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Generalized Lotka–Volterra (GLV) equations are important
equations used in various areas of science to describe com-
petitive dynamics among a population of N interacting
nodes in a network topology. In this Letter, we introduce
a photonic network consisting of three optoelectronically
cross-coupled semiconductor lasers to realize a GLV model.
In such a network, the interaction of intensity and carrier
inversion rates, as well as phases of laser oscillator nodes,
result in various dynamics. We study the influence of asym-
metric coupling strength and frequency detuning between
semiconductor lasers and show that inhibitory asymmetric
coupling is required to achieve consecutive amplitude oscil-
lations of the laser nodes. These studies were motivated
primarily by the dynamical models used to model brain
cognitive activities and their correspondence with dynamics
obtained among coupled laser oscillators. © 2016 Optical
Society of America
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Competition and cooperation occur in many networks/soci-
eties where constituent nodes/populations directly or indirectly
interact with each other. Such phenomena have been observed
in various fields such as ecology and evolution [1], dispersive
environments resulting in unique spatial patterns among their
populations [2], frequency-dependent cancer progression and
dynamics [3,4], and collective oscillations in genetic networks
[5]. Moreover, during the last few decades, scientists have
used these dynamics to describe cognitive processes such as
sequential learning and decision making in the brain [6,7].
Such dynamics have been further incorporated in cellular
neural networks [8].

To mathematically model the interactions between the pop-
ulations or nodes of a dynamic network, different models and
equation sets have been introduced. One important set of such
equations used to express and predict the fate of an ongoing
competition in a population of N interacting nodes within
a network topology is the set of generalized Lotka–Volterra

(GLV) equations [9–11]. This set of ordinary differential equa-
tions has several dynamical solutions corresponding to the re-
sults of nodal competitions. By changing the interaction rates
between nodes, the Lotka–Volterra equations are capable of
producing simple attractors, stable heteroclinic channels
(SHCs), limit cycles, and even chaotic solutions. These dynam-
ics have been suggested to model neural population dynamics,
as well as single neuronal activities [12]. In the context of laser
physics, they have been used to describe the interaction be-
tween modes of multimode lasers where modes are coupled
to each other through cross-saturation coefficients [13].
However, in multimode lasers, these parameters are inherent
to the laser structure and are fixed, preventing us from explor-
ing and switching between different dynamics and, conse-
quently, mapping physical problems onto the system.

In this Letter, we introduce a network consisting of coupled
lasers designed so that the rate equations of the semiconductor
lasers resemble Lotka–Volterra equations. It should be noted
that since semiconductor lasers present a carrier density-depen-
dent refractive index, the phase and amplitude of the optical
fields are coupled to each other. Thus, we propose to exploit
the physics of a complex amplitude of coupled arrays of laser
oscillators to formulate complex Lotka–Volterra (CLV) equa-
tions. In such a system, using optoelectronically coupled semi-
conductor lasers, competitive dynamics can be achieved in an
optical platform. On the other hand, lasers with feedbacks are
highly nonlinear systems allowing the emergence of more com-
plex dynamical behavior. Here, we investigate different regimes
of competition/cooperation among the laser output photon
numbers and optical phases. Further, we study the influence
of asymmetric coupling strength and frequency detuning
between semiconductor lasers and demonstrate winnerless,
winner-takes-all (WTA), as well as winner-shares-all (WSA)
competitions. We also demonstrate partial synchronization
among laser nodes and show bifurcation of heteroclinic channel
all the way to a chaotic regime.

