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In the past decade, the cell-type specific connectivity and activity
of local cortical networks have been characterized experimentally
to some detail. In parallel, modeling has been established as a tool
to relate network structure to activity dynamics. While available
comprehensive connectivity maps (Thomson, West, et al. 2002; Bin-
zegger et al. 2004) have been used in various computational
studies, prominent features of the simulated activity such as the
spontaneous firing rates do not match the experimental findings.
Here, we analyze the properties of these maps to compile an inte-
grated connectivity map, which additionally incorporates insights
on the specific selection of target types. Based on this integrated
map, we build a full-scale spiking network model of the local corti-
cal microcircuit. The simulated spontaneous activity is asynchro-
nous irregular and cell-type specific firing rates are in agreement
with in vivo recordings in awake animals, including the low rate of
layer 2/3 excitatory cells. The interplay of excitation and inhibition
captures the flow of activity through cortical layers after transient
thalamic stimulation. In conclusion, the integration of a large body
of the available connectivity data enables us to expose the dynami-
cal consequences of the cortical microcircuitry.

Keywords: connectivity maps, cortical microcircuit, large-scale models,
layered network, specificity of connections

Introduction

The local cortical network is considered a building block
supporting brain function. Over the last century, the hypothesis
that the interactions of neurons within this microcircuit are gov-
erned by the cell-type specific connectivity has been continu-
ously refined (see, e.g., Douglas and Martin 2007a, 2007b for
reviews), and detailed wiring diagrams of the microcircuit were
assembled. But despite growing data sets on cell-type specific
activity, the relationship of structure and activity within the
local cortical network remains poorly understood. Large-scale
simulations of spiking cortical networks represent a powerful
tool to link the observed cell-type specific structure to the
neuronal activity. Here, we build on the explanatory power of
the balanced random network model (van Vreeswijk and
Sompolinsky 1996; Amit and Brunel 1997) and extend it by
data-based cell-type specific connectivity to a multilayered
model. Thereby, we address the generalization of the balanced
random network to data-based microcircuits and the role of
connectivity structure in shaping the cell-type specific activity.

Experimentally, methodological advances in the last decade
provided new comprehensive data sets on cell-type specific
connectivity structure and activity. First, comprehensive

connectivity maps of the local microcircuit have been as-
sembled: Thomson, West, et al. (2002) used electrophysiologi-
cal recordings to estimate the connection probabilities
between 6 cell types, excitatory and inhibitory cells in layers
2/3, 4, and 5 in slices of the rat and cat neocortex. Shortly
thereafter, Binzegger et al. (2004) collected layer-specific data
on the distribution of boutons and dendrites of in total 13 cell
types from morphological reconstructions of in vivo-labeled
cells from area 17 of the cat. Based on these data, they applied
a modified version of Peters’ rule (Braitenberg and Schüz
1998) to derive the cell-type specific connectivity. Secondly, in
vivo electrophysiology and 2-photon optical imaging revealed
characteristic activity features such as cell-type specific firing
rates during ongoing activity in awake animals: Low pyramidal
neuron firing rates <1 Hz are reported in layer 2/3 (L2/3) as
well as in L6 and highest rates in L5 (e.g. Greenberg et al.
2008; de Kock and Sakmann 2009).

Contemporary network models incorporate multiple cell
types to capture layer-specific connections (e.g. Hill and
Tononi 2005; Traub et al. 2005) and employ data-based con-
nectivity maps (Haeusler and Maass 2007; Heinzle et al. 2007;
Izhikevich and Edelman 2008; Binzegger et al. 2009; Haeusler
et al. 2009; Rasch et al. 2011). The formalisms for describing
the neuronal constituents in these data-based network models
range from single-compartment integrate-and-fire (Heinzle
et al. 2007) to multicompartmental Hodgkin–Huxley model
neurons (Traub et al. 2005), with other studies employing
neuron models of intermediate complexity. The research
questions vary widely and include the functional role of
different cell types in specific tasks (Heinzle et al. 2007), oscil-
latory activity in the cortical microcircuit (Hill and Tononi
2005; Traub et al. 2005), and the role of structure for compu-
tational performance (Haeusler and Maass 2007; Haeusler
et al. 2009). Most works describe the cell-type specific differ-
ences in the activity, but the consistency of the reported cell-
type specific activity and experimental observations,
especially regarding the very low spontaneous activity in L2/
3, is limited. For example, Hill and Tononi (2005) match the
experimentally reported activity closely, but find that “the
model exhibits slightly higher firing rates in the supragranular
layer.” Rasch et al. (2011) describe the need to increase the
strength of excitatory synapses onto inhibitory neurons to stat-
istically match stimulus-evoked responses.

A priori it is unclear whether this mismatch of simulated
and measured activity is due to a misinterpretation of the raw
connectivity data or due to further model assumptions. Since
the studies comprise networks based on point-neuron and on
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multicompartment neuron models, the mismatch in funda-
mental characteristics like stationary firing rates is unlikely to
be caused by a lack in complexity of the network elements,
but rather by the incompleteness of the connectivity map.

We set out to address the problem which connectivity data
and which level of abstraction are adequate to reproduce the
reported differences in cell-type specific activity. To this end,
we use a minimal, but full-scale model of the layered cortical
microcircuit (Fig. 1). The model is a multilaminar extension of
the balanced random network model that distinguishes excit-
atory and inhibitory cell types with a cell-type independent,
sparse, random connectivity. The balance of excitation and
inhibition in these early mono-layered models already ex-
plains the asynchronous irregular (AI) spiking activity and the
large membrane potential fluctuations observed in vivo, but it
remains unexplored in how far the findings generalize to
more realistic network architectures.

Following this balanced random network approach, we
employ spiking leaky integrate-and-fire neurons interacting
with static synapses, whereby the inhibitory interactions are
stronger than excitatory ones to provide a balanced condition.
The structural parameters of our multilaminar extension, that
is, the connectivity and the external inputs are derived from
experimental data. This choice enables us to expose the dyna-
mical consequences of the structure of the local microcircuit
in spiking cortical networks unaffected by additional cell-type
specificity (e.g. Brémaud et al. 2007; Lefort et al. 2009).
The employed connectivity map integrates the 2 major con-
nectivity maps from anatomy (Binzegger et al. 2004) and

electrophysiology (Thomson, West, et al. 2002) and further-
more incorporates insights from photostimulation (Dantzker
and Callaway 2000; Zarrinpar and Callaway 2006) and elec-
tron microscopy (EM, McGuire et al. 1984) studies, which
report the specific selection of interneurons by a subset of in-
terlayer projections.

The modeling approach minimizes the number of par-
ameters of the network model and, in combination with the
algorithmic integration of the connectivity data, avoids any
fitting or tuning of the activity. However, in order to benefit
from the insights of a large number of studies, we are forced
to combine data from some species and areas, focusing on rat
primary visual and somatosensory areas and cat area 17. When
new data become available, the presented method for the inte-
gration of different experimental approaches may be applied
to build more specific models. We find that our integrated con-
nectivity map, with all other parameters constrained as in the
balanced random network model (Brunel 2000), yields cell-
type specific spontaneous and stimulus-evoked activity in
good agreement with experimentally observed activity.

Our study is structured as follows. We first compare the 2
major connectivity maps from anatomy and physiology. The
observed consistencies and differences drive the development
of the methodology to combine the 2 data sets algorithmically
by correcting for the different experimental procedures: We
apply a lateral connectivity model and employ available infor-
mation on the specific selection of target types. Subsequently,
we present the resulting integrated connectivity map and
analyze its main features. Secondly, we use the integrated map
in full-scale spiking network simulations of the cortical micro-
circuit. We analyze the spontaneous activity, the stimulus-
evoked response patterns, and the role of the specific target
type selection for the stability and the propagation of activity.
Finally, we discuss, based on our findings, the operational
principles of the cortical microcircuit and provide an outlook
on the relevance of the presented results for future studies.

Materials and Methods
The network model (Fig. 1) represents 4 layers of cortex, L2/3, L4, L5,
and L6, each consisting of 2 populations of excitatory (e) and inhibi-
tory (i) neurons. Throughout the paper, we use the term “connection”
with reference to populations, defined by the pre- and postsynaptic
layers and neuron types. The term “projection” is used for the 2 con-
nections of a single presynaptic population to both populations of a
target layer. The “connection probability” of a connection defines the
probability that a neuron in the presynaptic population forms at least
1 synapse with a neuron in the postsynaptic population. A “connec-
tivity map” is defined by the 64 connection probabilities between the
8 considered cell types.

Connectivity Data
For the anatomical map (a), Binzegger et al. (2004) use data based on
reconstructed neurons that have been filled in vivo with horseradish
peroxidase and a modified version of Peters’ rule (Braitenberg and
Schüz 1998) based on layer-specific distributions of boutons and den-
drites. They provide the relative number of synapses participating in a
connection and the total absolute number of synapses, depending on
the pre- and postsynaptic type, of area 17 (Supplementary Table 1).
The product of these measures gives the absolute number of synapses
K for any connection. To calculate the corresponding connection
probabilities Ca, we assume that the synapses are randomly distribu-
ted, allowing for multiple contacts between any 2 neurons. With Npre

(post) being the number of neurons in the presynaptic (postsynaptic)

Figure 1. Model definition. Layers 2/3, 4, 5, and 6 are each represented by an
excitatory (triangles) and an inhibitory (circles) population of model neurons. The
number of neurons in the population is chosen according to Binzegger et al. (2004)
based on the countings of Beaulieu and Colonnier (1983) and Gabbott and Somogyi
(1986). Input to the populations is represented by thalamo-cortical input targeting
layers 4 and 6 and other external background input to all populations. Excitatory (black)
and inhibitory (gray) connections with connection probabilities >0.04 are shown. The
model size corresponds to the cortical network under a surface of 1 mm2.
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population, we obtain:

Ca ¼ 1� 1� 1
Npre Npost

� �K

: ð1Þ

The often used expression

Ca ¼ K
Npre Npost

; ð2Þ

is the corresponding first-order Taylor series approximation and valid
for small K/(Npre Npost) (Supplementary Material). The original pub-
lished data constitute our “raw” connectivity map (Binzegger et al.
2004, their Fig. 12). Consistent with other modeling work (Izhikevich
and Edelman 2008), we construct an improved (“modified”) anatom-
ical map by assigning the unassigned symmetric (inhibitory) sy-
napses, originating from a potential underestimation of interneuronal
connectivity, to within-layer projections originating from local inter-
neurons (Binzegger et al. 2004). The derived connection probabilities
are inversely proportional to the considered surface area πr2

(Fig. 2B). This can be easily understood when considering the
approximation eq. (2): The numbers of neurons N and synapses K
increase linearly with the surface area and therefore
Ca / pr2=ðpr2Þ2 ¼ 1=pr2. The product of the connection probability
and the surface area is constant for large areas (Fig. 2B). Hence, we

use the area-corrected connection probability ~Ca ¼ limr!1 Capr2 for
all numerical values of the anatomical map throughout this paper.

The physiological hit rate estimates (Thomson, West, et al. 2002,
their Table 1) provide the physiological map (p). We combine mul-
tiple independently measured hit rates for the same connection by a
weighted sum:

Cp ¼
P

i RiQiP
j Qj

; ð3Þ

where Ri and Qi are the hit rate and the number of tested pairs in the
ith experiment, respectively. In accordance with Haeusler and Maass
(2007), we set the probabilities of the L2/3i to L5e and of the L4i to
L2/3i connections to 0.2. While these data constitute the raw map, we
incorporate additional hit rate estimates (Table 1) to create an im-
proved (“modified”) physiological connectivity map. Thereby, we
combine several studies that are partly based on different recording
and sampling techniques as listed and thoroughly discussed in
Thomson and Lamy (2007). The numerical values of all connectivity
maps are listed in Supplementary Table 1.

