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ABSTRACT

Vocal production in songbirds is a key topic regarding the motor control of a complex, learned behavior. Birdsong is the result of the inter-
action between the activity of an intricate set of neural nuclei specifically dedicated to song production and learning (known as the “song
system”), the respiratory system and the vocal organ. These systems interact and give rise to precise biomechanical motor gestures which
result in song production. Telencephalic neural nuclei play a key role in the production of motor commands that drive the periphery, and
while several attempts have been made to understand their coding strategy, difficulties arise when trying to understand neural activity in the
frame of the song system as a whole. In this work, we report neural additive models embedded in an architecture compatible with the song
system to provide a tool to reduce the dimensionality of the problem by considering the global activity of the units in each neural nucleus.
This model is capable of generating outputs compatible with measurements of air sac pressure during song production in canaries (Serinus
canaria). In this work, we show that the activity in a telencephalic nucleus required by the model to reproduce the observed respiratory
gestures is compatible with electrophysiological recordings of single neuron activity in freely behaving animals.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5145093

Songbirds produce their song by articulating the neural activity
of areas in the brain dedicated to song production with the respi-
ratory system and the vocal organ. Functional studies of the song
system in the avian brain have been greatly focused on single units,
i.e., trying to understand how this system works by measuring
the activity of many individual neurons. From a technical stand-
point, it is not yet possible to measure such large ensembles from
multiple brain areas simultaneously, as this would involve voltage
recordings of hundreds of thousands of neurons simultaneously.
In this work, we present a different approach. Using a model of
the neural architecture involved, we found which global neural
activity patterns give rise to an output compatible with motor
commands used during song production. We then recorded neu-
ral activity of individual neurons in singing birds in a particular
brain region and found that the neural activity patterns provided
by the model were compatible with the experimental results. In
this way, models constitute a framework that could guide further
experiments in the field to elucidate, from a macroscopic perspec-
tive, how different parts of the song system articulate to give rise
to a delicate vocal behavior.

I. INTRODUCTION

Birdsong production requires an exquisite combination of
motor gestures (Suthers and Margoliash, 2002). In order to gen-
erate song, a bird must control the configuration of its vocal
organ, the syrinx, as well as the activity of the respiratory sys-
tem (Gardner et al., 2001). The animal generates large pressure
pulses during which energy is transferred to the labia located at
the juncture between the bronchi and the trachea, inducing oscil-
lations that modulate the airflow to produce sound (Mindlin and
Laje, 2006). Songbirds account for about half of the known bird
species. These birds learn their songs after some level of exposure
to a tutor. Their brain presents a set of interconnected neural nuclei
known as the “song system,” with nuclei specifically dedicated to
the learning, production, and maintenance of song (Nottebohm et
al., 1990). A set of respiratory nuclei receives inputs both from
regions of the brainstem (for all bird species) as well as from cor-
tical regions (in songbirds) (Ashmore et al., 2005). In order to
generate song, the bird has to excel in coordinating the activity
of several respiratory muscles with syringeal muscles, a delicate
action achieved through a sophisticated process of motor learning
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which involves specific cortical nuclei (see Mooney, 2009 for a
review).

From first principles, it is complex to link the patterns of neu-
ral activity in those brain regions to the actual motor activity that
occurs in the peripheral organs which ultimately generate the song
(Ott and Antonsen, 2008). For this reason, we have been working
over the last years with phenomenological, additive models (Wil-
son–Cowan equations, Wilson and Cowan, 1973 and Hoppensteadt
and Izhikevich, 2012), which aim to provide a description of the neu-
ral activity of the different nuclei of song system in terms of average
activities of large neural ensembles (Alonso et al., 2015, 2016). The
resulting average activities in the different nuclei for the production
of specific song syllables give us an insight on what the coordinated
activity of neurons may be, and is a step forward to discover the
motor representation of this behavior in the brain, i.e., its motor
code.

The experimental strategy is also complex. It is difficult to
record single units in behaving individuals and extremely hard
to link such overwhelmingly sparse information with the actual
instructions controlling the periphery. An alternative that over-
comes the need for careful electrode placing and single unit sorting
is to record several neurons simultaneously with low impedance
electrodes (Buzsáki et al., 2012), but results from this method are
difficult to interpret due to the variety of neuron types involved
(Mooney, 2000 and Rauske et al., 2003) and the amount of global
neural activity in the signal.

Furthermore, the physiological instructions that control the
biomechanical devices to produce behavior stem from a delicate
equilibrium between neural activity and low dimensional dynam-
ics of the periphery (Tytell et al., 2011 and Takahashi et al., 2015). In
the case of song production, physiological instructions arise from
the interaction of the nervous system with the syringeal and res-
piratory motor activity. In canaries, for example, the respiratory
activity generated during song production (stereotyped air sac pres-
sure traces) has a structure that can be reproduced with simple
dynamical elements (Trevisan et al., 2006 and Alonso et al., 2010).

