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Traditional studies on the interaction of cognitive functions in healthy and

disordered brains have used the analyses of the connectivity of several

specialized brain networks—the functional connectome. However, emerging

evidence suggests that both brain networks and functional spontaneous

brain-wide network communication are intrinsically dynamic. In the light of

studies investigating the cooperation between different cognitive functions,

we consider here the dynamics of hierarchical networks in cognitive space.

We show, using an example of behavioural decision-making based on sequen-

tial episodic memory, how the description of metastable pattern dynamics

underlying basic cognitive processes helps to understand and predict complex

processes like sequential episodic memory recall and competition among

decision strategies. The mathematical images of the discussed phenomena in

the phase space of the corresponding cognitive model are hierarchical hetero-

clinic networks. One of the most important features of such networks is the

robustness of their dynamics. Different kinds of instabilities of these dynamics

can be related to ‘dynamical signatures’ of creativity and different psychiatric

disorders. The suggested approach can also be useful for the understanding of

the dynamical processes that are the basis of consciousness.
1. Introduction
(a) Informational patterns, metastable states, and sequential dynamics
Mind dynamics, i.e. human cognitive activity is the interaction of sequential

mental processes organized in a hierarchical manner. In turn, mental hierarch-

ical dynamics are generated by the hierarchy of the brain functional networks

[1–3]. The idea of formalizing sequential order in neuroscience was first formu-

lated by Lashley for behaviour [4], and soon became popular. In fact, the

performance of any mental function can be seen as a sequence of metastable

states, informational patterns, that switch in a serial order. The existence of

metastable informational patterns arises in the context of functionally coupled

active brain areas across the whole brain [5,6]. Such patterns qualitatively

change not only with the changing of specific cognitive/behavioural tasks

but they also depend on the stage of the performance, i.e. they sequentially

change in time [7,8].

Many cognitive functions are based on the same key dynamical principles.

One such universal principle can be formulated as this: thinking, music impro-

vization, speech, and other cognitive functions are the result of sequential

switching of different informational patterns representing different modes of

activity in distributed functional networks [9,10]. Using this perspective, we

present a novel approach for the understanding, description, and prediction

of hierarchical cognitive processes based on the analyses of the phase space

topology and the bifurcations of metastable state networks. We suggest and

analyse here dynamical images in the mental phase space such as (i) binding

hierarchical networks, (ii) chunking hierarchy, and (iii) the interaction between

them. Based on this approach, we specifically discuss decision-making

(DM) dynamics.
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Figure 1. (a) Global brain network whose activity can be represented in the cognitive space by robust stable heteroclinic channels (SHCs). (b) SHC that includes a
chain of metastable states, informational patterns. The gradient colours in the vicinity of each metastable state represent the combination of brain elements that
generate the corresponding pattern. Dashed lines with arrows represent the stable and unstable separatrices of the mestastable states, which determine the structure
of the information flow. (Online version in colour.)
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(b) The dynamical images of cognitive and behavioural
hierarchy in cognitive phase space

In this paper, we consider the hierarchical dynamics of cogni-

tive networks that represent different mental activities not in a

physical brain space, as in [11–13], but in a cognitive space, i.e.

in the phase space of the corresponding dynamical model that

describes such a process. As imaging experiments show, the

performance of complex cognitive activities, like speech gener-

ation and perception, requires the collaboration of several

basic cognitive networks (e.g. [14]; figure 1a). The nature of

many elementary cognitive functions is dynamical and their

corresponding activity is transient in time. There is a known

mathematical image that can represent robust transient

neural processes in the phase space—known as stable hetero-

clinic channels (SHCs) [15–18]. The building blocks of such

channels are metastable states, saddle sets, connected by

unstable separatrices (figure 1b). Metastable states represent

perceptional or memory informational patterns in the brain.