We classify all connections into 2 main groups: Recurrent intralayer
or “within-layer” connections and connections between different
layers or “interlayer” connections.

A B

C

D

Figure 2. Properties of connectivity maps. (A) Connection probabilities according to the anatomical (top panel, circles) and physiological connectivity maps (center panel,
squares) and corresponding discrepancy indices (bottom panel, triangles). Both raw (closed markers) and modified (open markers) maps are shown (also provided in
Supplementary Table 1). The data are horizontally arranged according to their classification as within-layer (black) and interlayer (gray) connections. For a given pair of pre- and
postsynaptic layer, the data are arranged from left to right according to connection types: Excitatory to excitatory, excitatory to inhibitory, inhibitory to excitatory, and inhibitory to
inhibitory. L5i to L5e/i outside of the displayed range, see Supplementary Table 1. Error bars are minimal statistical errors (Supplementary Material). (B) Dependence on sampling
radius of the anatomical connection probability (solid: eq. (1), dashed: eq. (2)) and the product of connection probability and area (dotted) in double-logarithmic representation.
(C) Anatomical and physiological recurrence strength. (D) Anatomical and physiological loop strength. Error bars in C and D are based on the minimal statistical error estimates of
connection probabilities using error propagation.
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Lateral Connectivity Model
The experimental methods underlying both the anatomical and phys-
iological connectivity maps provide connection probabilities for
different cell types in different layers, but sample from different
lateral spreads: The anatomical data correspond to a very large corti-
cal surface area, parameterized by the sampling radius ra. This radius
is determined by the reconstructed neuronal morphology and the
applied analysis working on neuronal and synaptic densities, but not
actual neuron morphologies. In contrast, the physiological map is
based on paired recordings in slices and thereby on very local data,
sampling cells with a rather low maximal lateral distance, rp.

To address the differences originating from the 2 experimental ap-
proaches, we use a Gaussian model for describing the lateral connec-
tion probability profile:

CðrÞ ¼ C0 exp
�r2
2s2

� �
; ð4Þ

with r being the lateral distance between neurons. The model par-
ameters C0 and σ specify the peak connection probability (zero lateral
distance) and the lateral spread of connections, respectively. In
this framework, the experimental data correspond to a random
sampling of connections within a cylinder of a fixed sampling
radius and corresponding mean connection probabilities
Ca=p ¼ 1=ðpr2a=pÞ

Ð ra=p
0

Ð 2p
0 CðrÞrdrdw, yielding the 2 equations:

Ca ¼ 2pC0s
2

pr2a
1� exp

�r2a
2s2

� �� �
; ð5Þ

Cp ¼ 2pC0s
2

pr2p
1� exp

�r2p
2s2

 !" #
: ð6Þ

Furthermore, we assume that the underlying lateral connectivity is the
same for both maps, that is, C0 and σ are universal. In this way, we
can utilize the 2 different experimental approaches, yielding Ca and
Cp in equations (5) and (6) with 2 different lateral sampling radii ra
and rp to determine the 2 unknown parameters of the lateral connec-
tivity model C0 and σ. We find:

pr2aCa

1� expð�r2a =2s2Þ ¼
pr2pCp

1� expð�r2p=2s2Þ ;

Table 1
Modified physiological connectivity map

Connection Existing Tested Publication

L2/3e→ L2/3e 65 247 Thomson, West, et al. (2002) (rat)
8 81 Thomson, West, et al. (2002) (cat)
8 32 Bannister and Thomson (2007) (rat)
3 36 Bannister and Thomson (2007) (cat)
48 549 Mason et al. (1991)
32 305 Kapfer et al. (2007)
22 112 Yoshimura et al. (2005)
63 760 Holmgren et al. (2003)
24 110 Ren et al. (2007)

L2/3e→ L2/3i 6 25 Thomson, West, et al. (2002) (cat)
22 107 Thomson, West, et al. (2002) (rat)
151 243 Holmgren et al. (2003)
19 40 Kapfer et al. (2007) (FS)
29 100 Kapfer et al. (2007) (SOM)

L2/3i→ L2/3e 7 25 Thomson, West, et al. (2002) (cat)
17 107 Thomson, West, et al. (2002) (rat)
136 243 Holmgren et al. (2003)
26 39 Kapfer et al. (2007) (FS)
19 39 Kapfer et al. (2007) (SOM)

L2/3i→ L2/3i 2 2 Thomson, West, et al. (2002) (cat)
2 8 Thomson, West, et al. (2002) (rat)

L4e→ L4e 10 139 Bannister and Thomson (2007) (cat)
22 528 Bannister and Thomson (2007) (rat)
4 23 Thomson, West, et al. (2002)

131 655 Feldmeyer et al. (2005)
11 89 Beierlein et al. (2003)
25 234 Maffei et al. (2004)

L4e→ L4i 8 42 Thomson, West, et al. (2002)
3 21 Ali et al. (2007) (nonFS)
11 154 Ali et al. (2007) (FS)
74 172 Beierlein et al. (2003) (FS)
36 63 Beierlein et al. (2003) (LTS)

L4i→ L4e 10 64 Ali et al. (2007) (nonFS)
10 40 Ali et al. (2007) (FS)
83 190 Beierlein et al. (2003) (FS)
26 74 Beierlein et al. (2003) (LTS)
4 42 Thomson, West, et al. (2002)

L4i→ L4i 3 6 Thomson, West, et al. (2002)
L5e→ L5e 15 163 Thomson, West, et al. (2002)

50 500 Markram et al. (1997)
218 1655 Le Be and Markram (2006)
29 206 Le Be and Markram (2006)
148 1233 Wang et al. (2006)
26 260 Wang et al. (2006)
173 1450 Silberberg and Markram (2007)

L5e→ L5i 19 190 Thomson (1997); Thomson and Deuchars
(1997)*

6 79 Thomson et al. (1995)
7 73 Thomson, West, et al. (2002)

L5i→ L5e 9 73 Thomson, West, et al. (2002)
L5i→ L5i 3 5 Thomson, West, et al. (2002)
L6e→ L6e 56 1512 Mercer et al. (2005)

4 204 Beierlein and Connors (2002)
L6e→ L6i 8 38 West et al. (2006) (cat)

5 21 West et al. (2006) (rat)
L2/3e→ L4e 0 25 Thomson, West, et al. (2002) (rat)

0 70 Thomson, West, et al. (2002) (cat)
L2/3e→ L4i 1 12 Thomson, West, et al. (2002) (rat)

7 37 Thomson, West, et al. (2002) (cat)
L2/3i→ L4e 0 29 Thomson, West, et al. (2002) (rat)

0 10 Thomson, West, et al. (2002) (cat)
L2/3e→ L5e 2 2 Thomson, West, et al. (2002) (cat)

16 29 Thomson, West, et al. (2002) (rat)
25 259 Thomson and Bannister (1998)
247 1324 Kampa et al. (2006)

L2/3e→ L6e 1 100 Zarrinpar and Callaway (2006)*
L4e→ L2/3e 10 50 Yoshimura et al. (2005)

7 25 Thomson, West, et al. (2002) (rat)
7 70 Thomson, West, et al. (2002) (cat)
64 640 Feldmeyer et al. (2002, 2005)*

L4e→ L2/3i 1 10 Thomson, West, et al. (2002) (rat)
3 31 Thomson, West, et al. (2002) (cat)

L4i→ L2/3e 6 12 Thomson, West, et al. (2002) (rat)
10 37 Thomson, West, et al. (2002) (cat)

L4e→ L5e 12 86 Feldmeyer et al. (2005)*

Table 1 Continued

Connection Existing Tested Publication

L5e→ L2/3e 1 29 Thomson, West, et al. (2002)
3 259 Thomson and Bannister (1998)

Notes: The map incorporates the hit rate estimates from a number of studies. The selection of
studies is based on the comprehensive review by Thomson and Lamy (2007) including all data
where the hit rate and the number of tested pairs can be extracted such that eq. (3) is
applicable. The table lists, from left to right, the connection, the number of existing connections
(the product of hit rate and number of tested pairs), the number of tested pairs, and the
publication from which the data are extracted. The physiological estimate on the L2/3e to L6e
connection is estimated from Zarrinpar and Callaway (2006), a photostimulation study reporting a
nonzero but low connectivity for this connection. The abbreviations relate to the subtype of
interneurons investigated in the respective publication: Fast-spiking (FS), low-threshold spiking
(LTS), and somatostatine-positive labeled (SOM) interneurons. Furthermore, we use the following
additional data on within-layer connections that are not reported separately: Thomson et al.
(1996); Thomson and Lamy (2007): i to e in L2/3, L4, and L5 21 connected of 93 tested pairs;
Ali et al. (2007): i to e in L2/3, L4, and L5 30 connected of 90 tested pairs, e to i in L2/3, L4,
and L5 21 connected of 48 tested pairs; i to e in L2/3 and L4 9 connected of 69 tested pairs,
and e to i in L2/3 and L4 21 connected of 147 tested pairs. The reported numbers of connected
and tested pairs are uniformly distributed to the reported layers.
*The number of tested pairs is not explicitly given, but estimated from the stated accuracy of the
connection probability.
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which can be solved numerically for σ. For ra � s, we have
expð�r2a =2s2Þ ! 0 and therefore

s ¼ rp �2 ln 1� pr2pCp

~Ca

 !" #�1=2
; ð7Þ

and

C0 ¼
~Ca

2ps2
: ð8Þ

In principle, this approach may be applied to any individual connec-
tion between 2 cell types. However, we determine σ and C0 only for
the global mean connection probabilities of the 2 maps, providing ro-
bustness against uncertainties in the probability estimate of a particu-
lar connection.

The lateral connectivity model is exclusively used to reconcile the
2 connectivity maps; the simulations use a laterally uniform connec-
tivity profile, that is, the connectivity between 2 neurons is only deter-
mined by the cell types and not their location in space. The mean
connection probability of the model Cm depends on the size of the
network (e.g. the surface area,pr2m) and the parameters of the lateral
model, but by applying equations (7) and (8), this can also be ex-
pressed in terms of the experimentally accessible parameters, Cp, rp,
and ~Ca:

Cm ¼ 1
pr2m

ðrm
0

ð2p
0

CðrÞrdrdw

¼ 2
r2m

C0 s
2 1� exp

�r2m
2s2

� �� �

¼
�~Ca

p r2m
1� 1� pr2p �Cp

�~Ca

 !r2m=r
2
p

2
4

3
5;

ð9Þ

where �Cp and �~Ca specify the global means. To arrive at the individual
connection probabilities at a given model size, it is sufficient to multi-
ply a connectivity map by the ratio of Cm and the global mean of the
map �Ca=p.

Connectivity Data Analysis
To compare the connectivity maps, we define 2 measures, the “recur-
rence strength” as the ratio of the mean within-layer and the mean
interlayer connection probabilities and the “loop strength” as the ratio
of the mean connection probability of the cortical feed-forward loop
(Gilbert 1983, L4 to L2/3 to L5 to L6 to L4) and the mean connection
probability of all other interlayer connections. For a fair comparison of
the 2 maps, we base the recurrence strength and the loop strength
measures only on connections for which estimates of within- and in-
terlayer connections are available in both data sets. Therefore, L2/3,
L4, and L5 are included in these specific calculations, but not L6.

A measure with higher resolution is the discrepancy index ζ, which
compares the connection probabilities of individual connections, pro-
vided both connectivity maps assign nonzero probabilities. We first
remove global differences due to lateral sampling by scaling the maps
to the mean model connectivity: C 0a=p  Ca=p � Cm=�Ca=p. The discre-
pancy index is then defined as the ratio of the maximum and the
minimum of the scaled maps:

z ¼ maxðC 0a;C 0pÞ
minðC 0a;C 0pÞ

¼ maxðCa=�Ca;Cp=�CpÞ
minðCa=�Ca;Cp=�CpÞ : ð10Þ

The measure is independent of the model connectivity because Cm

cancels from the expression. The discrepancy index of individual con-
nections is 1 if the estimates only differed due to the lateral sampling,
else it is >1.

