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Temporal order memories are critical for everyday animal and human functioning. Experiments

and our own experience show that the binding or association of various features of an event

together and the maintaining of multimodality events in sequential order are the key components of

any sequential memories—episodic, semantic, working, etc. We study a robustness of binding

sequential dynamics based on our previously introduced model in the form of generalized Lotka-

Volterra equations. In the phase space of the model, there exists a multi-dimensional binding heter-

oclinic network consisting of saddle equilibrium points and heteroclinic trajectories joining them.

We prove here the robustness of the binding sequential dynamics, i.e., the feasibility phenomenon

for coupled heteroclinic networks: for each collection of successive heteroclinic trajectories inside

the unified networks, there is an open set of initial points such that the trajectory going through

each of them follows the prescribed collection staying in a small neighborhood of it. We show also

that the symbolic complexity function of the system restricted to this neighborhood is a polynomial

of degree L � 1, where L is the number of modalities. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4932563]

Human mental functions like perception, cognition, and

social interaction depend upon coordinated brain network

activity. Such a coordination operates within noisy, over-

lapping modes of these networks on different levels of a

cognitive hierarchy. Usually, the performance of cognitive

task, for example, memory recall or generation of ideas, is

a sequential dynamical process of switching among differ-

ent information items or cognitive modes in a winnerless

competitive manner. In fact, while we are thinking about a

sequence of episodes or complex objects, the mind unifies

several representing operations with different features of

such episodes or objects. This is a binding process. For

successful performance, the binding dynamics has to be

stable or robust against noise. Mathematical aspects of this

problem are considered in this paper.

I. INTRODUCTION

There are several types of sequential memory (SM),

which can be divided into the kinds of memory that are

expressed explicitly, that is, by direct conscious access to in-

formation (declarative memory), and the kinds of memory

that are expressed implicitly through changes in behavioral or

physiological responses in the absence of conscious access

(non-declarative memory). One particular form of declarative

memory is episodic memory—the ability to encode and

retrieve the sequence of events in our daily personal activities.

Such memory is supported by cooperation of many cortical

and subcortical structures.1 Another type of sequential mem-

ory is working memory that is involved in the short-term

maintenance of information in mind, and the manipulation of

this information for the purpose of achieving an immediate

goal. The simplest example is remembering a phone number

while picking up and dialing a phone. Working memory is

also important for comprehending long written or spoken sen-

tences, performing and holding in mind a string of new infor-

mation or a series of movements. Declarative memories

typically include information about time and place of an

event, as well as detailed information about the event itself.

SM dealing with sequential order of thoughts or events

provides the functional backbone to high-level cognition.

Maintenance in SM is assumed to depend on the persistence

of functional networks that represent memory information

content. Imaging methods for measuring and analyzing

population-level brain patterns show that activity of memory

networks is highly dynamic.2 Corresponding to the perform-

ance of the SM, brain dynamics involves different partially

overlapping brain functional networks. Their interconnections

change in time according to the performance stage, and can be

stimulus-driven or induced by an intrinsically generated goal.

Such brain activity can be described by spatiotemporal dis-

crete patterns or sequentially changing dynamical modes.

At first glance, such a dynamics seems at odds with the

very nature of keeping information items in SM. How can

we recall a stable order of thoughts, episodes, etc., in mind

while the brain activity is constantly changing? The answer

to this question can be very useful for the understanding of

different mental disorders and for the role of emotions in se-

quential memory binding.3

This paper is based on models that authors have

developed before. In the paper Ref. 4 in 2001 and after this

in Ref. 5, it was suggested a new paradigm for neuro-

cognitive science—dynamical encoding of environmental ora)Electronic mail: xg345709@ohio.edu
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memory information on the base of networks with sequential

competition. This paradigm is called Winnerless

Competition (WLC) principle. The key point of this para-

digm is a transformation of a simple even static incoming in-

formation into spatio-temporal patterns which is very

convenient for recognition (decoding) through a competitive

dynamical process. What is important is that the temporal

dynamics of such patterns can be not repetitive. According

to this, we introduced in 2004 “the robust heteroclinic transi-

ent,” which became now an important tool for the analyses

of speech and behavioral sequences.6 It is very convenient

for the investigation of SM on its stability and capacity.

II. LOW-DIMENSIONAL DYNAMICAL MODEL OF SM:
HETEROCLINIC BINDING

Nonlinear dynamical modeling of human SM dynamics

can be considered as a functionally oriented variant of a uni-

versal scale free cognitive model. Such canonical model of

cognitive dynamical processes has been introduced in Ref. 7.

This model is based on the following principles: (i) equations

are written with variables that can represent the evolution of

brain elements in their temporal coherency and have solutions

that correspond to metastable patterns in the brain; (ii) the

model is based on the winnerless competitive dynamics—a

nonlinear process of interaction of many agents that guaran-

tees sequential switching among metastable states and robust-

ness of transients;4,5 (iii) the model is an open dissipative

system where inhibition is balanced by excitation; and (iv) the

model’s dynamics is sensitive to the incoming information.

By definition, WLC in simple network (N¼ 3) leads to a

heteroclinic cycle, but the same network with other values of

parameters can have limit cycles, for example, in a vicinity

of the unstable focus in the middle of the simplex. Such limit

cycle does not represent sequential switching of competitors

activity, it reflects just small oscillation of their intensity. In

systems with N> 3, WLC leads to robust heteroclinic tran-

sient (see Appendix B).

The reduction of high-dimensional brain data to a low-

dimensional phase space is a very attractive idea that can be

motivated by empirical observation. In particular, there are

many experiments that have shown the low-dimensionality of

cognitive dynamics when it is governed by sensory stimuli.