The robustness of SHCs is provided by the competitive inter-

action of agents, variables, that evolve sequentially to create a

chain of metastable states. A winnerless competition (WLC),

i.e. a permanent competition with different temporal winners,

based on asymmetric inhibition [19] can be the origin of

SHCs. If the dimension of the unstable separatrices of the sad-

dles in such a chain is larger than one, heteroclinic channels

form a heteroclinic network that can represent the dynamics

of complex cognitive functions like speech generation, music

improvization, figure skating dynamics, and others [18].

Most human thoughts involve consideration of events

that happened in the past and play a fundamental role in

planning what to do in the future. Recalling the past and ima-

gining the future are dynamically linked as items in a joint

sequential network. The recall of a sequence of events—

episodic memory (EM), for which a specific time and context

are connected, is a hierarchical dynamical process that must

be robust and reproducible. We argue that the origin of this

process is a WLC between the remembered items, or patterns,

and new items at all levels of the informational hierarchy.

The hierarchy of such competition includes binding and

chunking processes, which suggest a decision is based on

previous experience and learning. Here we analyse a model-

ling framework of such processes. In the context of this

approach, we also address the investigation of dynamical

diversity and brain network multifunctionality, emotion–
cognition interaction and the relationship between hierarchical

instabilities and different disorders.

In the following section, we offer a metaphor and the

associated mathematical formalism for itinerant neuronal pro-

cessing that can be associated with higher cognitive functions

such as short-term memory, attention, and DM. Our treatment

implies some abstraction and the relationship between

the dynamical behaviours we use to illustrate the ideas and

cognitive function are heuristic. However, there are several

fundamental insights provided by this approach. In particular,

we will illustrate that any distributed (macroscopic) activity at

the whole brain scale can be described in terms of modes or

patterns of activity whose time-varying fluctuations can be

modelled in terms of SHCs easily implemented in generalized

Lotka–Volterra (GLV) dynamics. By nesting in hierarchical

fashion the normal form for these dynamics, one can describe

sequential patterns of neuronal activity that are selected and

contextualized in a way that is remarkably reminiscent of mne-

monic, attentional, and DM processes. The resulting formalism

provides not only a computational architecture for higher cog-

nitive functions in the brain but could also be used as the basis

of observation models (e.g. dynamic causal modelling) to

quantify structured yet itinerant brain dynamics elicited

during memory tasks and DM.
2. From perception to behavioural decision
through sequential episodic memory

(a) Neurobiology of sequential memory: prediction
and decision-making

Sequential EM represents memory of autobiographic experi-

ences and specific events in time serial order. A chunk of

such events is called an episode. The memory about a speci-

fic episode—what, where, and when—and the associated

emotions can be explicitly recalled by a cognitive goal or sen-

sory information [20]. The network of integrated memory of

multiple episodes, episodic working memory (EWM), plays a

key role in the prediction of future events in similar situations.

When we remember the past or envision the future, events

usually come to our mind in an organized sequence, i.e. an

episode. Anatomically, the network that supports EM includes

the hippocampal and ventral medial prefrontal cortex, the
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striatum, and other brain areas [21–23]. Thus, EM is a distrib-

uted dynamical process providing the representation of

events that happened in the past and that can be used for the

prediction of the future [24].

The human mind generates effective predictions within

the constraints of our own action repertoire. This makes the

prediction compatible for the sensory and motor systems’

representations [25], and also explains the origin of the differ-

ences between prediction of an event actor in the episode and

an observer [26–28].

(b) How to build a dynamical model of behavioural
decision

Our previous experience usually helps us when we have

to make a difficult decision based on uncertain or confusing

information (see, e.g. [29]). Learning from experience alters the

DM network and thus our mind is able to quickly categorize

our perception and make a decision to carry out appropriate

actions. Depending on the environmental information, a

choice based on previous experience can be unconscious/

automatic, or additional complementary sensory information

can be consciously used for re-evaluation. These two behaviour-

al reactions are encoded and performed in distinct human brain

networks [30].

