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The striatal dopaminergic system has been implicated in reinforcement learning (RL), motor perfor-
mance, and incentive motivation. Various computational models have been proposed to account for each
of these effects individually, but a formal analysis of their interactions is lacking. Here we present a novel
algorithmic model expanding the classical actor-critic architecture to include fundamental interactive
properties of neural circuit models, incorporating both incentive and learning effects into a single
theoretical framework. The standard actor is replaced by a dual opponent actor system representing
distinct striatal populations, which come to differentially specialize in discriminating positive and
negative action values. Dopamine modulates the degree to which each actor component contributes to
both learning and choice discriminations. In contrast to standard frameworks, this model simultaneously
captures documented effects of dopamine on both learning and choice incentive—and their interac-
tions—across a variety of studies, including probabilistic RL, effort-based choice, and motor skill
learning.
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Dopamine plays a crucial role in human and animal cognition,
substantially influencing a diversity of processes including rein-
forcement learning, motivation, incentive, working memory, and
effort. Dopaminergic neurons in the substantial nigra and ventral
tegmental area project to a very wide set of subcortical and cortical
areas, with strongest innervation in the basal ganglia (BG), spe-
cifically in the ventral and dorsal striatum. Dysregulation of do-
pamine is present in a wide array of mental illnesses such as
Parkinson’s disease, attention-deficit/hyperactivity disorder
(ADHD), schizophrenia, and Tourette’s syndrome and is a central
pharmaceutical target used to treat symptoms across these and
numerous other pathologies.

Although considerable progress has been made in our under-
standing of its various distinct roles, there remain fundamental
debates concerning its precise mechanisms and functions, espe-
cially regarding their integration and interactions. In reward-based
decision making in particular, two largely separate traditions have
studied the reinforcement learning and the incentive theories of
dopamine (Berridge, 2007). Despite solid evidence for both theo-

ries, theoretical and empirical studies tend to favor and focus on
one or the other interpretation, with little attempt to unify them or
to study their interaction. Here we develop an explicit computa-
tional analysis of the dual role of striatal dopamine in modulation
of incentive motivation (affecting choice), reinforcement learning,
and how these processes interact. This endeavor allows us not only
to account for both types of findings alone but also those that could
not be explained by either theory in isolation.

RL Theory of Dopamine

One widely accepted theory of dopamine function relates to its
role in model-free reinforcement learning (RL). Specifically, pha-
sic firing of midbrain dopamine neurons convey reward prediction
errors that facilitate plasticity in the striatum (Montague, Dayan, &
Sejnowski, 1996; Schultz, 1997). Many studies have since pro-
vided strong support for this notion (Arias-Carrión, Stamelou,
Murillo- Rodríguez, Menéndez-González, & Pöppel, 2010; Bayer
& Glimcher, 2005; Bayer, Lau, & Glimcher, 2007; Nakahara, Itoh,
Kawagoe, Takikawa, & Nikosaka, 2004; Nomoto, Schultz, Wa-
tanabe, & Sakagami, 2010). Reinforcement learning models have
been routinely used to account for dopaminergic modulation of
behavioral and neural signals during learning tasks (Frank,
Moustafa, Haughey, Curran, & Hutchison, 2007; Jocham, Klein, &
Ullsperger, 2011; McClure, Daw, & Read Montague, 2003;
O’Doherty et al., 2004; Pessiglione, Seymour, Flandin, Dolan, &
Frith, 2006; Samejima, Ueda, Doya, & Kimura, 2005; Schönberg,
Daw, Joel, & O’Doherty, 2007).

Such models assume that each action has a single value, which
gets incremented or decremented by dopamine-encoded reward
prediction errors to drive learning. Choice between different ac-
tions is accomplished by comparing the current action values
among all the available actions in the given sensory state, and
stochastically choosing one, such that actions with higher values
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are more likely to be selected. These models account for a wide
variety of data but alone cannot capture the apparent modulatory
influence of dopamine on incentive choice—the tendency to dif-
ferentially weigh costs and benefits—after learning has occurred
(Berridge, 2012; Salamone, Correa, Mingote, & Weber, 2005).
They also don’t easily accommodate the asymmetrical influences
of dopamine manipulations on learning from positive versus neg-
ative outcomes. Conversely, theories and models of incentive
choice (Zhang, Berridge, Tindell, Smith, & Aldridge, 2009) do not
account for progressive learning reinforcement effects or the find-
ings that motor symptoms of Parkinson’s disease can progress
even without further dopaminergic degeneration (Beeler, Frank,
McDaid, & Alexander, 2012).