Formally, this means that a large amounts of data can be

extracted from the dynamics of a reduced number of spatiotem-

poral patterns—modes—using spatiotemporal decomposition

techniques, such as principal component analysis8–10 and inde-

pendent component analysis.11,12 For a review, see Ref. 13.

Adopted to the binding sequential processes, a model

has been proposed in Ref. 14. This model (1), in fact, is a ca-

nonical Gause-Lotka-Volterra model, which is written in a

specific form that is convenient for the analyses of the struc-

tured competitive dynamics, specifically for the binding (see

also Appendix B)

dxl
i

dt
¼ xl

i rl
i �
XN

j¼1

ql
ijx

l
j �
XL

m¼1

XN

j¼1

nlm
ij xm

j

0
@

1
A

for i ¼ 1;…;N; l ¼ 1;…; L; (1)

where xl
i is the level of activity of the i-th mode in the l-th

informational modality, where i¼ 1 ,…, N, and l¼ 1 ,…, L.

Information mode variables xl
i must be nonnegative for all i,

l. Integer NL is the total number of modes describing the

components from different brain areas that interact to per-

form a sequential memory process. Time constants are fixed

for a given system. Parameters ql
ij describe the inhibitory

connections between modes i and j in the l-th modality,

while parameters nlm
ij describe such connections between

modes i in the l-th modality and j in the m-th modality. We

assume ql
ii ¼ 1 and nll

ii ¼ 0 for any i and l. Parameters rl
i are

the strength of the stimulation of the mode i in the l-th mo-

dality. It is important that, in general, the entries of the ma-

trix consisting of parameters nlm
ij control the binding process.

We are talking about memory, i.e., a cognitive function.

Let us define a cognitive mode as a temporary stable activity

pattern of correlated elements in a specific global brain net-

work. Because of the high level of intrinsic coherency, the dy-

namics of complex cognitive modes can be described just with

a small number of variables in a model. This number depends

on the hierarchical structure of the cognitive process. Elements

of sequential memory also are named as information memory

items. In particular, they can be digits that form a phone num-

ber (about stability of such sequences see Ref. 7). Information

item memory concerns the processing, storage, and retrieval of

specific information, such as a word, color, smell, or a recog-

nizable shape of the car. The combining into one unified block

of items of different natures from different modalities or differ-

ent sources—like color, taste, odor, and after tasting in the

wine degustation—named binding process. Sequential chang-

ing of the item blocks characterizes the information flow.

For L¼ 3, an architecture of coordinated functional

ensembles each of which sequentially represents specific mo-

dality is depicted in Fig. 1. In fact, the model (1) is a canoni-

cal Gause-Lokta-Volterra model written in the form that is

convenient for the analyses of the binding phenomena, see

Subsection 1 in Appendix B.

As computer experiment showed, the dynamics of three-

modality SM is very rich and sensitive to the incoming infor-

mation that controls system parameters. At the same time, such

dynamics is robust and reproducible. We found different robust

regimes in the framework of the model (1), in particular, heter-

oclinic cycles and binding regime. One of the robust binding

regimes is presented in Figs. 2 and 3 (see also Ref. 14).

It is important to mention robust heteroclinic cycles and, in

general, robust transients consisting of trajectories in the phase

space of a dynamical model that are disposed in a vicinity of a

heteroclinic contour or a heteroclinic chain and in a vicinity of

each other when initial conditions are varied. These trajectories

are robust against noise. Examples of such transients are the tra-

jectories inside the stable heteroclinic channel (SHC).

This modeling showed that the information flows corre-

sponding to different modalities modulate each other and as

a result, the dynamical behavior of individual modality con-

tains information about all other modalities (see Figs. 2 and

3). This is an information binding. In fact, Figs. 2 and 3 illus-

trate a multimodal concurrency—the main mechanism of

multimodal serial order in behavior.35
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III. ROBUSTNESS THEOREM

We can find the equilibrium points of the system

Ql
i ¼ fxl

i ¼ rl
i; x

m
j ¼ 0 if j 6¼ i;m 6¼ lg. For each Ql

i where i¼ 1

,…, N and l¼ 1 ,…, L, the eigenvalues and eigenvectors are

given in Table I.

In Ref. 14, the authors assumed that starting at each Ql
i,

there are two heteroclinic orbits, toward Ql
iþ1 and Qlþ1

i .

Therefore, at each equilibrium point, only two eigenvalues

corresponding to these two directions are positive and the

rest of the eigenvalues are negative. We can list the assump-

tions as follows. (Note that only kl
iiþ1 and kl

iNþ1 are positive

for fixed i and l, the other eigenvalues are negative.)

For fixed l¼ 1,2,…,L, within the l-th modality:

1. kl
iiþ1 ¼ rl

iþ1 � rl
iðql

iþ1i þ nll
iþ1iÞ > 0 and kl

ij ¼ rl
j � rl

i

ðql
ji þ nll

jiÞ < 0 for all j 6¼ i, iþ 1 so that there is only one

heteroclinic orbit from Ql
i to Ql

iþ1.

2. max1�j�N;j 6¼iþ1fkl
ijg ¼ kl

ii�1 < 0 for each i¼ 1,…,N,

(Nþ 1� 1). We assume that the heteroclinic trajectory

joining the saddles Ql
i�1 and Ql

i follows the leading direc-

tion on the stable manifold of Ql
i. The point Qlþ1

i is a sta-

ble node on the ðxl
i; x

lþ1
i Þ-plane.