The objective of our model is to realize a photonic platform
that is governed by Lotka–Volterra equations. To achieve this,
we propose a network of N laser nodes interacting via mutually
non-symmetric inhibitory connections [see Fig. 1(a)]. These
connections are realized through optoelectronic feedback loops
[14–17]. We assume that the feedback delay time is negligible,
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compared to the response time of the system which is a valid
assumption for an on-chip realization where the light path and
wirings are short [18]. For simplicity, a computational analysis
is done for N � 3 single mode semiconductor lasers (network’s
nodes) with independent intrinsic frequencies. In the proposed
architecture shown in Fig. 1(b), the heterodyne RF beat notes
of each pair of laser outputs, are converted into photocurrent
and then added to the bias current of each laser with indepen-
dent amplification or attenuation (inhibitory connections be-
tween network nodes). For the general case of N nodes, the
set of coupled rate equations describing the time evolution of
the slowly varying, the complex amplitude electric field Ej of
emitted radiation from the j-th laser, and its population inversion
nj can be written in the form of a CLV equations as [19]
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where Γ is the confinement factor of the laser waveguide, G0 is
the material gain at transparency, α is the linewidth enhancement
factor, ωj is the intrinsic frequency of the laser, ω0 is the cavity
resonance frequency, μj is the nonlinear gain self-saturation added
to account for the nonlinearity of the gain at high powers [20], I j
and I th are the bias and threshold currents, e is the fundamental
electric charge, τc and τp are the carrier and photon lifetimes,
respectively, and ~S is the vector of the time-dependent sensory
inputs. ηjk and Δωjk � ωk − ωj stand for the feedback strength
and the frequency detuning between lasers j and k which are sen-
sitive to changes in the sensory input. Furthermore, φj is the op-
tical phase of laser j. We have neglected the spontaneous emission
coupling into the laser mode for the simplicity of our analysis.
The sensory inputs can affect the feedback strength and/or the
frequency detuning between the lasers.

By defining t ≡ τ∕τp, the dimensionless equations for laser
amplitude and phases can be written in the form

dRj

d t
� Z jRj − ξsjR3

j j � 1;…; N ; (3)
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where Rj and Z j are the field amplitude and carrier inversion
of laser j, respectively. ξsj, ξjk, and Ψjk are the normalized non-
linear self-saturation, nonlinear optoelectronic feedback coeffi-
cients, and phase difference between lasers j and k; respectively.
T is the characteristic time of the system defined as the ratio of
the carrier and photon lifetimes, Pj is the pump parameter
above threshold, and Ωjk � �ωk − ωj�τp stands for the detun-
ing between lasers j and k. The parameters used in this Letter
are ξsj � 5.3 × 10−3, τc � 3 ns, τp � 3.3 ps, P � 1, and
α � 4 for all lasers. The relaxation oscillation frequency of each
laser is calculated as ωR � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2P∕τcτp
p

∼ 2.25 GHz.
Next, we investigate the heteroclinic dynamics of such a net-

work of three coupled semiconductor laser oscillators and dem-
onstrate various dynamical regimes. Let us consider the case of
three coupled free-running lasers with no external inputs. For
N � 3 (in the absence of phases), the system of equations (3,4)
has seven nontrivial equilibria (fixed points), and the result of
competition among lasers relies on the eigenvalues of the linear-
ized system around these points. The nontrivial fixed points of this
system include three on R1, R2, and R3 axes (axial fixed points),
three on R1R2, R1R3, and R2R3 planes (planar fixed points), and
a central fixed point with nonzero values of R1, R2, and R3. Six
coupling strength factors between lasers (the extent of amplifica-
tion/attenuation) and three additional parameters corresponding
to their frequency detuning can be used to control the system.

From the point of view of nonlinear dynamics, an important
dynamic observed in various applications is winnerless compe-
tition (WLC), in which each constituent node is a temporary
successive winner in a neverending competition. A mathemati-
cal image of such a process is the so-called SHC. The hetero-
clinic channels appear due to sequential transitioning between
saddle equilibria connected through unstable separatrices cor-
responding to the maximal eigenvalues [11]. The transition be-
tween saddle points here can be applied to describe the cyclic
switching between different nodal activities. Figure 2(a) shows
heteroclinic dynamics of the optical field amplitudes in state
space. The result in Fig. 2(a) is obtained for the case in which
lasers have zero frequency detuning with coupling coefficients
of ξ12 � ξ23 � ξ31 � 0.45 and ξ13 � ξ21 � ξ32 � 0. It
should be noted that the asymmetry of connectivities (i.e.,
ξjk ≠ ξkj) is a necessity for obtaining SHCs. In this case, all
fixed points are saddle with unstable manifolds of dimension
two for axial and center fixed points and an unstable manifold
of dimension one for planar fixed points. The eigenvalues of the
linearized system are −0.0011 (order 2), −0.0049� 0.0470i,

Fig. 1. (a) Network consisting of multiple nodes interacting via
inhibitory connections. The sensory input signals affect the control
parameters of the system, resulting in the change of the dynamic state
of the system. (b) Our proposed scheme: three semiconductor lasers
coupled through nonlinear optoelectronic feedbacks. The solid and
dashed lines depict the optical and electronic connections; respectively.
OI, PD, and VA stand for optical isolator, photodetector, and variable
amplifier (attenuator), respectively.
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1, 0.6923 at the axial, 0.8965, −0.0011, −0.0020� 0.0307i,
−0.0049� 0.0470i at the planar, and −0.0033� 0.0471i,
−0.0108� 0.0363i, 0.0043� 0.0363i at the central fixed
points.