Furthermore, to quantify the specificity of connections, we intro-
duce the target specificity

T ¼ Cpost¼e � Cpost¼i

Cpost¼e þ Cpost¼i ð11Þ

as the normalized difference of the connection probabilities constitut-
ing a projection.

Consistent Modifications of Target Specificity
To construct a consistent integrated connectivity map, it is necessary
to modify the target specificity of certain projections (see Results,
Table 2), that is, connection probabilities are modified to meet a
given target specificity value. However, we constrain these modifi-
cations by demanding consistency with the underlying experimental
data. For the anatomical data, this underlying measure is the number
of synapses participating in a projection. For the physiological data,
in several cases, exclusively the connection to 1 of the 2 neuron types
in a target layer has been measured (e.g. for L2/3e to L5 only to
excitatory targets). This measurement is conserved, while the exper-
imentally not quantified connection is estimated (in this example L2/
3e to L5i).

Modifying the connection probabilities while conserving the total
number of synapses of a projection requires a redistribution of sy-
napses across the target neurons (Supplementary Fig. 1). To that end,
we determine from eq. (11) the fraction of synapses targeting excit-
atory neurons Δ as a function of the requested target specificity and
constrained by the total number of synapses and the sizes of the pre-
synaptic and the 2 postsynaptic populations. The main complication
is that target specificity in eq. (11) is defined in terms of connection
probabilities and the relation of connection probability with the
number of synapses is nonlinear, see eq. (1). The exact value of Δ is
found by numerically solving:

2T ¼ 1� 1
Npost¼iNpre

� �ð1�DÞK
ð1þ T Þ

� 1� 1
Npost¼eNpre

� �DK

ð1� T Þ:
ð12Þ

In the first-order Taylor series expansion of C, eq. (2), the relation is
linear and, substituting Cpost¼e ¼ DK=ðNpreNpost¼eÞ and
Cpost¼i ¼ ð1� DÞK=ðNpreNpost¼iÞ in eq. (11), we find:

D ¼ ð1þ T ÞNpost¼e

ð1� T ÞNpost¼i þ ð1þ T ÞNpost¼e :

Table 2
Amendment candidates for target specificity

Projection T Data source

L2/3e to L4 −0.8 Thomson, West, et al. (2002)
L5e to L2/3 −0.4 Dantzker and Callaway (2000)
L2/3e to L6 −0.4 Zarrinpar and Callaway (2006)
L6e to L4 −0.4 McGuire et al. (1984)
L2/3e to L5 0.29 Binzegger et al. (2004)
L4e to L5 0.32 Binzegger et al. (2004)
L2/3i to L5 0.4 Binzegger et al. (2004)
L4i to L2/3 0.23 Binzegger et al. (2004)

Notes: The rows describe the projections whose target specificities are modified during the
compilation of the integrated connectivity map. For each projection, the second column states
the target specificity value T after the amendment, the third the publication on which the
modification is based. The top 4 rows are the candidate projections for a preference of inhibitory
targets. In these cases, no quantitative estimates are known. T= −0.8 is set if the literature
provides a strong indication and T=−0.4 for a comparably weak indication (compare
Supplementary Material). The T-values of the bottom 4 rows are based on the anatomical map
and provide estimates of the previously not measured connections to inhibitory neurons for the
physiological map.
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For a given Δ, we estimate the new connection probabilities by apply-
ing eq. (1) with the number of synapses ΔK and (1− Δ)K for excit-
atory and inhibitory targets, respectively.

The modifications of the physiological data are straightforward
because, in all cases considered here, only one connection probability
is experimentally given so that we can estimate the unknown value
based on the definition of eq. (11):

Cpost¼iðeÞ ¼ 1� T
1þ T

� �þð�Þ1
Cpost¼eðiÞ: ð13Þ

Compilation of the Integrated Connectivity Map
We compile the integrated connectivity map algorithmically. The pro-
cedure requires as input ð~Ca;Cp; rp; rm; and T Þ, that is, the anatomical
and the physiological connectivity maps, the physiological sampling
radius, the model size, and information about desired modifications
of the target specificities. Then, it automatically estimates the mean
model connectivity according to the Gaussian lateral connectivity
model, eq. (9), scales the connectivity maps to match the mean
values, and incorporates the target specificities into both maps. The
target specificities are modified separately for the anatomical and the
physiological map, as explained in the previous section, equations
(12) and (13). After these amendments, the 2 maps are merged by
averaging (see also Supplementary Fig. 2 for a technical description).

Layer-Specific External Input
In our simulations, we study spontaneous and stimulus-evoked
activity. In both cases, the external, or “background”, inputs are acti-
vated. The transient stimulation consists of an increase in the firing
rate of thalamic relay cells. To parameterize the model, we estimate
the number of inputs that a neuron of a given cell type receives from
the experimental data.

We distinguish between 3 types of inputs to the local cortical
network: Thalamic afferents, “gray matter” external inputs, that is, in-
trinsic nonlocal inputs entering the local network through the gray
matter, and other “white matter” external inputs, which include all
inputs not covered by the previous types. The thalamic afferents
(of type X and Y) are included in the anatomical connectivity map
(Binzegger et al. 2004). We extract the gray matter inputs from the
information on bouton distributions in 3-dimensional space described
in Binzegger et al. (2007). The authors find that boutons of all cell
types form multiple clusters and the article provides the lateral dis-
tance between cluster centers and the corresponding somata. We
interpret a cluster to be nonlocal if the lateral distance to the soma is
greater than approximately 0.56 mm (corresponding to a local
network surface area of 1 mm2). By additionally using data on the
relative sizes of different cluster types, we estimate the proportion of
intrinsic gray matter connections that originate outside of the local
network. Thereupon, we use the estimated proportion of gray matter
inputs and the number of local connections in our network to calcu-
late the absolute number of gray matter inputs. In this way, we con-
struct an estimate of the gray matter external inputs which is
consistent with both the axonal structure in Binzegger et al. (2007)
and the structure of our model. The detailed procedure is described
in Supplementary Material (Section 3 and Supplementary Table 2).

The white matter inputs are estimated based on the comparison of
the absolute number of synapses obtained in Binzegger et al. (2004),
which only contains the contributions from local, thalamic, and gray
matter synapses, with those in Beaulieu and Colonnier (1985) con-
taining all synapses. The difference has been termed the “dark
matter” of cortex (Binzegger et al. 2004) and, in case of the excitatory
synapses, is usually interpreted as white matter external inputs. The
explicit numbers are published in Izhikevich and Edelman (2008,
their Fig. 9 of the Supplementary Material) at subcellular resolution.
As our model is based on point neurons, we sum over all contri-
butions to a given cell type and average across the cell types that are

collapsed to a single population. Thereby, our estimates take neuronal
morphology into account.

The resulting counts for the 3 external input types and the total
number of external inputs to the excitatory populations are given in
Table 3. Since long-range projections target excitatory and inhibitory
neurons ( Johnson and Burkhalter 1996; Gonchar and Burkhalter
2003), we choose target specificity values for external inputs to be
comparable with recurrent connections, resulting in similar total
numbers of external inputs to inhibitory neurons (Table 5).

The described procedure yields the reference parameterization of
the cell-type specific external inputs (simulation results shown in
Fig. 6). However, the data basis is limited and the effect of the input
parameterization on the model has to be investigated. Therefore, we
compare our results with various simulations with different back-
ground inputs. At first, the Poissonian background spikes are substi-
tuted by a direct current (DC) input (Fig. 7A). Secondly, the firing rate
per background synapse is modified (compare Fig. 8). Thirdly, we
investigate the role of different numbers of input synapses per
neuron. To this end, we compare our reference with a layer-
independent parameterization where the number of inputs to each
layer is identical (Table 5 and Fig. 7B). In addition, we conduct a
series of 100 simulations where we choose the inputs to our simu-
lation at random within specific intervals (Fig. 7C): For each layer
(e.g. L2/3), we first determine the number of inputs to the excitatory
population by randomly choosing a number from the range between
the value of the reference and the layer-independent parameterization
(for L2/3e between 1600 and 2000, e.g. 1870 is drawn). Subsequently,
the number of inputs to the respective inhibitory population is
chosen conditional on the previous drawing such that the target
specificity of the external input to a given layer is between 0 and 0.1
(for the above L2/3 example, this would imply a number between the
value for L2/3e, 1870 and the value corresponding to a target speci-
ficity of 0.1, 1530, e.g., 1610 is drawn). Due to the higher number of
inputs to L6e, we allow for a wider range of target specificity values
and the input to L6i is selected to realize a target specificity between
0 and 0.2.

To simulate stimulus-evoked activity, we explicitly model the thal-
amic input to L4 and L6 by a thalamic population of 902 neurons
(Peters and Payne 1993). These relay cells emit Poissonian spike
trains at a given rate in some prescribed time interval and are ran-
domly connected to the cortex with the cell-type specific connection
probabilities according to Binzegger et al. (2004); see Table 5. As the
number of thalamic inputs is also included in the background input,
this set-up corresponds to an increase in thalamic firing rates. Here,
we present results based on a firing rate increase of 15 Hz that lasts
10 ms.

Network Simulations
The simulations are full scale in the sense that they comprise the
same number of neurons and synapses as found in the local cortical
microcircuit where locality is defined by the average lateral range of
local connectivity (Fig. 3). Correspondingly, the model consists of
about 80 000 neurons and 0.3 billion synapses. The network is
defined by 8 neuronal populations representing the excitatory and
inhibitory cells in L2/3, L4, L5, and L6. The populations consist of

Table 3
Layer-specific external inputs

External inputs L2/3 L4 L5 L6

Thalamic 0 93 0 47
Gray matter 534 353 389 79
Other white matter 1072 1665 1609 2790
Total 1606 2111 1997 2915

Notes: From top to bottom, the estimated numbers of external inputs per neuron are shown for
excitatory neurons in layers 2/3, 4, 5, and 6 for the 3 distinguished input types: Thalamic, gray
matter, and other white matter inputs. The total number of external inputs is rounded for
simulations (compare Table 4).
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current-based leaky integrate-and-fire model neurons with exponen-
tial synaptic currents and are randomly connected with connection
probabilities according to the integrated connectivity map we derive
in this article. Every population receives Poissonian background spike
trains (Amit and Brunel 1997; Brunel 2000); the firing rates of these
inputs are determined by the number of external inputs a neuron in a
particular population receives and the background spike rate contrib-
uted by each synapse. Synaptic strengths and synaptic time constants
of all connections are chosen such that an average excitatory postsyn-
aptic potential has an amplitude of 0.15 mV with a rise time of 1.6 ms
and a width of 8.8 ms mimicking the in vivo situation (Fetz et al.
1991). Inhibitory postsynaptic potentials are negative and increased
by a factor g compared with the excitatory ones. The synaptic
strengths of the excitatory to excitatory connection from L4 to L2/3
are doubled as the data basis for these connections is not fully con-
clusive (Supplementary Fig. 7). Delays in the network are chosen in-
dependent of the layer, with excitatory delays being on average
around twice as long as inhibitory delays (based on differences in
conduction delays discussed in Thomson and Bannister (2003)), but
the exact ratio is uncritical. To introduce heterogeneity into the
network, we draw the synaptic strengths and delays from Gaussian
distributions (prohibiting a change of sign of the strengths and con-
stricting delays to be positive and multiples of the computation step
size). We simulated various settings of the synaptic parameters
(strengths and delays) without striking impact on the results. The
network structure and a complete list of parameters as well as their
values in the reference network model are systematically described
according to Nordlie et al. (2009) in Tables 4 and 5.