In the following section, we build a DM model based on the

simplest evaluation of the information effectiveness that we

gather from EM. The actual sequence of events will be just com-

pared with ‘positive’ episodes that happened in the past. With

the term ‘positive’ episodes we mean the sequence of events in

the past that ended with a successful decision. When creating a

DM model we also have to keep in mind the role of attentional

selection. In functional neuroimaging studies of episodic retrie-

val (ER), activations in prefrontal, parietal, anterior cingulate,

and thalamic regions are typically attributed to ER processes

[31]. Attention and memory are intricately linked. Cabeza

et al. [32] hypothesized and proved that attention may stabilize

informational patterns of cognitive states. It is not clear how

novel episodes are connected with previous episodic memories

and then used for future DM. There must be intermediary pro-

cesses that use memory as a basis to generate future-oriented

decisions. We name such processes EWM controlled by

goal-directed attentional selection.

(c) Dynamical coding: winnerless competition principle
and informational patterns

One of the prevailing concepts related to information proces-

sing in the brain is dynamical cell assembly coding [33]. This

concept is based on the fact that task-related, time-scaled

dynamic modulations of large groups of neurons—a dynami-

cal cell assembly—spontaneously organizes and is linked

temporarily by the nearly coincident timing of spikes from

cooperative neurons showing correlated firing with each

other. We characterize these assemblies as spatio-temporal

modes. For example, in the rat gustatory cortex, each taste is

represented by specific sequential orders in the chain that can

be considered as alternating switching between these

modes—informational patterns [34]. Such style of dynamical

coding, which is quite common in nature, is typically based

on a WLC principle and can be interpreted in the framework

of kinetic ecological models, the simplest of which is a

Lotka–Volterra (LV) equation [35,36]. The mathematical
image in the corresponding phase space of such coding is a

SHC. We are going to use variants of this basic LV equation

on each level of the hierarchical model that we wish to build.

Internally generated sequences are very important in learning

and executing goal-directed DM [37]. Modern progress in neural

recording technology allows the characterization of brain infor-

mational patterns. On the population level, ’these dynamics are

usually low dimensional [38]. Such low-dimensional cooperative

dynamics are the result of coherent activity of many elements that

form modes and can be extracted by techniques such as principal

component analysis [39,40]. The spatial patterning contains

detailed information about the environment and the person’s

mental states. Pattern-based functional magnetic resonance ima-

ging (fMRI) analyses enable a detailed characterization of

content-based information processing in the human brain [41,42].
(d) Basic kinetic model
In many cases, it is possible to represent the temporal and

spatial aspects of the brain modes separately by two variables:

R(t) and Q(r). Thus, we have:

Pi(r,t) ¼ Xi(t) �Qi(r), i ¼ 1, 2, . . . , N, ð2:1Þ

where Pi(r, t) is the ith spatio-temporal pattern (brain mode)

based on the set of discrete coordinates r in the brain space,

Qi(r) is correspondingly the spatial structure of the ith pattern,

Xi(t) characterizes the temporal evolution of the cooperative

dynamics of the ith pattern in the ensemble, and N is the

number of informational patterns. One can suppose that Xi(t)
for each pattern mode satisfies a kinetic equation up to

second order. If, as the result of this inferential process, the

spatial structure of the modes is known, after factorization the

basic kinetic model can be written in the form of GLV equations:

d

dt
Xi ¼ Xi siðSÞ �

XN

j¼1

rijXj

2
4

3
5: ð2:2Þ

Here si(S) is a parameter that represents the mode excitation, rij

is the cognitive inhibition matrix between the modes, and S is

the input that captures the sources of internal or external exci-

tation. The interaction of different modalities like emotion and

cognition, which is important for the understanding of normal

and pathological mental dynamics, can be described by the

same type of equations [43,44]. It is important to emphasize

that Pi(r,t) may have a different sense relating to the performance

of different cognitive, behavioural, tasks. In particular, the

intrinsic dynamics of Pi(r,t) can be complex and it can include

several brain subnetworks like perceptual, memory, and

motor brain circuits. These complex dynamics can often be

represented as a sequence of events, thus model (2.2) in the

same or in a generalized form is convenient for its analysis

and, in particular, for the description of episodic memory.
(e) Hierarchical model of action-based decision-making.
Episode formation: chunking

Let us consider the behaviour of a goalkeeper trying to predict

who in the opposing team is going to shoot on a soccer goal. To

make the problem clear, suppose that there are three or four

attackers and the defenders cannot prevent their manoeuvres.