Interestingly, this heteroclinic channel appears not only among
the optical field amplitudes and carrier inversions, but also among
the phase differences of the coupled lasers. The existence of robust
heteroclinic channel in the phase of oscillators has been math-
ematically predicted in coupled oscillator networks [21,22],
but, to the best of our knowledge, the coexistence of SHC in both
intensity and phase dynamics has never been shown before. The
time series of the field amplitudes and carrier inversions is shown
in Fig. 2(b). This plot shows that the carrier inversions
(Z 1; Z 2; Z 3) undergo sequential winnerless switching, and a sim-
ilar dynamic, delayed by tens of picoseconds, is observed among
the optical amplitudes entrained to the carrier inversions.
Furthermore, by setting ξ13 � 0.2, this network can reach the
WSA regime where all trajectories converge to a central fixed
point, and the resources are shared equally among the competing
nodes [Fig. 2(c)]. The behavior of our dynamical system strongly
depends on the level of symmetry of the connections among os-
cillatory elements of the network. Changing asymmetric connec-
tions between lasers leads to another interesting dynamic labeled
as WTA, wherein the fixed point associated with an amplitude of
one of the lasers becomes a global attractor. Such types of dynam-
ics are usually labeled as WTA. This happens when sensory inputs
force the inhibitory suppression of all but one modality to become
stronger, leading to the allocation of all resources to one modality.
Such a regime is represented by a stable fixed point, as shown in
Fig. 2(d). It is worth emphasizing that the various dynamics in this
Letter are obtained by tuning the control parameters.

All dynamical regimes shown in Fig. 2 are obtained assum-
ing zero frequency detuning between lasers, a challenging
condition to achieve experimentally. Thus, it is necessary to

exploit the effect of detuning, considering that it adds extra de-
grees of freedom for controlling the nonlinear dynamics of our
system. Increasing the detuning can lead to period doubling
bifurcation at first, and may result in more complex and, even
chaotic-like dynamics, if the detuning is increased further. These
dynamic behaviors are shown in Fig. 3 in which lasers 1 and 2
have zero detuning (Δω12 � 0), andΔω13 is our control param-
eter. As Δω13 is increased, a stable periodic orbit [Fig. 3(a)] be-
comes unstable, and an orbit with double the period appears
[Fig. 3(b)]. In larger detuning regimes, a period two orbit be-
comes a period four orbit [Fig. 3(c)] and, finally, a chaotic-like
motion appears [Fig. 3(d)]. Such multi-periodic behaviors are
essential in describing more complex dynamical processes.

It is worth mentioning that the dynamics of phase
differences do not necessarily follow the amplitude dynamics,
as shown in Fig. 3. For instance, setting the control parameters
as ξ12 � ξ23 � ξ31 � 0.35, ξ21 � 0.2, ξ13 � ξ32 � 0, and
Δω12 � Δω31 � 40 MHz leads to a limit cycle, modulated
with high-frequency fluctuations, as depicted in the amplitude
state space in Fig. 4(a). In this case, the state space of the phase
differences shows a completely different behavior with an os-
cillatory trajectory on a plane [Fig. 4(b)]. The behavior of the
phases can be better understood through the time series of the
phase differences, as shown in Fig. 4(c). The phase differences
present plateaus indicating a partial synchronization between
the three lasers (phase-locking window) followed by a desynch-
ronization window [23]. In fact, laser 1 is phase locked to laser
2 (Ψ12 � const: ≠ 0) with a jump of 2π after each cycle period,
while lasers 1 and 3 are partially synchronized (Ψ31 ≈ 0) [24].
Looking at the amplitudes, the state space diagram one can say
that phase locking was achieved over the non-oscillating part of
the limit cycle trajectory, while the desynchronization occurs
when high-frequency fluctuations appear. Furthermore, by
increasing the inhibition connectivity between lasers 1 and 3
to ξ13 � 0.2, it is possible to increase the phase-locking