In order to find a quantitative description that could link the
physiological instructions used during song production with some
of what we know about the song system, we recently built a dynami-
cal model that (1) Is consistent with the basic architecture of the song
system, (2) Can fit the respiratory output of the song system, and (3)
Can make precise predictions on the neural activity of an accessi-
ble part of the song system (Alonso et al., 2015, 2016; Dima et al.,
2018a; 2018b). In this work, we report for the first time single-unit
neural activity recorded in singing canaries (Serinus canaria), in one
of the brain areas described by our dynamical model, for which we
found a good correspondence between neural recordings and neural
modelling.

II. EXPERIMENTAL METHODS

Extracellular activity in neuronal nucleus HVC (used as proper
name) and sound were recorded simultaneously in six adult canaries
(S. canaria) during song production. Additionally, for one of these
birds, air sac pressure and audio were recorded during song. Each
bird was housed individually but could see and hear other canaries
intermittently to promote singing. Birds were recorded for as long as

they presented good physiological signals and high rates of singing.
This can be very variable across birds. The recording periods in
different birds were between 7 and 47 days, with recording ses-
sions lasting on average 7 h per day. Experiments were performed
in accordance with a protocol approved by the University of Buenos
Aires (FCEN-UBA) Institutional Animal Care and Use Committee
(CICUAL). Neural, audio, and/or air sac pressure were monitored
continuously by the recording equipment (see below) and recorded
only when triggered by sustained sound (usually, song). For electro-
physiological recordings, we used an array of tetrodes made inhouse
from polyimide-coated tungsten wires (Henze et al., 2000), mounted
on a manual microdrive. Recordings were performed on Intan Tech-
nologies’ RHD2000 USB interface board at 30 kS/s, amplified on an
RHD2132 16-channel amplifier board. The neural signal was digi-
tally high-pass filtered (300 Hz cutoff frequency, third order Butter-
worth filter) offline in Matlab (MathWorks, www.mathworks.com).

Audio was acquired using a 20 Hz–20 kHz electret microphone
mounted on a Maxim MAX 4466 amplifier board with adjustable
gain placed inside the sound attenuating chamber where the bird
was. The audio signal was recorded on an analog input of the
RHD2000 USB interface board and was sampled at the same rate
as the neural signal. The audio signal was digitally high-pass filtered
(300 Hz cutoff frequency, third order Butterworth) in Matlab. Spec-
trograms of the audio signal were computed using Matlab with a
10 ms gaussian window, α = 3, and temporal overlap of 95%.

Air sac pressure was recorded using a flexible cannula and a
miniature piezoresistive pressure transducer (Fujikura model FPM-
02PG). For further details, see, for example, Amador and Margoliash
(2013a). Pressure data were amplified with custom hardware and
acquired into an analog input of the RHD2000 USB interface board.
The pressure signal was digitally low-pass filtered (300 Hz cutoff
frequency, third order Butterworth filter) in Matlab.

III. THE MODEL

A. Additive models

The song system is a set of interconnected areas of the brain.
Each area is called a neural nucleus and is composed by intercon-
nected neurons highly packed in a defined region. The number of
neurons in each region ranges from tens of thousands to hundreds
of thousands, depending on the nucleus (Ward et al., 1998). A way
to represent the neural activity is shown in Fig. 1(a) in which each
dot indicates the time when an action potential (spike) has occurred.
In Fig. 1(a), we represent the activity of ten different units spiking in
an interconnected neural pool, and, therefore, the increase of spiking
rate occurs in a coordinated way and is represented as a well-defined
peak in the average activity [see Fig. 1(b)]. In this way, the variables
of our dynamical model will be the average activities of the neurons,
represented in Fig. 1(b) (Alonso et al., 2015 and Dima et al., 2018b).

Additive neural network models are probably the simplest
empirical models used in computational neuroscience and are
designed to capture very basic features of the average activity of neu-
ral populations (Hoppensteadt and Izhikevich, 2012). They can be
used to describe the average dynamics of interconnected excitatory
and inhibitory neural populations. If x and y stand for the average
activities of the excitatory and inhibitory populations, respectively,

Chaos 30, 053134 (2020); doi: 10.1063/1.5145093 30, 053134-2

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
http://www.mathworks.com


Chaos ARTICLE scitation.org/journal/cha

FIG. 1. Neuronal activity and additive model variables. (a) Temporal evolution of
the neural activity of different units. In this plot, each point represents a spiking
event and the vertical axis separates the activity of ten different neurons from a
population. (b) The variables and outputs of rate models are the average activity of
a population of neurons [x(t)]. In this example, we show that synchronous events of
high population wide activation are translated as peaks in x(t), while low-rate and
nonsynchronous firing means that x(t) takes a small, near-zero value. Adapted
from Dima et al. Papers Phys. 10, 1–16 (2018b).

