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In the presence of prey, the marine molliGkone limacinaexhibits search behavior, i.e., circular
motions whose plane and radius change in a chaotic-like manner. We have formulated a dynamical
model of the chaotic hunting behavior @flione based on physiologicah vivo and in vitro
experiments. The model includes a description of the action of the cerebral hunting interneuron on
the receptor neurons of the gravity sensory organ, the statocyst. A network of six receptor model
neurons with Lotka—Volterra-type dynamics and nonsymmetric inhibitory interactions has no simple
static attractors that correspond to winner take all phenomena. Instead, the winnerless competition
induced by the hunting neuron displays hyperchaos with two positive Lyapunov exponents. The
origin of the chaos is related to the interaction of two clusters of receptor neurons that are described
with two heteroclinic loops in phase space. We hypothesize that the chaotic activity of the receptor

neurons can drive the complex behavior @fone observed during hunting. @002 American

Institute of Physics.[DOI: 10.1063/1.1498155

The marine mollusk Clione is a predator lacking a visual
system. How can it find its prey? Experimental observa-
tions during hunting behavior show that Clione moves
randomly covering the three-dimensional space until it
meets a prey. How does the smalClione nervous system
organize such a search? We hypothesize that the origin of
this hunting behavior is related to the complex(i.e., cha-
otic) dynamics of the mollusk’s orientation sensory neu-
ral network. In the presence of prey, a specializedhunt-
ing) neuron excites this network that, in the absence of
prey, just sends a message to the motor system about the
position of the body relative to the gravitational field. We
present a model in which, under such excitation, the sen-
sory network generates chaotic spatiotemporal patterns
that mimic a random changing of direction in the gravi-
tational field. As a result of receiving these chaotic pat-
terns, the motor systems ofClione can produce the
random-like hunting behavior. To our knowledge, this is
the first report in which a network of competitive neu-
rons with chaotic activity is used to drive a complex mo-
tor behavior.

I. INTRODUCTION

Clione is a marine mollusk that lives in cold waters. It
swims by rhythmic movements of a pair of wirtg®ig. 1,
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upper pangl The direction of swimming is determined by
the bending of the tailClione movements are controlled by
the nervous system consisting of five pairs of gangiide
motor neurons supplying wing and tail muscles are located in
the pedal ganglid? When swimming,Clione maintains a
vertical, head-up orientatiol® Any deviation from the ver-
tical orientation produces a bending of the tail and changes
in wing beating directed to the restoration of the initial po-
sition (Fig. 1, upper pangl Clione orientation in the gravi-
tational field is determined by signals from the gravitational
sensory organs, the statocysts. After abolition of inputs from
the statocystsClione is not able to sustain any definite ori-
entation. The statocyst is a sphere that contains a stone-like
structure, the statolith, which moves inside the sphere under
the effect of gravity(Fig. 2). The statocyst internal wall is
lined with 9—11 statocyst receptor neurof8RNS.* The
SRNs are mechanoreceptors responding to the pressure ex-
erted by the statolith. The SRNs send axons to the cerebral
ganglia where they affect the activity of cerebro-pedal inter-
neurons controlling wing and tail motor neurotwsintracel-

lular electrophysiological recordings from pairs of SRNs
have shown that about 30% of them are coupled with inhibi-
tory nonsymmetrical connections of different strength.
Thus, we can conclude that the SRNs form a sensory neural
network.

Clione is a predator; it feeds on a small mollusk,
Limacina helicin® During hunting, Clione spatial orienta-
tion changes radically. The hunting behavior seems to be an
intrincate search for preyClione swims in circles of small
radius. The direction of the tail flexion is not constant during

© 2002 American Institute of Physics
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FIG. 2. Schematic representation of the stato{fiTL) motion inside the

@ R B L B _ Direct L Direct statocyst, the gravity sensing organ ©fione The receptor neuron&le-
minutes noted as UP, DOWN, LEFT, RIGHT, BACK, FRONTespond to the pres-
s ] T 3 sure exerted by the statolitivhose trajectory under the gravitational field is

represented by the arrowed ljndn the model explained in the text, the

FIG. 1. Upper panel: behavioral characteristics of the postural orientatiof€CePtor excited by the statolith at a given time has the highest rate of
and equilibrium control irClione. A, ,B, : The most common orientation is activity. However, during hunting behavior the receptors receive an addi-

the vertical one, with the head (B, F, L, and R denote the back, front, left tional excitation from the hunting neuron, and this triggers the winnerless

and right aspects of the bodyDeviation from this orientation will evoke ~COMPetition among the cells.