The goalkeeper knows from previous games with the same

team some of the favourite moves of each of the attackers:

number nine prefers to kick the ball to the low left angle of
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Figure 2. (a) Typical attacking pattern, ball passing, in a soccer field. The goalkeeper has to predict who will make the final kick to make a decision on his jump to
reach the ball in the current play. (b) Example of past episode interaction during the recall from EM. Variables Ek represent the kth episode in the past according to
system (2.3) – (2.6), i.e. a particular play in the past. In this example, episode 1 prevails. Inset shows a blow up of time 0 – 17 arb. units where the past episodes are
being evaluated/compared with the present episode according to equation (2.6). Parameters for this simulation are listed in the electronic supplementary material.
(Online version in colour.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

283:20160475

4

the goal, number seven likes to kick the ball to the centre of the

goal and numbers 10 and five usually make kicks to the right

low and upper angle of the goal, respectively. According to

this knowledge, the goalkeeper jumps to the left or right goal

posts or stays in the centrum when he is able to predict who

among the attackers will get the ball with the best chance.

Such probabilistic prediction depends on the sequential

dynamics of present and previous episodes, i.e. graphs of the

previous ball passes that are recalled from the goalkeeper’s

EM (figure 2a). The usual styles of the attacker group behaviour

are: chaotic exchanging of the soccer ball between the players,

rhythmic exchange, or an attempt to attack the goal individu-

ally by one of the players. All these possibilities are

represented in his mind by different dynamical images and

can be easily compared with the beginning of the present

episode induced by visual information from the field.

The experienced human brain (after learning) is wired in a

way that we are able, even unconsciously, to make the best

decisions based on environment information. When sensory

signals excite specific mental modes, other modes act as com-

parators to estimate the similarity of the new episode with

those in the EM. This is the case in our example, action-based

DM. When the similarity parameter reaches a winner-take-all

(WTA) bifurcation threshold, a decision is made. As we men-

tioned earlier, the motor cortex is involved in corresponding

DM modes and realizes the decision directly (see also [45]).

Following the logic of this example, our hierarchical

model has to contain four levels of dynamics—today’s

sequence of passes that continue after making the decision,

sequences of passing in the past, the level of the opponent

team’s activity forming the episodes (the chunking level),

and the EWM level that is controlled by the beginning of

the present episode. In the brain, the frontal lobes may be

responsible for such controlling function [46,47]. The

dynamics on all these levels can be described by equations

that have a similar form to (2.2). Thus, our hierarchical

network model is the following set of coupled equations:

_X
0

i ¼ X0
i s0

i �
XN0
events

j¼1

r0
ijX

0
j

0
@

1
A, ð2:3Þ

te _X
k
i ¼ Xk

i sk
i � Ek �

XNk
events

j¼1

rk
ijX

k
j

0
@

1
A, k ¼ 1 . . . Nepisodes, ð2:4Þ
tE _E
k ¼ Ek 1� b

XNk
events

i¼1

Xk
i � Zk

0
@

1
A,

k ¼ 1 . . . Nepisodes

ð2:5Þ

and u _Z
k ¼

XNepisodes

l¼1

jklEl � Zk þ
XNepisodes

l=k

XN0
events

i¼1

blX0
i Xl

i ,

k ¼ 1 . . . Nepisodes:

ð2:6Þ

Here X0
i is a group of variables that describe events that form the

present episode, Xk
i represents the ith event from the kth episode,

Ek describes the kth episode in the past. An event in this model

describes a pass (an elementary action) in our soccer example,

while an episode corresponds to a sequence of passes, i.e. a

play. Zk is responsible for the chunking of the episode, i.e. the

hierarchical organization of the passes to build a successful

play. jkl describes the level of competition of the episodes in

their chunking organization due to the limited EM capacity.

