
Winnerless competition between sensory neurons generates chaos: A
possible mechanism for molluscan hunting behavior
Pablo Varona, Mikhail I. Rabinovich, Allen I. Selverston, and Yuri I. Arshavsky 
 
Citation: Chaos 12, 672 (2002); doi: 10.1063/1.1498155 
View online: http://dx.doi.org/10.1063/1.1498155 
View Table of Contents: http://chaos.aip.org/resource/1/CHAOEH/v12/i3 
Published by the AIP Publishing LLC. 
 
Additional information on Chaos
Journal Homepage: http://chaos.aip.org/ 
Journal Information: http://chaos.aip.org/about/about_the_journal 
Top downloads: http://chaos.aip.org/features/most_downloaded 
Information for Authors: http://chaos.aip.org/authors 

Downloaded 23 Jun 2013 to 131.170.6.51. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions

http://chaos.aip.org/?ver=pdfcov
http://aipadvances.aip.org?ver=pdfcov
http://chaos.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Pablo Varona&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://chaos.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Mikhail I. Rabinovich&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://chaos.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Allen I. Selverston&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://chaos.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Yuri I. Arshavsky&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://chaos.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.1498155?ver=pdfcov
http://chaos.aip.org/resource/1/CHAOEH/v12/i3?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://chaos.aip.org/?ver=pdfcov
http://chaos.aip.org/about/about_the_journal?ver=pdfcov
http://chaos.aip.org/features/most_downloaded?ver=pdfcov
http://chaos.aip.org/authors?ver=pdfcov


CHAOS VOLUME 12, NUMBER 3 SEPTEMBER 2002
Winnerless competition between sensory neurons generates chaos:
A possible mechanism for molluscan hunting behavior
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California 92093-0402
and Grupo de Neurocomputacio´n Biológica (GNB), Dpto. de Ingenierı´a Informática,
Universidad Auto´noma de Madrid, 28049 Madrid, Spain

Mikhail I. Rabinovich,b) Allen I. Selverston,c) and Yuri I. Arshavskyd)

Institute for Nonlinear Science, University of California, San Diego, 9500 Gilman Drive, La Jolla,
California 92093-0402

~Received 3 April 2002; accepted 12 June 2002; published 15 August 2002!

In the presence of prey, the marine molluskClione limacinaexhibits search behavior, i.e., circular
motions whose plane and radius change in a chaotic-like manner. We have formulated a dynamical
model of the chaotic hunting behavior ofClione based on physiologicalin vivo and in vitro
experiments. The model includes a description of the action of the cerebral hunting interneuron on
the receptor neurons of the gravity sensory organ, the statocyst. A network of six receptor model
neurons with Lotka–Volterra-type dynamics and nonsymmetric inhibitory interactions has no simple
static attractors that correspond to winner take all phenomena. Instead, the winnerless competition
induced by the hunting neuron displays hyperchaos with two positive Lyapunov exponents. The
origin of the chaos is related to the interaction of two clusters of receptor neurons that are described
with two heteroclinic loops in phase space. We hypothesize that the chaotic activity of the receptor
neurons can drive the complex behavior ofClione observed during hunting. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1498155#
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The marine mollusk Clione is a predator lacking a visual
system. How can it find its prey? Experimental observa-
tions during hunting behavior show that Clione moves
randomly covering the three-dimensional space until it
meets a prey. How does the smallClione nervous system
organize such a search? We hypothesize that the origin o
this hunting behavior is related to the complex„i.e., cha-
otic… dynamics of the mollusk’s orientation sensory neu-
ral network. In the presence of prey, a specialized„hunt-
ing… neuron excites this network that, in the absence of
prey, just sends a message to the motor system about th
position of the body relative to the gravitational field. We
present a model in which, under such excitation, the sen
sory network generates chaotic spatiotemporal patterns
that mimic a random changing of direction in the gravi-
tational field. As a result of receiving these chaotic pat-
terns, the motor systems of Clione can produce the
random-like hunting behavior. To our knowledge, this is
the first report in which a network of competitive neu-
rons with chaotic activity is used to drive a complex mo-
tor behavior.