To instantiate the network model, we randomly draw for every
synapse the pre- and the postsynaptic neuron. In contrast to the often

used convergent and divergent connectivity schemes (Eppler et al.
2009), this procedure results in binomially distributed numbers of in-
coming and outgoing synapses. In practice, we could first calculate
the total number of synapses forming a connection by inverting
eq. (1) and then successively create the synapses. In a distributed
simulation set-up, however, this procedure is inefficient because the
neurons are distributed over multiple processes. Although a synapse
is only created if the postsynaptic neuron is local to the process (Mor-
rison et al. 2005), the full algorithm would have to be carried out on
each process. We solve this problem by calculating a priori how many
synapses will be created locally on each process, exploiting that the
distribution of synapses over processes is multinomial. Subsequently,
we apply the serial algorithm on every machine to the local synapses
only: The presynaptic neuron is drawn from all neurons in the presyn-
aptic population and the postsynaptic cell on a given process is
drawn only from the neurons located on this process (compare Sup-
plementary Fig. 6). While the first step is serial, but efficient for the
number of processes we typically employ, the second step is fully par-
allelized. The procedure is detailed in the Supplementary Material.

All simulations are carried out with the NEST simulation tool (Ge-
waltig and Diesmann 2007) using a grid constrained solver and a
computation step size h = 0.1 ms on a compute cluster with 24 nodes
each equipped with 2 quad core AMD Opteron 2834 processors and
interconnected by a 24-port Voltaire InfiniBand switch ISR9024D-M.
Forty-eight cores simulate the network of around 80 000 neurons and
0.3 billion synapses in close to real time (Djurfeldt et al. 2010). A

Table 4
Model description after Nordlie et al. (2009)

Model summary

Populations Nine; 8 cortical populations and 1 thalamic population
Topology —

Connectivity Random connections
Neuron model Cortex: Leaky integrate-and-fire, fixed voltage threshold, fixed absolute

refractory period (voltage clamp), thalamus: Fixed-rate Poisson
Synapse model Exponential-shaped postsynaptic currents
Plasticity —

Input Cortex: Independent fixed-rate Poisson spike trains
Measurements Spike activity, membrane potentials

Populations

Type Elements
Cortical network iaf neurons, 8 populations (2 per layer), type specific size N
Th Poisson, 1 population, size Nth

Connectivity

Type Random connections with independently chosen pre- and postsynaptic
neurons;
see Table 5 for probabilities

Weights Fixed, drawn from Gaussian distribution
Delays Fixed, drawn from Gaussian distribution multiples of computation stepsize

Neuron and synapse model

Name iaf neuron
Type Leaky integrate-and-fire, exponential-shaped synaptic current inputs

Subthreshold
dynamics

dV
dt
¼ � V

tm
þ IðtÞ

Cm
if ðt . t� þ tref Þ

V(t) = Vreset else

IsynðtÞ ¼ we�t=tsyn

Spiking If Vðt�Þ , u ^ VðtþÞ � u
1. set t* = t, 2. emit spike with time stamp t*

Input

Type Description
Background Independent Poisson spikes to iaf neurons (Table 5)

Measurements

Spiking activity and membrane potentials from a subset of neurons in every population

Figure 3. Lateral connectivity model. (A) Two-dimensional Gaussian with 2 cylinders
indicating the lateral sampling of the anatomical (gray outer cylinder) and the
physiological (black inner cylinder) experiments. (B) Estimated peak amplitude C0 and
(C) lateral spread σ of the connectivity model based on mean connectivity of the
anatomical and physiological raw and modified maps. (D) Average connection
probability (black line, based on eq. (9)) and (E) average synaptic convergence (black
line, average number of synaptic inputs per neuron derived from the connection
probability and the number of neurons using eq. (1)) of the layered network model as
a function of the network size expressed in number of neurons. The dashed horizontal
line marks 85% of the maximal synaptic convergence in the local network. Black
diamonds show the data used in our simulations, further markers indicate other
published cortical network models: Haeusler and Maass (2007) (light gray square),
Izhikevich (2006) (light gray triangle), Izhikevich et al. (2004) (light gray circle,
embedded local network is defined by the area receiving connections from a single
long-range axon), Lundqvist et al. (2006); Djurfeldt et al. (2008) (light gray diamond,
local network represented by one hypercolumn), Vogels and Abbott (2005); Vogels
et al. (2005) (dark gray circle), Sussillo et al. (2007) (dark gray square), Brunel (2000)
(dark gray triangle), Kriener et al. (2008) (dark gray diamond), Kumar et al. (2008)
(black circles), and Morrison et al. (2007) (black square).
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reference implementation of the wiring algorithm (RandomPopula-
tionConnect) and an implementation of the network simulation will
be made available with the next release of the NEST simulation tool
(http://www.nest-initiative.org).

Results

Comparison of Connectivity Maps
The anatomical and the physiological connectivity maps are
shown in Figure 2. We observe that the estimated absolute
connection probabilities are different for both maps, but
exhibit a similar structure: Recurrent within-layer connections
are all nonzero with the densest connectivity in superficial
layers. Interlayer connections can be subdivided into connec-
tions with probabilities of the same order of magnitude as
within-layer connections and those with values close or equal
to zero. These observations hold for the raw data and for the
modified data.

We quantify the relation of the 2 connectivity maps by
several measures (as defined in section Materials and
Methods). First, we determine the relative connectivity of
subsets of the connectivity maps: The recurrence strength
compares within-layer and interlayer connectivity (Fig. 2C)
and the loop strength the average connectivity of the feed-
forward loop and other interlayer connections (Fig. 2D). We
find that both measures are statistically indistinguishable for
the 2 maps (z-test, P > 0.1 and 0.05, respectively), highlighting
the overall similarity of both maps. Secondly, we compare the
individual connections by the discrepancy index (Fig. 2A,
lower panel). This measure reveals that particularly interlayer
connections are partly not consistently estimated: 50% of the
discrepancy indices of interlayer connections are large (L2/3e
to L4i, L5e to L2/3e, L4i to L2/3e, and L4i to L2/3i) for both
the raw and the modified data.

In the following, we first exploit the overall similarity of
relative connectivity measures between the 2 maps in a lateral
connectivity model and then address the different estimates of
a subset of interlayer connections by means of the target
specificity of connections.

Lateral Connectivity
We hypothesize that the differences in the mean connection
probabilities are explained by differences in the methodology
applied to obtain the connectivity maps: Physiological record-
ings in slices are usually restricted to a maximal lateral dis-
tance of the somata of around 100 μm (as reported in
Thomson and Morris (2002) for the raw physiological map).
The anatomical data, in contrast, are based on reconstructed
axons and dendrites, with axons extending up to 4 mm (Bin-
zegger et al. 2007), in general beyond 1 mm. When providing
absolute numbers, Binzegger et al. (2004) refer to the surface
area of cat area 17 (399 mm2).

We exploit the information on the experimental methods to
account for the different experimental sampling radii (for
details see Materials and Methods) by evaluation of a Gaus-
sian lateral connectivity model (eq. 4) similar to the one by
Hellwig (2000) and Buzas et al. (2006). We assume the model
to reflect the in vivo connectivity structure and the experimen-
tal connectivity maps to characterize samples of this structure.
The anatomical measurement is interpreted as an uncon-
strained sampling over the complete lateral connectivity

structure, whereas the physiological measurement corre-
sponds to a local measure sampling from the center region of
the Gaussian.

The model’s 2 parameters, peak connection probability,
and lateral spread are determined based on the mean connec-
tion probabilities of the 2 maps and the physiological
sampling radius (equations 7 and 8). Figure 3A illustrates the
approach to determine the 2 parameters by the 2 independent
measurements of mean values and Figure 3B,C provides the
estimates based on the raw and modified connectivity maps,
respectively. One experimental parameter, the physiological
sampling radius, is only reliably provided for the raw data set
(100 μm, Thomson and Morris 2002). We apply the same
value to the modified physiological map. A sensitivity analysis
(data not shown) shows that a larger sampling radius implies
an increased zero-distance connection probability and a de-
creased lateral spread and that the effect is small: The esti-
mates of both parameters change by <8% when altering the
sampling radius from 50 to 150 μm.

The estimated lateral spread is consistent with data from rat
and cat primary visual cortex, which were obtained based on
morphological reconstructions and the potential connectivity
method: Hellwig (2000, his Fig. 7), reports a lateral spread of
150–310 μm, and Stepanyants et al. (2008, their Fig. 7), find a
spread of around 200 μm of main projections in input and
output maps. Also, the overall connectivity level of 0.138 for
nearby neurons with a distance of 100 μm is in good agree-
ment with the extensively used estimate of 0.1 provided by
Braitenberg and Schüz (1998). These consistencies indicate
that our underlying assumption—anatomical and physiologi-
cal experiments sample independently from the same lateral
connectivity profile—is valid.

Average Model Connectivity
We use the Gaussian lateral connectivity model exclusively to
determine the average connection probability of a pair of
neurons at a given network size (Fig. 3D). Thus, the network
model consists of randomly connected populations; the
neurons do not exhibit a lateral connectivity profile. The con-
nectivity of small networks (up to about 7000 neurons) is
largely determined by the physiological connectivity and that
of large networks (above 100 000 neurons) by the anatomical
connection probability (decaying quadratically, see Fig. 2B).
For intermediate network sizes, eq. (9) interpolates between
these 2 extremes according to the Gaussian lateral connec-
tivity profile. Figure 3E shows the average synaptic conver-
gence as a function of the network size. It reveals, that only
sufficiently large network models represent the majority of
local synapses: For example, a network of around 80 000
neurons comprises >85% of all local synapses. In contrast, a
network consisting of 10 000 neurons represents only around
20% of the local connectivity. Therefore, we select our
network to correspond to 1 mm2 of cortical surface (77 169
neurons).

According to our analysis, the maximal average number of
local synapses per neuron is about 5000. This number is con-
sistent with the data of Binzegger et al. (2004, see their Fig.
11A). In Figure 3, we also display the connectivities and con-
vergences of a selection of other modeling studies on the
local cortical network (some data representing local networks
embedded in larger networks). Independent of the model
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size, most studies use a connection probability of around 0.1,
which is largely consistent with our results. Only for large net-
works of 50 000 neurons and more, this connection prob-
ability is above our estimate. Two studies use a significantly
smaller connection probability of 0.02, arguing that this value
interpolates between high local and low distal connectivity.
Although the absolute number differs from our estimate, the
reasoning is the same as for our model. In all but 2 cases
(Morrison et al. 2007; Kumar et al. 2008), the models’ conver-
gence is <20% of the anatomical estimate.

Randomness and Specificity
A central assumption of the anatomical connectivity map is
randomness, that is, synapses are established independent of
the excitatory or inhibitory nature of the pre- and postsynaptic
cells. Nevertheless, the target specificity estimates of the ana-
tomical connectivity map (circles in Fig. 4) are >0.2, reflecting
a preferential selection of excitatory targets. The bias is intro-
duced by the application of the modified version of Peters’
rule: Binzegger et al. (2004) assume that synaptic densities on
dendrites are independent of the cell type and apply this rule
to bouton densities and dendritic lengths. The bias to positive
target specificity estimates indicates that dendrites of excit-
atory cells in their data set are generally longer than that of
inhibitory cells. Furthermore, some projections exhibit very
high values >0.5, because primarily the dendrites of excitatory
cells reach into the cloud of presynaptic axonal elements.
This rule differs from the formulation by Braitenberg and
Schüz (1998), which considers selection of targets on the
level of cells not dendrites and by definition yields target
specificity values of 0.