Matrices rk
ij are responsible for the inhibitory interactions that

support the event transient sequential dynamics, and blX0Xl

characterizes the controlling function that is used to select from

the past experience the most probable event for the future of

the present episode, which helps to make the best decision.
( f ) Model simulations
Figure 2b shows the mutual interaction of past episodes

recalled from the EM under the action of the beginning of the

present episode (see systems (2.3)–(2.6)). In our soccer

example, an episode is built from a sequence of passes corre-

sponding to a particular play. As one can see in figure 2b, the

episode closest to today’s unfinished episode is episode 1,

which prevails in the competition (WTA dynamics). In

figure 3a, we represent the event dynamics corresponding to

the beginning of the present episode, i.e. the current play.

This play is being compared to the past episodes (plays)

from the EM (see equation (2.6)) to make the best move

choice based on the most probable event. Figure 3b shows

the event dynamics corresponding to the winning episode 1.

Colours in this figure represent different event dynamics

(different player activities). As one can see in figure 3b, after

some passes, the ‘green’ player keeps the ball for a longer

time and with higher probability makes the final kick. This is

the basis for the goalkeeper’s prediction. As the goalkeeper

knows from previous experience, the green player’s favourite
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kick is to the right upper angle. Thus, probably the best

decision for the goalkeeper is to jump to this location.
B
283:20160475
3. Episodic and emotional memory binding
(a) The role of emotion in autobiographical memory
The traditional theory of declarative (biographical) memory

distinguishes between general knowledge (semantic memory)

and memory for events [20]. However, these two forms of

memory are interdependent [48,49]. In particular, Renoult

et al. [49] introduced personal semantics (PS) memory. PS con-

cerns knowledge of one’s past and, like EM, PS is a personal

feature (i.e. not culturally shared). Their studies indicate that

these forms of memory can affect each other both at encoding

and at retrieval. Interdependence or binding episodic and

semantic memory is a key feature of memory from the past

for the prediction of future events and DM.

Perceptual processing enhances memory for emotional

information. It correlates with our own experience—we remem-

ber exciting- or emotionally charged events much better than

boring ones. A recent fMRI study investigated the neural mech-

anisms of this effect by testing how neural activations during

emotional memory retrieval are influenced by the prior encod-

ing strategy [50]. The participants incidentally encoded

emotional and neutral pictures under instructions to attend

to either semantic or perceptual properties of each picture.

Recognition memory was tested two days later. The results

illustrate how encoding orientations yield alterations in the

amygdala and hippocampus to retrieve emotional memories.

Let us create here a hierarchical dynamical model that can

describe such cognitive information processing phenomena.

To be clear, we consider an illustrative example. Suppose you

are a famous sportsman and have been invited as a guest

on a figure skating championship. A couple of months later,

the editor of some sport magazine asks you to share your

impression about the best skater in that championship with

the readers. Then, you check in your memory a few episodes

of good skaters, but it is difficult to say who was best. You

are almost ready to decline editor’s request. However, from a

nearby café you hear a Gershwin melody. At that moment

you remember in detail one of the episodes—it was based on

Gershwin’s Rhapsody in Blue. You then recall the skater’s

performance—how well he/she did the triple-toe-loop, and

how good the sequence of elements was organized in

chunks, you remembered the facial expressiveness, the

costumes, and beautiful correlation of movements and music.

Suddenly, it becomes easy to write about this skater.