I. INTRODUCTION

Clione is a marine mollusk that lives in cold waters.
swims by rhythmic movements of a pair of wings1 ~Fig. 1,

a!Electronic mail: pvarona@lyapunov.ucsd.edu
b!Electronic mail: mrabinovich@ucsd.edu
c!Electronic mail: aselverston@ucsd.edu
d!Electronic mail: yarshavs@ucsd.edu
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upper panel!. The direction of swimming is determined b
the bending of the tail.Clione movements are controlled b
the nervous system consisting of five pairs of ganglia.2 The
motor neurons supplying wing and tail muscles are locate
the pedal ganglia.1,2 When swimming,Clione maintains a
vertical, head-up orientation.1,3 Any deviation from the ver-
tical orientation produces a bending of the tail and chan
in wing beating directed to the restoration of the initial p
sition ~Fig. 1, upper panel!. Clione orientation in the gravi-
tational field is determined by signals from the gravitation
sensory organs, the statocysts. After abolition of inputs fr
the statocysts,Clione is not able to sustain any definite or
entation. The statocyst is a sphere that contains a stone
structure, the statolith, which moves inside the sphere un
the effect of gravity~Fig. 2!. The statocyst internal wall is
lined with 9–11 statocyst receptor neurons~SRNs!.4 The
SRNs are mechanoreceptors responding to the pressur
erted by the statolith. The SRNs send axons to the cere
ganglia where they affect the activity of cerebro-pedal int
neurons controlling wing and tail motor neurons.3,5 Intracel-
lular electrophysiological recordings from pairs of SRN
have shown that about 30% of them are coupled with inh
tory nonsymmetrical connections of different strengt3

Thus, we can conclude that the SRNs form a sensory ne
network.

Clione is a predator; it feeds on a small mollus
Limacina helicina.6 During hunting,Clione spatial orienta-
tion changes radically. The hunting behavior seems to be
intrincate search for prey.Clione swims in circles of small
radius. The direction of the tail flexion is not constant duri
© 2002 American Institute of Physics

euse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions



ic

e

n
o
l
x

th
a

em

e
te

ik
u
rt
s
ta
f

t of
ot
the
tor
rst
an-
the
the

nt-
Ns

erate
trol
di-

ted

r-
ons
eu-

es-
prey,
vior

tio

t,

a-
t
f

io

is
e
e of
ddi-
ess

673Chaos, Vol. 12, No. 3, 2002 Winnerless competition generates chaos
hunting but changes in time in an irregular manner, wh
results in unpredictable changes in the plane of looping~Fig.
1, bottom panel!. This search behavior is triggered by th
presence ofLimacina. An important role in the organization
of hunting behavior is played by a pair of large neuro
located in the cerebral ganglia, the cerebral hunting neur
~CHNs!.5,6 The CHNs control the activity of different neura
networks involved in hunting behavior. Particularly, they e
ert an excitatory effect on the SRNs. Thus, the activity of
SRNs is determined not only by external sensory sign
~orientation of the mollusk in the gravity field!, but also by
internal signals coming from the central nervous syst
through the CHNs.

In vitro experiments have shown that application of sp
cific drugs to a preparation of the isolated nervous sys
can produce so-called ‘‘fictive random behavior.’’6 During
‘‘fictive behavior’’ the nervous system generates signals l
those that command the actual hunting movements, altho
the muscles that realize these movements are absent. Pa
larly, during ‘‘fictive hunting behavior’’ the isolated nervou
system can generate chaotic-like motor outputs to
muscles.7 This fact is crucial for the building of a model o

FIG. 1. Upper panel: behavioral characteristics of the postural orienta
and equilibrium control inClione. A1 ,B1 : The most common orientation is
the vertical one, with the head up~B, F, L, and R denote the back, front, lef
and right aspects of the body!. Deviation from this orientation will evoke
correcting motor responses~A2 , A3 , B2 , B3!. Changes in the position of the
tail and in the intensity of wing beating are marked with arrows~modified
from Orlovskyet al.—Ref. 1!. Bottom panel: spontaneous switches in sp
tial orientation of twoCliones~1 and 2! during hunting excited by a contac
with the prey~shown above!. Along the time axis, we indicate the periods o
looping with the tail bent to the front~F!, to the back~B!, to the left~L!, and
to the right ~R!, as well as swimming downwards~D! and horizontally
~direct!; black spots indicate moments of changes in swimming direct
~modified from Panchinet al.—Ref. 3!.
Downloaded 23 Jun 2013 to 131.170.6.51. This article is copyrighted as indicated in the abstract. R
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hunting behavior. Since the chaotic behavior is the resul
the intrinsic activity of the isolated nervous system, it is n
necessary to take into account in the model the motion of
mollusk body and the feedback from the peripheral mo
system. This is correct at least if we wish to answer the fi
fundamental question: what is the origin of the apparent r
domness during the hunting behavior? In this context,
construction of a complete model that takes into account
mechanical part of the problem is the second step.