The target specificity values of the physiological map con-
trast with the anatomical findings. Most values (squares in
Fig. 4) are consistently smaller and show larger variability
than the anatomical estimates. Excitatory within-layer connec-
tions of the raw connectivity map based on Thomson, West,
et al. 2002 univocally select their targets independent of the
postsynaptic type. Overall, physiological within-layer connec-
tions are biased toward negative target specificity values.
Several projections in the physiological map, however,
connect exclusively to excitatory neurons due to incomplete
sampling of or missing experiments on inhibitory subtypes.
This highlights that a straightforward application of the cur-
rently available physiological connectivity map in simulations
results in artifacts due to missing feed-forward inhibition.

The projection from L2/3e to L4 specifically targets inhibi-
tory, but not excitatory cells (see also Table 1). This specific
target type selection cannot be explained by differences in
the overlap of the excitatory and inhibitory dendrites with the
excitatory axons and is therefore beyond the scope of anatom-
ical studies relying on the statistics of neuronal morphology,
such as Peters’ rule (Binzegger et al. 2004), and also potential
connectivity (Stepanyants et al. 2008). The specificity in the
interlayer circuitry explains the large discrepancy index of this
projection (Fig. 2A).

We identify 3 additional candidates of specific target type
selection: L5e to L2/3, L2/3e to L6, and L6e to L4. The projec-
tion from L5e to L2/3 is identified based on a photostimula-
tion study that revealed preferred targeting of interneurons
(Dantzker and Callaway 2000). In addition, a much higher
connectivity has been observed in paired recordings for the

connection from L2/3e to L5e than for the inverse connection
(Thomson and Bannister 1998; Thomson, West, et al. 2002;
Lefort et al. 2009), although axonal arborizations of L5e
neurons exist in L2/3 that give rise to a comparable anatom-
ical estimate of the connectivity (e.g. Martin and Whitteridge
1984; Binzegger et al. 2004; Stepanyants et al. 2009). Further-
more, the projection from L2/3e to L6 is identified based on
photostimulation experiments (Zarrinpar and Callaway 2006)
and that from L6e to L4 based on an EM study (McGuire et al.
1984). The Supplementary Material, Section 2, contains a de-
tailed discussion regarding the selection of these candidates
exhibiting specific target type selection. Evidence is not based
on comprehensive sampling in paired recordings and remains
indicative. We tentatively assume for these projections a lower
specificity than for the L2/3e to L4 projection (triangles in
Fig. 4). Two of these projections (L2/3e to L4 and L5e to L2/
3) are inverse to the feed-forward loop. Thomson and Morris
(2002) and Thomson, Bannister, et al. (2002) argued that the
specific target type selection plays a distinct functional role,
because the inhibition-specific (“i-specific”) feedback projec-
tions may prevent reverberant excitation involving L2/3, L4,
and L5 and enhance the propagation of synchronous thalamic
inputs.

Figure 4. Anatomical (circles) and physiological (squares) estimates of target
specificity based on the modified connectivity maps. +1(−1) indicates exclusive
selection of excitatory (inhibitory) targets, and 0 random selection. Triangles show
additional candidates of inhibition-specific projections discovered in photostimulation
or EM studies. The shaded area highlights the estimates of all within-layer projections
and the interlayer projections with target specificity values between 0 and 0.5
(“nonspecific” interlayer connections). Within these bounds, the anatomical and
physiological estimates are 0.32 ± 0.07 and −0.17 ± 0.28, respectively. The largest
statistically well constrained values from a single laboratory are exhibited by the
projections L2/3e to L2/3, L4e to L4, and L5e to L5 (compare Supplementary Table 1)
of the raw physiological map. The target specificity of these data is −0.01 ± 0.03.
The 4 highlighted data points are candidates of specific target type selection. For
every pair of pre- and postsynaptic layer, the figure shows data for both presynaptic
neuron types (left: Excitatory, right: Inhibitory).
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We utilize the information on i-specific feedback and the
anatomical estimates to remove for some projections the
methodological biases by consistently modifying the respect-
ive target specificities (see Materials and Methods and
Table 2). Thereby, we estimate previously not measured phys-
iological connection probabilities and introduce the specific
selection of targets into the anatomical map. The latter consti-
tutes an effective redistribution of synapses and corresponds
to a refinement of Peter’s rule (Supplementary Fig. 1).

Integrated Connectivity Map
Based on the information gathered in the previous sections,
we now compile an integrated connectivity map. Our
proposed algorithmic compilation method is derived from the
analysis and comparison of the anatomical and physiological
maps. It consists of 4 steps (see Materials and Methods and
Supplementary Fig. 2): The procedure 1) collects the input
parameters, 2) applies the lateral model to account for the
differences in the lateral sampling of the anatomical and phys-
iological experimental methods, 3) corrects for methodologi-
cal shortcomings expressed in the target specificity of
projections (Table 2) by incorporating photostimulation and
EM data, and 4) combines the 2 enhanced connectivity maps.

The resulting connection probabilities are given in Table 5
(compare also upper panel of Supplementary Fig. 3 for a rep-
resentation equivalent to Fig. 2A). For a consistency check,
we calculate the discrepancy indices based on our integrated
map and the recently published data for excitatory to excit-
atory connections of the mouse C2 barrel column (Lefort et al.
2009). In this comparison, we combine the data of Lefort
et al. (2009) on L2 and L3 to L2/3 and on L5A and L5B to L5
according to eq. (3). The discrepancy indices are low, indicat-
ing a good agreement of the connectivity maps (Supplemen-
tary Fig. 3, center panel). The main outlier is the recurrent
L4e to L4e connection, which exhibits the highest connection
probability in the study of Lefort et al. (2009), but rather low

values in the physiological and particularly the anatomical
map. The target specificity structure of the integrated map
(lower panel of Supplementary Fig. 3) reflects rather random
selection of targets for within-layer projections, whereas inter-
layer projections inherit mostly the properties of the anatom-
ical map, except for the 4 candidate i-specific projections.

The cell-type specific convergences and divergences
(Fig. 5) show that the integrated connectivity map reflects
prominent features of local cortical connectivity: Except for
L5e, convergence is dominated by within-layer connections
(consistent with, e.g. Douglas and Martin 1991, 2004). Fur-
thermore, the strongest interlayer excitatory to excitatory di-
vergences correspond to the feed-forward loop from L4 to L2/3
to L5 to L6 and back to L4 (Gilbert 1983; Gilbert and Wiesel
1983). The excitatory to inhibitory divergence is dominated
by the i-specific feedback connections.

By comparing the average convergence and divergence
with the neuronal densities of the different cell populations
(Supplementary Fig. 4), we find that neurons in the local mi-
crocircuit sample most excitatory inputs from L2/3 and fewest
from L5 and L6. In contrast, local outputs within the microcir-
cuit project preferentially to L5.

External Inputs
The model consists totally of about 217 million excitatory and
82 million inhibitory synapses. The inhibitory synapse count
(64 ± 21 million) is consistent with Beaulieu and Colonnier
(1985), while the number of excitatory synapses is lower than
their estimate (339 ± 43 million), presumably reflecting that a
fraction of all excitatory synapses originates outside of the
local network. The ratio of local synapses (total number of sy-
napses in our network model) and all synapses (according to
the countings of Beaulieu and Colonnier (1985)) is 0.74,
similar to the ratio reported by Binzegger et al. (2004), but
see Stepanyants et al. (2009) for a different approach. The
number can be related to the ratio of total axonal length per

A

B

Figure 5. Cell-type specific convergence (A) and divergence (B) of the integrated connectivity map. The histograms display blocks of data for the 4 different connection types
between excitatory (e) and inhibitory (i) neurons (as indicated). For a neuron in the layer specified on the horizontal axis, the individual bar segments show the absolute number
of synapses the neuron receives from a source layer (convergence) or establishes in a target layer (divergence). Bar segments are arranged according to the physical location of
the layers in the cortex (from top to bottom: L2/3, L4, L5, L6). Hatched bars represent within-layer connections. Lightness of gray increases from superficial to deeper layers.
Gray horizontal lines indicate the convergence and divergence of a balanced random network with the same total number of neurons and synapses as the layered model.
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volume originating from local pyramidal cells, which Schüz
et al. (2006) estimate to be 55–70%. Including the axons from
the inhibitory neurons, the value can be expected to be even
closer to our estimate.

Here, we distinguish between thalamic afferents, gray
matter, and other white matter inputs to the local network
(see Materials and Methods). The resulting total number of ex-
ternal inputs per neuron (Table 3) is lowest in L2/3, inter-
mediate in L4 and L5, and highest in L6. The number of white
matter inputs increases with cortical depth, whereas gray
matter long-range inputs form most synapses on L2/3
neurons and fewest in L6. Given the presently available data,
we cannot exclude that some synapses treated here as the ex-
ternal input actually represent a pathway in the local microcir-
cuit still awaiting comprehensive experimental assessment.

Spontaneous Layer-Specific Activity
Hitherto, we were exclusively concerned with the analysis of
the connectivity structure of the local cortical network and
the compilation of an integrated connectivity map. Equipped
with this, we now turn to full-scale simulations of the local
cortical network (see Materials and Methods and Table 4 for a
complete description of the network model).

The simulated spontaneous spiking activity of all cell types
corresponds, without any additional tuning, to the AI activity
state observed in mono-layered balanced random network
models (Amit and Brunel 1997; Brunel 2000). Figure 6A–D
shows the ongoing spontaneous spiking activity of all popu-
lations and the corresponding firing rates, irregularity, and
synchrony. The activity varies significantly across cell types.
L2/3e and L6e exhibit the lowest firing rates with a mean

below or close to 1 Hz. L4e cells fire more rapidly at around 4
Hz and L5e cells at more than 7 Hz. In all layers, inhibitory
firing exceeds excitatory rates. The boxplots furthermore visu-
alize that the firing rates of single neurons can substantially
differ. For instance in L2/3e, several neurons fire at more than
5 Hz, while the majority of neurons is rather quiescent emit-
ting less than one spike per second. This effect is due to the
random connectivity which results in binomially distributed
convergences.

Single-unit activity is irregular; the mean of the single unit
coefficients of variation of the interspike intervals is >0.8. The
population activity is largely asynchronous, but exhibits fast
oscillations with low amplitude similar to balanced random
networks (e.g. Brunel 2000). We assess the synchrony of
every population’s multiunit activity by the variability of the
spike count histogram (Fig. 6D). At the given firing rates and
bin width, the synchrony of the spiking activity is highest in
L5e and lowest in L6. The synchrony of the membrane poten-
tial traces (Golomb 2007, Supplementary Fig. 8) confirms that
the activity is asynchronous.

Dependence on External Inputs
The observed activity features of the network are robust to
changes in the specific structure of the external inputs: Repla-
cing the Poissonian background by a constant DC current to
all neurons (Fig. 7A) or applying layer-independent Poisso-
nian background inputs (Fig. 7B) yields similar results. In the
latter case, the strongly reduced number of inputs to L6e
results in a zero L6e firing rate, indicating that the layer-
specific input structure (Table 3) is realistic.

