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Abstract
Individuals from across the psychosis spectrum display impairments in reinforcement learning. In some individuals, these deficits
may result from aberrations in reward prediction error (RPE) signaling, conveyed by dopaminergic projections to the ventral
striatum (VS). However, there is mounting evidence that VS RPE signals are relatively intact in medicated people with schizophre-
nia (PSZ).We hypothesized that, in PSZ, reinforcement learning deficits often are not related to RPE signaling per se but rather their
impact on learning and behavior (i.e., learning rate modulation), due to dysfunction in anterior cingulate and dorsomedial prefrontal
cortex (dmPFC). Twenty-six PSZ and 23 healthy volunteers completed a probabilistic reinforcement learning paradigm with
occasional, sudden, shifts in contingencies. Using computational modeling, we found evidence of an impairment in trial-wise
learning rate modulation (α) in PSZ before and after a reinforcement contingency shift, expressed most in PSZ with more severe
motivational deficits. In a subsample of 22 PSZ and 22 healthy volunteers, we found little evidence for between-group differences in
VS RPE and dmPFC learning rate signals, as measured with fMRI. However, a follow-up psychophysiological interaction analysis
revealed decreased dmPFC-VS connectivity concurrent with learning rate modulation, most prominently in individuals with the
most severe motivational deficits. These findings point to an impairment in learning rate modulation in PSZ, leading to a reduced
ability to adjust task behavior in response to unexpected outcomes. At the level of the brain, learning rate modulation deficits may be
associated with decreased involvement of the dmPFC within a greater RL network.
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Introduction

Reinforcement learning (RL), the ability to learn from actions
through reward and punishment, is an essential mechanism
underlying optimal decision-making (Dayan & Berridge,
2014). A driving factor in learning from the environment is
the reward prediction error (RPE) signal—the mismatch be-
tween outcome and expectation, thought to be signaled by
midbrain dopaminergic neurons projecting to the ventral stri-
atum (VS) (Schultz, Dayan, & Montague, 1997; Steinberg
et al., 2013). There is now appreciable evidence suggesting
that RL deficits exist in individuals from across the psychosis
spectrum, ranging from adolescents and young adults at clin-
ical high risk for psychotic illness to people with chronic,
multi-episode schizophrenia (PSZ) (Barch et al., 2017;
Waltz, Demro, et al., 2015b).

Although results have been mixed (Gold et al., 2012;
Hartmann-Riemer et al., 2017; Reddy, Waltz, Green, Wynn,
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&Horan, 2016), there are a number of studies to date that have
reported an association between RL deficits and the severity
of (both clinical and subclinical) negative symptoms, suggest-
ing to some extent that changes in adaptively responding to
environmental stimuli may play an important role in the onset
of motivational deficits (Barch et al., 2017; Strauss, Waltz, &
Gold, 2014). In some, but not all, individuals with psychotic
symptoms, RL deficits can be linked to aberrant VS RPE
signals at the neural level (Maia & Frank, 2017; Murray
et al., 2008) and, potentially, to increased presynaptic dopa-
mine function at the neurochemical level (Boehme et al.,
2015). Especially in individuals suffering from motivational
deficits, RL impairments may result from a decrease in antic-
ipatory pleasure (Engel, Fritzsche, & Lincoln, 2013; Frost &
Strauss, 2016), which depends on VS function and has been
shown to be affected in PSZ (Radua et al., 2015).

Perhaps surprisingly, there is some evidence that VS RPE
signals in medicated PSZ are relatively intact (Dowd, Frank,
Collins, Gold, & Barch, 2016; Gradin et al., 2011;Waltz et al.,
2010); an observation most recently replicated in the largest
sample of patients in this literature to date (Culbreth,
Westbrook, Xu, Barch, & Waltz, 2016). In addition, work
from our lab has revealed that RL deficits in medicated PSZ
are associated with specific impairments in representations of
expected value to drive choice, putatively linked to function-
ing of orbitofrontal cortex (OFC), while RPE-based learning,
linked to basal ganglia and dopamine, is less affected in PSZ
(Collins et al., 2014; Gold et al., 2012). This latter observation
aligns well with reports of normalized reward-related signals
in striatum following antipsychotic medication administration
(Nielsen et al., 2012).

Thus, although previous work has reported altered striatal
RPE signals in the psychosis spectrum (Murray et al., 2008;
Schlagenhauf et al., 2014), there also are multiple reports of
(generally medicated) PSZ with RL deficits but intact striatal
RPE signals (Culbreth et al., 2016; Waltz et al., 2010). Based
on these observations, we hypothesized that a mechanism de-
termining the impact of RPEs on learning and behavior, rather
than signaling the RPE per se, might contribute to RL deficits
in PSZ. In computational models of RL (Sutton & Barto,
1998), a parameter called learning rate (α) acts as the multi-
plier of the RPE (denoted as δ) to determine how much each
RPE signal is weighted in the updating of representations of
stimulus or action value or stimulus-response association
strength. Higher learning rates are not always adaptive. In
stationary, but probabilistic, environments it is useful to de-
crease learning rates to avoid being overly sensitive to spuri-
ous outcomes. When contingencies are changing or uncertain,
however, higher learning rates are desirable (Behrens,
Woolrich, Walton, & Rushworth, 2007; Franklin & Frank,
2015). Evidence suggests that learning rate is dynamic, vary-
ing as a function of the volatility of the learning environment,
and that the circuits that underlie the modulation of learning

rate incorporate several frontal cortical regions, including dor-
sal anterior cingulate cortex (dACC) (Behrens et al., 2007)
and dorsomedial prefrontal cortex (dmPFC) (Krugel, Biele,
Mohr, Li, & Heekeren, 2009; McGuire, Nassar, Gold, &
Kable, 2014), brain regions also implicated in learning from
outcomes (Mars et al., 2005), expectation updating (Behrens
et al., 2007; McGuire et al., 2014), and rapid, flexible
decision-making (Krugel et al., 2009).

In medicated PSZ, we have previously reported abnormal
outcome-related signals in frontal cortex (Waltz et al., 2010)
and impaired expected value representation (Gold et al.,
2012), thought to depend on intact orbitofrontal cortex func-
tion (Metereau & Dreher, 2015). In both studies, these impair-
ments scaled with the severity of motivational deficits.
Multiple other groups have reported abnormal prefrontal ac-
tivity (or fronto-parietal connectivity) in association with be-
lief updating in uncertain environments (Kaplan et al., 2016;
Koch et al., 2010; Paulus, Frank, Brown, & Braff, 2003).
While these findings suggest that abnormalities in learning
rate modulation may contribute to RL deficits in PSZ, even
when RPE signals are intact, no systematic investigation of
dynamic learning rate modulation has been conducted in this
population.

To directly test this hypothesis, we administered a probabi-
listic RL paradigm to medicated PSZ and healthy volunteers
(HV), which involved choosing from three decks of cards with
different reinforcement rates. Using computational models of
decision making, we quantified subjects’ dynamic modulation
of learning rate on trials surrounding shifts in reinforcement
contingencies. Employing functional magnetic resonance im-
aging (fMRI), we also isolated RPE and learning rate modu-
lation signals in the brain using model-based analyses,
expecting intact VS but altered dmPFC signals in medicated
PSZ relative to HV. Finally, if deficient learning rate modula-
tion contributes to RL deficits in medicated PSZ, then this
may be the consequence of decreased coupling between re-
gions that signal and utilize RPEs. We therefore conducted a
psycho-physiological interaction (PPI) analysis, investigating
correlations between dmPFC and regions that are thought to
signal RPEs, during stable and volatile phases of the task. For
all these analyses, we expected to observe the greatest deficits
in learning-rate-associated activity in PSZ with the most se-
vere motivational deficits.

Methods

Participants

Twenty-seven participants meeting the diagnosis for schizo-
phrenia or a schizoaffective disorder and 25 HV matched on
age, gender, ethnicity, and parental education were recruited.
All participants provided written, informed consent to
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protocols approved by the Institutional Review Board of the
University of Maryland School of Medicine (Protocol HP-
00051996). We recruited PSZ through clinics at the
Maryland Psychiatric Research Center or other nearby com-
munity mental health centers. The presence of a diagnosis of
schizophrenia or a schizoaffective disorder in PSZ, as well as
the absence of a clinical disorder in HV, was confirmed using
the SCID-I (First, Spitzer, Gibbon, & Williams, 1997). The
absence of an Axis II personality disorder in HV was con-
firmed using the SIDP-R (Pfohl, Blum, Zimmerman, &
Stangl, 1989). All PSZ were on a stable antipsychotic medi-
cation regimen (no changes in medication dose or type in the 4
weeks leading up to study participation; antipsychotic
medication details and haloperidol equivalents can be found
in Table S1). Major exclusion criteria included: pregnancy,
current illegal drug use (verified using a urine screen), history
of substance dependence (SCID-I), a neurological disorder,
and/or a medical condition affecting study participation (such
as chronic, uncontrolled hypertension or diabetes).
Participants were asked to abstain from alcohol 24 hours be-
fore the study session, which was verified by a breathalyzer. In
order to avoid any potential effects of nicotine withdrawal,
smokers were allowed to smoke before the study session.