In contrast, neurobiology and neural network models thereof
suggest a more complex dual opponent system for action and
learning. Dopamine (DA) is known to modulate activity and plas-
ticity of striatal medium spiny neurons (MSN) in two separate
populations of cells that project to different BG output nuclei
(Frank, 2005; Gerfen, 2000; Shen, Flajolet, Greengard, & Sur-
meier, 2008; Surmeier, Ding, Day, Wang, & Shen, 2007). Striatal
MSNs originating in the direct (striatonigral) pathway predomi-
nantly express dopamine D1 receptors and act to facilitate actions
(Kravitz et al., 2010). By stimulating D1 receptors in these neu-
rons, dopamine enhances the signal-to-noise ratio and amplifies
activity and plasticity (long term potentiation). By contrast, striatal
MSNs originating in the indirect (striatopallidal) pathway predom-
inantly express dopamine D2 receptors, and act to suppress ac-
tions. By stimulating D2 receptors in these neurons, dopamine
inhibits their activity and induces long term depression. Thus
overall, increases in dopamine act to preferentially emphasize
processing in the D1 facilitatory pathway and to suppress process-
ing in the D2 suppressive pathway, whereas decrease in dopamine
have the opposite effect, potentiating the D2 pathway. This has
been proposed as the mechanism by which DA promotes approach
learning in the direct pathway and avoidance learning in the
indirect pathway (Frank, 2005), with opposite-coding but appar-
ently redundant representations of action values and learning.
Although the direct (D1-MSNs) and indirect (D2-MSNs) pathways
are often labeled as Go and NoGo pathways due to their link to
approach and avoidance, respectively, in the models they do not
just encode a message signaling to go or not, but rather the
aggregated evidence in favor of each action versus against that
action. The final choice is a function of the relative differences in
the amounts of evidence for each action considered, via competi-
tion at all stages in the corticostriatal circuit.

Dopamine dysregulation thus acts in opposite directions in the
separate pathways. This feature has been widely used to exhibit
effects of dopamine-related drugs, genes, pathologies, etc., all of
which act to induce an asymmetry in the treatment of positive
versus negative outcomes (e.g., by having opposite effects on
approach vs. avoidance learning). As an example, nonmedicated
Parkinson’s patients have naturally low dopamine levels and ex-
hibit better learning from negative than positive reward prediction
errors, whereas the same patients while taking dopaminergic med-
ication show better learning and choice based on positive out-
comes but worse performance in avoiding negative outcomes
(Bódi et al., 2009; Cools et al., 2009; Frank, Moustafa, et al., 2007;
Frank, Seeberger, & O’Reilly, 2004; Moustafa, Sherman, & Frank,
2008; Palminteri, Boraud, Lafargue, Dubois, & Pessiglione, 2009;

Smittenaar et al., 2012). Similar effects of dopamine manipulations
have been observed in healthy and other populations (Cools et al.,
2009; Frank, Moustafa, et al., 2007; Frank, Santamaria, Reilly, &
Willcutt, 2007; Jocham et al., 2011; Pessiglione et al., 2006). This
reinforcement learning theory of dopamine function can also ac-
count for other counterintuitive phenomena, such as aberrant learn-
ing in some situations (e.g., Beeler, Daw, Frazier, & Zhuang, 2010;
Wiecki, Riedinger, von Ameln-Mayerhofer, Schmidt, & Frank,
2009: learned catalepsy), and provides a mechanism explaining
progression of Parkinson’s disease symptoms even without further
dopaminergic degeneration (Beeler et al., 2012).

More direct probing of the role of dopamine in specific neural
circuits comes from optogenetic studies confirming a role for the
D1 and D2 pathways in approach and avoidance learning (Kravitz,
Tye, & Kreitzer, 2012). After a specific action was selected en-
dogenously by a mouse, optogenetic stimulation of D1 MSNs
resulted in positive reinforcement of that specific action, causing
the mouse to repeat it in the future. Conversely, optogenetic
stimulation of D2 MSNs caused that action to be avoided. Notably,
the effect of stimulation was applied only following the choices in
these studies, such that any subsequent change in behavioral pref-
erences can only be attributed to a learning mechanism, rather than
a direct performance effect. Moreover, the effect of stimulating D1
and D2 cells mimics that which would occur as a result of dopa-
mine bursts and dips, respectively. While this study shows that D1
and D2 stimulation is sufficient to induce approach and avoidance
learning, respectively, other genetic engineering studies also show
that they are necessary (Hikida, Kimura, Wada, Funabiki, & Na-
kanishi, 2010). Thus, many independent data-points confirm the
role of dopamine on the striatum in reinforcement learning, either
indirectly or directly. However, many reinforcement learning stud-
ies also fail to control for potentially confounding incentive effects
of dopamine, as described next.