The main goal of this paper is to show that, during hu
ing, the statocyst receptor neurons excited by the CH
compete among each other and, as a result, they gen
chaotic output signals. These spatiotemporal signals con
motoneurons and can give rise to a chaotic changing of
rection in the gravitational field.

II. ORIGIN OF THE HUNTING DYNAMICS: THE
MODEL

The action of the statolith on the SRNs is represen
schematically in Fig. 2. If no information about a prey~re-
ceived by the chemical receptors! is present, andClione is
not in a ‘‘head up’’ position, a receptor neuron~other than D
‘‘down’’ ! is excited by the statolith. The information gene
ated by this SRN arrives to the corresponding motoneur
that control the tail and wing movements. These moton
rons reestablish the habitual ‘‘head up’’ position ofClione’s
body. However, if the central hunting neuron receives a m
sage from the chemo-sensors about the presence of a
the CHN sends excitatory inputs to the SRNs. The beha

n

n

FIG. 2. Schematic representation of the statolith~STL! motion inside the
statocyst, the gravity sensing organ ofClione. The receptor neurons~de-
noted as UP, DOWN, LEFT, RIGHT, BACK, FRONT! respond to the pres-
sure exerted by the statolith~whose trajectory under the gravitational field
represented by the arrowed line!. In the model explained in the text, th
receptor excited by the statolith at a given time has the highest rat
activity. However, during hunting behavior the receptors receive an a
tional excitation from the hunting neuron, and this triggers the winnerl
competition among the cells.
euse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions
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674 Chaos, Vol. 12, No. 3, 2002 Varona et al.
of Clione in this case does not depend on the direction of
gravitational field. For the purpose of phenomenologi
modeling of statocyst ‘‘hunting’’ dynamics, we can negle
the statolith inertial dynamics as discussed before. Thus
take into account the key point: the position of the mollus
body uniquely depends on the message that SRNs are s
ing to the central neurons that produce the motor comma
As a starting point, we consider a statocyst with a SRN n
work of six neurons under the action of a single CHN ex
tation. Based on the physiological studies3 we suppose that
as a result of the CHN stimulation and when activated,
SRNs ~‘‘Left,’’ ‘‘right,’’ ‘‘back,’’ ‘‘front,’’ ‘‘down,’’ and
‘‘up’’ ! send and receive two inhibitory signals to the rest
the network~see Fig. 3!.

We have chosen the following Lotka–Volterra-type d
namics to describe the activity of the SRN network:

ȧi5aiS s~H,S!2(
j 51

N

r i j aj1Hi~ t !D 1Si~ t !, ~1!

whereai.0 represents the instantaneous spiking rate of
neurons,Hi(t) represents the stimulus from the hunting ne
ron to neuroni , and Si(t) represents the action of the st
tolith on the receptor that is pressing. When there is
stimulus from the hunting neuron (Hi50,; i ) or the statolith
(Si50,; i ), then s(H,S)521 and all neurons are silen
s(H,S)51 when the hunting neuron is active and/or t
statolith is pressing one of the receptors.

The dynamical system~1! in the cases51, H(t)
5S(t)50 is the familiar Lotka–Volterra system.8 The dy-
namics of the system is well known when the matrixr i j is
symmetric (r i j 5r j i ). In this case the autonomous syste
has a global Lyapunov function9,10 and every trajectory ap
proaches one of the numerous possible equilibrium poi
For example, if the inhibitory connections are identical,r i j

5r, r i i 51, this system has only one global attractor, e
ai5a051/@11r(N21)# for r,1, and N attractors: ai

FIG. 3. Inhibitory connections used in the network of six statocyst rece
neurons~thicker traces mean stronger inhibition, see matrix 2!.
Downloaded 23 Jun 2013 to 131.170.6.51. This article is copyrighted as indicated in the abstract. R
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5a051, aj Þ i50 if r.1. No other attractors, e.g., limi
cycles, or strange attractors are present in the system.
situation is much more complex and interesting when
inhibition is nonsymmetric:r i j Þr j i ~see, for example, Fig
3!. A detailed analysis is only possible in the caseN53 ~see
Refs. 11–13!. Whenr i j .1, r j i ,1 there exists a heteroclini
orbit in the phase space of the system that consists of sa
points and one-dimensional separatrices connecting them
some regions of the parameter spacer i j , such heteroclinic
orbit ~or limit cycle in its vicinity! is a global attractor. Sup
pose

r i j 5S 1 a1 b1

b1 1 a1

a3 b3 1
D

and 0,a i,1,b i andk i5(b i21)/(12a i). Then the het-
eroclinic orbit is a global attractor ifk1k2k3.1, and the
nontrivial fixed point A(a1