Clinical and cognitive assessment

To investigate a potential effect of motivational deficit severity
on learning rate modulation, we used the Scale for the
Assessment of Negative Symptoms (SANS). SANS data were
collected by a trained and experienced clinical research asso-
ciate. Brief Psychiatric Rating Scale (BPRS) ratings were col-
lected in the same session and the positive symptom factor
(suspiciousness, hallucinations, unusual thought content,
grandiosity) was used as a measure of positive symptom se-
verity (McMahon et al., 2002). The same clinical research
associate assessed general cognitive ability (intelligence quo-
tient; IQ) using the Wechsler Abbreviated Scale of
Intelligence (WASI-II) (Wechsler, 2011) and performance on
the MATRICS Consensus Cognitive Battery (Nuechterlein
et al., 2008). Antipsychotic regimen doses were converted to
haloperidol equivalents according to Andreasen et al. (2010).

Reinforcement Learning Paradigm

We used a probabilistic RL task adapted from a previous study
by Krugel et al. (2009) (Figure S1 for graphical overview).
Participants selected one out of three card decks, identified by
colors (black, red, and blue) using the index finger of their
right hand (2,000 ms). After a brief inter-stimulus interval
(pseudo-randomized to 2,000, 4,000, or 6,000 ms) and a card
flip animation (~200 ms), participants were informed about
the outcome of their choice (1,000 ms), which could be a
win (+100 points) or loss (−50 points). Choices were

rewarded probabilistically, with a choice of the Boptimal
deck^ leading to a 100-point gain on 90% of trials (and a loss
of 50 points on 10% of trials). Choices of two nonoptimal
decks led to 100-point gains on 50% and 10% of trials (and
losses of 50 points on 50% and 90% of trials), respectively.
Participants were instructed to try to identify the optimal deck
(i.e., the one with the highest expected value) as quickly as
possible; they also were informed that, occasionally, a new
deck would become the optimal one. In fact, this occurred
after subjects selected the optimal deck 8 times in a run of 9
trials (1 nonoptimal choice was allowed). The task consisted of
160 trials, subdivided into 4 runs of 40 trials (each run lasting
ca. 7 minutes; total task duration just over 28 min). Deck loca-
tions only changed between runs, not within them. Prior to the
task, participants underwent a training session where they re-
ceived task instructions, completed a practice session, and were
given the opportunity to ask questions. After the experiment,
the total of amount of earned points was divided by 1,000 (total
earnings for each group reported in Table S2).

Computational modeling

We modeled performance data using an algorithm optimized
for sudden and dynamic shifts in reinforcement contingencies
(Krugel et al., 2009; Sutton & Barto, 1998). Using the expect-
ed reward qi(t) for each deck, the probability of choosing the
deck pt(t) was calculated according to the softmax function
described in Eq. 1.

pi tð Þ ¼
e γ � qi tð Þ½ �

∑n
j¼1e γ � qj tð Þ

h i ð1Þ

In accordance with previous work (Rescorla & Wagner,
1972; Sutton & Barto, 1998), the RPE δi(t) was operational-
ized as the difference between the expected reward qi(t) and
the actual reward ri(t), as shown in Eq. 2.

δi tð Þ ¼ ri tð Þ−qi tð Þ ð2Þ

Reward expectation updating following an RPE can then
be formulated as Equation 3, where learning rate,α, acts as the
multiplier of the RPE. In other words, α determines how
strongly the RPE is used to update expectations.

qi tð Þ ¼ qi t−1ð Þ þ α � δi t−1ð Þ ð3Þ

Given the dynamic nature of the task, where reward expec-
tation updating is especially likely to occur following a shift in
reward contingencies, learning rates α(t), in addition to RPEs,
δ(t), were estimated on a trial-by-trial basis, similar to Krugel
et al. (2009). A useful heuristic is that to prevent overly
updating to a single spurious RPE, a learner can keep track
of the recent history of RPEs and increase the learning rate
when errors in prediction are increasing across trials, and vice
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versa when errors are decreasing. Thus, we first computed the
absolute RPE values (degree of unsigned surprise) and accu-
mulated these (Eq. 4) to represent the recent average predic-
tion error:

δ tð Þj j ¼ δ t−1ð Þ � 1−α 1ð Þð Þj j þ δ tð Þ � α tð Þ ð4Þ
where α(1) is a parameter that determines the initial learning
rate on trial 1. Next, the slope m of the absolute smoothed
RPEs |δi(t)| was calculated to obtain a metric for whether the
averaged errors are increasing or decreasing, normalized to the
average RPE (so that it is independent of the scale):

m tð Þ ¼ δ tð Þj j−jδ t−1ð Þj
δ tð Þj j þ δ t−1ð Þj jð Þ=2½ � ð5Þ

Learning rate α(t) was fixed between 0 and 1, as shown in
Eq. 6. Here, the β parameter estimates the effect of RPE slope
m on learning rate α. Small β values are indicative of a dy-
namic learning rate, whereas with greater learning rates the
dynamics are negligible [i.e., learning rates do not deviate
much from α(1)] (Krugel et al., 2009).

f mð Þ ¼ sign mð Þ � 1−e − m=βð Þð Þ2
h i

ð6Þ

Finally, trial-by-trial estimates of α were calculated using
function f, whereα(t) increased and decreased as a function of
a positive and negative slopes m, respectively (Eq. 7).

If m > 0;α tð Þ ¼ α t−1ð Þ þ f m tð Þ½ �⋅ 1−α t−1ð Þ½ �
If m < 0;α tð Þ ¼ α t−1ð Þ þ f m tð Þ½ �⋅α t−1ð Þ ð7Þ

Thus, if the slope m is positive (errors are increasing), the
learning rate is increased toward 1, whereas if it is negative,
the learning rate is driven toward 0. Note that this model
reduces to a constant learning rate model when β values are
large, i.e., f(m) ~0. Parameter initialization bounds for α
(0.01>, <0.9), β (>0.01), and γ (>0.001) were fixed in accor-
dance with previous work (Krugel et al., 2009). Supplemental
Text 1 contains a detailed description of the model selection
procedure, posterior predictions, and a demonstration of the
effect of different β values on simulated performance. Model
fit and individual parameters for the winningmodel are report-
ed in Table S3.

FMRI acquisition and pre-processing

Whole-brain functional EPI images were acquired on a 3T
Siemens Trio scanner (Erlangen, Germany) while participants
completed the RL task. We acquired 852 T2*-weighted im-
ages with the following parameters: n slices = 81; TR = 2 s;
TE = 30 ms; FA = 90°; voxel size = 1.5 mm3; FOV = 22 x 22
cm; matrix size = 128 x 128. Additionally, we acquired T1-
weighted structural images (MPRAGE) with standard param-
eters (n slices = 192; TR = 8.6 s; TE = 4 ms; FA = 20; and

voxel size = 1 mm3) for anatomical reference. To minimize
head movement, foam padding was used.

Data were preprocessed and analyzed using the AFNI soft-
ware package (Cox, 1996). Pre-processing steps consisted of
co-registration of EPI and anatomical images, warping to
Talairach space (using the 452 International Consortium for
Brain Mapping template, which caused the images to be
upsampled to 1.5-mm isotropic voxels), and smoothing with
a 6-mm FWHM kernel. In keeping with other work (Shine
et al., 2016), volumes with >0.5-mm displacement in any
plane were excluded from analysis, and participants with
>20% excluded volumes were excluded from analyses alto-
gether. Three participants were excluded on this basis.
Anatomical images were segmented using SPM 12’s segmen-
tation algorithm (default settings) and were inspected for fit. In
a manner similar to previous work (Hernaus, Casales Santa,
Offermann, & Van Amelsvoort, 2017), an average grey matter
image of the entire sample was constructed, which was later
used to inclusively mask grey matter in group-level analyses.

FMRI data analysis

Regressors of interest for the model-based fMRI GLM were
outcome onset times, amplitude-modulated (in separate
GLMs) by trial-by-trial estimates of RPE [δ(t)] and learning
rate [α(t)] (see Section 2.4). Eight regressors of no interest
(presentation times of stimuli evoking nonresponses, Btoo
slow^ feedback, and the 6 demeanedmotion parameters) were
additionally added. All regressors of interest and the Btoo
slow^ feedback regressor of no interest were boxcar functions
of 2s. We used a linear regression model with ARMA(1,1)
modeling of serial correlation.