3. The saddle value of Ql
i is �l

i :¼ ½rl
i�1 � rl

iðnll
i�1i þ ql

i�1iÞ�
=½rl

iþ1 � rl
iðql

iþ1i þ nll
iþ1iÞ� > 1 and �l ¼ PN

i¼1�
l
i > 1.

It was shown in Ref. 14 that under the conditions 1–3,

the system (1) has a stable heteroclinic cycle Cl in the invari-

ant subspace fxm
j ¼ 0;m 6¼ lg.

For fixed i¼ 1, 2,…, N, consider the equilibrium points

Ql
i corresponding to different modalities l:

4. kl
iNþlþ1 ¼ rlþ1

i � rl
in

lþ1l
ii > 0 for every l¼ 1, 2,…,L� 1 so

that there is a heteroclinic orbit from Ql
i to Qlþ1

i .

5. 0 < kl
iNþlþ1 < kl

iiþ1, i.e., 0 < rlþ1
i � rl

in
lþ1l
ii < rl

iþ1

�rl
iðn

ll
iþ1i þ ql

iþ1iÞ. We assume here the unstable leading

direction within the modality is stronger than that between

modalities, so that the representative point on a trajectory

spends a large amount of time around a modality subspace

before going to another subspace.

Denote by C the heteroclinic network consisting of hetero-

clinic cycles Cl and heteroclinic trajectories joining them. It

was shown in Ref. 14 that such a heteroclinic network exists

under the assumptions 1–5. Identify with C the directed graph

G see Fig. 4, with vertices Ql
i such that there is an edge starting

at Ql
i and ending at Qm

j if and only if there is a heteroclinic tra-

jectory going to Ql
i as t! �1 and to Qm

j as t! þ1. Let us

enumerate vertices by numbers 1, 2, …, p, where p¼LN.

Introduce a matrix A¼ {ask}, ask 2 {0, 1}, where ask¼ 1 iff

there exists an edge starting at the s-vertex and ending at the

k-vertex. We introduce the topological Markov Chain (XA, r)

associated with the transition matrix A. Any non-empty cylin-

der [x0, x1, …, xk] corresponds to a path on the graph G, i.e.,

a sequence of the saddle equilibrium points and heteroclinic

trajectories joining them belonging to C. For [x0, x1, …, xm],

FIG. 2. Binding: mutual modulations of different modalities sequences.

These figure show the projection of a trajectory on a three-variable space.

One can see that the trajectory spends some time in a neighborhood of one

modality and goes to the next modality afterwards.

FIG. 3. This figure shows the sequential switching among modes of one mo-

dality in the binding process. Parameters used in model (1) for both Figs. 2

and 3 are L¼ 3, N¼ 6, rl
1 ¼ 1:73; rl

2 ¼ 1:123; rl
3 ¼ 1:301;rl

4 ¼ 1:203; rl
5

¼ 1:458, and rl
6 ¼ 1:903 for all l¼ 1, 2, 3; q1

ii ¼ 1 for i ¼ 1;…; 6; q1
13 ¼

q1
35 ¼ q1

51 ¼ 5; q1
24 ¼ q1

46 ¼ q1
64 ¼ 2; q1

16 ¼ q1
21 ¼ q1

32 ¼ q1
43 ¼ q1

54 ¼ q1
65

¼ 1:5 and the rest of q1
ij is 0. We allow a 2% perturbation on parameter val-

ues ql
ij in the other two modalities, i.e., q2

ij ¼ q1
ij þ 2% and q3

ij ¼ q1
ij � 2% if

q1
ij 6¼ 0; for the connection between the modalities, we let nlm

ij ¼ 0:1 if i and

j are both odd integers and l 6¼m and all the other values for nlm
ij are 0.

FIG. 1. Eighteen competitors ensemble fluctuates on three functional com-

munities: each of them is responsible for the processing of different informa-

tional modalities. All connections are inhibitory. The connections in

corresponding models are characterized by entries in matrices of ql
ij and nlm

ij .

Reprinted with permission from M. I. Rabinovich, A. N. Simmons, and P.

Varona, “Dynamical bridge between brain and mind,” Trends Cognit. Sci.

19, 453–461 (2015). Copyright 2015 Elsevier.
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the trajectory starts at the x0-th vertex, follows a heteroclinic

orbit to the x1-th vertex, then follows another heteroclinic

orbits to the x2-th vertex, and so on until it reaches the xm-th

vertex. Denote this subnetwork by C([x0, x1, …, xk]) and call

it a multimodality heteroclinic network (MHN). Without loss of

generality, we may assume that x0 is a symbol that is labeling

a saddle Ql
1 2 C1, a vertex of the graph. We will define Pm

lm
as

the heteroclinic trajectory in C([x0, x1, …, xk]) joining the

saddles Qm
lm

and Qmþ1
lm

.

The feasibility of an MHN can be expressed mathemati-

cally in the form of the following:

“Theorem” III.1 Under the assumptions 1–5, for any
non-empty cylinder [x0, x1, …, xk] and for any neighbor-
hood V of C([x0, x1,…,xk]), there exists an open set U � V
of initial points in a neighborhood of C1 such that for each
x0 2 U, the corresponding trajectory x(t, x0) 2 V for
0� t�T and x(T, x0) belongs to a neighborhood of a saddle
Qmk

lmk
labeled by the symbol xk, i.e., the trajectory x(t, x0) is

shadowing the MHN C([x0, x1, …, xk]).
We put the word Theorem in the quotation marks

because we will prove this result under an additional

assumption 6 although we believe that it holds without them.

Assumption 6: The system (1) is C1-linearizable in a neigh-

borhood of each Ql
i; i ¼ 1;…;N; l ¼ 1;…; L.