Table 5
Parameter specification

Populations and inputs

Name L2/3e L2/3i L4e L4i L5e L5i L6e L6i Th
Population size, N 20 683 5834 21 915 5479 4850 1065 14 395 2948 902
External inputs, kext (reference) 1600 1500 2100 1900 2000 1900 2900 2100 n/a
External inputs, kext (layer independent) 2000 1850 2000 1850 2000 1850 2000 1850 n/a
Background rate, νbg 8 Hz

Connectivity

from
L2/3e L2/3i L4e L4i L5e L5i L6e L6i Th

to L2/3e 0.101 0.169 0.044 0.082 0.032 0.0 0.008 0.0 0.0
L2/3i 0.135 0.137 0.032 0.052 0.075 0.0 0.004 0.0 0.0
L4e 0.008 0.006 0.050 0.135 0.007 0.0003 0.045 0.0 0.0983
L4i 0.069 0.003 0.079 0.160 0.003 0.0 0.106 0.0 0.0619
L5e 0.100 0.062 0.051 0.006 0.083 0.373 0.020 0.0 0.0
L5i 0.055 0.027 0.026 0.002 0.060 0.316 0.009 0.0 0.0
L6e 0.016 0.007 0.021 0.017 0.057 0.020 0.040 0.225 0.0512
L6i 0.036 0.001 0.003 0.001 0.028 0.008 0.066 0.144 0.0196

Name Value Description
w± δw 87.8 ± 8.8 pA Excitatory synaptic strengths
g –4 Relative inhibitory synaptic strength
de ± δde 1.5 ± 0.75 ms Excitatory synaptic transmission delays
di ± δdi 0.8 ± 0.4 ms Inhibitory synaptic transmission delays

Neuron model

Name Value Description
τm 10 ms Membrane time constant
τref 2 ms Absolute refractory period
τsyn 0.5 ms Postsynaptic current time constant
Cm 250 pF Membrane capacity
Vreset −65 mV Reset potential
θ −50 mV Fixed firing threshold
νth 15 Hz Thalamic firing rate during input period

The categories refer to the model description in Table 4.
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We additionally simulate 100 trials with varying numbers
of external inputs (randomly drawn constrained by the refer-
ence and the layer-independent parameterization, see
Materials and Methods), further confirming the previous find-
ings. Figure 7C shows the histograms of the population firing
rates in the different layers for excitatory and inhibitory cells.
The distribution of excitatory population firing rates in L2/3
and L6 are persistently low. L5e activity exhibits the highest
firing rates and also the largest variability. L4e and the inhibi-
tory populations vary only slightly with mean firing rates
similar to the reference parameterization (Fig. 6B). The differ-
ent applied inputs represent a robustness check of the
network dynamics against uncertainties in the data and can
also be interpreted as different situations in the awake state,
for example, biased toward top-down versus bottom-up
inputs. Apparently, the local microcircuitry reconfigures the
firing rate distributions for different input situations while
conserving general features like the low rate regime in L2/3e
and L6e. In 85% of the simulations, L2/3e and L6e fire at a
lower rate than L4e and simultaneously L5e exhibits the
highest firing rate. We also observe the inhibitory firing rate
within a given layer to be higher than the excitatory rate in
83% of all cases.

Comparison to In Vivo Activity
Table 6 contrasts the experimentally observed firing rates in
individual layers with our simulation results. Experimentally,
the spontaneous activity of L2/3e pyramids has been exten-
sively studied. Consistent over species, areas, and behavioral
states, the firing rate is <1 Hz, in good quantitative agreement
with the model. The L6e firing rates are similar to the model
values, although the experimental data base is more sparse.
The L4e and L5e firing rates of rat primary somatosensory
cortex are lower than in the model, and L5e consistently
shows the highest spontaneous activity, also in rat auditory
cortex. The activity of cortico-tectal cells in L5 (and L4) of
various cortices in the rabbit is slightly higher.

Several studies provide data on putative interneurons
(Swadlow 1988, 1989, 1991, 1994; Fujisawa et al. 2008; Sakata
and Harris 2009), demonstrating that inhibitory activity is ty-
pically higher than that of excitatory cells. Furthermore, the
statistics of single-neuron spike trains in our model show
great variations due to the random connectivity, which also
imposes a variance in the convergence of inputs. Therefore,
“neighboring” neurons, that is, neurons with statistically iden-
tical connectivity, can exhibit very different firing rates, con-
sistent with experimental observations (e.g. Gilbert 1977;
Swadlow 1988; Heimel et al. 2005; de Kock and Sakmann
2009).

In addition to the data presented in Table 6, Fujisawa et al.
(2008) report medial prefrontal cortex firing rates around 1.5
Hz in L2/3e and around 3 Hz in L5e for animals performing a
working memory task in a maze. They estimate, however,
that these numbers exhibit a bias to higher rates due to
sampling of active cells. For 2 additional species, we only
found data in the anesthetized condition. In the primary
visual cortex of the gray squirrel, Heimel et al. (2005) obtain
firing rates comparable with the numbers for rat S1, however,
compared with the awake state, with lower L4e and L5e rates
of 0.35 and 1.7 Hz, respectively. A similar pattern is reported
for the spontaneous rates of cat area 17 (Gilbert 1977): L2/3e
and L6e are largely quiescent and also L4e exhibits low rates.
Increased rates are observed at the border of L3 and L4 and in
particular for L5e.

Stability of the Network Activity
The low-rate AI firing regime has been considered to be the
ground state of cortical activity (Amit and Brunel 1997). For
the balanced random network model, the AI state requires a
sufficient balance of excitation and inhibition (relative
strength of inhibitory synapses >4) and sufficiently high back-
ground rates (Brunel 2000). Figure 8 shows that the proper-
ties of the layered network are consistent with the
mono-layered model: The activity is AI for background rates
>5 Hz and relative inhibitory synaptic strengths >3–5 for the
shown range of inputs. Increasing the background rate predo-
minantly affects the activity of L4e, while an increase of the
relative inhibitory synaptic strength decreases mostly the
activity of L5e cells. Consequently, the order of excitatory
firing rates (smallest in L2/3 and L6, highest in L5) is largely
preserved except for large relative inhibitory synaptic
strengths (combined with large background rates).

Role of I-Specific Projections for the Stability of the AI State
In the following, we conduct a series of simulation exper-
iments to investigate how the specific selection of inhibitory

A B

C

D

Figure 6. Simulated spontaneous cell-type specific activity. (A) Raster plot of spiking
activity recorded for 400 ms of biological time of layers 2/3, 4, 5, and 6 (from top to
bottom; black: Excitatory, gray: Inhibitory). Relative number of displayed spike trains
corresponds to the relative number of neurons in the network (total of 1862 shown).
(B–D) Statistics of the spiking activity of all 8 populations in the network based on
1000 spike trains recorded for 60 s (B and C) and 5 s (D) for every population.
(B) Boxplot (Tukey 1977) of single-unit firing rates. Crosses show outliers, stars
indicate the mean firing rate of the population. (C) Irregularity of single-unit spike
trains quantified by the coefficient of variation of the interspike intervals.
(D) Synchrony of multiunit spiking activity quantified by the variance of the spike
count histogram (bin width 3 ms) divided by its mean.

796 Relating Structure and Activity of the Cortical Microcircuit • Potjans and Diesmann



targets affects the spontaneous activity. Therefore, we alter
the target type selection of the i-specific projections (upper 4
rows in Table 2). This allows us to investigate the dynamics of
our network model assuming that these projections select
target cells at random or with a bias to selecting excitatory
cells as predicted by the anatomical map (Fig. 4). Technically,
we compile for each parameter set a new connectivity map
algorithmically, that is, solely the target specificity input for
the algorithmic compilation procedure is changed so that the
experimental data are fully respected. The resulting connec-
tion probabilities for the projections from L2/3e to L4 and L5e
to L2/3 are shown in Supplementary Table 3.

Figure 9A shows that the target specificity of the i-specific
projections has a strong impact on the activity: The firing
rates and the synchrony of the excitatory populations increase
exponentially when the connectivity of the 4 candidate pro-
jections approaches random connectivity (target specificity of
0). For a connectivity preferring excitatory targets (positive
target specificity values), rates and synchrony increase super-
exponentially and then saturate when the connectivity ap-
proaches the level of target type selection obtained from the
anatomical map (target specificity values >0.2, Fig. 4). The in-
crease in synchronization precedes the firing rate increases.
For L6e, we observe 2 outliers at T = 0.2 and 0.25 where the
activity in this layer corresponds to the low-rate AI state. This
is likely due to the strong within-layer inhibitory feedback in
L6 and the high amount of random external inputs to L6e.
The general trend for L6 is nevertheless the same as for the

other layers: Keeping all other paramters constant, the stab-
ility of the network is not given when assuming for the
i-specific projections target specificity levels comparable with
all other interlayer connections.

The modification of target specificity not only changes the
local microcircuit at the level of specific cell types but also the
overall level of excitation in the network. Therefore, we simulate
further control networks that globally correct for the change in
the level of excitation: We induce an asymmetry of the excitatory
synaptic strengths by increasing for all connections, not only for
the i-specific candidates, the synaptic strength of excitatory to
inhibitory connections and simultaneously reduce the synaptic
strength of excitatory to excitatory connections. Figure 9B
shows that a sufficiently large asymmetry of excitatory synaptic
strengths counterbalances the overexcitation. However, the
order of the excitatory activity levels of the cortical layers is
partly inverted, that is, it is not consistent with the experimental
activity data summarized in Table 6.

This stabilization procedure uses different excitatory synap-
tic strengths according to the target cell type and thereby in-
troduces an additional parameter. We also investigate whether
the network can alternatively be stabilized by changing an
already existing parameter, the relative inhibitory synaptic
strength. We find that only implausibly large values (g > 15)
lead to a stable low-rate AI state (Fig. 9C) and that also in this
case the order of firing rates is partly inverted.

In summary, the data-based layered network model that is
parameterized equivalent to the balanced random network

A1 A2

B2

B1 C1

C2

C3

C4

Figure 7. Dependence of spontaneous activity on input. (A1–A2) Spontaneous activity after replacing the Poissonian background spikes with DC currents. Cell-type specific
external input currents equivalent to the reference parameterization for the number of inputs. (A1) Raster plot shows spiking activity recorded for 500 ms of biological time of
layers 2/3, 4, 5, and 6 (from top to bottom; black: Excitatory, gray: Inhibitory). Relative number of displayed spike trains corresponds to the relative number of neurons in the
network (total of 1862 shown). (A2) Average firing rates of the spiking activity shown in A1. (B1–B2) Spontaneous activity with layer-independent Poissonian background inputs
(Table 5). Raster plot (B1) and firing rate histogram (B2) equivalent to A1 and A2. (C) Histograms of the excitatory and inhibitory population firing rates for L2/3 (C1), L4 (C2), L5
(C3), and L6 (C4) for randomly drawn external inputs (100 trials, see Materials and Methods for details).
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model requires the inclusion of i-specific feedback connec-
tions in order to exhibit AI spiking activity. The alternative
stabilization of the network by global changes of parameters
results in a distribution of layer-specific firing rates in conflict
with experimental observations.

Propagation of Transient Thalamic Inputs
Confronted with a transient thalamic input, the layered
network model responds with a stereotypical propagation of
activity through the different layers. Figure 10A shows an ex-
emplary spike raster of the model after a short-lasting increase
of the thalamic firing rate. The cell-type specific activity
pattern is consistent over 100 different network and input in-
stantiations (Fig. 10B).

Amplitude and Timing of Cell-Type Specific Responses
L2/3e, L4e, and L5e emit a comparable amount of additional
spikes in response to the stimulus, while L6e shows a com-
paratively sparse response (Fig. 10B). In total, only a minority
of all neurons in the network is activated by the thalamic
stimulus (Fig. 10E). Only in L5e, a large fraction of all cells
emits additional spikes in response to the stimulus. In relation
to the ongoing activity, we find that the input layers (L4 and
L6) exhibit a similar dynamical gain, which is much lower
than the gain of the output layers L5 and particularly L2/3.

The response is initiated in the input layers and then pro-
pagates to L2/3 and L5 (Fig. 10A,B). The latency of activation
(defined as the maximum of the excitatory spike count

histogram) is shortest in L4 followed by L6 and L5, and finally
L2/3. The early onset of activation of L5, not after but rather
synchronously with L2/3, is in contrast to the expectation ac-
cording to the classical notion of the feed-forward loop from
L4 to L2/3 to L5 (Gilbert 1983), but in agreement with the
experimental activity data (Sakata and Harris 2009, compare
also Mitzdorf 1985). The difference in the latency of activation
(defined as the time of the peak of the PSTH, compare also
Sakata and Harris 2009) between the input layers and the
output layers in our network is with around 2–3 ms below the
experimentally observed latencies (5–10 ms according to
Schroeder et al. (1998); Sakata and Harris (2009)). The feed-
forward connection from L2/3 to L5 causes the prolonged
response in L5 that is reflected in the second peak in the
spike count. L6, being already slightly excited by the thalamic
input, receives feed-forward input from L5 that triggers a
sparse response during the ramp-up phase in L5. The activity
is back to baseline in all layers before the last thalamic spikes
arrive at cortex. Deactivation is ordered similar to activation,
starting in L4, followed by L2/3 and L6, and finally L5.