their dynamics will be ruled by

dx

dt
= −x + S(ρx + a1x + a2y) , (1a)

dy

dt
= −y + S(ρy + a3x + a4y), (1b)

with the vector field defined in terms of a Sigmoidal function,

S(u) =
1

1 + e−u
, (1c)

with ρx(t), ρy(t) being the inputs to the excitatory and inhibitory
populations, that may change with time t. The constants
ai (i = 1, . . . , 4) describe the architecture of the neural network.
A representation of this system is shown in Fig. 2(a). Notice that
although it is a rather simple model, it can display very rich dynam-
ics: depending on the values of the input parameters ρx(t) and ρy(t),
the dynamics can be stationary, excitable, or oscillatory [regions I
and IV, II, and III in Fig. 2(b), respectively]. In Fig. 2(b), we display
the bifurcation diagram of the system in terms of ρx(t) and ρy(t), and
in Fig. 2(c) the dynamics in each region. Since this basic architecture
is capable of displaying oscillations (i.e., alternating excitatory and
inhibitory activity patterns), it is known as a neural oscillator. This
basic neural unit, the neural oscillator, was used in the literature to
build motor pattern models, and we have previously reported how
to assemble neural oscillators to build a model for the song system
(e.g., Trevisan et al., 2006). Moreover, we have also explored that
the dynamics of these phenomenological models can be recovered
by an extension of the Ott–Antonsen method (Ott and Antonsen,
2008 and Roulet and Mindlin, 2016).

One of the brain areas that we will describe by means of a neural
oscillator is the expiratory nucleus of the song system, whose output

FIG. 2. Bifurcation diagram and dynamical regimes for interconnected excita-
tory–inhibitory additive models. (a) Diagram representing two interconnected
populations of excitatory (x) and inhibitory (y) neurons, with parameters (ρx , ρy )
representing the inputs to x and y, respectively. (b) Bifurcation diagram for the sys-
tem of Eqs. (1a)–(1c) in terms of the inputs (ρx , ρy ). Four qualitatively distinct
dynamical regimes are achievable: (I) quiescent state, (II) excitable regime, (III)
spiking regime, and (IV) constant activity. Regions are delimited by the multiple
bifurcation sets. The blue (black) lines are the loci of the multiple Hopf (saddle
node in limit cycle or SNILC) bifurcation sets, while the dashed lines correspond
to homoclinic (or saddle separatrix loop) bifurcation sets. (c) Phase diagrams for
each identified region in (b), showing one stable fixed point in (I), an excitable
regime with a stable fixed point, a saddle point and an unstable fixed point in
(II), an oscillatory regime due to the presence of a limit cycle in (III) and a stable
fixed point in (IV). Adapted from Dima et al., Papers Phys. 10, 1–16 (2018b) and
Borisyuk et al., Biol. Cyber. 66(4), 319–325 (1992).

will be responsible for the large expiratory gestures that are neces-
sary in order to push airflow between syringeal labia and generate
sound. This nucleus is built out of excitatory and inhibitory neurons,
and it has two inputs: one from some region of the brainstem and a
second input from the telencephalon. The telencephalon is assumed
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to enrich part of the neural activity originated in the brainstem, pro-
cessing it through an interconnected array of neural nuclei. Since
the output of this nucleus is closely related to an observable which
is easy to measure (the air sac pressure during song production),
over the last years we have built a dynamical system representing
the different areas of the song system, to test whether the model
was capable of reproducing the respiratory gestures of a singing bird.
This model was reported in the literature (e.g., Alonso et al., 2015,
2016 and Dima et al., 2018b). It has a number of compartments com-
patible with the known anatomy of the avian brain. Each nucleus has
excitatory and inhibitory neural populations as reported, and it was
capable of synthesizing realistic air sac pressure patterns and sound
for canary song. Its schematic is displayed in Fig. 3.

B. The program

With these elements, we want to explore which neural activity
patterns in the telencephalon can reproduce the respiratory outputs
observed during birdsong production. We are going to choose two
regions to assess physiological activity during singing to experimen-
tally validate our dynamical model. As a proxy for the activity in the
respiratory nuclei of the song system, we can record the air sac pres-
sure of a singing bird (Suthers et al., 1996 and Trevisan et al., 2006).
Additionally, HVC (proper name) is a telencephalic nucleus that is
close to the scalp, and therefore it is among the easiest regions of the

song system from which to record neuronal activity. HVC is a neural
nucleus necessary for birdsong production.

In particular, by measuring in these two extremes of the song
system, we plan to test whether the motor gestures (air sac pressure
and syringeal muscle tension traces) used in the production of song
require temporally heterogeneous (i.e., non-uniform) activity patterns
in the telencephalic nucleus HVC. The rationale behind testing this
hypothesis is that analysis of the neural activity of a group of singing
zebra finches (Taeniopygia guttata) selected specifically because of
their particularly simple songs, revealed a preference for spiking at
particular motor instances (Amador et al., 2013b). These signifi-
cant motor instances are specific moments linked to transitions in
the motor gestures used during song production. The firing pref-
erence at specific instances led to the hypothesis that HVC activity
could be non-uniform throughout the song. In this work, we focus
on unveiling which non-uniform neural activity patterns give rise to
respiratory patterns compatible with experimental recordings of air
sac pressure and test this by recording neural activity in HVC.