0 ,a2
0 ,a3

0) is a saddle point. If
k1k2k351, this fixed point becomes neutrally stable a
there exists a family of neutrally stable periodic solutions
the phase space. Whenk1k2k3,1, A becomes a global at
tractor. The heteroclinic orbit exists but loses its stability.
is important to emphasize that in the casek1k2k3.1 a small
perturbation is able to destroy the heteroclinic orbit and th
a stable limit cycle appears in its vicinity. This limit cycle
characterized by a finite time period in contrast with the
finite time of motion along the heteroclinic loop~for ex-
ample, see Ref. 14!.

WhenN.3, even the autonomous system dynamics m
be very complex. In particular, it is easy to imagine th
depending on the distribution of the strength of the inhibito
connections, the system may have several different het
clinic orbits.13 The simplest example is a system that cons
of several independent or weakly connected triplets w
strong interactions between neurons inside of each triple
the one we are using here.

In our caseN56 and one possible set of values for th
connection matrixr i j Þ0 is

r1,35r3,55r5,155,

r4,65r2,45r6,252,
~2!

r1,65r2,15r3,25r4,35r5,45r6,551.5,

r1,15r2,25r3,35r4,45r5,55r6,651.

A reasonable hypothesis about the inhibitory connecti
in the statocyst network that justifies this selection of valu
for r i j is the following. We have already mentioned that on
about 30% of the recorded SRN pairs have inhibitory co
nections. Since it is known that the inhibitory connectio
are nonsymmetrical and have different strength~see Sec. I!,
let us assume that three of them are strong, three of them
moderate, and the rest of the connections are weak. If so
can depict the topology of the connections inside the sta
cyst as in Fig. 3.

r
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FIG. 4. Time series showing the chaotic switching
activitiesai among the six receptor neurons induced
the action of the hunting neuron. Units are dimensio
less in this model. See parameters used in the text.
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III. RESULTS

When there is no activation of the sensory neurons fr
the hunting neuron, the effect of the statolith (SiÞ0) in this
model is to induce a higher rate of activity on one of t
neurons~the neuroni where it rests for a big enoughSi

value!. We assume that this higher rate of activity affects
behavior of the motoneurons to organize the head up p
tion. The other neurons are either silent or have a lower
of activity and we can suppose that they do not influence
posture ofClione.

When the hunting neuron is active a completely differe
behavior arises. We assume that the action of the hun
neuron overrides the effect of the statolith and thusSi

'0,; i . The dynamical system~1! with the above-specified
r i j values~see also Fig. 3! and with a stimuli from the hunt-
Downloaded 23 Jun 2013 to 131.170.6.51. This article is copyrighted as indicated in the abstract. R
e
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t
g

ing neuron given, for example, byHi5~0.730, 0.123, 0.301
0.203, 0.458, 0.903! displays chaotic behavior. An illustra
tion of the chaotic switching among the activities of the r
ceptors can be seen in Fig. 4. Note how the periods in wh
each neuron is active evolve. The neurons keep the sequ
of activation but the interval in which they are active is co
tinuously changing in time. The power spectra for each
the neurons is depicted in Fig. 5.

Two three-dimensional projections of the attractor in t
phase space are shown in Fig. 6. We calculated the Lyapu
exponents from the vector field~1! and found two positive
Lyapunov exponentsl150.016 andl250.004, and one zero
exponent. The evolution in the calculation of the positi
exponents is shown in Fig. 7.

Thus, in the presence of prey the SRN network genera
f
k
.

FIG. 5. Power spectrum for each o
the neurons in the six receptor networ
under the action of the hunting neuron
euse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions
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new information, i.e., chaotic signals with positiv
Kolmogorov–Sinai entropy, which we hypothesize drives
motoneurons and, in fact, organizes the random-like hun
behavior ofClione.

FIG. 6. Activity of the receptor neurons in the the two strongest connec
ity triangles. Upper panel: three-dimensional~a2 , a4 , a6! projection of the
phase space. Lower panel:~a1 , a3 , a5! projection.