The strength of learning rate-dependent functional connec-
tivity between dmPFC and other brain areas was investigated
using a PPI analysis (O'Reilly, Woolrich, Behrens, Smith, &
Johansen-Berg, 2012). We selected the 8 trials before and 8
trials following every reinforcement contingency shift for ev-
ery participant and distinguished between Blearning rate mod-
ulation trials^ and Bnonlearning rate modulation trials.^ Trials
1-4 pre-shift and trials 1-4 post-shift were labeled as Blearning
rate modulation trials,^ whereas trials 5-8 pre-shift and trials
5-8 post-shift were labeled as Bnonlearning rate modulation
trials.^ Learning rate modulation trials were believed to rep-
resent a volatile environment, in which participants were un-
likely to be certain that they were sampling from the optimal
deck and therefore needed to utilize the RPE signal to rapidly
update their expectations (with a large learning rate).
Conversely, nonlearning rate trials were believed to represent
a stable environment, in which participants were likely aware
that they were sampling from the best deck and, hence, could
update expectations more gradually updating (with a smaller
learning rate). Note that an 8-trial interval was the minimum
amount of trials before a sudden shift in reinforcement
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contingencies could occur. The GLM for the PPI analysis
contained the psychological regressor (learning rate modula-
tion trials = 1, nonlearning rate modulation trials = −1), the
time-series extracted from the dmPFC ROI, the psychophys-
iological interaction, and eight regressors of no interest.

At the group level, one-sample t tests were conducted to
identify significant activations in regions associated with re-
gressors of interest in the entire sample, without respect to
group; independent two-samples t tests were conducted to test
for between-group differences. To estimate the minimum clus-
ter size required to correct for multiple comparisons across the
whole brain at a level of p(FWE-corrected) = 0.05, 10,000
Monte Carlo simulations of the probability distribution were
run using the AFNI 3dClustSim command (-autocorrelation
option), with a voxel-wise threshold of p < 0.001.

In addition to whole-brain analyses, unbiased ROIs were
selected from the literature. As an area consistently associated
with learning rate modulation (McGuire et al., 2014), we de-
cided on a 1026-mm3 (304 functional voxels) region of inter-
est in the dmPFC (Figure S3A). This dmPFC area (peak voxel
x = 3, y = 8, z = 51) was identified in a conjunction analysis of
surprise-, uncertainty-, and reward-driven learning, suggest-
ing reliable involvement in learning rate modulation
(McGuire et al., 2014). Additionally, this region showed a
high degree of overlap with regions previously associated
with outcome-driven action-selection (Mars et al., 2005). At
a voxel level threshold of p < 0.005, activity in a large cluster
encompassing the dmPFC (cluster size = 381 voxels, peak
voxel coordinates x = 1, y = 13, z = 52) was observed in the
entire sample, suggesting that dmPFC activity tracked trial-
by-trial learning rate in our sample.

Given the well-established involvement of the VS in sig-
naling RPEs, we additionally decided on a 1073-mm3 (318
voxels) region of nucleus accumbens, defined by the Desai
Lab AFNI atlas (https://afni.nimh.nih.gov/pub/dist/doc/
program_help/whereami.html; Figure S3B). Thus, our ROIs
encompassed regions implicated in signalling RPEs, as well as
regions thought to use RPEs to update expectations. For
group-level analyses, mean beta values were extracted from
the above-mentioned ROIs and converted to Z-scores. ROI
activity thresholds were set to p < 0.005 (against 0) and group
differences in activity were Bonferroni-corrected for the num-
ber of statistical ROI tests (n = 2).

Statistical analyses

Of the total sample of 52 participants, two HVs were exclud-
ed, because they never experienced a sudden shift in reinforce-
ment contingencies; one PSZ produced no responses on ap-
proximately half of all trials (48.75%) and also was excluded.
Thus, RL performance data from 26 PSZ and 23 HV were
subjected to further analyses. Conform previous work (den
Ouden et al., 2013; Waltz & Gold, 2007), these analyses

included: number of reversals achieved, total amount of earn-
ings, switching between decks on subsequent trials regardless
of outcome, resampling a deck following a win (win-stay),
switching decks following a loss (lose-shift), and the tendency
to choose the previous-best deck following a reversal regard-
less of outcome (post-shift perseveration).

For fMRI analyses another five participants were excluded
due to phase-instability artifacts associated with the acquisi-
tion protocol (n = 3), a technical error leading to an incomplete
fMRI dataset (n = 1) and excessive motion (n = 1; see
Section 2.5 for details). Thus, fMRI analyses were conducted
for a sample of 22 HVand 22 PSZ.

In accordance with previous work from our group (Gold
et al., 2012; Waltz, Brown, et al., 2015a), we used mean item
scores from the SANS avolition subscale as measures of a
motivational deficit severity, in the service of assessing poten-
tial relationships betweenmotivational deficit severity and neu-
ral signals associated with learning rate modulation. In light of
a bi-modal distribution for many of our SANS items, as well as
previous work reporting the greatest performance impairments
in individuals with high motivational deficits (Gold et al.,
2012), we created high and lowmotivational deficit subgroups.
The median score (in PSZ) on the SANS avolition subscale
was 1.50, yielding a reasonable subgroup cutoff score (13 vs.
13 in the sample of all PSZ; 11 vs. 11 in the sample of all PSZ
with usable fMRI data). We additionally investigated the effect
of positive symptom severity. The median of the average
BPRS positive symptom factor score was also 1.50, leading
to a subgroup of 14 vs. 12 in the sample of all PSZ and 13 vs. 9
in the sample of all PSZ with usable fMRI data.

Results

Sample Demographics

Participant groups were matched on age, gender, race, and
parental education level. There was a significant group differ-
ence in participant education, IQ score as measured by the
WASI-II, and some subscales of the MATRICS Consensus
Cognitive Battery performance (Table 1).

Reinforcement Learning performance

When comparing groups on all trials, HV and PSZ did not
significantly differ in the number of stages achieved
(Figure S4), total earnings, switching, win-stay, or lose-shift
behavior (Table S2). However, there was evidence for subtle
performance deficits in PSZ following reversals. On trials 2-8
following the first 5 stages (which 79.59% of all participants
achieved), PSZ demonstrated increased post-shift persevera-
tion. That is, following a sudden shift in contingencies, PSZ
more often sampled from the deck that was optimal before the
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shift (t47 = −2.63, p = 0.01; Fig. 1a; Figure S5 for trial-by-trial
overview), which was especially pronounced on early trials
(trials 2-5; t47 = −2.26, p = 0.03; Fig. 1a). A between-group
difference in post-shift perseveration was still present at trend
level when comparing across all stages achieved, which in-
cluded participants that performed particularly well (t47 =
−1.9, p = 0.06). Increased post-shift perseveration in PSZ
may have lead to insufficient sampling of other decks follow-
ing a reversal, reflected by a decrease in win-stay choices on
early trials (t47 = 2.19, p = 0.03; Fig. 1b).While lose-staying—
that is, resampling a deck following a loss—on early trials
after a reversal was numerically greater in PSZ (M =
10.26%, SD = 14.87) compared with HV (M = 5.46%, SD =
8.64), this did not reach significance (t47 = 1.34, p = 0.19).

Computational modeling parameters

Other than changes in trial-by-trial estimates of learning
rate reported in Section 3.4, no significant group

differences were observed in free parameters, including
learning rate on the first trial (Table 2).

Learning rate modulation

Next, we extracted trial-by-trial learning rate estimates 8 trials
before and after a sudden shift in reinforcement contingencies.
A repeated measures ANOVAwith group as between-subjects
factor and trials 1-8 pre-shift as a within-subjects factor re-
vealed a significant group difference in the slope of learning
rate pre-shift (F2,116 = 4.27, p = 0.01), as HV showed a greater
pre-shift decline in learning rate than PSZ (Fig. 2a). A learning
rate slope difference was also apparent when comparing the
groups on all 16 time-points (F6,257 = 2.74, p = 0.02; Fig. 2a),
where learning rate in HV followed a significant (p < 0.001)
quadratic trend. These results suggest that HV showed dynam-
ic changes in learning rate modulation as a function of envi-
ronmental stability, which was not present in PSZ.