Incentive Theory of Dopamine

Outside of the field of reinforcement learning, various types of
evidence indicate that dopamine is also involved directly in choice,
with links to motivation, incentive, vigor or effort willingness
(Berridge, 2012; Smith, Berridge, & Aldridge, 2011; Wassum,
Ostlund, Balleine, & Maidment, 2011). Numerous studies have
shown, for example, that hyperdopaminergic rats were willing to
work more for identical amount of reward (Beeler et al., 2010;
Cousins & Salamone, 1994; Salamone et al., 2005). The effective
apparent “cost” of effort is bidirectionally modulated by manipu-
lation of indirect D2 MSN activity: Pharmacological manipula-
tions that enhance such activity result in more avoidance of effort-
ful actions, whereas inhibition of this pathway has the opposite
effect, decreasing the effective cost (Farrar et al., 2010, 2008;
Mingote et al., 2008; Nunes et al., 2010). Neural models suggest
that these effects are mediated by differential coding of positive
and negative consequences of actions in distinct MSN populations,
as observed in electrophysiological studies (Samejima et al.,
2005).

Recent optogenetic work (Tai, Lee, Benavidez, Bonci, & Wil-
brecht, 2012) has also confirmed more precisely that specific
action values can be inflated or diminished by stimulating D1 or
D2 MSNs during the choice period (as opposed to during the
outcome in the learning study described previously). Stimulating
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D1 MSNs in one hemisphere acted to increase the likelihood of
choosing the contralateral action. Notably, this was not a pure
motor effect: Stimulation did not simply deterministically increase
motor responding but, rather, acted to boost action value. Higher
levels of stimulation were needed to induce choice for actions that
had low learned values and lower levels for actions already having
high values. Strikingly, D2 MSN stimulation had the opposite
effect, effectively decreasing the action value (or increasing its
effective cost). In summary, when applied at the time of choice,
stimulation of D1 (respectively, D2) mimicked an additive positive
(negative) effect on the action’s recent estimated value.

Other modeling studies have proposed that tonic dopamine
modulates response vigor to optimize reward (or avoid punish-
ment) per unit time (Dayan, 2012; Niv, Daw, Joel, & Dayan,
2007). However, note that these models have only considered
effects on vigor (i.e., the speed of response execution or how hard
to work) but not the effects on choices between actions with
difference valences/incentives. Moreover, they focus on effects of
increased DA signaling and not the relative enhancement of per-
formance in some cases with DA depletion.

Recent studies have debated the link between incentive or
performance effects of dopamine on one hand, and reinforcement
learning effects on the other, with some arguing that all reinforce-
ment learning effects could be reinterpreted in terms of incentive
salience (Berridge, 2012). Indeed, many of the above-described
experiments demonstrating differential influence of dopamine ma-
nipulations to positive versus negative outcomes have not disso-
ciated between learning versus incentive accounts. Arguably, some
of the asymmetry in reward versus punishment learning in Parkin-
son’s disease and other human studies could potentially be ac-
counted for by differential incentive at the time of choice, even
given symmetrical learning. For example, some recent work pro-
vides evidence that dopamine modulations can influence relative
sensitivity to positive versus negative outcomes in action selection,
when learning effects were not observed or were not possible in
the task (Shiner et al., 2012; Smittenaar et al., 2012). Specifically,
Smittenaar et al. (2012) showed that Parkinson’s patients on com-
pared to off medication were better able to select actions that
would lead to the most rewarding outcomes, even when there was
no differential values assigned to stimulus outcomes during learn-
ing itself, where reward values were only assigned to the outcomes
after learning had taken place. Conversely, Shiner et al. (2012)
used a standard stimulus-value learning procedure, but then ma-
nipulated DA medications only after learning, and nevertheless
observed that patients on medication during this postlearning
phase exhibited better performance on rewarding than aversive
choices. These studies hint at the presence of a performance/
incentive effect but do not exclude an additional role of dopamine
in learning. Indeed, the incentive effect in these studies cannot
explain all the previously documented data: perhaps the most
robust effect of dopamine elevations across human studies is to
impair learning from negative outcomes, whereas in these studies
there was only an effect on sensitivity to positive outcomes, and
the magnitude of the overall medication effect on the differential
sensitivity to positive versus negative outcomes was substantially
more modest than that observed in the various studies that could
also have been influenced by learning. Moreover, other studies
provide evidence for learning effects, for example, striatal re-
sponse to reward prediction errors during learning are predictive of