Preference for spiking at specific instances was also observed in
songs of juveniles, and to some degree, in simple syllables of adult
zebra finches (Okubo et al., 2015). These observations, on the other
hand, seem to contradict other reports that describe the activity in
HVC as uniform during the whole song (Lynch et al., 2016 and
Picardo et al., 2016). One way to reconcile these seemingly oppos-
ing views is that uniform activity was recorded in birds singing very

FIG. 3. Architecture of the model and simulations of pressure patterns for two canary song syllable types. (a) Minimal architecture of neuronal populations compatible with
the birdsong motor pathway. In this model, an initiating area (IA) in the brainstem is responsible for activating the motor program. IA projects directly to an expiratory-related
area (ER) and indirectly through the cortex by projecting the initiating pulse to the neural nucleus HVC (proper name). Activity in HVC is modeled by a function, FHVC, which
is compatible with activity in IA and with the hypothesis that HVC activity presents activation peaks at specific moments in the motor program rather than being uniformly
active throughout. HVC then projects to nucleus RA (robust nucleus of the arcopallium), responsible for processing and enriching the activity coming from HVC according to
Eqs. (2c) and (2d) of our model (see text). Finally, both converging inputs to ER give rise to the model output: a simulated pressure pattern that can be compared to
physiological recordings. (b) and (c) Model variables necessary to produce expiratory activity compatible with P1 syllables (b) and P0 syllables (c). P1 syllables correspond
to short and periodic expiratory pulses. In the top panel, FHVC required to produce the ER(e) output is shown. Note the presence of a periodic behavior in HVC activity, which
corresponds to the periodic expiratory output. P0 syllables, on the other hand, are longer syllables characterized by a short high-frequency pulse and a long whistle. In this
case, FHVC requires only two activity peaks to produce an expiratory output compatible with measured pressure patterns.
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complex songs, as it is usually the case with zebra finches. There-
fore, the density of significant motor instances is so high, that it is
difficult to disambiguate that model from another one postulating
a somewhat uniform neural coding. Recently, it was proposed that
a suitable species to disambiguate between the two models is the
canary (S. canaria). The song of canaries is made up of units called
syllables that they repeat a variable amount of times to form phrases.
Canaries present some syllables that do not require very complex
motor patterns (Lassa Ortiz et al., 2019). Actually, any oscine species
capable of generating long whistles (i.e., sounds with constant fun-
damental frequency), could be an adequate candidate for the task.
For such species, syllables generated with simple gestures would
require very different HVC activity patterns than the ones found in
zebra finch song.

C. The computational model

The birdsong production circuit involves the telencephalic area
HVC that projects to the robust nucleus of the arcopallium (RA),
which projects to nuclei that control respiration. In our model, we
are going to describe this as an expiratory related area (ER). Neu-
ral nuclei in the brainstem send projections to respiratory centers
and to the thalamus that further projects to HVC. We are going to
describe these brainstem nuclei as a generic initiating area (IA). A
representation of this is shown in Fig. 3(a) and the mathematical
implementation of the model reads as follows:

deer

dt
= 249.5(−eer + S(ρeer + αeer,eereer + αeer,ierier

+ αeer,era era + αeer,FFIA(t))), (2a)

dier

dt
= 249.5(−ier + S(ρier + αier,eereer + αier,ierier + αier,era era)),

(2b)

dera

dt
= 20(−era + S(ρera + αera,eraera + αera,iraira

+ αera,FHVCFHVC (t))), (2c)

dira

dt
= 20(−ira + S(ρira + αira,eraera + αira,eraira)), (2d)

where the variables eer, ier, era, ira stand for the excitatory and
inhibitory populations in the expiratory related area (eer and ier)
and nucleus RA (era and ira), respectively. The temporal function FIA

stands for the activity in the initiating area (IA). As it can be seen
from Eq. (2a) in our dynamical system, FIA constitutes a direct input
to the expiratory related area. For the two syllables analyzed in this
work, FIA is displayed with a blue line in Figs. 3(b) and 3(c). The
parameters in our model are chosen in such a way that each area
(ER and RA) can display a variety of dynamical regimes (see Fig. 2).
These equations were numerically integrated using a fourth order
Runge Kutta method (Press et al., 1988). The codes used for the sim-
ulations shown in this manuscript are openly available on GitHub
(Herbert et al., 2020).