Musical information can be associated with emotional

and semantic information (associative memory) [51]. Koelsch
et al. [52] have elegantly shown that short musical pieces with

particular characteristics can prime the semantic language

memory system, thus yielding faster and more efficient

recognition of specific words (for review, see [53]).
(b) Modality binding inside the episodes
The dynamical image of the transient dynamics of a modality

is a SHC as we discussed earlier. To be robust, such a channel

has to be formed by metastable states with one-dimensional

unstable separatrices [15,36]. When we consider multidimen-

sional sequential dynamics, the situation is different. For

example, to comprehend and describe the skater’s behaviour,

we have to share attention among, at least, three modalities—

e.g. technical ability, art component, and emotions. The

mathematical image of this in the cognitive phase space is a

binding network as shown in figure 4a. Each rib in such a

network represents a different modality [54]. Such a network

can be robust in the case when the metastable states form ribs

that are characterized not by one- but two-dimensional

unstable separatrices. In the general case, the unstable separ-

atrix can be multidimensional (see electronic supplementary

material, figure S1).

A recent study in humans has shown that functional con-

nections in the brain are more stable within modalities than

across modalities [55]. In our binding model discussed in a

later section, we choose a stronger interaction inside of the

individual modality than the interaction between modalities

(see connectivity matrices in the electronic supplementary

material).

Attention selection can lead to different dynamical regimes

of modality interaction. The upper and bottom panels in

figure 4a illustrate a strong interaction between modalities like

odour, taste, and aftertaste while wine tasting. In this case, the

interaction is strong enough and leads to complex dynamics

involving switching of attention between modalities. The

middle panel in figure 4a illustrates the coexistence of interacting

modalities: attention is shared nearly identically between differ-

ent modalities continuously in time. In both cases, each event

includes binding patterns of different modalities [56].

The generalized equations (2.3)–(2.6) with several

modality binding episodes can be written in the following

form with three levels of hierarchy:

(i) Binding M modalities

tXi _X
km
i ¼ Xkm

i sm
i �

XNevents

j¼1

rkm
ij Xkm

j �
XNevents

j¼1

XM
l¼1

jkml
ij Xkl

j

2
4

3
5, ð3:1Þ

where i,j ¼ 1, . . . , Nevents m ¼ 1, . . . , M (different modalities).

Xkl
j is the lth modality component of the jth event in the kth
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Figure 4. (a) Three episode interaction in EWM under the action of an external stimulus (equation (3.4)). The episodes demonstrate different dynamics that
correspond to attention sharing (green trace) and attention switching (blue and pink traces). (b) Evolution of the episodes (Ek). The chunking variables (Zk)
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material. (Online version in colour.)
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episode. For example, we can have three episodes with

six events and three modalities each, which results in 18

metastable patterns. rij is the matrix responsible for the com-

petition among the different events within the same

modality. Episodes are the result of the unification of

sequences of events with three modalities each. Matrix jkml
ij

characterizes the competition between different modalities

inside the kth episode. For simplicity in our simulations, we

will use the same value for all modalities. This value depends

on attention: switching attention among different modalities

corresponds to larger values of j. The sharing of attention

corresponds to small values of j.

(ii) Episode dynamics

tY _E
k ¼ Ek 1� b

XNevents

j¼1

XM
m¼1

Xkm
j � Zk

0
@

1
A: ð3:2Þ

In the case in which all modalities symmetrically interact

with each other, we can rewrite the equation as

tY _E
k ¼ Ek 1� b0

XNevents

j¼1

Xk
j � Zk

0
@

1
A: ð3:3Þ

(iii) EWM dynamics under an emotional cue

u _Z
k ¼

XNepisodes

k¼1

zkEk � Zk � F[A, Bk]: ð3:4Þ

Here Zk is a chunking variable for the kth episode as before. u

is a time constant and zk is the kth component of the projec-

tion vector for the episodes. F is a focusing function that is

characterized by the distance d(A,Bk) between matrices

A ¼ krcue
ij k, Bk ¼ krkm

ij k:

dðA, BkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNevents

i¼1

XNevents

j¼1

ðrcue
ij � rkm

ij Þ
2

vuut ,

F ¼ 0:2 if d , 1, F ¼ 0 if d . 1, 1� 1:

ð3:5Þ

We can consider that the origin of the matrices rkm
ij is a

learning process.