subsequent reward-based choice preferences, and this relationship
is modulated by dopaminergic manipulation (Jocham et al., 2011).
In sum, current evidence implies that dopaminergic manipulation
influences both learning and incentive.

While there remains some debate over the respective contribu-
tions of learning and performance effects of dopamine on various
behavioral measures, some studies provide evidence for interac-
tions between these two functions. In particular, Beeler et al.
(2012) used dopamine antagonists that induced performance def-
icits in rodents confronted with a motor skill task. By themselves,
these effects converge with a long history of evidence that striatal
dopamine is important for motor performance, as in Parkinson’s
disease. Notably, however, this study showed that even after drug
washout, animals were slower to acquire the correct motor skills
compared to naive animals who had never been exposed to the
task, and compared to animals who had also been administered
dopamine antagonists but not paired with the task. This study
demonstrated that the drug effects on performance induced an
“aberrant learning” process causing animals to learn to avoid
selecting the actions that would have been adaptive. Subsequent
experiments demonstrated similar effects when D2 blockade was
applied after learning of an established skill: In this case, perfor-
mance did not degrade immediately but, rather, progressively
declined, consistent with an induction of aberrant learning, and
with parallel synaptic plasticity studies showing that D2 antago-
nism enhanced potentiation of striatopallidal synapses (Beeler et
al., 2012). These effects are also coherent with other evidence that
moderate doses of D2 antagonists can induce progressive Parkin-
sonian symptoms in the form of catalepsy sensitization (Amtage &
Schmidt, 2003; Klein & Schmidt, 2003), and both of these effects
are accounted for by simulations of D2 antagonism in neural
models (Beeler et al., 2012; Wiecki et al., 2009) These studies
highlight a role for interactions between performance effect of
dopamine (in this case, a lack of dopamine), which induce learning
effects that then further exaggerate performance effects, etc.

Here we present a new reinforcement learning model that allows
us to simultaneously account for incentive, learning and interaction
effects of dopamine. We aim to provide a theoretically simple
algorithmic model, with parameters and variables that can easily
be related to biologically interpretable measures of interest, such as
tonic or phasic dopamine level, D1 and D2-expressing striatal
neuronal activity or synaptic strengths, synaptic plasticity etc. Our
approach is inspired by two distinct levels of modeling: on one
hand, the well-known and widely used actor-critic algorithm (Sut-
ton & Barto, 1998); on the other hand, the more biologically
detailed neural network description of corticobasal ganglia loops
including multiple pathways (Frank, 2005). Although previous
attempts to link these levels of modeling exist, these did not
consider separate valuation systems for action selection and learn-
ing, or the effects of incentive but, rather, included a single value
for each action and only allowed for asymmetric learning rates for
positive versus negative prediction errors (Doll, Hutchison, &
Frank, 2011; Frank, Moustafa, et al., 2007). As shown below, this
mechanism is insufficient to account for the range of data. The aim
here is to provide a model that can exhibit more generally distinct
but interacting motivational incentive, performance and learning
effects, which can account for a range of findings in the literature
that are not accommodated by existing formulations. We further
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provide an analysis proposing a normative reason for this separa-
tion of valuation systems.

Model and Simulation Methods

OpAL Model Description

Our new model, labeled OpAL for Opponent Actor Learning,
relies on an actor-critic architecture. The actor-critic architecture
assumes that one system, the critic, estimates the values of the
current state of the environment, whereas the actor selects actions.
When outcomes are better or worse than expected, the critic
generates a reward prediction error, which is used for two pur-
poses: to update its future estimates, so that it is a better estimate
of the value, and to modify the actor weights. Actions that produce
positive prediction errors are reinforced, whereas those that pro-
duce negative prediction errors are punished. Commonly, the critic
is assigned to ventral striatum and the amygdala (Hazy, Frank, &
O’Reilly, 2010; O’Doherty et al., 2004), whereas the actor is
considered to be instantiated by dorsal striatal interactions with
pre/motor cortex.