Fig. 2. (a) WLC in the state space of laser optical field amplitudes
(R1, R2, R3), where ξ12 � ξ23 � ξ31 � 0.45 and ξ13 � ξ21 �
ξ32 � 0. (b) WLC time series representation of R and Z (transient
data is discarded here). (c) WSA when all trajectories converge into
one stable fixed point, illustrating the coexistence of three modes
(ξ12 � ξ23 � ξ31 � 0.45 and ξ13 � 0.2, ξ21 � ξ32 � 0). (d) WTA
in R state space where ξ12 � ξ23 � 0.45, ξ31 � ξ21 � 1.6, and
ξ13 �� ξ32 � 0. It is assumed that all three lasers have zero detuning.
The fixed points of the system are indicated by a blue cross (axial FPs),
black circles (plane FPs), and a green diamond (central FP).

Fig. 3. Bifurcations of field amplitudes and phase differences
(shown in the inset) achieved by increasing the control parameter
Δω31. Transient data have been discarded in these figures. The param-
eters used are ξ12 � ξ23 � ξ31 � 0.75 and ξ13 � ξ21 � ξ32 � 0.
Lasers 1 and 2 have zero detuning, and the third laser has a detuning
of Δω13 with respect to them. Δω13 is increased, and the state space of
an (a) initially periodic signal (Δω13 � 0 MHz) undergoes successive
bifurcations such as (b) period-doubling (Δω13 � 20 MHz) and
(c) period four orbits (Δω13 � 99 MHz), and eventually becomes
(d) chaotic-like (Δω13 � 108 MHz).
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window to be much longer than the bubbling event, as shown
in Fig. 4(d). The synchronization mechanism is a characteristic
feature of large-scale networks, where it can be utilized to trig-
ger synchronized activities among different elements, as well as
different layers of the network.

In conclusion, in this Letter, we present GLV dynamical sol-
utions as applied to a photonics network consisting of optoe-
lectronically cross-coupled semiconductor lasers. In such a
network, the interaction of intensity and carrier inversion rates,
as well as the phases of laser nodes, results in various solutions.
We demonstrate the influence of asymmetric coupling
strengths and frequency detuning between lasers. It has been
demonstrated that asymmetric inhibitory connections between
different nodes are essential to achieving sequential amplitude
oscillations of laser nodes (WLC regime) and lead to both a
sensitive and stable network. It is worth noting that the strength
of feedback to one of the constituent lasers must be much larger
than the feedbacks to the rest in order for one of them to win
the competition and, consequently, for the system to reach a
stable state regime. Furthermore, in order to avoid the chaotic
regime, small coupling coefficients (relative to the pumping
power of each laser) have to be used. A system with large cou-
pling coefficients is inherently highly sensitive to frequency de-
tuning. Numerical simulations additionally indicate that a
variety of dynamical behaviors, including higher-order hetero-
clinic cycles can be observed in such a network. Finally, we have
also demonstrated partial synchronization between laser nodes
which facilitates any future large scale integration [25]. Further
studies are required to address additional properties of our sys-
tem such as a system’s stability with respect to phase and in-
tensity noise and system’s response time for sensory inputs.

This Letter was primarily motivated with an aim to pursue
the optical implementation of a processor that is inspired by
brain dynamics using nonlinearly coupled semiconductor laser
oscillators with a programmable strength of interaction.
According to studies that model brain dynamics, the dynamical
principles of SHCs can be the basic mechanism for sequential
information processing and robust representation of transient
cognitive modal dynamics [26]. A simple mathematical model
to implement SHCs is indeed the set of GLV equations that are

modeled here. In an optical platform, lasers are suitable nonlinear
components with extremely dynamical behavior when coupled
properly. However, processing real-world big data will require
processors with a substantial number of nonlinearly coupled in-
teracting laser nodes. We envision a scalable and, hence, practical
implementation of our system based on a hybrid integration of
III/V and silicon photonics chips interconnected via an electron-
ics controller. It should be noted that what we have introduced
here is a building block of a complex network with the capabil-
ities of decision making and associative memory [27]. In general,
as shown in [7], these small blocks could be arranged in different
hierarchical levels to perform more complex cognitive tasks.
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