IV. REMARKS ON THEOREM

For the convenience of readers, we put the proof of

Theorem III.1 into Appendix A, and here we discuss its results

and main steps in the proof. In fact, this Theorem III.1 tells us

that there are heteroclinic channels in a neighborhood of the

heteroclinic network C that is labeled by non-empty cylinders

(admissible words) of a topological Markov chain. We calcu-

lated the number of such channels (see Section V). It turned

out that for the channels with n switchings (i.e., a representa-

tive point on a trajectory started at the beginning of such a

channel meets neighborhoods of some saddle equilibrium

points n times), we can estimate the number of such channels

from below by a polynomial of n of degree L� 1 (where L is

the number of modalities in the system (1)). One can easily

see that the number of such channels for the one-modality sys-

tem is independent of n, and this is also true for direct product

(uncoupled union) of such system. Thus, the main qualitative

result of Theorem III.1 is that the binding of systems leads to

the increase in possibilities of behaviors which is different

from the “mechanical” union, i.e., binding leads to the

increase in complexity of such a behavior. Also, from quanti-

tative point of view, one can calculate this complexity func-

tion by using symbolic dynamics.

The idea of the proof can be described as follows. Given a

non-empty cylinder [x0, …, xn�1], a sequence of saddle equi-

librium points is determined, say, Qx0
;…;Qxn�1

; where

Qxk
2 fQm

lm
g, and a sequence of heteroclinic trajectories, say,

Pxixiþ1
; i ¼ 0;…; n� 2, is determined where Pxixiþ1

starts at

Qxi
and ends at Qxiþ1

. Because of the graph G structure, each

saddle Qxi
ð¼Qm

lm
;m 6¼ 1; LÞ has two heteroclinic trajectories,

say, H�1 and H�2 , coming to it (one of them is Pxi�1xi
) and two

heteroclinic trajectories, say, Hþ1 and Hþ2 (one of them is

Pxixiþ1
) coming out of it, see Fig. 5(a). If Qxi

¼ Q1
lm

, then we

deal with the only heteroclinic trajectory Pxi�1xi
joining

Qxi�1
¼ Q1

lm�1 and Qxi
, and two heteroclinic trajectories

coming out of Qxi
. If Qxi

¼ QL
lm

, then we deal with the only

heteroclinic trajectory coming out of Qxi
, say, Pxixiþ1

, where

Qxiþ1
¼ QL

lmþ1, and two heteroclinic trajectories ending at Qxi
.

We endow each of heteroclinic trajectories with a sec-

tion transversal to the flow in a neighborhood of each saddle

Qxi
; H�k with S�k and Hþk with Sþk , k¼ 1, 2, see Fig. 5(a).

Then we show (Subsection 1 in Appendix A) that for each

pair ðS�k ; Sþp Þ; k; p 2 f1; 2g, there is an open set of initial

points in a neighborhood of H�k \ S�k that is mapped by a

local map along trajectories into an open set in a neighbor-

hood of Sþp \ Hþp . Then this open set is moving along theFIG. 4. An illustration of the MHN in the system when L¼ 3 and N¼ 6.

TABLE I. Eigenvalues and eigenvectors at the equilibrium point Ql
i.

Eigenvalues Eigenvectors

kl
ij ¼ rl

j � rl
iðnll

ji þ ql
jiÞð1 � j � N; j 6¼ i; iþ 1Þ ~v l

ij ¼ fxl
i ¼ nll

ij þ ql
ij; x

l
j ¼ nll

ji þ ql
ji � 1� rl

j=r
l
i, others¼ 0}

kl
ii ¼ �rl

i ~v l
ii ¼ fxl

i ¼ 1; others¼ 0}

kl
iiþ1 ¼ rl

iþ1 � rl
iðnll

iþ1i þ ql
iþ1iÞ ~v l

iiþ1 ¼ fxl
i ¼ nll

iiþ1 þ ql
iiþ1; x

l
iþ1 ¼ nll

iþ1i þ ql
iþ1i � 1� rl

iþ1=r
l
i, others¼ 0}

kl
iNþlþ1 ¼ rlþ1

i � rl
in

lþ1l
ii ~v l

iNþlþ1 ¼ fxl
i ¼ nllþ1

ii ; xlþ1
i ¼ nlþ1l

ii � 1� rlþ1
i =rlþ1

i , others¼ 0}

kl
iNþm ¼ rm

i � rl
in

ml
ii ð1 � m � L;m 6¼ l; lþ 1Þ ~v l

iNþm ¼ fxl
i ¼ nlm

ii ; x
m
i ¼ nml

ii � 1� rm
i =r

m
i , others¼ 0}
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heteroclinic trajectory Pxixiþ1
to a section S�k in a neighbor-

hood of Qxiþ1
, Fig. 5(b). We show (see Subsection 2 in

Appendix A) that this global map from Sþk ðQxi
Þ to S�k ðQxiþ1

Þ
behaves qualitatively as a translation, thus, we can repeat our

local consideration again around Qxiþ1
and repeat the above

procedures. Finally, we obtain an open set of initial points in

a neighborhood of Qx0
such that the trajectory going through

each of them is shadowing the MHN Cð½x0;…;xn�1�Þ.

V. SYMBOLIC COMPLEXITY OF THE SYSTEM

We have shown in Section IV that for any cylinder of the

topological Markov chain (XA, r), there are trajectories of the

system (1) that behave according to the symbolic description

represented by the cylinder. It is natural to ask how many dif-

ferent itineraries the trajectories have, i.e., how many different

non-empty cylinders can be realized by the system.