Critic learning. The critic in our model is similar to that in
classical formulations (but see Discussion). It estimates the ex-
pected value of a given choice option1 and updates this value
through a simple delta rule learning algorithm:

V(t � 1) � V(t) � �C � �(t). (1)

Thus, the update of the estimated value V is proportional to the
prediction error �(t) � r(t) � V (t), where r(t) indicates reinforce-
ment received at time t, and �C is the critic learning rate. We make
the common assumption that critic values are represented in ven-
tral striatum and that phasic signals of dopamine convey the critic
prediction error (Dayan & Daw, 2008; Montague et al., 1996;
Roesch, Calu, & Schoenbaum, 2007).

Actor learning. The typical actor selection mechanism as-
signs a set of weights to each action, and increments or decrements
these weights as a function of critic prediction errors. In the OpAL
model, we separate the actor into two sets of weights, representing
corticostriatal synaptic weights into direct (G for Go) and indirect
(N for NoGo) MSN populations coding for state-action pairs (s, a).
For simplicity of exposition, we consider here a single state with
multiple action choices, thus simplifying (s, a) to a. These actor
weights, labeled, respectively, Ga(t) and Na(t), are constrained to
be positive (firing rates and glutamatergic synaptic weights cannot
be negative).

Learning for these actor weights mimics learning mechanisms in
neural network-models as follows:

Ga(t � 1) � Ga(t) � [�GGa(t)] � �(t) (2)

Na(t � 1) � Na(t) � [�NNa(t)] � [��(t)] (3)

Here, �(t) is the previously defined critic prediction error and �G

and �N are learning rates for Go and NoGo weights, respectively.
This model structure (dual actor weights) and its temporal

dynamics (update rules) reflect a departure from typical RL mod-
els. First, the presence of separate G and N weights as well as the
two unusual features of the update rules are biologically motivated.
The first feature of the update rule is that contrary to G-weights,

N-weights are updated through the opposite sign of the prediction
error.2 This captures the notion that dopamine has opposite effects
on plasticity via stimulation of D1 and D2 receptors in the different
populations but that they both can undergo potentiation and de-
pression. Intuitively, G-weights accumulate prediction errors, so
should come to represent an index of how good an option is, while
N-weights increase with negative prediction errors and decrease
with positive ones, so should come to represent how aversive an
option is.

The second feature of the update rule that departs from typical
RL updating, is that the extent of learning is determined not only
by the prediction error but also by the current actor weight, as a
multiplicative factor on the learning rate. This captures the often
quoted three-factor Hebbian rule, where learning depends on
presynaptic activation (from cortex, the stimulus and action), post-
synaptic activation in striatum (proportional to the actor weight),
and dopamine (Reynolds, Hyland, & Wickens, 2001). Although
this rule is often linked to reinforcement learning models, those
typically do not actually implement a three-factor rule. Indeed they
effectively incorporate presynaptic (stimulus-action representa-
tions) and dopamine (prediction error) constraints in learning rules
but are not contingent on postsynaptic modulation, which we
obtain here by incorporating the actor weight (which would deter-
mine the level of postsynaptic activation). Importantly, simulations
below compare this update rule to one in which the actor weight is
absent from the update equation and show that the modulation of
learning by actor values is necessary to account for the range of
data, including the effects of performance on learning, and the
tendency for G and N weights to preferentially discriminate be-
tween positive and negative action values, respectively.

Another departure from typical RL models, the presence of G
and N weights, rather than actor weights within a unitary system,
potentially affords computational advantages in terms of flexibil-
ity, by allowing separate dynamical regulation of whether G or N
should affect choice (see next section). Last, we show in the results
section that these features are critical to account for data that show
that dopamine can affect incentive without affecting learning, and
vice versa.

Policy. Choice between different options, for example be-
tween different available action choices ai, is given as a softmax
choice policy on the linear combination of the actor weights:

Acta(t) � �GGa(t) � �NNa(t) (4)

p(a) �
eActa(t)

�i e
Actai

(t)
(5)

Here, p(a) is the probability of choosing action a. It depends on
the combined actor weight Acta, that is the weighted difference

1 This could be a single state s, or a state-action pair (s, a), following
indications that prediction error could correspond to state-action prediction
errors (Morris, Nevet, Arkadir, Vaadia, & Bergman, 2006; Roesch, Calu,
& Schoenbaum, 2007).