The information recalling from the EWM depends on the

incoming stimuli, e.g. an emotional auditory input in our

case, which controls WM dynamics (equation (3.4) and

figure 4; electronic supplementary material, figure S2).
In the skater example, attention is shared between the

modalities that represent in the cognitive space the binding

episodic-emotion memory network. In general, not only

each episode is a sequential structure of chunks events, but

each event is a sequence of binding modes of different modal-

ities. In this example, these modalities could be behaviour,

personal semantic (music and artistic expression), and emotion.

Figure 4b illustrates an example of WTA dynamics of

EWM recall as described by equations ((3.1)–(3.5)). In this

example, modality 1 prevails. The sportsman can now write

about this skater.
4. Hierarchical information connection: role of
heteroclinic instabilities

Similar to complex brain networks [57], cognitive or mind

networks are composed of ‘modules’. Such modules can be

considered as an interconnected hierarchical heteroclinic

network. These modules and the whole networks are dyna-

mical and represent the performance of cognitive processes

through phase trajectories along time. The analyses of the

dynamical nature of hierarchical cognitive networks and

the potential mechanisms underlying their interactions help

to clarify the answer to intriguing problems such as the

cognitive information capacity or the stability and robustness

of goal-dependent performance. The request for robustness

is fundamentally contradictory to the request for sensitivity

of the sequential transient dynamics to informational signals

from the environment. The solution to this contradiction

comes naturally to a heteroclinic network because noise

and an informational signal differently influence its topology.

In these networks, the concepts are hierarchically nested by

the level of abstraction and can be ordered on universal tem-

poral hierarchies like binding and chunking that control their

‘Lego’-like combinations.

We have shown above that cognitive processes such as

DM and prediction can be represented as hierarchical hetero-

clinic networks that exchange information because the

unstable separatrices of the metastable state-informational

patterns connect different levels of the hierarchy as in

figure 4. Metastable patterns can gather plenty of information

about specific events, images, or concepts.
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The quantitative description of the hierarchical temporal

information processing requires the definitions of (i) the infor-

mation exchange value and (ii) the level of the unpredictability.

Let us introduce the value information exchange on one

metastable state as

DIk
i ¼ ln

1

jhk
i j
¼ tk

i l
k
i , ð4:1Þ

where jhk
i j is the distance between the chosen trajectory

and the ith pattern (saddle point) in the direction of the kth

unstable separatrix, tk
i is the exit time from the saddle

point vicinity and lk
i is the corresponding eigenvalue of the

saddle state.

Summarizing all information exchange among all modal-

ities on the ith event, the information that the cognitive

trajectory gets after passing the ith event—i.e. reading the

metastable patterns that are bound on the ith event—is

Ii ¼
XK

k¼1

tk
i l

k
i : ð4:2Þ

In fact, this formula is the generalization of the Kolmogorov–

Sinai entropy expression to non-stationary hierarchical processes.

We suggest that there is a dynamical bridge between the

temporal hierarchy and the anatomical hierarchy of the brain.

Our theory provides a framework for explaining a wide range

of cognitive dynamics, including behaviour, by universal

principles (see also [58–61]).

At the same time, the discussed approach helps to

understand the dynamical nature of consciousness. Our con-

sciousness is not our body nor our brain, but the dynamical

sequence of information patterns that the brain global net-

works encode and the mind processes. In this sense, we can

say that in our examples the goalkeeper’s behaviour is automatic

(subconscious). On the contrary, the reporter behaviour is

conscious—he/she is talking with himself/herself, has doubts

and finally after consulting his/her own episodic memory

makes a decision.
5. Discussion
(a) Creativity and instabilities of cognitive networks

dynamics
When our brain performs a standard cognitive function such

as the generation of a specific motor programme that is deter-

mined by an environmental cue, the cognitive dynamics

follows one of the familiar sequences of behavioural informa-

tional patterns. Cognitive networks in such cases are often

not hierarchical. Instability of metastable patterns in these

cases leads to losing information processing robustness and

is limited by the processing capacity like in the case with

sequential working memory [62]. However, even for per-

ceptional goals, our brain uses hierarchical networks [63] as

in the case of the integration or binding of different infor-

mation modalities. Another example is chunking networks

that deal with episodes formed by events. As we have seen

above, the skeleton of hierarchical cognitive networks can

emerge when different groups of information patterns are

connected with each other by unstable separatrices. The

dimension of such connections depends on the number

of unstable separatrices and determines the complexity of

hierarchical cognitive networks.
One of the most challenging problems related to cognitive