The temporal function FHVC stands for the activity in HVC,
which we propose in such a way that it is consistent with both the
proposed activity in the initiating area, and the hypothesis that HVC

neural activity codes sparse significant motor instances (i.e., activ-
ity is not uniform during the motor program). For the two syllable
types considered in this work, FHVC is displayed as a green line in
Figs. 3(b) and 3(c). This activity is the superposition of a delayed
copy of the activity in the IA and, in the case of P1 syllables, a peri-
odic pattern. In the literature, we have shown that P1 syllables could
be achieved with or without this periodic component (see Alonso
et al., 2015, 2016, respectively). RA will then process the function
that we propose for HVC according to Eqs. (2c) and (2d) of our
dynamical system. The output of RA (era) will constitute the indirect
input to the expiratory related area. It is the purpose of our simula-
tions to explore which HVC activity patterns can generate, with our
model, respiratory gestures qualitatively similar to the ones we record
in singing canaries. Those patterns will be then compared with our
electrophysiological recordings of HVC activity.

In this work, we used conjectured temporal functions FHVC in
HVC, but notice that both temporal functions used to generate P1
and P0 syllables could be obtained if HVC is itself modeled as a set of
excitatory and inhibitory populations. For example, a neural oscilla-
tor in an excitable regime can be forced with pulses from IA, giving
rise to delayed pulses in HVC. Alternatively, a neural oscillator can
be placed in a region of the parameter space where a stationary
attractor coexists with a periodic solution and a pulse from the IA
can take HVC from a stationary state to an oscillatory one. In other
words, the conjectured HVC patterns could be solutions of HVC
populations, if modeled themselves as neural oscillators.

D. Neural activity compatible with respiratory

gestures

In Fig. 3, we show the simulations for two different respira-
tory patterns used during the generation of canary song. In Fig. 3(a),
we display the areas (neural nuclei) involved in our model. The
black circles at the bottom of the figure represent the excitatory
and inhibitory populations of the expiratory related area (ER). The
blue circle represents an initiating area of the brainstem (IA); the
green circle represents the telencephalic nucleus HVC; and the last
two circles on the left stand for the excitatory and inhibitory pop-
ulations of the telencephalic nucleus RA. Notice that both RA and
the IA project to the expiratory related area. In Fig. 3(b), we display
the set of activity patterns that lead to the generation of very sim-
ple, almost harmonic pressure fluctuations (P1 syllables, see Figs. 1
and 2 of Alliende et al., 2010).

Notice that in the literature we have shown that our model of
the song system can display solutions similar to the pressure pat-
terns used during song production in different ways. For example,
in Alonso et al. (2016), we have shown a similar HVC activity as
the one presented in Fig. 3(b): periodic HVC activity related to peri-
odic respiratory activity. Conversely, in Alonso et al. (2015), we have
shown that a constant activity in HVC could be represented as a con-
stant value of ρeer that would put the respiratory neural oscillator in a
region of the parameter space where oscillations occur [see Fig. 2(c),
region III], and therefore generate oscillatory activity in the respi-
ratory area. In this work, we propose to measure HVC activity to
disambiguate between these different possibilities.

In Fig. 3(c), we display the pressure pattern typically used in the
generation of the characteristic canary whistle (P0 syllable). In both
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TABLE I. ER-related parameters used in the simulations of P1 syllables (P1) and P0

syllables (P0). These parameters define network properties such as the basal level to

which activity is mounted (ρ) and the strength of connection to excitatory and inhibitory

areas (parameters α). Subscripts (e) and (i) further indicate whether the parameter

corresponds to a connection to excitatory (e) or inhibitory (i) neurons. The remaining

letters indicate nuclei (e.g., ER, RA, HVC).

Syll. ρeer αeer,eer αeer,ier αeer,era αeer,F ρier αier,eer αier,ier αier,era

P1 −6 10 −10 12 1 −8 10 2 4
P0 −7.5 9 −1 9 1 −11.5 10 2 0

cases, the blue and green time series are the proposed temporal func-
tions representing the averaged activities in the IA and HVC areas,
respectively, while the red and black time series correspond to the
computed activities of the excitatory neurons in RA, and the activity
of the excitatory neurons in the expiratory related areas, respec-
tively. These are computed using our dynamical system described in
Sec. III C [Eqs. (2a)–(2d)].

For the case in Fig. 3(b), HVC activity consists of a set of peri-
odic fluctuations, mounted on a continuous level of activity. This,
in turn, elicits in RA a time series that builds up, which then drives
the neural oscillator representing the expiratory related area into an
oscillating regime. The parameters that define the neural oscillators
of our model to generate this syllable are listed in Tables I and II.

