e.g., Mooney and Prather 2005; KVL15). Such a
comparison, however, would require knowledge of the learning
stage (see Okubo et al. 2015 for evidence of synapse pruning
during learning in HVC) and the rate at which a formerly used
synaptic connection dissolves (see Luo and O’Leary 2005 and
Walsh and Lichtman 2003 for evidence that axons projecting to
unused synapses have some timescale of retraction or degen-
eration). Calcium imaging techniques appear to hold the great-
est promise for illuminating the relationship between structural
and functional connections. Until then, we will withhold spec-
ulation.

Spatial Considerations

The spatial organization of FSUs, which we have not con-
sidered in this paper, is an important topic to consider. There
exists evidence for such organization in HVC (Stauffer et al.
2012; Day et al. 2013; Poole et al. 2012), and efforts are
underway to incorporate evidence of spatial organization into a
model of functional connectivity (Markowitz et al. 2015).

A Concern Regarding Model Robustness to Small
Differences Among Synapse Strengths

As noted, in our numerical simulations the relative values of
the six interneuron-to-interneuron gij values must be identical
to 1 part in 20 in order for the series WLC activity to occur
reliably. This is a worrisome weakness. In a follow-up paper
we will examine possible reasons for this sensitivity and
possible methods to remedy it.

Model Predictions and Suggested Experiment

Here we suggest experimental tests of 1) the FSU model
predictions, and 2) the suggestion that neuromodulatory action
initiates song. These tests can currently be performed in the
laboratory.
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Testing FSU model predictions. The plot of FSU behavior as
a function of Tmax and gij (Fig. 6) reveals five additional modes
of behavior that reside within the slender transition regions
between quiescent and active mode. This finding predicts that
one should occasionally find HVCRA neurons exhibiting activ-
ity that is neither strictly below action potential threshold nor
strictly a one-time-burst event. Furthermore, such atypical
behavior of a particular neuron may be expected to occur
reliably at a particular temporal location during song. Hahn-
loser et al. (2002) might have encountered such an event,
depicted by their raster plot of neuron 5 (Fig. 8). A deeper
examination of this possibility requires the recording of a
significantly larger number of HVCRA neurons during song.

Testing the proposal that neuromodulation initiates song. To
examine whether neuromodulation plays a role in initiating
song, it might be helpful to examine whole cell recordings in
the awake bird, where, in place of an external stimulus, a
neuromodulatory agent is delivered to HVC. The aim here is to
identify some neuromodulatory agent that can act as the ex-
ternal stimulus to initiate song. Heimovics and Riters (2008)
performed such an experiment in the starling HVC and found
that infusing dopamine agonists stimulated song while antag-
onists hindered it. This experiment merits repeating. Further-
more, it would be instructive to compare the result of infusing
such a neurotransmitter both globally and locally to HVC. In
our model, a global infusion would ignite all FSUs in HVC
simultaneously; whether it would be possible for patterned
activity to arise in that scenario, we would be interested to
learn.

A second suggestion is to specifically target VTA, with
experiments similar to the work of Kapur (2008). That author
found that VTA activity is associated with the onset and offset
of song bouts. The nature of that association was not deter-
mined, and the finding merits a follow-up examination. As
noted earlier, we are making no claim that VTA is the probable
origin of the process that modulates Tmax in HVC. Rather, as
VTA has been identified as a modulator of numerous brain
areas, we are suggesting that it would be worthwhile to exam-
ine its possible role in the scenario presented in this paper.

A LOOK FORWARD

We have offered a biophysically based model of a funda-
mental bimodal unit of song representation in the avian HVC.
The two modes are robust to small variations in values of the
parameters governing their dynamics. When considering a
population of such FSUs, much of the experimentally observed
population activity of HVCI and HVCRA neurons can be
reproduced qualitatively. Additional modes of activity can
occur during the transition regions between the two dominant
modes, and on occasion these should be identifiable in the
laboratory. We have also discovered that excitatory feedback
to the inhibitory population is necessary for a stable propaga-
tion of series firings within the framework of winnerless
competition, a finding that calls for a physical explanation.

We have offered no details of how the FSU represents the
temporal and spectral content of a syllable. Could the rate of
series propagation be related? Could the number of HVCRA
ensembles firing per syllable be related? Both possibilities
might be addressed by performing tests akin to the raster plot
of Hahnloser et al. (2002) during an experiment in which the

ambient temperature is varied. Such “cooling studies” have
revealed direct relationships among temperature, rate of song
production, and spectral content (e.g., Long and Fee 2008).

Many questions arise regarding our proposed mechanism for
effecting a bimodal FSU. If an injection of inhibitory neu-
rotransmitter is responsible, then by what mechanism is the
“donor” inhibitory cell triggered to release neurotransmitter? Is
this donor cell internal or external to HVC? How does the
neurotransmitter injection find its target FSU? What spatial
precision is required of the injection? It would be fascinating to
ultimately engineer an experiment capable of targeting indi-
vidual FSUs with a neurotransmitter injection. It would serve
as an ultimate test of our model if, for example, in the zebra
finch brain the “FSU 2” of Fig. 9 could be reliably identified,
and reliably elicit the bird’s “Syllable B” repeatedly, upon
repeated targeted injections to that FSU.

Finally, there are the critical questions of model robustness
on large scales and in the presence of high noise. How strictly
must our “scalability rules” be followed by a circuit consisting
of thousands of cells and synaptic connections? Do the rules
permit some reasonable degree of flexibility? In follow-up
papers we will address these questions and describe a method
of statistical data assimilation that can, in principle, determine
whether a proposed functional connectivity accurately repre-
sents data from a real biophysical circuit.
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