instabilities is creativity. The non-linear dynamical approach

to creativity considers it as the processes responsible for produ-

cing effective novelty, as well as the control mechanisms

that confirm novelty production and the fact that it does not

contradict mental health. Merely novel information displays

surprise and incongruity, but it must also be meaningful. The

corresponding multidimensional dynamical models can be

based on the general cognitive principles discussed above:

transitivity, existence of metastable states, robustness, and sen-

sitivity to available information. In dynamical language, new

brain instabilities produce new metastable patterns and make

autobiographic memory much richer. In the canonic model

(2.1), this means increasing the dimension of the model and

the number of agents involved in the cognitive process. In

the cognitive phase space, the additional instabilities and the

increasing of the dimensionality lead to the appearance of

absolutely new, fresh sequences of informational patterns

that represent new music, dance, etc. Brain hierarchical

networks that are responsible for creativity, e.g. music compo-

sition, are hierarchical and complex. They include the

implementation of autobiographic memory—episodic and

semantic, i.e. a reconstructive process, which is known to be

critically dependent on the hippocampus.

As it is well known, emotion is a primary motivator for

creative behaviour, but only recently the dynamical origin

of this phenomena, i.e. the interaction between the neural sys-

tems involved in creativity and those involved in emotion,

has been studied [64,65]. In particular, in [65], McPherson

et al. showed that the activity in the prefrontal cortex and

other brain areas involved in creativity is highly modulated

by the emotional context. Thus, emotion and creativity are

tightly bound. Another hierarchical process, chunking, is

also present in the music creation process, which highly

relies on event segmentation [66].

Two processes are crucially important for creativity:

(i) some level of mental instability to drop the traditional

view and approaches and (ii) rich enough semantic and

EM. The importance of a low instability level is often con-

nected with ‘unpredictability on the edge of chaos’ [67]. At

the edge of chaos, the metastable patterns are maximally

novel while still connected to patterns in the ordered

regime, and thus are most likely to manifest the combination

of novelty and utility that is the stamp of creativity. A similar

concept was used to separate semantic network processes in

people with disorders such as Asperger’s syndrome, schizo-

phrenia, and healthy people [68]. Such processes can also

be theoretically analysed in the framework of the set of cano-

nic models (2.1) that we proposed above (see also [69]).

Creative evaluation activates both the executive and default

networks. New research has proposed that creative thought

involves similar cognitive mechanisms as other forms of

goal-directed, self-generated cognition [70]. The default net-

work influences the generation of candidate ideas, but the

control network can constrain this process to meet task-specific

goals. Executive and default networks have shown positive

functional connectivity throughout creative thinking [71]. In

fact, our creativity is a binding process between goal-generated

and free thoughts [72].

The instabilities that are responsible for creativity may

also lead to pathological mental activity [73]. The connection

between nearly pathological behaviours and creativity is pro-

duced because they share some personality features, such as
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cognitive disinhibition [74], which can arise from the activity

of the same cognitive networks.
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6. Conclusion
The dynamical origin of mental functions such as attention

control, DM, episodic and semantic memories, sequence

learning, and many others are still not fully understood.

The approach discussed in this paper includes the universal

mathematical language, fundamental modelling principles,

and canonic models of key dynamical phenomena such as

binding, chunking, and multilevel hierarchical organization

of cognitive processes which include timing in a natural

way. In fact, we have formulated here a basis for a future

qualitative dynamical theory of cognition. This theory

allows the analysis of the main bifurcations that control
transitions between normal and pathological behaviour or

thinking and to find key parameters of the dynamics of

specific goal-dependent cognitive functions.
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