For the case displayed in Fig. 3(c), the two bursts in the ini-
tiating area induce two delayed bursts of activity mounted on a
continuous level of activity in HVC. The continuous level of activity
in HVC accounts for the presence of some non-zero average activity
from within the neural nucleus. The resulting FHVC triggers a tran-
sient build-up of RA activity, which induces a large and wide peak in
the expiratory related area. Dynamically, this is due to the existence
of a non-zero fixed point for the activity of the excitatory popu-
lation in ER. As activity in RA starts to decrease, the fixed point
in the expiratory related area disappears in a saddle node bifurca-
tion, and the system returns to its quiescent state. The parameters
that define the neural oscillators of our model to generate this syl-
lable are listed in Tables I and II. Here, we are not going to focus
in the relative delays between signals in different neural nuclei as
in previous work it has been shown that the relative delays can be
controlled with different synaptic weights (for example, see Fig. 2
in Dima et al., 2018a). Specifically, it has been shown that a simi-
lar neural architecture to the one presented here is able to achieve

TABLE II. RA-related parameters used in the simulations of P1 syllables (P1) and P0

syllables (P0). These parameters define network properties such as the basal level to

which activity is mounted (ρ) and the strength of connection to excitatory and inhibitory

areas (parameters α). Subscripts (e) and (i) further indicate whether the parameter

corresponds to a connection to excitatory (e) or inhibitory (i) neurons. The remaining

letters indicate nuclei (e.g., ER, RA, HVC).

Syllable ρera αera,era αera,ira αera,FHVC ρira αira,era αira,era

P1 −5.25 10 −10 1 −5 10 2
P0 −3 6 −3 1 −6 6 6

FIG. 4. The cortical loop through HVC and RA is required to simulate complex
syllables in canary song. (a) Using the same system parameters as before for P0
syllables but excising the cortical loop through HVC and RA that converges back
to ER, the system cannot produce complex syllables such as the P0 syllables
shown in Fig. 3(c). (b) In this reduced system, as IA feeds a simple pulse into ER,
ER can only produce a short expiratory pulse for each IA input pulse.

delayed synchronization, zero lag synchronization and even antici-
pated synchronization depending on the synaptic weights used (see
Fig. 6 in Dima et al., 2018a).

To illustrate the importance of the telencephalic nuclei in the
generation of complex respiratory pulses, in Fig. 4 we show a sim-
ulation in which we used the same parameters used to generate a
P0 syllables with the neural oscillator representing the expiratory
related area, but with no connection from IA to HVC (in this way we
modeled the elimination of the rest of the circuit, i.e., RA does not
project back into the expiratory related area). The two brief pulses
now give rise to two simple expiratory pulses.

Notice that we have generated different syllables with different
parameters of the dynamical system representing the song system.
Since many of these parameters represent connectivity strengths, we
interpret that different neural populations are involved.

IV. PHYSIOLOGICAL RECORDINGS

To put our model to the test, we recorded neural activity
extracellularly from nucleus HVC during song production in freely
behaving canaries. Figure 5 shows examples of the raw data acquired
during singing of two types of syllables. For this work, we selected
two syllable types that were sung by all the birds in our study
while their neural activity was recorded. These types of syllables are
present ubiquitously in a canary repertoire and are generated with
simple and consistent motor gestures. The first type is called P1, and
they are produced by pressure pulses that display a sinusoidal shape
(see Alliende et al., 2010), see bottom of Fig. 3(b) for modeled P1
pressure pattern and Fig. 6(a) for an experimental recording). The
second type, called P0 syllables, are characteristic whistles of con-
stant frequency, which have a long expiratory gesture [see bottom
of Fig. 3(c) for the modeled P0 pressure pattern and Fig. 6(b) for
an experimental recording]. Within and across individuals, sylla-
bles of the same types are generated with similar expiratory pressure
pulses that cluster in a well-defined group (Alliende et al., 2010 and
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FIG. 5. Song and neuronal recordings from singing canaries. Examples of two syllable types: (a) P1 and (b) P0 syllables. The top panel shows the recorded sound pressure,
the middle panel, the spectrogram of that sound, and the bottom panel, the extracellular neural activity recorded during song. The red horizontal line indicates the threshold
used to isolate the spiking activity of an individual neuron and the timestamps of its detected spikes using that threshold are shown as black vertical lines below the neural
trace.

Dima et al., 2018b). Each type has a specific syllable repetition rate.
In this way, just recording and analyzing sound is enough to pre-
dict the motor gestures used to generate P1 and P0 syllables. Other
syllables not selected for this work may require more diverse and
complex motor control and therefore, it is not so clear how to group
them together in a well-defined syllable group.