The symbolic complexity of the topological Markov

chain (XA, r) is defined as

Cn ¼ ]fallnonemptycylinders ½x0;x1;…;xn�1�of length ng:

It is known (see, for instance, page 73 in Ref. 16) that

Cn¼EAn�1ET, where E¼ (1, 1,…, 1) is the NL-row vector

with all coordinates equal one and A is the transition matrix.

We prove now the following lemma.

Lemma V.1 For the topological Markov Chain (XA, r)
derived by the MHN C, the symbolic complexity function is

Cn¼Pk(n), where Pk(n) is a polynomial of degree k and
k¼L� 1.

To prove this lemma, we need to calculate EAn�1ET. It

follows that the transition matrix A can be partitioned into an

L� L block matrix:

A ¼

B I 0 … 0

0 B I 0 ..
.

..

. . .
. . .

. . .
. ..

.

..

. . .
.

B I

0 … … 0 B

0
BBBBBBBB@

1
CCCCCCCCA
;

where I is an N�N identity matrix, 0 is an N�N zero ma-

trix, and B is an N�N permutation matrix of the following

form:

B ¼

0 1 0 … 0

0 0 1 0 ..
.

..

. . .
. . .

. . .
. ..

.

0 … … 0 1

1 0 … … 0

0
BBBBBBB@

1
CCCCCCCA
:

It is easy to find that for n� L,

An�1 ¼

Bn�1
n� 1

1

� �
Bn�2

n� 1

2

� �
Bn�3 …

n� 1

L� 1

� �
Bn�L

0 Bn�1
n� 1

1

� �
Bn�2 …

n� 1

L� 2

� �
Bn�Lþ1

..

. . .
. . .

. . .
. . .

.

0 	 	 	 	 	 	 	 	 	 Bn�1

0
BBBBBBBBB@

1
CCCCCCCCCA
: (2)

Therefore, for e¼ (1, 1,…, 1), the N-row vector of all coordinates 1, we obtain

EAn�1ET ¼ LeBn�1eT þ ðL� 1Þ
n� 1

1

� �
eBn�2eT þ 	 	 	 þ 2

n� 1

L� 2

� �
eBn�Lþ1eT þ

n� 1

L� 1

� �
eBn�LeT

¼ LN þ ðL� 1ÞN
n� 1

1

� �
þ 	 	 	 þ 2N

n� 1

L� 2

� �
þ N

n� 1

L� 1

� �
: (3)

FIG. 5. Scheme of local (a) and global

(b) behaviors of trajectories in a neigh-

borhood of C.
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Note here that an iteration of a permutation matrix is

still a permutation matrix. So eBkeT¼N for any integer k
when B is an N�N permutation matrix. We can see that

the highest degree of n in the polynomial is determined

by the term
n� 1

L� 1

� �
. Therefore, the highest degree of n

is k¼ L� 1. Thus, we see here that the topological

entropy

h ¼ lim
n!1

ln Cn=n ¼ 0:

This implies that the symbolic system is not chaotic.

Nevertheless, the binding causes an essential changing in

qualitative (and quantitative) behavior of the complexity

function as it was already mentioned in Section IV.

VI. CONCLUDING REMARKS

In the framework of the our model (1), binding of

different modalities means the existence in the phase

space of a heteroclinic network consisting of heteroclinic

cycles inside modalities subspaces and heteroclinic trajec-

tories joining them. Because of the main theorem in the

paper, there is a variety of possibilities for shadowing tra-

jectories to stay in a neighborhood of heteroclinic cycles

and to go from one cycle to another. In other words,

there are many heteroclinic channels around particular

paths on the graph of our network. It is a way to under-

stand: (i) how the robustness of the binding process

against a noise occurs, and (ii) how the complexity of the

network increases because of the binding. Indeed, accord-

ing to the point (i), one can see that small noise cannot

destroy heteroclinic channel—it only can change its form

a little bit. Furthermore, according to the point (ii), one

can be convinced that a symbolic description is an appro-

priate language for the studies of complexity functions. In

reality, different channels have different probabilities to

be realized—the volumes of the sets of initial points cor-

responding to them are different. This will be the subject

of further studies.

We want to emphasize that the study of heteroclinic net-

works and channels opens up an effective approach to under-

stand dynamics of high dimensional models of cognitive

activities and disorders. Important and interesting application

of the theory presented in this paper can be used for dynami-

cal analyses of such sequential psychiatric disorders as

obsessive compulsive disorder, bipolar disorder, attention

deficit, and others. Some very promising results are already

in hands of psychiatrists.17–19 As a matter of fact, behavior,

perception, and cognition are strongly shaped by the synthe-

sis of time dependent information across the different sen-

sory modalities. This is the binding dynamics. Such

multisensory integration often results in performance and

perceptual benefits that reflect the effective information con-

ferred by having cues from multiple sequential modalities,

such as in the process of perception of speech—auditory and

visual.20 The time interval during which information from

different modalities is dynamically integrated is called the

temporal binding window.21 Emerging evidence suggests

that such temporal window is altered in a series of disorders,

including autism, dyslexia, and schizophrenia.21 Keeping in

mind that the stability of the binding window and dynamical

capacity of the binding process depend on the value of con-

trol parameters in the binding model, it looks very perspec-

tive to connect these parameters with plasticity within

relevant sensory modalities.22 Similar problems are impor-

tant for other cognitive processes, in particular, for working

memory23 and attention.24
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APPENDIX A: PROOF OF THE THEOREM

Because of the form of the system (1), one can easily

see that the matrix of the linearization of system (1) at Ql
i

can be diagonalized even in the case where some of its

eigenvalues are of multiplicity greater than 1. We denote by

y1, y2 the variables corresponding to the eigenvectors related

to the positive eigenvalues and by xi those related to the neg-

ative ones. Thus, under the assumptions 1–6, the system (1)

in a neighborhood of Ql
i can be rewritten as

_y1 ¼ c1y1;

_y2 ¼ c2y2;

_x ¼ Ax; (A1)

where 0 < c1 ¼ kl
iiþ1 and 0 < c2 ¼ kl

iNþlþ1, so 0< c2< c1

according to assumptions 1, 4, and 5. In Eq. (A1),

x ¼ ðx1;…; xmÞ 2 Rm, where m¼ L(N� 2), and

jjeAtjj � elt; l < 0; t � 0: (A2)

Let us remark that here, in the proof of the Theorem, we use

the same letter “x” as in (1). We hope it will not confuse a

reader.