Table 1 Sample demographics

HV (n = 23) PSZ (n = 26) t/Χ2 p

Age 34.92 (10.80) 39.61 (11.88) -1.44 0.16

Gender [F, M] [9, 14] [7, 19] 0.83 0.36

Race

African American, Caucasian, other [8,14,1] [8,16,2] 0.28 0.87

Education level (years) 15.39 (1.70) 13.19 (2.50) 3.55 <0.01

Maternal education level 15.00 (2.86) 13.62 (2.79) 1.69 0.10

Paternal education level 13.70 (3.25) 14.08 (3.01) -0.42 0.67

WASI-II IQ score 114.04 (12.81) 103.93 (13.00) 2.75 <0.01

MATRICS domains*

Processing speed 52.71 (9.77) 42.41 (9.43) 3.52 <0.01

Attention/vigilance 49.38 (9.63) 46.59 (11.80) 0.85 0.40

Working memory 50.67 (9.89) 42.32 (11.03) 2.61 0.01

Verbal learning 51.48 (8.84) 43.23 (10.14) 2.84 <0.01

Visual learning 44.48 (11.70) 42.59 (13.35) 0.49 0.63

Reasoning 50.43 (9.57) 49.14 (8.59) 0.47 0.64

Social cognition 51.71 (8.98) 41.05 (11.75) 3.34 <0.01

Smoking status [yes, no] [6, 17] [13, 13] 2.94 0.09

Antipsychotic medication

Total haloperidol 11.70 (7.18)

Clinical ratings

BPRS positive 1.97 (1.02)

BPRS negative 1.76 (.68)

BPRS disorganization 1.18 (.31)

BPRS total 32.58 (7.77)

SANS avolition 1.86 (1.43)

SANS anhedonia 2.44 (1.01)

SANS total 23.92 (13.54)

*MATRICS data were available for 21/23 HVand 22/26 PSZ
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Interestingly, the group difference in pre-shift learning rate
slope seemed to be driven by PSZ with the highest ratings for
motivational deficits; a significant group-by-time interaction
was observed when repeating the analysis with high and low
avolition subgroups (F5,114 = 2.73, p = 0.02; Fig. 2b).
Comparing individual slopes (overall group main effect F2,
46 = 4.44, p = 0.02), we observed significant differences be-
tween HV and the high avolition subgroup (pBonferroni-corrected
= 0.02) but not between HV and the low avolition subgroup
(pBonferroni-corrected = 0.37). Pre-shift learning rate slope did not
differ between low and high positive symptom subgroups
(pBonferroni-corrected = 0.99).

We additionally observed an influence of avolition severity
on post-shift learning rates. When we looked at the change in
learning rate from trial 8 pre-shift, where participants have
evidently identified the optimal deck, to mean learning rate
on trials 10-17 post-shift, where participants need to locate the
new optimal deck, we observed a main effect of participant
group (F2,46 = 4.58, p = 0.02; Fig. 2c), such that HV showed
greater pre- to post-shift learning rate changes than high-
avolition PSZ (pBonferroni-corrected = 0.03), while low-avolition
PSZ showed similar, yet nonsignificant, deficits compared
with HV (pBonferroni-corrected = 0.09). No differences in post-

shift learning rates were observed between low and high pos-
itive symptom subgroups (pBonferroni-corrected = 0.99).

In summary, these results demonstrate that PSZ show def-
icits in the ability to update expectations dynamically through
learning rate modulation, with this deficit being more pro-
nounced in PSZ with more severe motivational deficits, but
not in PSZ with greater positive symptoms.

Whole-brain analyses

As expected, trial-wise estimates of RPE were strongly asso-
ciated with BOLD signal time-courses in VS (Fig. 3a;
Table 3A) in the entire sample of participants with usable
MRI data (n = 44). Trial-wise estimates of learning rate, on
the other hand, were associated with BOLD signal time-
courses in frontal and parietal cortex (Fig. 3b; Table 3B), in
line with previous work demonstrating activity increases in
the fronto-parietal network during decision-making tasks in
volatile environments (Behrens et al., 2007; Koch et al.,
2010; McGuire et al., 2014). At a voxel level threshold of p
< 0.005, learning rate-related activity in dmPFC (cluster size:
381, peak voxel: x = 3, y = 8, z = 51) also was observed.
Whole-brain analyses revealed no between-group differences
in RPE- or LR-associated activity in any clusters large enough
to survive correction for multiple comparisons across the
whole brain.

Region of interest analyses

In the entire sample, VS RPE (t43 = 5.75, p < 0.001) and
dmPFC learning rate signals (t43 = 3.04, p = 0.004) were

Fig. 1 Increased post-shift perseveration and decreased win-stay choices
in PSZ. a Relative to HV, PSZ showed greater perseveration (i.e.,
selecting the previous-best card deck) following a sudden shift in rein-
forcement contingencies, especially in trials immediately following the
shift. bAdditionally, a decreased tendency to resample from the card deck
that resulted in a win on the previous trial was observed immediately
following the contingency shift. Note that post-shift perseveration was

calculated across trials 2-8 post-shift; trial 2 being the first trial after
participants have received feedback regarding a contingency shift. Win-
stay choices were calculated for trial 3-8 post-shift; trial 3 being the
earliest opportunity at which participants could have made a win-stay
choice (following a shift to a new deck). Estimates were calculated on
the basis of the first 5 stages. **p < 0.01, *p < 0.05, bars represent 95%
confidence intervals

Table 2 No group differences in free parameters

Parameter HV (n = 23) PSZ (n = 26) t P p

α(1) 0.68 (0.25) 0.64 (0.27) 0.52 0.61

β 3.77 (4.03) 3.70 (4.33) 0.06 0.95

γ 1.76 (0.69) 1.50 (0.50) 1.57 0.12
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significantly greater than zero, consistent with our whole-brain
analysis results. Moreover, greater dmPFCLR signals correlated
positively with the percentage of optimal choices in the entire
sample (Pearson’s r = 0.36 p = 0.02 , n = 41, 3 participants >2.5
SDs removed from mean). In line with previous work, VS RPE
signals did not differ between groups (t42 = −1.61, p = 0.12; Fig.
3c). For model-based LR analyses, there was a trend for a group
difference in dmPFC, with HV displaying a greater association
between trial-wise estimates of learning rate and activity in
dmPFC than PSZ (t42 = 1.93, p = 0.06; Fig. 3d). Despite the
observed trend in dmPFC, these analyses do not provide clear
evidence for impairments in regions associated with expectation
updating or signaling of the RPE.

Learning rate modulation-dependent functional
connectivity

Next, we conducted a PPI analyses to investigate learning
rate modulation-dependent functional connectivity be-
tween dmPFC and the rest of the brain. In the entire sam-
ple, functional connectivity between dmPFC and superior

parietal lobule increased from nonlearning rate-modulation
to learning rate-modulation trials (Table 2C; Fig. 4a). In a
follow-up ROI analysis, we observed an overall group differ-
ence in dmPFC-VS functional connectivity (F2,46 = 3.74, p =
0.03), which became highly significant after removing one
HV outlier with a value smaller than 2.5*IQR (F2,45 = 3.95,
p = 0.008). Specifically, we observed that HV and the low
avolition subgroup displayed increased dmPFC-VS function-
al from nonlearning to learning rate-modulation trials.
DMPFC-VS functional connectivity decreased in the high-
avolition group (HV vs. high-avolition subgroup pBonferroni-
corrected = 0.01; low- vs. high-avolition subgroup pBonferroni-
corrected = 0.02; Fig. 4b). DMPFC-VS functional connectiv-
ity did not differ between low and high positive symptom
subgroups pBonferroni-corrected = 0.99). Taken together, these
results suggest decreased coupling between regions that
signal the RPE and regions that utilize the RPE to update
predictions. In line with our modeling results, connectiv-
ity changes were expressed most in PSZ with high moti-
vational deficits.

Fig. 2 Learning rate modulation deficits increase with motivational
deficit severity. a PSZ, relative to HV, demonstrated a decrease in
learning rate modulation, especially in trials leading up to a contingency
shift. Solid bars represent SEM. *p < 0.05. b Decreased learning rate
modulation on trials leading up to a contingency shift was especially

apparent for PSZ with the most severe motivational deficits. These PSZ
showed little to no learning rate modulation across all trials. c Relative to
HV, PSZ with greater motivational deficits additionally demonstrated
smaller increases in learning rate following a contingency shift, defined
as the difference between trial 8 pre-shift and trial 2-8 (B11-17^) post-shift
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Correlations with clinical variables

Total haloperidol-equivalent antipsychotic levels did not cor-
relate with performance measures or fMRI analyses reported
above (all p < 0.46). In the entire sample of participants with
MATRICS data (n = 43), correlations between overall

MATRICS scores and total numbers of stages achieved
trended toward significance (Spearman’s rho = 0.29, p =
0.06), but we observed no significant relationships between
overall MATRICS scores and the slope of pre-reversal learn-
ing rate modulation (Spearman’s rho = 0.01, p = 0.98). In the
entire sample (n = 49), age correlated negatively with stages

Table 3. Whole-brain one-sample t tests

Region Coordinates (MNI)

X Y Z Direction Cluster Min. clust. size

Model-based PE (3A) 459

L inf. parietal lobule -43 -38 41 <0 2052

L mid. temporal gyrus -53 -68 17 >0 1291

L precentral gyrus -29 -18 77 <0 1007

L putamen -14 5 -11 >0 904

L cerebellum -24 -75 -62 >0 888

L pos. cingulate -2 -50 14 >0 804

R putamen 19 3 -11 >0 773

L sup. frontal gyrus -5 5 53 <0 639

R precentral gyrus 30 -16 69 <0 589

R inf. parietal lobule 36 -49 41 <0 562

R inf. temporal gyrus 60 -57 -15 >0 497

L inf. frontal gyrus -49 30 15 >0 472

Model-based LR (3B) 167

R sup. parietal lobule 39 -65 55 >0 306

L sup. parietal lobule -38 -68 48 >0 267

R sup. frontal gyrus 32 -11 70 >0 218

dmPFC PPI (3C) 222

R inf. Parietal lobule 48 -46 59 >0 340

Coordinates are in MNI space; cluster size in voxels

Fig. 3 Whole brain and ROI fMRI analyses. Robust RPE and LR signals
were observed in: (a) VS, (b) superior parietal lobule, and multiple other
brain regions (Table 3). In subsequent ROI analyses, (c) no group differ-
ences in VS RPE signals were observed, while (d) a trend for a group

difference was observed for dmPFC learning rate signals. a = trend-
significant (p = 0.06), bars represent 95% confidence intervals. PE =
prediction error, LR = learning rate
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achieved (Spearman’s rho = −0.41, p = 0.003) but not with the
slope of pre-reversal learning rate modulation (Spearman’s
rho = −0.18, p = 0.22). Adding MATRICS score, smoking
status, or age as a covariate did not change the results.