FIG. 7. Evolution in the calculation of the two positive Lyapunov expone
in the system of six receptor neurons under the action of the hunting neu
Downloaded 23 Jun 2013 to 131.170.6.51. This article is copyrighted as indicated in the abstract. R
e
g

The origin of the chaoticity in this dynamical system c
be explained in the following manner: Due to the diversity
the strengths of the inhibitory connections~see matrix 2 and
the previous discussion! we may consider the complete ne
work as two weakly coupled triangle networks. Indepe
dently, each of them has a closed heteroclinic orbit that
comes a limit cycle or a strange attractor under the action
a small perturbation~for example, any stimulus11!. As we
tested, the weak interaction of these two winnerless comp
tive triangles~nonlinear oscillators! generates the observe
hyperchaos over a wide region of parametersr i j provided
that the connections between neuronsi and j are strongly
nonreciprocal. For example, in the case (r i j 2r j i 5const), it
is necessary that (r i j 1r j i .2). Otherwise, the heteroclinic
orbits in the individual triangles are not attractors and
dynamics of the system is completely different. However,
analyzed chaotic regime is structurally stable and a spe
set of values for the connection matrix is not crucial.

IV. DISCUSSION

The discussed neural ensemble is an example of n
symmetric recurrent networks, which are typical for ma
basic neural circuits in the brain of vertebrates and inve
brates. The SRN network inClione illustrates an important
ability of nonsymmetric circuits to generate complex sp
tiotemporal patterns that control the behavior as a function
signals sensed from the environment. Such spatiotemp
patterns are not the modes of activity of a neural netw
programmeda priori, but activities that depend on stimuli i
real time.

Neural networks with competitive dynamics are able
generate new information to answer a simple external sig
Such information can be used for the organization of co
plex activity and, in particular, chaotic-like behavior of an
mals as the one displayed byClione during hunting. The
quantitative value of this information isI 5K5(l j , where
K is the Kolmogorov–Sinai entropy of the chaotic time s
ries generated by the dynamical system~I 50.02 in our case!.
In this paper we have used a simple model to describe
activity of the receptor neurons of the gravity sensory org
In spite of its simplicity, the model shows that competitio
among receptors excited by the hunting neuron gener
chaotic activity that can organize the complex motion o
served in this mollusk. Note that in this model the coope
tive dynamics of the neurons are chaotic but they keep
sequence of activation whenai.0. This is an interesting
feature that could be used for the coordination of mo
ments.

In our modeling we neglected two features of the sta
cysts: ~i! the detailed intrinsic dynamics of the individua
SRN neurons, and~ii ! the statolith inertial dynamics. The
critical question is: How do these factors influence the n
work dynamics, e.g., the appearance of chaotic behavio
the SRNs under the excitation of the hunting neuron? As
showed previously, the origin of the chaoticity in the SR
network is related to the on–off switching of the cooperat
dynamics of the receptor neurons, which is guaranteed by
nonsymmetric inhibitory connections among the neurons
cited by the hunting neuron. We have to point out that if t

-

s
n.
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intrinsic dynamics of the elements of the network is mo
complex than the one analyzed here, even a symmetric
work could generate chaotic spatiotemporal patterns. For
ample, a ring of an even number of oscillators with a stro
enough nonlinearity has been reported to generate chaos15,16

The details of the intrinsic neuron dynamics can be i
portant for the calculation of quantitative characteristics
the chaotic time series but, as our preliminary modeling w
Hodgkin–Huxley neurons shows, the qualitative features
the cooperative SRNs dynamics do not change. The rol
the statolith can be crucial if the SRNs are below the spik
threshold~hyperpolarized!. In this case, the excitation of spe
cific SRN neurons~about one to three cells! by the statolith
means the encoding of information about the position of
body of Clione relative to the gravity field. The situatio
becomes absolutely different when all of the SRN neur
are excited by the hunting neuron. The additional excitat
of some neurons by the statolith cannot change the com
tive interaction among SRNs qualitatively because of
nonsymmetric inhibition. Thus, the statolith motion has to
taken into account when determining the detailed bound
of the chaotic region in the control parameter space.

Chaotic dynamics in neural ensembles has been ex
sively discussed recently: from the mere report of its pr
ence in different neural systems~isolated neurons and ne
works!, to the analysis of the origin of the chaos and
functional role within brain function.17–20 Interestingly, cha-
otic activity does not often appear in collective behavior
recurrent networks, and it is often believed either to be
undesirable side effect of the complexity of the cells, o
proof of the complex dynamics of the neurons that shows
in transient behavior and not during normal activity. Here
have reported how a network of competitive neurons or
nizes chaotic activity that could be useful in driving a co
plex behavior.
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