Without loss of generality, we assume that x1 is the

coordinate corresponding to the leading direction of the

intersection of the stable manifold of Ql
i with the plane

fxm
j ¼ 0;m 6¼ lg (see the assumption 2). The coordinate x2

corresponds to the eigenvector related to the eigenvalue

rl�1
i � rl

in
l�1l
ii < 0, i.e., it corresponds to the direction of the

heteroclinic trajectory joining the equilibrium points Ql�1
i

and Ql
i under which it comes to Ql

i.

The intersections of a neighborhood of Ql
i with the het-

eroclinic trajectories belonging to the MHN starting at Ql
i

have the equations

x ¼ 0; y2 ¼ 0

for a local piece of the trajectory in the heteroclinic cycle Cl,

and

x ¼ 0; y1 ¼ 0
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for a piece of the trajectory joining Ql
i and Qlþ1

i .

Furthermore, the local pieces of the heteroclinic trajectories

ending at Ql
i have the equations

y1 ¼ y2 ¼ 0; xj ¼ 0; where j 6¼ 1

for the trajectory in the heteroclinic cycle Cl and

y1 ¼ y2 ¼ 0; xj ¼ 0; where j 6¼ 2

for the trajectory joining Ql�1
i and Ql

i.

To prove the Theorem, i.e., to find trajectories that

shadow the MHN, we endow the MHN with a sequence of

sections transversal to the flow and we will study images

(and preimages) of regions on these sections with respect to

the corresponding maps. Thus, we introduce

S�1 ¼ fðx;yÞ : x1 ¼ d; jðx2;…; xmÞj � e; jy1j � e; jy2j � eg;
S�2 ¼ fðx;yÞ : x2 ¼ d; jðx1; x3;…; xmÞj � e; jy1j � e; jy2j � eg;
Sþ1 ¼ fðx;yÞ : y1 ¼ d; jy2j � e; jxj � eg;
Sþ2 ¼ fðx;yÞ : y2 ¼ d; jy1j � e; jxj � eg;

where e is a small parameter which is, in fact, the size (diam-

eter) of the section. Remark that all the variables are sup-

posed to be non-negative. Moreover, we will write

S�1;2ðQl
iÞ; Sþ1;2ðQl

iÞ where it will be necessary.

1. Local maps

To construct a map Ti1 : S�i ! Sþ1 , i¼ 1, 2, we solve the

system (A1) to obtain that

y1ðtÞ ¼ y10ec1t;

y2ðtÞ ¼ y20ec2t;

xðtÞ ¼ x0eAt;

where ðy10; y20; x0Þ 2 S�i is the initial condition. We can find

the transition time t1 from the restriction that y1(t1)¼ d:

t1 ¼ 1=c1lnðd=y10Þ:

So, we can write the formulas for Ti1:

y2ðt1Þ ¼ y20ðd=y10Þc2=c2 ;

xðt1Þ ¼ x0eAt1 :

We need to prove the claim that y2(t1)� e, which is equiva-

lent to

y20 � d�c2=c1eðy10Þc2=c1 : (A3)

If y10¼ e, the right hand side of (A3) is d�c1=c2e1þc2=c1 , which

is less than e if e
 1. So the projection of the domain of Ti1

onto the y-plane looks as D1 in Fig. 6.

To construct Ti2 : S�i ! Sþ2 , similarly, we find the transi-

tion time

t2 ¼ 1=c2lnðd=y20Þ;

and obtain

y1ðt2Þ ¼ y10ðd=y20Þc1=c2 :

The condition y1(t2)� e implies the inequality

y20 � de�c2=c1ðy10Þc2=c1 ; (A4)

so the projection of the domain of T2 onto the y-plane looks

as region D2 in Fig. 6 where

e1 ¼ d�c1=c2e1þc1=c2 � e if e
 1;

provided that de�c2=c1 > d�c2=c1e, which is true if e 
 1. Let

us remark that Fig. 6 is the same for i¼ 1 or 2.

Denote by domTij the domain of Tij, i,j 2 {1, 2}. We show

now that Ti1 (domTi1) contains, for small values of e, the rec-

tangle R1
a ¼ fðx; y2Þj jxj � a; 0 < y2 � eg and Ti2 (domTi2)

contains the rectangle R2
a ¼ fðx; y1Þj jxj � a; x1 > 0;

0 < y1 � eg. Consider, for instance, T12. We have

x1 ¼ dek1t2 ¼ dðd=y20Þk2=c1 ;

so

y20 ¼ dc1=k2þ1x
�c1=k2

1 :

We claim that y20� e, therefore,

0 < x1 � e�k1=c1d1þk2=c1 ¼: a1:

We already know that for D2, y1¼ y1(t2)� e. Now for

k 6¼ 1,

xa ¼ xk0ekkt2 ¼ xk0d
kk=c1 y

�kk=c1

20 ;

so

maxjxkj ¼ edkk=c1e�kk=c1 ¼: ak:

Thus, every point (x, y1) where 0 < x1 � a1; jx1j � ak; 0 �
y1 � e is the image of a point on S�1 under the map T12.