Discussion

In this report, we present evidence of an impairment in learn-
ing rate modulation in PSZ, leading to a reduced ability to
adjust task behavior in response to unexpected outcomes.
We moreover observed abnormal dmPFC-VS functional con-
nectivity during changing task environments, potentially sug-
gesting that the absence of learning rate dynamics in PSZ may
be associated with a decrease in the integrity of the RL net-
work. At both the behavioral and neural levels of enquiry, we
observed greater deficits in PSZ with high motivational defi-
cits, once again linking aspects of impaired reinforcement
learning to negative symptom severity.

Schizophrenia has long been associated with increased per-
severation (Lysaker, Bell, Bryson, & Kaplan, 1998) and a
decreased ability to adaptively respond to performance feed-
back (Cicero, Martin, Becker, & Kerns, 2014; Mahurin,
Velligan, & Miller, 1998). This inability to adaptively modu-
late behavior has previously been linked to increased reliance
on response history when planning future decisions (Paulus,
Geyer, & Braff, 1999), as well as to degraded representations
of the expected value of choices (Gold et al., 2012; Waltz &
Gold, 2016). Here, we expand on this work and offer a mech-
anism by which expected value could become degraded. That
is, underutilization of accurately propagated teaching signals

may underlie choice perseveration, thereby hampering the
formation of accurate and adaptive representations of expect-
ed value. Our observations of smaller decreases in learning
rate modulation under relatively stable circumstances (pre-
shift) points to a reduction in dynamic learning rate modula-
tion, in PSZ, relative to HV. This idea is further supported by
our observation of smaller increases in learning rate modula-
tion under volatile circumstances (post-shift), in PSZ, relative
to HV. Our subgroup-specific effects indicate that learning rate
modulation deficits may be especially relevant in the endur-
ance of motivational deficits, but not positive symptoms.
Importantly, it should be noted that these analyses were con-
ducted in subgroups of PSZ, and the specificity of symptom
effects should therefore be interpreted with caution.

Consistent with the results of multiple previous studies
(Culbreth et al., 2016; Dowd et al., 2016; Waltz et al., 2013;
Waltz et al., 2010), we found that striatal RPE signals did not
differ between HVand PSZ. Specifically, no significant group
differences were observed in VS for a model-based analysis
using trial-by-trial estimates of the RPE. As we have argued in
the introduction, and in light of previous of work showing
deficits in RPE coding (Murray et al., 2008; Reinen et al.,
2016; Schlagenhauf et al., 2014), these results may suggest
that RL impairments across the psychosis continuum are un-
derlain by different mechanisms. Althoughwe did not observe
any associations between antipsychotic medication dose and
performance, modeling or fMRI outcome measures in the cur-
rent study, the possibility still exists that mechanisms of RL
impairments may be dependent on illness phase (at-risk, first
episode, or PSZ) or relate to the effects of antipsychotic med-
ication on the reward system (Diederen et al., 2017; Nielsen

Fig. 4 Decreased learning rate modulation-related dmPFC-VS coupling
in PSZ. a Whole-brain functional connectivity between dmPFC and in-
ferior parietal lobule increased from nonlearning rate to learning rate trials
in the entire sample. b In a follow-up ROI analysis in VS, functional
connectivity increases were observed from nonlearning to learning-rate

trials for HV and PSZ with more mild motivational deficits, while
dmPFC-VS connectivity decreases were observed in PSZ with more se-
vere motivational deficits. **p < 0.01, *p < 0.05, bars represent 95%
confidence intervals. LR = learning rate
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et al., 2012). To summarize, our results related to VS RPE
signals could add to the notion that the basic machinery that
signals unexpected outcomes is unaffected in certain groups of
PSZ. Direct comparisons of different patient groups or a sys-
tematic investigation of antipsychotic medication effects will
be essential for developing a better understanding of the dif-
ferent neural mechanisms that may underlie RL impairments
in the psychosis continuum.

Of note, we found subtle evidence of between-group dif-
ferences in dmPFC activity related to learning rate modulation
in our ROI analyses. In our model-based analysis, we ob-
served a trend for HV to show greater learning rate modulation
signals than PSZ, which should be interpreted with caution in
light of the sample size and correction for multiple compari-
sons. Observations of reductions in error- and response
conflict-related activity in dACC (Culbreth et al., 2016;
Dowd et al., 2016), overlapping with dmPFC, and altered
outcome-related signals in ACC and inferior frontal gyrus
(Kerns et al., 2005; Polli et al., 2008) have been observed
before in PSZ. Moreover, a study by Koch et al. (2010) re-
vealed that frontal cortical activity changes in response to
environmental volatility were absent in medicated PSZ.
Taken together, there is growing evidence for disrupted frontal
cortical signaling in association with expectation updating in
PSZ. Here we show, for the first time, that some of these
signals may relate specifically to impaired learning rate mod-
ulation. Given that learning rate signals have been shown to be
dependent on catechol-o-methyl transferase (COMT) geno-
type (Krugel et al., 2009) and affected by catecholamine en-
hancement (Jepma et al., 2016), these deficits may arise from
changes in brain catecholamine function. Finally, Collins et al.
have previously shown in HV (2017) and PSZ (2014) that RL
learning rate is critically affected by working memory, sug-
gesting that some of our observed finding may be explained
byworkingmemory deficits. Future studies should investigate
how dynamic learning rate modulation is affected by working
memory demands, such as load and delay.

The current results additionally provide preliminary sup-
port for the idea that a reduced ability to adaptively update
expectations in PSZ could be related to decreased coupling
between regions that signal and utilize the RPE to update
behavior; the strength of learning rate modulation-dependent
dmPFC-VS connectivity was decreased in PSZ, and
especially so in PSZ with more severe motivational deficits.
This finding echoes those of Kaplan et al. (2016) who ob-
served changes in ACC effective connectivity within a
change-detection network. In that study, increased PFC-
midbrain effective connectivity tracked with delusional sever-
ity, whereas we observed decreased dmPFC-VS connectivity
as a function of motivational deficit severity. Thus, changes in
frontal cortical connectivity may relate closely to RL deficits,
with this mechanism potentially being differentially affected
by certain symptom dimensions. The latter claim is supported

by positive and negative symptom-specific alterations in
cortico-striatal connectivity at rest (Sarpal et al., 2015; Wang
et al., 2016; White et al., 2016).

To summarize, our current results suggest that aberrant
learning rate modulation is a central feature of RL deficits in
medicated PSZ, which can account for such deficits even in
the presence of relatively unaffected RPE signaling. At the
level of behavior, learning rate modulation impairments might
manifest themselves as perseveration and/or a decreased ten-
dency to sample the environment, thereby interfering with the
formation of expected value. Functionally, we have provided
initial support for the idea that learning rate modulation defi-
cits might involve decreased embedding of the dmPFC within
a greater RL network. Given its sensitivity to motivational
deficits, learning rate modulation might serve as a mechanistic
probe to evaluate the efficacy of future treatments aimed at
alleviating negative symptoms of schizophrenia.

Some limitations to this study should be acknowledged.
First, some of the reported fMRI results were only observed
in ROIs or in whole-brain analyses at a lower voxel-wise
threshold. Our ability to detect whole-brain group differences
at a stringent whole-brain threshold may have been limited by
our sample size and the use of patient subgroups (based on
symptom severity). These results should therefore be consid-
ered preliminary, and replication is necessary. Moreover,
while we found consistent evidence for learning rate modula-
tion deficits at the neural (PPI) and behavioral (post-switch
perseveration) in individuals with high negative symptoms,
these measure were not directly correlated. This might suggest
that our PPI phenotype may not underlie the observed behav-
ioral deficits, although we would argue that this also strongly
depends on our analysis approach. Specifically, our PPI anal-
ysis used all available experiment trials, while our modeling
results pertained to highly specific trials surrounding contin-
gency shifts.

Second, the ability to detect group differences in the neural
signals of RL directly relates to how free parameters are cal-
culated (Wilson & Niv, 2015). While model-based fMRI anal-
yses of learning rate are robust to changes in parameter esti-
mation it is not known exactly how this impacts estimates of
RPE. Nevertheless, it is thought that poor model fitting should
still be able to address questions related to the location of brain
correlates of RL (and between-group differences therein).