Interplay of Excitation and Inhibition in the Propagation of
Inputs
Not only the excitatory populations, but also the inhibitory
populations show a distinct activation pattern (see Fig. 10A,
gray dots, and B, gray lines). Initially, as the interneurons in
any layer receive the same, albeit slightly weaker, feed-
forward inputs, the inhibitory response resembles the excit-
atory response. However, the inhibitory populations show, in
contrast to the respective excitatory populations, 2 pro-
nounced activation peaks in L2/3, L4, and L6. As shown
above, these layers receive i-specific feedback connections.

A B

C

Figure 8. Dependence of network activity on the external background firing rate and
the relative inhibitory synaptic strength. White stars mark the reference parameter
set. (A) Population firing rates of excitatory populations in layers 2/3 (squares),
4 (diamonds), 5 (circles), and 6 (triangles), lightness increases with cortical depth, as
a function of the background rate at fixed relative inhibitory synaptic strength (g= 4).
(B) AIness%, the percentage of populations with the firing rate <30 Hz, irregularity
between 0.7 and 1.2, and synchrony <8 (data collected for 5 s per simulation), as a
function of the background rate and the relative inhibitory synaptic strength. Labeled
black contour lines indicate areas where 50%, 75%, and 100% of all populations fire
asynchronously and irregularly at low rate. Dashed contour lines confine the area
where the firing rates are ordered in accordance to Table 6. (C) Population firing rates
of excitatory populations as a function of the relative inhibitory synaptic strength at
fixed background rate (8 Hz) (markers as in A).

Table 6
Experimentally measured (awake state) and simulated cell-type specific firing rates

Species Area Firing rates (Hz) Data source

L2/3e L4e L5e L6e

Mouse S1 0.61 — — — Crochet and
Petersen (2006)
Poulet and
Petersen (2008)

Rat V1 0.44 — — — Greenberg et al.
(2008)

Rat M1 0.36 — — — Lee et al. (2006)
Rat S1 0.3 1.4 2–3 0.5 de Kock and

Sakmann (2009)
Rat A1 <1 — 3–4 — Sakata and

Harris (2009)
Rabbit Four

areas
<1 — 4–7 <1 Swadlow (1988,

1989, 1991,
1994)

Model Reference 0.86 4.45 7.59 1.09 Figure 6B
Model 100 trials 1.11 ± 0.8 4.8 ± 1.1 11 ± 6.1 0.56 ± 0.9 Figure 7C

Notes: Numerical columns show the layer-resolved mean firing rates obtained in in vivo awake
animal recordings and in the present modeling study (last row indicates additionally the standard
deviation). The investigated areas are S1: primary somatosensory cortex, V1: primary visual
cortex, M1: primary motor cortex, A1: primary auditory cortex. The 4 areas investigated in the
rabbit by Swadlow (1988, 1989, 1991, 1994) are V1, S1, S2 (secondary somatosensory cortex)
and M1, respectively. In these 4 studies, L5 corresponds to cortico-tectal cells that are partly
also located in L4. Rat V1 data are based on periods where animals were whisking or showing
forepaw movements and rat M1 data are from freely moving animals. Other studies report little
or no effect on behavioral state (mouse S1 and rat S1) or correspond to a mixture of behavioral
states without assessing the impact on the activity (rat A1 and rabbit V1, S1, S2, and M1). The
model results refer to the reference parameterization and to the mean ± standard deviation of
the population rates for 100 trials with randomly drawn numbers of external inputs.
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Apparently, the cell-type specific connectivity structure results
in a complex interplay of excitation and inhibition not ex-
plained by within-layer recurrent inhibition and thereby
shapes the propagating response to a transient thalamic
input. Specifically, we observe that the activation of L2/3
entails the increased activity of inhibitory interneurons in L4,
thereby stopping the excitatory activity in this layer. A similar

effect is observed in the next step of the feed-forward loop
between L2/3 and L5. The activation of L2/3 prolongs the
excitatory activity in L5 as stated above. In contrast, the early
activation of L5 results in a sharpening of the response in L2/
3 by the additional activation of L2/3 interneurons. The con-
nection from L6e to L4i adds to the sharpening of the L4
response and the rather weak i-specific connection from L2/3

A B

C

Figure 9. Relevance of target specificity for network stability. (A) Population firing rates (top panel) and synchrony (bottom panel), both in logarithmic representation, as a
function of the target specificity of candidate projections L2/3e to L4, L2/3e to L6, L5e to L2/3, and L6e to L4, see Supplementary Table 3 for corresponding connection
probabilities. A target specificity of zero reflects random connectivity; the gray-shaded area marks the range of target specificity of other interlayer connections (0.33 ± 0.08).
(B) Population firing rates of the model with target specificity of candidate projections of +0.4 as a function of the asymmetry of excitatory to inhibitory and excitatory to
excitatory synaptic strengths (defined as (wie−wee)/(wie +wee), with fixed mean excitatory synaptic strength). Stars indicate firing rates of the reference model with target
specificity of candidate projections of −0.4. (C) As B, but as a function of the relative inhibitory synaptic strength. All markers as in Figure 8A.

A B

C D

E

F

Figure 10. Response to transient thalamic input. Thalamic firing rates increase step-like by 15 Hz for a duration of 10 ms; 0 ms corresponds to the onset of transient input, gray
bars show the arrival of thalamic spikes at cortical neurons taking the mean delay (for simplicity the same as within the network, 1.5 ms) into account. (A) Cell-type specific
spiking activity of the network with i-specific projections. Markers as in Figure 6A. (B) Corresponding cell-type specific population spike counts averaged over 100 instantiations
of network and input (excitatory populations in black, inhibitory in gray). Spike counts are calculated with a bin width of 0.5 ms with the number of recorded neurons L3e: 500,
L3i: 141, L4e: 529, L4i: 132, L5e: 117, L5i: 25, L6e: 347, L6i: 71 (numbers correspond to relative population sizes). (C) Spiking activity of a control network without i-specific
projections (target specificity of candidate projections of +0.4) stabilized by an asymmetry of excitatory synaptic strengths of 0.095. (D) Corresponding cell-type specific
population spike counts of excitatory populations averaged over 100 instantiations. Filled area shows the difference of the data in D and B. (E) Average percentage of cells in the
excitatory populations that are activated by thalamic stimulation in relation to the ongoing activity (according to the data in B). (F) Dynamical gain, defined as the firing rate
during the stimulus presentation divided by the spontaneous firing rate, of excitatory populations (according to the data in B).
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to L6 plays a role in preventing a stronger ramp-up of excit-
atory activity in L6.

Role of I-Specific Feedback Connections for the Propagation
of Inputs
These observations suggest that the i-specific feedback con-
nections control the duration and the amplitude of the
response to thalamic inputs. To further elucidate their role for
the propagation of input-related activity, we study the
response of a network without i-specific feedback connec-
tions, but similar spontaneous activity. The small differences
in the firing rates (compare Fig. 9B) are reflected in the initial
response of the network to the thalamic input (first bumps in
the spike count histograms in Fig. 11D), which exhibits a
steeper increase in L2/3e and L4e and is weaker in L5e. After
this initial phase, the response is drastically different and
shows reverberating activation of the different layers lingering
well beyond the offset of the input. The response is much
stronger and shows oscillatory components by reciprocal acti-
vation of the different layers. The effect stays the same, albeit
smaller, for a control network with the candidate projections
having a target specificity value of +0.2, which is well below
the range for nonspecific interlayer connections.

Discussion

In this work, we employ full-scale spiking network modeling
to relate the connectivity structure of the cortical microcircuit
to its activity. To this end, we first provide an analysis of the
currently used connectivity maps and integrate these into a
map incorporating additional knowledge from functional con-
nectivity studies. The integrated map yields, in a spiking
network model, realistic cell-type specific spontaneous firing
rates and captures the flow of activity through the different
layers for stimulus-evoked activity. These findings depend on
the specific target type selection of a subset of interlayer con-
nections, which has largely been neglected by previous
models.

Modeling Approach
The present work extends the balanced random network
model (van Vreeswijk and Sompolinsky 1996, 1998; Amit and
Brunel 1997; Brunel 2000) to multiple layers with realistic

connection probabilities. Despite their reduced structure, the
mono-layered models exhibit qualitatively consistent activity
dynamics and the classical analysis of them has guided our
research. Our neuron and synapse model as well as the
random connectivity scheme do not differ qualitatively from
the earlier work. Like in most network models with random
connectivity, randomness here represents the simplest as-
sumption (Amit 1989) and substitutes fine-scale structure ad-
dressed in other models (e.g. Lundqvist et al. 2010).
Demanding global consistency of the random and the func-
tionally motivated fine-scale structure will facilitate the recon-
ciliation of the different approaches. The model size is
selected sufficiently large to incorporate the majority of all
local synapses. The network structure, one excitatory and one
inhibitory population in each layer, represents the minimal
laminar extension of the mono-layered models and also the
minimal set of cell types typically distinguished in exper-
iments. Data resolving the connectivity at a finer scale (e.g.
Mercer et al. 2005; West et al. 2006) are combined to match
the more coarse resolution of our model. Previous multi-
layered models partly use the same approach (e.g. Haeusler
and Maass 2007) and partly more detailed cell-type classifi-
cations (e.g. Traub et al. 2005; Izhikevich and Edelman 2008).
However, quantitative connectivity data are not yet widely
and consistently available on a finer level of detail for neither
anatomy nor physiology. The dynamical consequences of any
further separation of cell types remain unclear. The model
provides a building block for further modeling studies: Wa-
gatsuma et al. (2011) apply the network model in the context
of attentional modulation in the visual cortex and Lindén
et al. (2011) employ the simulated spiking activity in combi-
nation with morphologically detailed single-neuron models to
create a biologically realistic model of the local field potential.

Integrated Connectivity Map
The success of the dynamical analysis in the second part of
the study relies on our finding that the 2 connectivity maps
are consistent when one considers the differences in method-
ology. The compiled connectivity map accounts for these, but
it nevertheless merges data not only from multiple labora-
tories, but also from different cortical areas and species.
Although this choice is driven by the incompleteness of data
for a specific area and species, we focus on 2 species, cat and
rat. Primarily, the data originate from cat area 17 and rat
primary visual and primary somatosensory areas. The density
of neurons in our model is based on cat area 17 and the
density of synapses is consistent with the cat data (Beaulieu
and Colonnier 1985). The most crucial difference between our
map and the original data-based maps is the target specific
structure that removes the systematic biases introduced by the
undersampling of inhibitory cells (electrophysiology) and the
application of Peters’ rule (anatomy).

The integrated connectivity map is consistent with the most
prominent features of the cortical microcircuit: The recurrence
of connections (Douglas et al. 1989; Douglas and Martin
1991) and the feed-forward loop from L4 to L2/3 to L5 to L6
to L4 (Gilbert 1983). The excitatory subcircuit is largely con-
sistent with the recently published excitatory map of the C2
barrel column of the mouse (Lefort et al. 2009). In addition,
the circuit exhibits a distinct feedback structure with projec-
tions targeting predominantly interneurons most notably from

Figure 11. Flow of activity following transient thalamic input. Black and gray ellipses
represent excited and inhibited activity states, respectively. Dark gray dashed arrows
indicate input and output of the local network. The black arrows represent the
feed-forward loop projections L4 to L2/3 to L5 to L6. The gray arrows correspond to
the activation of the candidate i-specific connections (L2/3e to L4 and to L6, L5e to
L2/3, and L6e to L4).
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L2/3e to L4 and from L5e to L2/3. Thomson, Bannister, et al.
(2002) and Thomson and Morris (2002) recognized the poten-
tial of selective feedback projections for stabilizing the activity
and increasing the sensitivity for time-dependent signaling,
but were unable to test this hypothesis. Here, we quantify the
dynamical relevance of these i-specific projections and find
that they are crucial for the stability and the reliability of spon-
taneous activity and evoked input propagation. Extending the
idea of i-specific feedback, it is a conceivable, but untested,
hypothesis that L6e cells target predominantly interneurons in
L5, too.