correcting motor responsé&,, A;, B,, B3). Changes in the position of the

tail and in the intensity of wing beating are marked with arrdwedified ) ) ) ] o

from Orlovskyet al—Ref. 1). Bottom panel: spontaneous switches in spa- hunting behavior. Since the chaotic behavior is the result of

tialhor:]entatio(n rc])f twoCtI)ion}eeS(Il andha during hunting %Xcited rt:y a Con(;actf the intrinsic activity of the isolated nervous system, it is not

with the prey(shown above Along the time axis, we indicate the periods o : ; ;

looping with the tail bent to the frorfE), to the backB), to the left(L), and  NECESSaTY 1o take into account in the model the motion of the

to the right (R), as well as swimming downward®) and horizontally ~ Mollusk bo_dy. and the feedbac!( from _the peripheral mo.tor

(direcd; black spots indicate moments of changes in swimming directionsystem. This is correct at least if we wish to answer the first

(modified from Panchiret al—Ref. 3. fundamental question: what is the origin of the apparent ran-
domness during the hunting behavior? In this context, the

hunting but changes in time in an irregular manner WhiChconstruction of a complete model that takes into account the

results in unpredictable changes in the plane of loofifg. mechanical part of the problem is the second step.

1, bottom panel This search behavior is triggered by the . 'I:[r;]e m:ur; goa: of th|stpaper Is to shovv_ttho?t,bdu:;]ng ganl:I
presence ofimacina An important role in the organization Ing, the statocyst receptor neurons excited by the S

of hunting behavior is played by a pair of large neurons;corm)f‘:’te among each other and, as a result, _they generate
located in the cerebral ganglia, the cerebral hunting neuron haotic output signals. These spatiotemporal signals control

(CHN9).>8 The CHNs control the activity of different neural motpnegrons and .car_1 give_rise to a chaotic changing of di-
networks involved in hunting behavior. Particularly, they ex- rection in the gravitational field.
ert an excitatory effect on the SRNs. Thus, the activity of the
SRNs is determined not only by external sensory signal
(orientation of the mollusk in the gravity figldbut also by
internal signals coming from the central nervous system The action of the statolith on the SRNs is represented
through the CHNSs. schematically in Fig. 2. If no information about a prag-

In vitro experiments have shown that application of spe-ceived by the chemical receptors present, andClione is
cific drugs to a preparation of the isolated nervous systemmot in a “head up” position, a receptor neur¢other than D
can produce so-called “fictive random behavidt.During  “down” ) is excited by the statolith. The information gener-
“fictive behavior” the nervous system generates signals likeated by this SRN arrives to the corresponding motoneurons
those that command the actual hunting movements, althoughat control the tail and wing movements. These motoneu-
the muscles that realize these movements are absent. Particons reestablish the habitual “head up” position @fones
larly, during “fictive hunting behavior” the isolated nervous body. However, if the central hunting neuron receives a mes-
system can generate chaotic-like motor outputs to taikage from the chemo-sensors about the presence of a prey,
muscles’. This fact is crucial for the building of a model of the CHN sends excitatory inputs to the SRNs. The behavior

I. ORIGIN OF THE HUNTING DYNAMICS: THE
ODEL
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=ay=1, a;+=0 if p>1. No other attractors, e.g., limit
cycles, or strange attractors are present in the system. The
situation is much more complex and interesting when the
inhibition is nonsymmetricp;; # p;; (see, for example, Fig.

3). A detailed analysis is only possible in the c&ée 3 (see
Refs. 11-18 Whenp;;>1, p;; <1 there exists a heteroclinic
orbit in the phase space of the system that consists of saddle
points and one-dimensional separatrices connecting them. In
some regions of the parameter spage such heteroclinic
orbit (or limit cycle in its vicinity) is a global attractor. Sup-