Third, although previous studies have found PSZ to be
impaired on reversal learning tasks (Schlagenhauf et al.,
2014; Waltz & Gold, 2007), we only found subtle evidence
for impairments. While our three-option task may be suitable
to study learning rate dynamics, participants, on average, only
achieved 6-7 stages, suggesting that on the majority of trials
they were searching for the optimal deck. An increased num-
ber of decks to sample from may have made it more difficult
for participants to achieve a reversal and, subsequently, re-
duced our ability to detect group differences in performance.
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While the specific aim of this study was to disentangle RPE
and LR signals in the brain, and how these may be altered in
PSZ, there is a possibility that PSZ may show abnormal
precision-weighted RPEs (the product of the LE and RPE),
which has been shown to depend on dopamine function
(Diederen et al., 2017). Future studies may wish to address
how changes in learning rate dynamics in PSZ (with motiva-
tional deficits) may affect RPE-weighting.

Finally, this study was conducted in a sample of chronic,
medicated PSZ. Although we did not find antipsychotic med-
ication dose to be related to any of the reported outcome mea-
sures, direct comparison to a first-episode or prodromal cohort
may be informative of the role of learning rate modulation
deficits across the psychosis continuum.

Conclusions

RL deficits are common across the psychosis continuum. We
show that aberrations in learning rate modulation in PSZ may
drive RL deficits in some PSZ, even in the presence of accu-
rately signaled RPEs. Our fMRI results additionally hint at the
idea that learning rate modulation impairments relate to
changes in dmPFC function and connectivity between
dmPFC and other regions of the brain RL network.
Furthermore, we observed greater abnormalities in learning
rate modulation and associated neural signals in individuals
with high motivational deficits. Abnormal learning rate mod-
ulation and associated brain function therefore might be an
important mechanism involved in motivational deficits.

Acknowledgements This work was supported by the National Institute
of Mental Health (Grant No. RO1 MH094460 to JAW). JAW, JMG, and
MJF report that they perform consulting for Hoffman La Roche. JMG has
also consulted for Takeda and Lundbeck and receives royalty payments
from the Brief Assessment of Cognition in Schizophrenia. JAW also
consults for NCT Holdings. The current experiments were not related to
any consulting activity. All authors declare no conflict of interest.

References

Andreasen, N. C., Pressler, M., Nopoulos, P., Miller, D., & Ho, B. C.
(2010). Antipsychotic dose equivalents and dose-years: a standard-
ized method for comparing exposure to different drugs. Biological
Psychiatry, 67(3), 255-262. https://doi.org/10.1016/j.biopsych.
2009.08.040

Barch, D. M., Carter, C. S., Gold, J. M., Johnson, S. L., Kring, A. M.,
MacDonald, A. W., … Strauss, M. E. (2017). Explicit and Implicit
Reinforcement Learning Across the Psychosis Spectrum. Journal of
Abnormal Psychology https://doi.org/10.1037/abn0000259

Behrens, T. E., Woolrich, M. W., Walton, M. E., & Rushworth, M. F.
(2007). Learning the value of information in an uncertain world.
Nature Neuroscience, 10(9), 1214-1221. https://doi.org/10.1038/
nn1954

Boehme, R., Deserno, L., Gleich, T., Katthagen, T., Pankow, A., Behr, J.,
… Schlagenhauf, F. (2015). Aberrant Salience Is Related to

Reduced Reinforcement Learning Signals and Elevated Dopamine
Synthesis Capacity in Healthy Adults. Journal of Neuroscience,
35(28), 10103-10111. https://doi.org/10.1523/JNEUROSCI.0805-
15.2015

Cicero, D. C., Martin, E. A., Becker, T. M., & Kerns, J. G. (2014).
Reinforcement learning deficits in people with schizophrenia persist
after extended trials. Psychiatry Research, 220(3), 760-764. https://
doi.org/10.1016/j.psychres.2014.08.013

Collins, A. G., Brown, J. K., Gold, J. M., Waltz, J. A., & Frank, M. J.
(2014). Working memory contributions to reinforcement learning
impairments in schizophrenia. Journal of Neuroscience, 34(41),
13747-13756. https://doi.org/10.1523/JNEUROSCI.0989-14.2014

Collins, A. G. E., Ciullo, B., Frank, M. J., & Badre, D. (2017). Working
Memory Load Strengthens Reward Prediction Errors. Journal of
Neuroscience, 37(16), 4332-4342. https://doi.org/10.1523/
JNEUROSCI.2700-16.2017

Cox, R. W. (1996). AFNI: Software for analysis and visualization of
functional magnetic resonance neuroimages. Computers and
Biomedical Research, 29(3), 162-173. https://doi.org/10.1006/
Cbmr.1996.0014

Culbreth, A. J., Westbrook, A., Xu, Z., Barch, D. M., & Waltz, J. A.
(2016). Intact Ventral Striatal Prediction Error Signaling in
Medicated Schizophrenia Patients. Biological Psychiatry:
Cognitive Neuroscience and Neuroimaging, 1(5), 474-483. https://
doi.org/10.1016/j.bpsc.2016.07.007

Dayan, P., & Berridge, K. C. (2014). Model-based and model-free
Pavlovian reward learning: revaluation, revision, and revelation.
Cognitive, Affective, & Behavioral Neuroscience, 14(2), 473-492.
https://doi.org/10.3758/s13415-014-0277-8

Diederen, K. M., Ziauddeen, H., Vestergaard,M. D., Spencer, T., Schultz,
W., & Fletcher, P. C. (2017). Dopamine Modulates Adaptive
Prediction Error Coding in the Human Midbrain and Striatum.
Journal of Neuroscience, 37(7), 1708-1720. https://doi.org/10.
1523/JNEUROSCI.1979-16.2016

Dowd, E. C., Frank, M. J., Collins, A., Gold, J. M., & Barch, D. M.
(2016). Probabilistic Reinforcement Learning in Patients With
Schizophrenia: Relationships to Anhedonia and Avolition.
Biological Psychiatry: Cognitive Neuroscience and Neuroimaging,
1(5), 460-473. https://doi.org/10.1016/j.bpsc.2016.05.005

Engel, M., Fritzsche, A., & Lincoln, T. M. (2013). Anticipatory pleasure
and approach motivation in schizophrenia-like negative symptoms.
Psychiatry Research, 210(2), 422-426. https://doi.org/10.1016/j.
psychres.2013.07.025

First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1997).
Structured Clinical Interview for DSM-IV- Axis I Disorders (SCID-
I). Washington, DC: American Psychiatric Press.

Franklin, N. T., & Frank, M. J. (2015). A cholinergic feedback circuit to
regulate striatal population uncertainty and optimize reinforcement
learning. Elife, 4. https://doi.org/10.7554/eLife.12029

Frost, K. H., & Strauss, G. P. (2016). A Review of Anticipatory Pleasure
in Schizophrenia. Current Behavioral Neuroscience Reports, 3(3),
232-247. https://doi.org/10.1007/s40473-016-0082-5

Gold, J. M., Waltz, J. A., Matveeva, T. M., Kasanova, Z., Strauss, G. P.,
Herbener, E. S.,… Frank, M. J. (2012). Negative symptoms and the
failure to represent the expected reward value of actions: behavioral
and computational modeling evidence. Archives of General
Psychiatry, 69 (2) , 129-138. ht tps : / /doi .org/10.1001/
archgenpsychiatry.2011.1269

Gradin, V. B., Kumar, P., Waiter, G., Ahearn, T., Stickle, C., Milders, M.,
… Steele, J. D. (2011). Expected value and prediction error abnor-
malities in depression and schizophrenia. Brain, 134(Pt 6), 1751-
1764. https://doi.org/10.1093/brain/awr059

Hartmann-Riemer, M. N., Aschenbrenner, S., Bossert, M., Westermann,
C., Seifritz, E., Tobler, P. N., … Kaiser, S. (2017). Deficits in rein-
forcement learning but no link to apathy in patients with

Cogn Affect Behav Neurosci (2018) 18:1338–1351 1349

https://doi.org/10.1016/j.biopsych.2009.08.040
https://doi.org/10.1016/j.biopsych.2009.08.040
https://doi.org/10.1037/abn0000259
https://doi.org/10.1038/nn1954
https://doi.org/10.1038/nn1954
https://doi.org/10.1523/JNEUROSCI.0805-15.2015
https://doi.org/10.1523/JNEUROSCI.0805-15.2015
https://doi.org/10.1016/j.psychres.2014.08.013
https://doi.org/10.1016/j.psychres.2014.08.013
https://doi.org/10.1523/JNEUROSCI.0989-14.2014
https://doi.org/10.1523/JNEUROSCI.2700-16.2017
https://doi.org/10.1523/JNEUROSCI.2700-16.2017
https://doi.org/10.1006/Cbmr.1996.0014
https://doi.org/10.1006/Cbmr.1996.0014
https://doi.org/10.1016/j.bpsc.2016.07.007
https://doi.org/10.1016/j.bpsc.2016.07.007
https://doi.org/10.3758/s13415-014-0277-8
https://doi.org/10.1523/JNEUROSCI.1979-16.2016
https://doi.org/10.1523/JNEUROSCI.1979-16.2016
https://doi.org/10.1016/j.bpsc.2016.05.005
https://doi.org/10.1016/j.psychres.2013.07.025
https://doi.org/10.1016/j.psychres.2013.07.025
https://doi.org/10.7554/eLife.12029
https://doi.org/10.1007/s40473-016-0082-5
https://doi.org/10.1001/archgenpsychiatry.2011.1269
https://doi.org/10.1001/archgenpsychiatry.2011.1269
https://doi.org/10.1093/brain/awr059


schizophrenia (40352). Scientific Reports, 7. https://doi.org/10.
1038/Srep44510

Hernaus, D., Casales Santa, M. M., Offermann, J. S., & Van Amelsvoort,
T. (2017). Noradrenaline transporter blockade increases fronto-
parietal functional connectivity relevant for working memory.
European Neuropsychopharmacology https://doi.org/10.1016/j.
euroneuro.2017.02.004