Defining a as minak, we obtain the desired result. The proof

is the same for other mappings Tij.

FIG. 6. The projection of the domain of Ti1 and Ti2 onto the y-plane.
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2. Global maps

We define the global map along the trajectories close to

the heteroclinic orbit joining Ql
i and Ql

iþ1 as

Tgl
1 : Sþ1 ðQl

iÞ ! S�1 ðQl
iþ1Þ:

This is a diffeomorphism and it is well-defined because of

the finite transition time from a neighborhood of Ql
i to a

neighborhood of Ql
iþ1 along the corresponding heteroclinic

orbit. Similarly, the global map (a diffeomorphism) along

the trajectories close to the heteroclinic one joining Ql
i and

Qlþ1
i is well-defined as well. It is denoted as

Tgl
2 : Sþ2 ðQl

iÞ ! S�2 ðQlþ1
i Þ:

To write the formulas for the global maps in the (x, y)-coor-

dinates, one needs to use formulas for the sections

Sþ1;2ðQl
iÞ; S�1;2ðQl

iþ1Þ, and S�1;2ðQlþ1
i Þ in the original coordi-

nates fxl
ig, to integrate the system (1) over finite transition

time, and to present the images in the new (x, y)-coordinates.

But we do not need them—we use only the claim that these

(x, y)-formulas determine diffeomorphisms, that follows eas-

ily from the facts that changes of variables we used are dif-

feomorphisms and the global maps in the fxl
ig-coordinates

are also diffeomorphisms. The main fact to be checked is

that the points with non-negative values of the y-coordinates

are mapped into those with the same property. This is true.

Indeed,

(i) For the system (1), the positive (non-negative)

“octant” is an invariant set that can be checked

directly.

(ii) Each (xa, xb)-plane where xa ¼ xl1
i1
; xb ¼ xl2

i2
and i1, i2,

l1, l2 are arbitrary indices, is invariant.

(iii) A piece of the phase portrait on the ðxl
i; x

l
iþ1Þ-plane

(or on the ðxl
i; x

lþ1
i Þ-plane) looks as in the Fig. 7 (see

Table I for the eigenvectors).

The similar picture is observed on the ðxl
i; x

lþ1
i Þ-plane. It

implies that the maps Tgl
1 and Tgl

2 send points with non-

negative values of the y-coordinates in a neighborhood of Ql
i

into those with non-negative values of the y-coordinates in

neighborhoods of Ql
iþ1 and Qlþ1

i correspondingly. The same

is true for the values of the xk coordinates where k¼ 1, 2.

Hence, the sets

R1
a \ ðT

gl
1 Þ
�1ðS�1 ðQl

iþ1ÞÞ � Sþ1 ðQl
iÞ and

R2
a \ ðT

gl
2 Þ
�1ðS�2 ðQlþ1

i ÞÞ � Sþ2 ðQl
iÞ

contain non-empty interiors.

3. Images and preimages

It follows now that the projection onto the y-plane of the set

ðT1Þ�1ððTgl
1 Þ
�1ðS�1 ðQl

iþ1ÞÞ \ R1
aÞ

belongs to D1, no matter whether S�ðQl
iÞ ¼ S�1 ðQl

iÞ or

S�ðQl
iÞ ¼ S�2 ðQl

iÞ. We let this projection to be denoted as ~D1.

Similarly, the projection of the set

ðT2Þ�1ððTgl
2 Þ
�1ðS�2 ðQlþ1

i ÞÞ \ R2
aÞ

onto the y-plane, say, ~D2, belongs to D2. Therefore, a trajec-

tory going through an initial point (x0, y0) on S�i ðQl
iÞ, i¼ 1, 2,

with small values of the x0-coordinates and y0 2 ~D1 will inter-

sect Sþ1 ðQl
iÞ and then will follow the heteroclinic trajectory

joining Ql
i and Ql

iþ1, up to the intersection with S�1 ðQl
iþ1Þ.

Similarly, the trajectory going through (x0, y0) and

where y0 2 ~D2 and small jx0j will intersect Sþ2 ðQl
iÞ and will

shadow the heteroclinic orbit joining Ql
i and Qlþ1

i up to the

intersection with S�2 ðQlþ1
i Þ.

The same consideration can be performed in a neighbor-

hood of Ql
iþ1 and Qlþ1

i . For instance, for Ql
iþ1, we again have

four local maps

Tij : S�i ðQl
iþ1Þ ! Sþj ðQl

iþ1Þ; where i; j ¼ 1; 2:

Projections of domTij onto the y-plane look exactly as

D1 and D2 in Fig. 6. Moreover, since domT1j � S�1 ðQl
iþ1Þ,

the map ðTgl
1 Þ
�1

is well-defined on it. Thus on S�1 ðQl
iÞ, we

have two regions ðT11Þ�1ððTgl
1 Þ
�1

domT11 \ R1
aÞ and

ðT12Þ�1ððTgl
1 Þ
�1

domT12 \ R2
aÞ. Denote by D11 and D12 their

projections onto the y-plane. They look as in Fig. 8.

We can obtain then the regions

ðT22Þ�1ððTgl
2 Þ
�1ðdomT2jÞ \ R2

aÞÞ on S�2 ðQl
iÞ and their projec-

tions D2j onto the y-plane, with j¼ 1, 2. Similarly, we can

also obtain the regions ðT12Þ�1ððTgl
2 Þ
�1

domT2j \ R2
aÞ; j ¼ 1; 2

on S�1 ðQl
iÞ and ðT21Þ�1ððTgl

1 Þ
�1

domT1j \ R1
aÞ; j ¼ 1; 2 on

S�2 ðQl
iÞ. Their projections onto the y-plane are denoted as

~Dij, which look similarly as Di,j.