pose
1 a B
pij: Bl 1 aq
ag Bz 1

and O<«¢;<1<p; andk;=(B;—1)/(1— «;). Then the het-
eroclinic orbit is a global attractor ik;k,x3>1, and the
FIG. 3. Inhibitory connections used in the network of six statocyst receptomontrivial fixed point A(ag,ag,ag) is a saddle point. If
neurons(thicker traces mean stronger inhibition, see matjix 2 Kk1kok3=1, this fixed point becomes neutrally stable and
there exists a family of neutrally stable periodic solutions in
the phase space. When k,«x3<1, A becomes a global at-
of Clionein this case does not depend on the direction of théractor. The heteroclinic orbit exists but loses its Stablllty It
gravitational field. For the purpose of phenomenologicalis important to emphasize that in the case,x3>1 a small
mode”ng of Statocyst “hunting" dynamiCS, we can neg|ect perturbation is able to deStroy the heteroclinic orbit and then
the statolith inertial dynamics as discussed before. Thus, w@ stable limit cycle appears in its vicinity. This limit cycle is
take into account the key point: the position of the mollusk’scharacterized by a finite time period in contrast with the in-
body uniquely depends on the message that SRNs are serftitite time of motion along the heteroclinic looffor ex-
ing to the central neurons that produce the motor command@mple, see Ref. 24
As a starting point, we consider a statocyst with a SRN net- WhenN>3, even the autonomous system dynamics may
work of six neurons under the action of a single CHN exci-be very complex. In particular, it is easy to imagine that
tation. Based on the physio|ogica| Stu&im suppose that, depending on the distribution of the Strength of the |nh|b|t0ry
as a result of the CHN stimulation and when activated, alconnections, the system may have several different hetero-

SRNs (“Left,” “right,” “back,” “front,” “down,” and clinic orbits!® The simplest example is a system that consists
“up” ) send and receive two inhibitory signals to the rest ofof several independent or weakly connected triplets with
the network(see Fig. 3. strong interactions between neurons inside of each triplet as
We have chosen the following Lotka—Volterra-type dy- the one we are using here. .
namics to describe the activity of the SRN network: In our caseN=6 and one possible set of values for the
N connection matrix;; #0 is

a=ai| o(H,9)— 2 pya;+Hi(t) | +S(v), D) o
=1 P13~ P35=P51= 9,

wherea; >0 represents the instantaneous spiking rate of the

neuronsH;(t) represents the stimulus from the hunting neu- P46~ P24~ P62~ 2,

ron to neuroni, and S(t) represents the action of the sta- 2

tolith on the receptor that is pressing. When there is no P16~ P2,1= P32~ P43~ P54= Pe5= 1.5,

stimulus from the hunting neuromd(=0,Yi) or the statolith

(S=0VYi), theno(H,S)=—1 and all neurons are silent; P1.1=P2,2= P33= Pa4= P55 P6,6= L.
o(H,5) =1 when the hunting neuron is active and/or the
statolith is pressing one of the receptors. Areasonable hypothesis about the inhibitory connections

The dynamical system(1l) in the caseo=1, H(t) in the statocyst network that justifies this selection of values
=5(t)=0 is the familiar Lotka—\Volterra systefnThe dy-  for pij is the following. We have already mentioned that only
namics of the system is well known when the magixis  about 30% of the recorded SRN pairs have inhibitory con-
symmetric p;;=p;;). In this case the autonomous systemnections. Since it is known that the inhibitory connections
has a global Lyapunov functiéf® and every trajectory ap- are nonsymmetrical and have different strengtiee Sec.)
proaches one of the numerous possible equilibrium pointdet us assume that three of them are strong, three of them are
For example, if the inhibitory connections are identiga), = moderate, and the rest of the connections are weak. If so, we
=p, pii=1, this system has only one global attractor, e.g.can depict the topology of the connections inside the stato-
a;=a9p=111+p(N—1)] for p<1, and N attractors: a; cyst as in Fig. 3.
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Ill. RESULTS ing neuron given, for example, y;=(0.730, 0.123, 0.301,

nP'203’ 0.458, 0.903displays chaotic behavior. An illustra-

tion of the chaotic switching among the activities of the re-

model is to induce a higher rate of activity on one of theCeptors can be seen in Fig. 4. Note how the periods in which
neurons(the neuroni where it rests for a big enougs; each neuron is active evolve. The neurons keep the sequence

value. We assume that this higher rate of activity affects the°f activation but the interval in which they are active is con-

behavior of the motoneurons to organize the head up posfinuously changing in time. The power spectra for each of

tion. The other neurons are either silent or have a lower ratie neurons is depicted in Fig. 5.

of activity and we can suppose that they do not influence the =~ Two three-dimensional projections of the attractor in the

posture ofClione. phase space are shown in Fig. 6. We calculated the Lyapunov
When the hunting neuron is active a completely differentexponents from the vector field) and found two positive

behavior arises. We assume that the action of the huntingyapunov exponents;=0.016 anch,=0.004, and one zero

neuron overrides the effect of the statolith and tiys exponent. The evolution in the calculation of the positive