Figure 5(a) shows a phrase of P1 syllables. The top panel shows
the recorded audio: the syllables are brief (26.1 ms on average in
this example) and very similar across repetitions. The sound spec-
trogram in the middle panel shows that this particular syllable is
an upsweep, and each syllable spans roughly the same frequency
range. The bottom panel shows the high passed filtered neural activ-
ity (spikes) recorded in HVC while this phrase was being sung.
An individual neuron that can be separated with a threshold of
−200 µV fires a single spike or a burst of spikes at each repeti-
tion of the P1 syllable in the phrase, at a specific instance within
each syllable. We found this rhythmic firing of phasic neurons with
syllabic frequency across different P1 phrases in different birds.
Figure 5(b) depicts the same information for a phrase of four P0 syl-
lables. Here the audio consists of longer syllables (average 274.7 ms
in this example), and the spectrogram shows that they contain a
short, high frequency downsweep note and a long whistle (a tonal
sound at constant frequency). These acoustic properties are consis-
tent across all the P0 syllables. The neural data also show a neuron
(threshold −130 µV) that spikes preferentially at a given moment
during the syllable. In this example, it is at the end of the whistle.
We also found phasic neurons firing at specific instances within the
syllable in other P0 syllables and in different birds. The spike times-
tamps for each neuron are shown as black vertical lines under the
neural traces. The relative latencies of each timestamp with respect
to the syllable or phrase onset are shown in the grouped raster plots
of Fig. 6.

In order to analyze how phasic neurons spike during P1 and
P0 syllables, we grouped the spikes obtained from the raw data after
thresholding across phrases sung by different birds. To isolate single
units, we considered the amplitude and the shape of the spikes as
a characteristic feature of each neuron. In canary song, we can take
advantage of the classification of syllables by type to group different
syllables from different birds. This is shown in Fig. 6. Each syllable
was normalized to have the same length and the relative position of
the timestamps of the spikes within the syllable were also normal-
ized to the new uniform length. For P1 syllables, we normalized the
duration of each syllable to 70 ms between onsets. In the case of P0
syllables, to account for the variable length of the sound segments
within the syllable, we normalized the length of each segment of the
syllable to the average length across animals. These were 30.0 ms for
the first note, 17.3 ms for the gap between notes, and 222.7 ms for
the second note, yielding a uniform length of 270 ms.

Even though canary phrases can contain more syllables [see as
an example Fig. 5(a)], we analyzed only the first 12 P1 syllables of
each phrase because this is the maximum amount present in all the
repetitions these birds sang. The normalized spike timestamps were
aligned to the onset of the phrase or syllable and stacked to form a
raster plot as shown in Fig. 6. In the top panel of Fig. 6(a) we show a
raster plot of the activity of seven neurons in eight unique P1 phrases
from four different canaries. Each line corresponds to one repetition
of the phrase, extracted from the raw data as shown in the example
of Fig. 5(a), and different neurons are indicated by different marker
colors. We analyzed up to two phrase repetitions per neuron. The
histogram in the middle panel shows the grouped activity of the
same neurons in the raster plot. We used a kernel density estima-
tion (ksdensity function in Matlab) with bin size 15 ms, normalized
to the maximum bin spike count to smooth the histogram. For P1
syllables, we found one peak of grouped neural activity per syllable,
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FIG. 6. Grouped neural activity data across different birds and example air sac pressure trace. (a) Top panel: raster plot of spiking activity of seven neurons in eight unique
P1 phrases from four different animals. Only the first 12 syllables in each phrase are shown. On the vertical axis, each line corresponds to one repetition of a phrase and each
color represents an individual neuron. Middle panel: grouped activity histogram for the neurons shown in the raster plot and smoothed histogram curve. Bin size= 15ms.
Bottom panel: example of the air sac pressure recorded in one animal during the production of a P1 phrase. (b) Same information as in (a), the raster plot shows seven
neurons in five different P0 syllables from five animals. The pressure trace in the third panel corresponds to a representative example recorded during production of a P0
syllable in the same animal as in (a).

in a rhythmic fashion across the phrase. This is clearly represented
by the smoothed histogram curve and supports the proposed HVC
neural activity in the simulations of Fig. 3(b). The bottom panel
shows an example of the air sac pressure used to generate this phrase
in one animal, in which there is one expiratory pulse per syllable.
This trace is normalized in length as was done for neural data, only
using linear interpolation. The top panel in Fig. 6(b) shows the raster
plot of neural activity per syllable of seven neurons in five different
P0 syllables from five canaries. We analyzed up to 20 syllable rep-
etitions for each neuron. The histogram and smoothed histogram
curve in the middle panel show well-localized neural activity, in par-
ticular, instances during the syllable: before each note, in accordance
with the model simulations in Fig. 3(c). Some recorded neurons
also showed a more extended activity toward the end of the sylla-
ble. This is indicated by the less prominent and wider peak in the
smoothed histogram curve. The bottom panel shows an example
from one bird of the air sac pressure generated to produce P0 sylla-
bles, showing two short pressure pulses within the same expiratory
pulse.

The experimental results from all the birds in this study support
the results of the simulations of our model, while also point out that

some amount of neuronal activity may be required to terminate the
syllable, which was not considered in our simulations.