Therefore, if (x0, y0) on S�1 ðQl
iÞ [ S�2 ðQl

iÞ has small jx0j
and y0 2 Dab [ ~Dab, then the corresponding trajectory inter-

sects Sþa ðQl
iÞ first, then follows the corresponding heteroclinic

trajectory and intersects S�1;2ðQl
iþ1Þ if a¼ 1 or S�1;2ðQlþ1

i Þ if

a¼ 2. After this, the trajectory comes to a neighborhood of

the heteroclinic orbit joining: (i) Ql
iþ1 and Ql

iþ2 if a¼b¼ 1,

(ii) Ql
iþ1 and Qlþ1

iþ1 if a¼ 1 and b¼ 2, (iii) Qlþ1
i and Qlþ1

iþ1 if

a¼ 2 and b¼ 1, and (iv) Qlþ1
i and Qlþ2

i if a¼ b¼ 2.

Since these initial points contain open sets, we in fact

proved the Theorem for cylinders [x0, x1, x2], where x0

corresponds to Ql
i, and x1, x2 correspond to

Ql
iþ1;Q

lþ1
i ;Ql

iþ2, and Qlþ2
i .

FIG. 7. Positive values of y1 (point A) correspond to the positive values of

xl
iþ1. The negative values (point B) correspond to the negative ones.
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Exactly in the same way, one can prove the Theorem for

an arbitrary cylinder [x0, x1,…,xk].

APPENDIX B: WINNERLESS COMPETITION AND
HETEROCLINIC CHANNELS IN SYSTEM WITH
INHIBITION: HISTORICAL VIEW

1. Autonomous competitive dynamics

The classical Gause-Lotka-Volterra model for N com-

petitors in the generalized form is

d

dt
Ri ¼ Ri li Sð Þ � RN

j¼1qijRj þ g tð Þ
h i

:

When the matrix elements and parameter S are constants,

and noise is absent, we name the model canonical. The sys-

tem dynamics critically depends on the number and features

of the metastable states. A metastable state temporarily holds

stationary values. It is characterized by a slowing down of

the system motion in a vicinity of the stationary state. In the

graph of N-observable competitors, this phenomenon is

FIG. 8. Projections onto the y-plane of

preimages of compositions of local and

global maps.

FIG. 9. Stable limit cycle (panel (a)) and heteroclinic cycle (panel (b)) on 2-D simplex (canonical model with N¼ 3), see Refs. 25–28. Figures are reprinted

from M. Rabinovich, I. Tristan, and P. Varona, “Neural dynamics of attentional cross-modality control,” PLoS ONE 8, e64406 (2013).29 Many others describe

stable oscillations in competitive ensembles. For example, see Ref. 30 for an interesting piecewise linear model. Panel (c) shows that in some area of control

parameters of the canonical model with N¼ 4, a strange attractor exists. One can see that a 3-D projection of the attractor looks like R€ossler’s folded band

attractor.31 Reprinted with permission from J. Vano, J. Wildenburg, M. Anderson, J. Noel, and J. Sprott, “Chaos in low-dimensional Lotka-Volterra models of

competition,” Nonlinearity 19, 2391 (2006). Copyright 2006 IOP Publishing. Panel (d) shows the stable heteroclinic cycle in the canonic model with N¼ 6.

Each saddle has one-dimensional unstable separatrix that forms a heteroclinic contour.7 Panel (e) shows that for N¼ 5 in the phase space of the canonical

model, there exists a two-dimensional heteroclinic attractor that includes saddles Oj with two unstable separatrices.32 Panel (f) shows the robust heteroclinic

channel—a vicinity of a six-saddle chain, the saddle value of each saddle is larger than one.7 Figures (d) and (f) are reprinted from M. Rabinovich, Y. Sokolov,

and R. Kozma, “Robust sequential working memory recall in heterogeneous cognitive networks,” Front. Syst. Neurosci. 8, 220 (2014).33
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represented by a plateau or pause. The image of a metastable

state in the phase space is a saddle point. Fig. 9 summarizes

some of the previous works on this canonical model.

Note that a SHC is formed by a sequence of saddle

states, heteroclinic trajectories, and their vicinity. If the com-

pressing of the phase volume around the SHC is stronger

than the stretching of the volume along the SHC, the trajec-

tories that are attracted by the SHC cannot leave it until the

last equilibrium point. SHC is an image of robust transient

behavior in a dynamical system.

From these previous work, one can see that for N> 3,

the canonical model can have, in the phase space, a hetero-

clinic network with more complex topology than the hetero-

clinic contour formed by one dimensional unstable

separatrices. It can be a 2-D heteroclinic attractor or the

interaction of several heteroclinic contours that forms a joint

network, like a binding process.

2. Non-autonomous competitive dynamics

WLC: A general dynamical phenomenon that causes se-

quential switching of prevalence among participants. For exam-

ple, if in a head-to-head competition, boxer A beats boxer B,

boxer B beats boxer C, and finally boxer C beats boxer A, all

participants are “winners” for a finite time, but there is no overall

winner, such as in “winner takes all.” A basic model with the

connection matrix elements depending on stimuli is very conven-

ient for dynamical analyses and prediction of cognitive proc-

esses.5,15 Fig. 10 shows the transformation of the identity spatial

input into spatiotemporal output based on the intrinsic sequential

dynamics of a neural ensemble with WLC.
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