Jepma,M.,Murphy, P. R., Nassar, M. R., Rangel-Gomez,M.,Meeter, M.,
& Nieuwenhuis, S. (2016). Catecholaminergic Regulation of
Learning Rate in a Dynamic Environment. PLoS Computational
Biology, 12(10), e1005171. https://doi.org/10.1371/journal.pcbi.
1005171

Kaplan, C. M., Saha, D., Molina, J. L., Hockeimer, W. D., Postell, E. M.,
Apud, J. A., … Tan, H. Y. (2016). Estimating changing contexts in
schizophrenia. Brain, 139(Pt 7), 2082-2095. https://doi.org/10.
1093/brain/aww095

Kerns, J. G., Cohen, J. D., MacDonald, A. W., 3rd, Johnson, M. K.,
Stenger, V. A., Aizenstein, H., & Carter, C. S. (2005). Decreased
conflict- and error-related activity in the anterior cingulate cortex in
subjects with schizophrenia. The American Journal of Psychiatry,
162(10), 1833-1839. https://doi.org/10.1176/appi.ajp.162.10.1833

Koch, K., Schachtzabel, C., Wagner, G., Schikora, J., Schultz, C.,
Reichenbach, J. R., … Schlosser, R. G. (2010). Altered activation
in association with reward-related trial-and-error learning in patients
with schizophrenia. Neuroimage, 50(1), 223-232. https://doi.org/10.
1016/j.neuroimage.2009.12.031

Krugel, L. K., Biele, G., Mohr, P. N., Li, S. C., & Heekeren, H. R. (2009).
Genetic variation in dopaminergic neuromodulation influences the
ability to rapidly and flexibly adapt decisions. Proceedings of the
National Academy of Sciences of the United States of America,
106(42), 17951-17956. https://doi.org/10.1073/pnas.0905191106

Lysaker, P. H., Bell, M. D., Bryson, G., & Kaplan, E. (1998).
Neurocognitive function and insight in schizophrenia: support for
an association with impairments in executive function but not with
impairments in global function. Acta Psychiatrica Scandinavica,
97(4), 297-301.

Mahurin, R. K., Velligan, D. I., & Miller, A. L. (1998). Executive-frontal
lobe cognitive dysfunction in schizophrenia: a symptom subtype
analysis. Psychiatry Research, 79(2), 139-149.

Maia, T. V., & Frank,M. J. (2017). An Integrative Perspective on the Role
of Dopamine in Schizophrenia. Biological Psychiatry, 81(1), 52-66.
https://doi.org/10.1016/j.biopsych.2016.05.021

Mars, R. B., Coles, M. G., Grol, M. J., Holroyd, C. B., Nieuwenhuis, S.,
Hulstijn, W., & Toni, I. (2005). Neural dynamics of error processing
in medial frontal cortex. Neuroimage, 28(4), 1007-1013. https://doi.
org/10.1016/j.neuroimage.2005.06.041

McGuire, J. T., Nassar, M. R., Gold, J. I., & Kable, J. W. (2014).
Functionally dissociable influences on learning rate in a dynamic
environment. Neuron, 84(4), 870-881. https://doi.org/10.1016/j.
neuron.2014.10.013

McMahon, R. P., Kelly, D. L., Kreyenbuhl, J., Kirkpatrick, B., Love, R.
C., & Conley, R. R. (2002). Novel factor-based symptom scores in
treatment resistant schizophrenia: implications for clinical trials.
Neuropsychopharmacology, 26(4), 537-545. https://doi.org/10.
1016/S0893-133X(01)00387-6

Metereau, E., & Dreher, J. C. (2015). The medial orbitofrontal cortex
encodes a general unsigned value signal during anticipation of both
appetitive and aversive events. Cortex, 63, 42-54. https://doi.org/10.
1016/j.cortex.2014.08.012

Murray, G. K., Corlett, P. R., Clark, L., Pessiglione, M., Blackwell, A. D.,
Honey, G., … Fletcher, P. C. (2008). Substantia nigra/ventral teg-
mental reward prediction error disruption in psychosis. Molecular
Psychiatry, 13(3), 239, 267-276. https://doi.org/10.1038/sj.mp.
4002058

Nielsen, M. O., Rostrup, E., Wulff, S., Bak, N., Broberg, B. V., Lublin,
H., … Glenthoj, B. (2012). Improvement of brain reward

abnormalities by antipsychotic monotherapy in schizophrenia.
Archives of General Psychiatry, 69(12), 1195-1204. https://doi.org/
10.1001/archgenpsychiatry.2012.847

Nuechterlein, K. H., Green, M. F., Kern, R. S., Baade, L. E., Barch, D.
M., Cohen, J. D., … Marder, S. R. (2008). The MATRICS
Consensus Cognitive Battery, part 1: test selection, reliability, and
validity. The American Journal of Psychiatry, 165(2), 203-213.
https://doi.org/10.1176/appi.ajp.2007.07010042

O'Reilly, J. X., Woolrich, M. W., Behrens, T. E., Smith, S. M., &
Johansen-Berg, H. (2012). Tools of the trade: psychophysiological
interactions and functional connectivity. Social Cognitive and
Affective Neuroscience, 7(5), 604-609. https://doi.org/10.1093/
scan/nss055

den Ouden, H. E., Daw, N. D., Fernandez, G., Elshout, J. A., Rijpkema,
M., Hoogman, M., … Cools, R. (2013). Dissociable effects of do-
pamine and serotonin on reversal learning. Neuron, 80(4), 1090-
1100. https://doi.org/10.1016/j.neuron.2013.08.030

Paulus, M. P., Frank, L., Brown, G. G., & Braff, D. L. (2003).
Schizophrenia subjects show intact success-related neural activation
but impaired uncertainty processing during decision-making.
Neuropsychopharmacology, 28(4), 795-806. https://doi.org/10.
1038/sj.npp.1300108

Paulus, M. P., Geyer, M. A., & Braff, D. L. (1999). Long-range correla-
tions in choice sequences of schizophrenic patients. Schizophrenia
Research, 35(1), 69-75.

Pfohl, B., Blum, N., Zimmerman, M., & Stangl, D. 1989. Structured
Interview for DSM-III-R Personality Disorders (SIDP-R). Iowa
City: University of Iowa, Department of Psychiatry.

Polli, F. E., Barton, J. J., Thakkar, K. N., Greve, D. N., Goff, D. C.,
Rauch, S. L., & Manoach, D. S. (2008). Reduced error-related acti-
vation in two anterior cingulate circuits is related to impaired per-
formance in schizophrenia. Brain, 131(Pt 4), 971-986. https://doi.
org/10.1093/brain/awm307

Radua, J., Schmidt, A., Borgwardt, S., Heinz, A., Schlagenhauf, F.,
McGuire, P., & Fusar-Poli, P. (2015). Ventral Striatal Activation
During Reward Processing in Psychosis: A Neurofunctional Meta-
Analysis. JAMA Psychiatry, 72(12), 1243-1251. https://doi.org/10.
1001/jamapsychiatry.2015.2196

Reddy, L. F., Waltz, J. A., Green, M. F., Wynn, J. K., & Horan, W. P.
(2016). Probabilistic Reversal Learning in Schizophrenia: Stability
of Deficits and Potential Causal Mechanisms. Schizophrenia
Bulletin, 42(4), 942-951. https://doi.org/10.1093/schbul/sbv226

Reinen, J. M., Van Snellenberg, J. X., Horga, G., Abi-Dargham, A., Daw,
N. D., & Shohamy, D. (2016). Motivational Context Modulates
Prediction Error Response in Schizophrenia. Schizophrenia
Bulletin, 42(6), 1467-1475. https://doi.org/10.1093/schbul/sbw045

Rescorla, R. A., & Wagner, A. R. (1972). in Classical Conditioning II:
Current Research and Theory, eds Black AH, Prokasy WF. New
York City: Appleton–Century Crofts.