~0,Yi. The dynamical systerfil) with the above-specified exponents is shown in Fig. 7.

pij values(see also Fig. Band with a stimuli from the hunt- Thus, in the presence of prey the SRN network generates

When there is no activation of the sensory neurons fro
the hunting neuron, the effect of the statoli§#£0) in this

P(ag)

0
0.1 0.2 03 04 05 0.1 0.2 0.3 04 05 01 02 03 04 05
v (Hz) v (Hz) FIG. 5. Power spectrum for each of
the neurons in the six receptor network

under the action of the hunting neuron.

0
01 02 03 04 05 01 02 03 04 05 01 02 03 04 05
v (Hz) v (Hz) v (Hz)
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FIG. 6. Activity of the receptor neurons in the the two strongest connectiv-

ity triangles. Upper panel: three-dimensioa}, a,, ag) projection of the
phase space. Lower panédi;, az, as) projection.

Varona et al.

The origin of the chaoticity in this dynamical system can
be explained in the following manner: Due to the diversity in
the strengths of the inhibitory connectiofsee matrix 2 and
the previous discussignwe may consider the complete net-
work as two weakly coupled triangle networks. Indepen-
dently, each of them has a closed heteroclinic orbit that be-
comes a limit cycle or a strange attractor under the action of
a small perturbatior(for example, any stimuldy. As we
tested, the weak interaction of these two winnerless competi-
tive triangles(nonlinear oscillatorsgenerates the observed
hyperchaos over a wide region of parametgysprovided
that the connections between neuranand j are strongly
nonreciprocal. For example, in the cagg; {- p;; =const), it
is necessary thatp{; + p;;>2). Otherwise, the heteroclinic
orbits in the individual triangles are not attractors and the
dynamics of the system is completely different. However, the
analyzed chaotic regime is structurally stable and a specific
set of values for the connection matrix is not crucial.

IV. DISCUSSION

The discussed neural ensemble is an example of non-
symmetric recurrent networks, which are typical for many
basic neural circuits in the brain of vertebrates and inverte-
brates. The SRN network i€lione illustrates an important
ability of nonsymmetric circuits to generate complex spa-
tiotemporal patterns that control the behavior as a function of
signals sensed from the environment. Such spatiotemporal
patterns are not the modes of activity of a neural network
programmedh priori, but activities that depend on stimuli in
real time.

Neural networks with competitive dynamics are able to
generate new information to answer a simple external signal.
Such information can be used for the organization of com-
plex activity and, in particular, chaotic-like behavior of ani-
mals as the one displayed l§lione during hunting. The
quantitative value of this information is=K=X\;, where
K is the Kolmogorov—Sinai entropy of the chaotic time se-
ries generated by the dynamical systém 0.02 in our case

new information, i.e., chaotic signals with positive IN this paper we have used a simple model to describe the

Kolmogorov—Sinai entropy, which we hypothesize drives theactivity of the receptor neurons of the gravity sensory organ.
motoneurons and, in fact, organizes the random-like huntind? SPite of its simplicity, the model shows that competition

behavior ofClione

0.02 T T 'k1
A
0.015 -
0.01 -
0.005 o -
O =
-0.005 ' ' '
40000 80000 120000

time

among receptors excited by the hunting neuron generates
chaotic activity that can organize the complex motion ob-
served in this mollusk. Note that in this model the coopera-
tive dynamics of the neurons are chaotic but they keep the
sequence of activation whem>0. This is an interesting
feature that could be used for the coordination of move-
ments.

In our modeling we neglected two features of the stato-
cysts: (i) the detailed intrinsic dynamics of the individual
SRN neurons, andii) the statolith inertial dynamics. The
critical question is: How do these factors influence the net-
work dynamics, e.g., the appearance of chaotic behavior of
the SRNs under the excitation of the hunting neuron? As we
showed previously, the origin of the chaoticity in the SRN
network is related to the on—off switching of the cooperative
dynamics of the receptor neurons, which is guaranteed by the

FIG. 7. Evolution in the calculation of the two positive Lyapunov exponents n_onsymmetric inhibitory connections among the neurons ex-
in the system of six receptor neurons under the action of the hunting neurorcited by the hunting neuron. We have to point out that if the
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