The connectivity of L6 still poses several open questions
(see Briggs 2010; Thomson 2010; for recent reviews). Accord-
ing to our estimate, L6 is the main recipient of external inputs
(Table 3) primarily based, however, on indirect evidence of
missing asymmetric synapses. In addition, some input path-
ways to this layer, for example, from L4 (Thomson 2010, see
also Tarczy-Hornoch et al. 1999), are not sufficiently quanti-
fied to be incorporated in the integrated map. Likewise,
outputs from L6 interneurons, for example, Martinotti cells
projecting to superficial layers (Wang et al. 2004), are not in-
cluded. We identify the projection from L6e to L4 as 1 of the 4
i-specific projections (Table 2) based on the EM study in the
cat by McGuire et al. (1984), providing sparse and partial
data. In their discussion, Ahmed et al. (1994) present an
alternative interpretation of these data, proposing that many
synapses originally assigned to inhibitory targets are poten-
tially on excitatory cells. Still the authors acknowledge that
the relative number of synapses targeting interneurons is very
high in comparison with other excitatory projections. Staiger
et al. (1996) report contrasting evidence in the rat so that
further clarification is needed.

Model Parameterization
Today, only a subset of the model parameters is experimen-
tally known. Here, we focus on cell-type specific structural
parameters: The numbers of neurons, the numbers of external
inputs, and the connection probabilities between neurons.
Other parameters like neuronal parameters, synaptic
strengths, and delays are selected independent of the cell
type, based on the balanced random network model (Brunel
2000). The consistency of the activity in our model with the
experimental data suggests that the (static) connectivity struc-
ture plays a dominant role in shaping the neuronal activity
and that it is not required to model complex neuronal features
such as morphology to reproduce the particular experimental
findings discussed here.

An exception to the cell-type independent parameterization
is the increased synaptic strength for the connection from L4e
to L2/3e. Although this change affects the ongoing activity
only marginally (Supplementary Fig. 7), it is important for a
successful transmission of activity from L4 to L2/3 following
thalamic stimulation. The modification is motivated by the
large discrepancies of the L4i to L2/3 projection in the ana-
tomical and physiological maps and the difference in the
relative convergence of excitatory inputs from L2/3 and L4 to
L2/3 pyramids between our model and Feldmeyer et al.
(2006), see the caption to Supplementary Figure 7. To ulti-
mately resolve this issue, it might be necessary to incorporate
additional specificity (Yoshimura et al. 2005; Sarid et al. 2007;
Fares and Stepanyants 2009) and, despite a plethora of

studies on the L4 to L2/3 connections, potentially additional
experiments especially regarding the inhibitory projection.

Spontaneous Cell-Type Specific Activity
The application of the integrated connectivity map and the
parameterization according to the balanced random network
models results in AI activity without specific tuning, indicat-
ing that the properties of the mono-layered model generalize
to the multilayered network. This activity state is stable over a
wide range of parameters regarding, for example, external
inputs, synaptic strengths, and delays.

The model predicts cell-type specific firing rates in agree-
ment with data from awake animals (Table 6). In particular,
the connectivity map captures the low excitatory firing rates
in L2/3 and L6 quantitatively, although mono-layered models
hardly show stable activity at these low levels of activity (Sus-
sillo et al. 2007). Due to the parameterization, the increase of
inhibitory firing rates in all layers compared with the respect-
ive excitatory rates can be attributed to the network structure.
L4e and L5e show the appropriate ranking but slightly higher
firing rates than observed experimentally. We expect that the
inclusion of further cell-type specificity would yield a closer
match of simulations and experimental observations. For
example in L5, a fine-scale structure has been observed
between L5 pyramids and Martinotti cells, which efficiently
counteracts transient increases in L5e firing rates (Silberberg
and Markram 2007; Berger et al. 2010) and involves short-
term synaptic facilitation.

The fact that other contemporary models have difficulties
in matching the observed cell-type specific activity potentially
relates to the employed connectivity maps: Only our inte-
grated map features the i-specific connections in combination
with the detailed mapping from anatomy and physiology.
Rasch et al. (2011), using the physiological data of Thomson,
West, et al. (2002), observe that it is necessary to increase the
synaptic strength of excitatory to inhibitory connections in
order to produce a realistic firing regime. Although their
work takes a more detailed approach to model neuronal dy-
namics and synaptic interactions, this specific finding may
relate to the properties of the applied connectivity map: Our
investigation of target specificity reveals that the straightfor-
ward application of the physiological data likely introduces a
bias to purely excitatory to excitatory interlayer connections
(Fig. 4). Furthermore, in our integrated map, the particular or-
dering by firing rate depends on the inclusion of i-specific
feedback connections. Increasing the excitatory to inhibitory
synaptic strength globally compensates for missing i-specific
connections, but destroys the consistency of the simulated
and observed firing rates (Fig. 9B).

Flow of Activity
Confronted with transient thalamic input, the model exhibits
a particular propagation of activity from the input layers to
the output layers (compare Miller 1996). The propagation
pattern (Fig. 11) is shaped by the interaction of excitation and
inhibition between the different layers and promotes a tem-
poral neural code (Thomson and Morris 2002): Excitatory
feed-forward projections determine the spread of excitation,
while i-specific feedback shapes the temporal structure of the
response. The propagation pattern in our simulations matches
those observed in in vivo experiments of awake rats (Sakata
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and Harris 2009), although a detailed comparison is difficult
as the thalamic activation in the experiments is not known.
The difference in latencies of activation between input and
output layers exhibits slightly faster timescales in our model
than in experiments (Schroeder et al. 1998; Sakata and Harris
2009). This discrepancy may originate in different properties
of the thalamic input patterns or in longer synaptic delays for
interlayer connections than used in our model. Additional
fine-scale structure, for example, inhibitory subtypes or func-
tionally distinct neuronal populations (e.g. Beierlein et al.
2003; Yoshimura and Callaway 2005), would also contribute
to more complex activations with a correspondingly increased
average latency of activation.

The interactions between L4 and L2/3 and between L2/3
and L5 can be understood as a notification or handshake prin-
ciple: The sender of information, for example, L4, is notified
by the receiver, L2/3, that the information is being processed.
This takes place in the local microcircuit by the i-specic pro-
jection from L2/3 to L4 interneurons, which can use the
additional excitation to reduce (or reset) the activity of L4
excitatory cells. This circuit design contributes to shaping the
flow of activity through the local network after thalamic
stimulation. The same notification principle may hold also for
other projections within and outside of the local microcircuit.
The notification principle may be considered in addition to
other ideas on cortical operation like the “just-enough and
just-in-time” principle (Douglas and Martin 2007a) as it is con-
cerned neither with the forward propagation of information
nor the actual calculation, but with the preparation for the
next operation. A prediction of this hypothesis is, for
example, the response of L4 excitatory cells in the context of
attentional modulation, which exhibits inverse tendencies
compared with L2/3 and L5 (Wagatsuma et al. 2011).

Relation of Structure and Activity
The cell-type specific input structure of the integrated map
(Fig. 12) sheds light on the mechanisms underlying the ob-
served activity features. For example, the low firing rates of
L2/3e and L6e neurons in our model have different structural
origins: L2/3e effectively integrates, next to the excitatory
inputs from L2/3e and L4e, inhibitory inputs from all layers.
In contrast, L6e interacts largely with the recurrent within-L6
network; other inputs predominantly pass through L5e and

rather modulate L6e activity. L4e is also dominated by within-
layer connectivity, and the i-specific inputs from L2/3 and L6
modulate its activity and temporally structure the response to
transient stimuli. L5 consists of relatively few neurons and cor-
respondingly forms rather few recurrent within-layer inputs.
Furthermore, L5e integrates the highest number of first-order
inputs and does not receive i-specific projections. As a result,
L5e reacts with a wide range of firing rates to changes in the
external input, particularly in comparison with the other
layers. This, together with the control that L5 exerts on L2/3
by the i-specific feedback, puts it in a special position to inte-
grate and amplify information. Inhibitory cells receive predo-
minantly excitatory interlayer inputs (Supplementary Fig. 5)
and therefore exhibit elevated firing rates.

Outlook
Our microcircuit model successfully reproduces prominent
features of cortical activity based on minimal constituents,
leaky integrate-and-fire model neurons interacting by static sy-
napses, lacking features such as short-term plasticity, adap-
tation, or complex morphologies, which affect the dynamics
of the network. This suggests that these neuronal and synap-
tic features are relevant to more complex tasks performed by
the cortical microcircuit (see, e.g., Fujisawa et al. 2008; Gut-
nisky and Dragoi 2008; Mongillo et al. 2008), but not to
support the spontaneous activity or rapid propagation of tran-
sient inputs. To elucidate the role of these features, functional
studies based on more complex inputs and potentially incor-
porating functional fine-scale connectivity structure (e.g.
Sporns and Kötter 2004; Yoshimura et al. 2005) and the
lateral intrinsic network (Rockland and Lund 1982; Douglas
and Martin 2004) have to be conducted. In this context, also
more complex distributions of synaptic strengths (e.g. long-
tail distributions, Teramae et al. 2012) may become relevant.

Complementing the sophistication of network structures
and the constituent’s dynamics, further theoretical work is re-
quired to fully understand the properties of the microcircuit
model (e.g. Tetzlaff et al. 2012). Reduced models like an
8-dimensional mean-field description (see Deco et al. 2011,
for a recent overview) will enable a more comprehensive
investigation of the model’s parameter space.

Ultimately, it is indispensable to bridge the scales between
the microcircuit and the macroscopic connectivity (Felleman

A B C D

Figure 12. Input structure for the excitatory cell types L2/3e (A), L4e (B), L5e (C), and L6e (D) (large triangles). The illustrations show the strongest pathways, that is, only
connection probabilities >0.04 are considered, of direct (first order, thick arrows) and indirect (second order, thin arrows) excitation (black) and inhibition (gray) of a given
population (see Supplementary Material for further details). Triangles represent excitatory and circles inhibitory populations.
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and Van Essen 1991; Reid et al. 2009) to understand the inter-
actions of the local network with other parts of the brain. We
suppose that brain-scale models will allow for self-consistent
descriptions of neuronal activity dynamics: Networks of net-
works incorporating subcortical feedback loops and multiple
brain areas (Sporns et al. 2005) will provide realistic inputs to
the local cortical network and simultaneously enable a con-
sistency check of microscopic and macroscopic activity pat-
terns (Fox et al. 2005; Deco et al. 2009).

Conclusion

The connectivity structure of the local cortical network shapes
the cell-type specific activity and defines functional roles of
the different layers. Any fine-scale connectivity structure (e.g.
Song et al. 2005; Yoshimura et al. 2005; Kampa et al. 2006)
faces the constraints imposed by the connectivity imple-
mented in this model. The presented framework can be con-
tinuously refined as new data become available and extends
the available mathematical methods to infer synaptic connec-
tivity from neuronal morphology. Based on the currently avail-
able data, it reproduces prominent activity features, suggesting
that these arise predominantly from network structure, not
single cell properties. The results predict distinct activity pat-
terns of interneurons and highlight the need to uncover the
target specificity of projections in future experiments.
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Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/
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