Sarpal, D. K., Robinson, D. G., Lencz, T., Argyelan, M., Ikuta, T.,
Karlsgodt, K., … Malhotra, A. K. (2015). Antipsychotic treatment
and functional connectivity of the striatum in first-episode schizo-
phrenia. JAMA Psychiatry, 72(1), 5-13. https://doi.org/10.1001/
jamapsychiatry.2014.1734

Schlagenhauf, F., Huys, Q. J., Deserno, L., Rapp, M. A., Beck, A.,
Heinze, H. J., … Heinz, A. (2014). Striatal dysfunction during re-
versal learning in unmedicated schizophrenia patients. Neuroimage,
89, 171-180. https://doi.org/10.1016/j.neuroimage.2013.11.034

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of
prediction and reward. Science, 275(5306), 1593-1599.

Shine, J. M., Bissett, P. G., Bell, P. T., Koyejo, O., Balsters, J. H.,
Gorgolewski, K. J., … Poldrack, R. A. (2016). The Dynamics of
Functional Brain Networks: Integrated Network States during
Cognitive Task Performance. Neuron, 92(2), 544-554. https://doi.
org/10.1016/j.neuron.2016.09.018

1350 Cogn Affect Behav Neurosci (2018) 18:1338–1351

https://doi.org/10.1038/Srep44510
https://doi.org/10.1038/Srep44510
https://doi.org/10.1016/j.euroneuro.2017.02.004
https://doi.org/10.1016/j.euroneuro.2017.02.004
https://doi.org/10.1371/journal.pcbi.1005171
https://doi.org/10.1371/journal.pcbi.1005171
https://doi.org/10.1093/brain/aww095
https://doi.org/10.1093/brain/aww095
https://doi.org/10.1176/appi.ajp.162.10.1833
https://doi.org/10.1016/j.neuroimage.2009.12.031
https://doi.org/10.1016/j.neuroimage.2009.12.031
https://doi.org/10.1073/pnas.0905191106
https://doi.org/10.1016/j.biopsych.2016.05.021
https://doi.org/10.1016/j.neuroimage.2005.06.041
https://doi.org/10.1016/j.neuroimage.2005.06.041
https://doi.org/10.1016/j.neuron.2014.10.013
https://doi.org/10.1016/j.neuron.2014.10.013
https://doi.org/10.1016/S0893-133X(01)00387-6
https://doi.org/10.1016/S0893-133X(01)00387-6
https://doi.org/10.1016/j.cortex.2014.08.012
https://doi.org/10.1016/j.cortex.2014.08.012
https://doi.org/10.1038/sj.mp.4002058
https://doi.org/10.1038/sj.mp.4002058
https://doi.org/10.1001/archgenpsychiatry.2012.847
https://doi.org/10.1001/archgenpsychiatry.2012.847
https://doi.org/10.1176/appi.ajp.2007.07010042
https://doi.org/10.1093/scan/nss055
https://doi.org/10.1093/scan/nss055
https://doi.org/10.1016/j.neuron.2013.08.030
https://doi.org/10.1038/sj.npp.1300108
https://doi.org/10.1038/sj.npp.1300108
https://doi.org/10.1093/brain/awm307
https://doi.org/10.1093/brain/awm307
https://doi.org/10.1001/jamapsychiatry.2015.2196
https://doi.org/10.1001/jamapsychiatry.2015.2196
https://doi.org/10.1093/schbul/sbv226
https://doi.org/10.1093/schbul/sbw045
https://doi.org/10.1001/jamapsychiatry.2014.1734
https://doi.org/10.1001/jamapsychiatry.2014.1734
https://doi.org/10.1016/j.neuroimage.2013.11.034
https://doi.org/10.1016/j.neuron.2016.09.018
https://doi.org/10.1016/j.neuron.2016.09.018


Steinberg, E. E., Keiflin, R., Boivin, J. R., Witten, I. B., Deisseroth, K., &
Janak, P. H. (2013). A causal link between prediction errors, dopa-
mine neurons and learning. Nature Neuroscience, 16(7), 966-973.
https://doi.org/10.1038/nn.3413

Strauss, G. P., Waltz, J. A., & Gold, J. M. (2014). A review of reward
processing and motivational impairment in schizophrenia.
Schizophrenia Bulletin, 40 Suppl 2, S107-116. https://doi.org/10.
1093/schbul/sbt197

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An
Introduction. Cambridge: MIT Press.

Waltz, J. A., Brown, J. K., Gold, J. M., Ross, T. J., Salmeron, B. J., &
Stein, E. A. (2015a). Probing the Dynamic Updating of Value in
Schizophrenia Using a Sensory-Specific Satiety Paradigm.
Schizophrenia Bulletin, 41(5), 1115-1122. https://doi.org/10.1093/
schbul/sbv034

Waltz, J. A., Demro, C., Schiffman, J., Thompson, E., Kline, E., Reeves,
G., … Gold, J. (2015b). Reinforcement Learning Performance and
Risk for Psychosis in Youth. The Journal of Nervous and Mental
Disease, 203(12), 919-926. https://doi.org/10.1097/NMD.
0000000000000420

Waltz, J. A., & Gold, J. M. (2007). Probabilistic reversal learning impair-
ments in schizophrenia: further evidence of orbitofrontal dysfunc-
tion. Schizophrenia Research, 93(1-3), 296-303. https://doi.org/10.
1016/j.schres.2007.03.010

Waltz, J. A., &Gold, J. M. (2016).Motivational Deficits in Schizophrenia
and the Representation of Expected Value. Current Topics in

Behavioral Neurosciences, 27, 375-410. https://doi.org/10.1007/
7854_2015_385

Waltz, J. A., Kasanova, Z., Ross, T. J., Salmeron, B. J., McMahon, R. P.,
Gold, J. M., & Stein, E. A. (2013). The roles of reward, default, and
executive control networks in set-shifting impairments in schizo-
phrenia. PLoS One, 8(2), e57257. https://doi.org/10.1371/journal.
pone.0057257

Waltz, J. A., Schweitzer, J. B., Ross, T. J., Kurup, P. K., Salmeron, B. J.,
Rose, E. J.,… Stein, E. A. (2010). Abnormal responses to monetary
outcomes in cortex, but not in the basal ganglia, in schizophrenia.
Neuropsychopharmacology, 35(12), 2427-2439. https://doi.org/10.
1038/npp.2010.126

Wang, Y., Liu, W. H., Li, Z., Wei, X. H., Jiang, X. Q., Geng, F.
L., … Chan, R. C. (2016). Altered corticostriatal functional
connectivity in individuals with high social anhedonia.
Psychological Medicine, 46(1), 125-135. https://doi.org/10.
1017/S0033291715001592

Wechsler, D. (2011). Wechsler Abbreviated Scale of Intelligence, Second
Edition (WASI-II). San Antonio: NCS Pearson.

White, T. P., Wigton, R., Joyce, D.W., Collier, T., Fornito, A., & Shergill,
S. S. (2016). Dysfunctional Striatal Systems in Treatment-Resistant
Schizophrenia. Neuropsychopharmacology, 41(5), 1274-1285.
https://doi.org/10.1038/npp.2015.277

Wilson, R. C., & Niv, Y. (2015). Is Model Fitting Necessary for Model-
Based fMRI? PLoS Computational Biology, 11(6), e1004237.
https://doi.org/10.1371/journal.pcbi.1004237

Cogn Affect Behav Neurosci (2018) 18:1338–1351 1351

https://doi.org/10.1038/nn.3413
https://doi.org/10.1093/schbul/sbt197
https://doi.org/10.1093/schbul/sbt197
https://doi.org/10.1093/schbul/sbv034
https://doi.org/10.1093/schbul/sbv034
https://doi.org/10.1097/NMD.0000000000000420
https://doi.org/10.1097/NMD.0000000000000420
https://doi.org/10.1016/j.schres.2007.03.010
https://doi.org/10.1016/j.schres.2007.03.010
https://doi.org/10.1007/7854_2015_385
https://doi.org/10.1007/7854_2015_385
https://doi.org/10.1371/journal.pone.0057257
https://doi.org/10.1371/journal.pone.0057257
https://doi.org/10.1038/npp.2010.126
https://doi.org/10.1038/npp.2010.126
https://doi.org/10.1017/S0033291715001592
https://doi.org/10.1017/S0033291715001592
https://doi.org/10.1038/npp.2015.277
https://doi.org/10.1371/journal.pcbi.1004237

	Motivational deficits in schizophrenia relate to abnormalities in cortical learning rate signals
	Abstract
	Introduction
	Methods
	Participants
	Clinical and cognitive assessment
	Reinforcement Learning Paradigm
	Computational modeling
	FMRI acquisition and pre-processing
	FMRI data analysis
	Statistical analyses

	Results
	Sample Demographics
	Reinforcement Learning performance
	Computational modeling parameters
	Learning rate modulation
	Whole-brain analyses
	Region of interest analyses
	Learning rate modulation-dependent functional connectivity
	Correlations with clinical variables

	Discussion
	Conclusions
	References