V. DISCUSSION

Birdsong production requires the precise control of the respi-
ratory system, which is responsible for the generation of large air
sac pressure pulses to generate sound. In recent years, the diversity
of respiratory gestures canaries use to generate their characteris-
tic repetitive syllables has been interpreted as the sub-harmonic
solutions of a periodically forced 2d-normal form (Alonso et al.,
2010). This extremely simple model was proposed by first identi-
fying dynamical elements that allow reproducing the shape of the
pressure pattern corresponding to one specific syllable type. Then,
the same dynamical system, with other parameter values, was shown
to be capable of reproducing the respiratory patterns needed for the
other syllable types (Alonso et al., 2009). Despite this progress, estab-
lishing the connection between the neural substrate responsible for
controlling the respiration during song production and the actual
respiratory gestures is not trivial. Many factors contribute to making
this task difficult: the lack of a comprehensive statistical theory of out
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of equilibrium units, the existence of several classes of units (excita-
tory and inhibitory classes of neurons, and their subpopulations),
and the complexity of the neural architecture involved. In other
words, even if we have evidence suggesting that the average activity
of the neural populations of the song system must obey some precise
dynamical system, it is difficult to obtain it from first principles.

Recently, a model for canary song production was proposed
whose variables are the average activities of the neural populations
within the different nuclei of the song system (Alonso et al. 2015,
2016). Since part of this system is a neural population responsi-
ble for controlling expiration, the model was tested by its ability to
reproduce the respiratory gestures previously recorded in canaries
during song production. The model was built consistently with rel-
evant aspects of the architecture of the song system. Therefore,
the simple dynamical elements that are necessary to reproduce the
observed respiratory gestures can be easily found in the model. In
other words, there are different ways, i.e., choice of parameters, in
which a given output can be found. The advantage of building a
dynamical model is that in the process of reproducing a given out-
put, the predictions the model makes for activities in other parts of
the song system can be inspected. In this work, we report for the first
time the neural activity in the nucleus HVC during song production
in canaries, in order to test the predictions of the dynamical model.
We recorded the neural activity in HVC and the air sac pressure
in singing canaries. Since our model can reproduce the observed
respiratory gestures, we compared the activity it needs in HVC to
reproduce them to actual neural recordings. It is important to notice
that the solutions are not unique. Yet, they bound the number of
possible HVC coding strategies (i.e., neural activity patterns) that
are consistent with a given respiratory output, under the hypotheses
used to build the model.

In our experiments, we were capable of sorting out activity
traces of individual neurons. We focused on phasic neurons, since
those are putative projection neurons. We concentrated on two
syllable types, found in all the birds of our study: brief syllables gen-
erated with simple harmonic-like respiratory gestures (P1 syllables),
and long whistles (called P0). In previous work, it has been shown
that different individuals generate the same syllable types using very
stereotyped respiratory gestures (Alliende et al., 2010). We assume
in this work that the neural coding for the same syllable types is
also stereotyped. Consistent with that hypothesis, we grouped the
neural information obtained for different individuals singing simi-
lar syllables in a set and studied the statistical nature of the neuronal
activity in each set. We found that P1 syllables were generated with
a rhythmic neural HVC pattern, and that the P0 syllables presented
a sparse neural coding, in which activity was found before each of
the two notes in the syllable, as well as at the end. Previous work
has been mainly performed in a different species (zebra finches), in
which the song is a rapid succession of different and very brief sound
elements (i.e., the syllables do not repeat). This led to a description of
HVC neural activity that was approximately uniform (Lynch et al.,
2016 and Picardo et al., 2016). Given the large number of rapid
changes involved in the generation of zebra finch song, it is difficult
to disambiguate between a model for which HVC activity is uni-
form from one in which specific motor instances are preferred. Yet,
for juvenile zebra finches that produce simpler sounds, the begin-
nings of those sounds have been shown to be preferentially coded

(Okubo et al., 2015). Also, for their simplest syllables, the har-
monic stacks, neural activity is sparser. Altogether, these results
suggest that significant instances such as syllable beginnings might
be preferentially coded. This led us to work with canaries, where
simpler syllables such as the long whistles studied in this work
(P0 syllables) offer an ideal opportunity to disambiguate between
these different coding strategies. We found that in fact, the activ-
ity of phasic neurons in HVC is highly heterogeneous. This is
particularly clear for long whistles in canary song. For these sylla-
bles, HVC activity of phasic neurons is preferentially found tem-
porally close to syllabic onsets and offsets. It is interesting to
point out that nucleus HVC is not only part of the song sys-
tem: it receives inputs from the auditory pathway. It is known
that parts of this pathway preferentially code for sound onsets
(Amin et al., 2004). Therefore, a preferential coding in HVC for syl-
labic onsets could be related to a need for articulating the production
and perception of learned behaviors.

In addition to providing insight on how some cortical areas
might code the motor gestures used to generate song, the possi-
bility of reproducing real data by means of a dynamical system of
relatively low dimensionality highlights the importance of carrying
out a comprehensive theory of coupled, out of equilibrium systems.
The interplay between experiments and phenomenological models
allows us to test the hypotheses on which the models are built. In this
regard, birdsong is a powerful animal model to study the generation
of complex and yet reasonably low dimensional motor gestures.
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