2 Note that this is �� versus ��, so for example N weights increase with
negative prediction errors and decrease with positive prediction errors. This
implementation contrasts with previous attempts to model asymmetric
learning via separate learning rates to rectified prediction errors, i.e., that
only apply when � is positive or negative, respectively, e.g., in Frank,
Moustafa, Haughey, Curran, and Hutchison (2007).
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between Ga and Na, compared to that for all other candidate
actions, representing competition between direct and indirect
pathway activity in the output nucleus of the basal ganglia, GPi
(see Figure 1 left). Parameters �G and �N modulate the extent
to which the G and N weights are represented in a given trial,
such that �GGa(t) represents the activation of the associated G
population and �NNa(t) represents the activation of the associ-
ated N population. The softmax function implements the non-
linearity in choice as a function of value. Thus, depending on
the asymmetry in �G versus �N, proposed below to relate to
dopamine levels at time of choice, the benefits and costs of
actions are differentially represented, and different actions can
be selected (Figure 1). Note that we can rewrite the parameters
as �G � � � (1 � 	) and �N � � � (1 � 	). In this form, �1 

	 
 1 represents the asymmetry between the weights and �
corresponds to the classic softmax inverse temperature param-
eter, controlling exploration versus exploitation.

Reaction time. We model the reaction time of a choice a as a
function of its actor value Acta through softmax:

RT(a) 	 RT0 � 1 ⁄ (1 � e(Acta(t)�
)), (6)

where � is a threshold for Go relative to NoGo pathway activity
needed to facilitate the action, and RT0 is simply baseline
reaction time. This equation captures the RTs generated by
neural network simulations in which relatively greater Go than
NoGo population activity results in faster RTs (Moustafa et al.,
2008; Wiecki et al., 2009) and where the decision threshold (as
estimated through a drift diffusion model) is in part controlled
by the output of the basal ganglia, corresponding to the Act
value here (Ratcliff & Frank, 2011).

Simulating Dopaminergic Effects on Learning and
Incentive

Simulations reported below show that the model as defined above
can capture potential asymmetries in both learning and choice incen-
tive. Regarding learning, in neural circuit models dopaminergic mod-
ulations can enhance phasic burst signaling, enhancing sensitivity to
positive prediction errors. However, higher tonic levels can also
prevent D2 receptors from detecting phasic dips, thereby reducing
sensitivity to negative prediction errors (Frank, 2005). Conversely,
low dopamine levels may reduce phasic burst signaling but actually
increase the sensitivity to dips (Frank & O’Reilly, 2006). In the OpAL
framework, this modulation can be modeled by asymmetries in the
actor learning rate parameters �G and �N, capturing the sensitivity of
D1 and D2 MSNs to dopaminergic signals and resultant effects on
plasticity. Conversely, choice incentive effects of dopamine manipu-
lations at the time of choice can be modeled by asymmetries in �G and
�N, modulating the degree to which learned values in the two path-
ways are expressed. For example, a high level of dopamine at the time
of choice enhances active D1-MSNs, but inhibits D2-MSNs, so would
be modeled by an increase in �G and decrease in �N, and conversely
for a decrease in dopamine.

To summarize, as a first approximation, we model potential learn-
ing effects with the �G, �N parameters, and potential incentive or
performance effects with the �G, �N parameters. Broadly, this dis-
tinction accords with the separate effects of phasic dopamine encod-
ing prediction errors (Montague et al., 1996), compared with the tonic
(baseline) effects of dopamine relating to vigor (Niv et al., 2007).
However, we note that our model suggests that the key distinction
between incentive and learning effects simply depends on the level of
striatal dopamine at the time of choice versus the time of reinforce-
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A. 2-pathways Neural Network B. OpAL model 

Figure 1. Neural network and opponent actor learning (OpAL) models. A. Schematic depiction of the neural
network representing corticobasal ganglia loops, used in Frank (2005) and others to simulate various effects of
dopamine on learning and performance. B. Representation of OpAL model, with example of choice between
three options for a given stimulus, with three different dopaminergic states. In a normal dopaminergic state (2,
middle), the model’s actor weights (Act) favor an action that has high G weights and low N weights, relatively
to the other options. In a high dopaminergic state (1, left), G values are emphasized more than N values on actor
choice are emphasized, leading to the choice of an action that has relatively highest G weights, with little regard
for the action costs. In contrast, in a low dopamine state (3, right), the reverse happens, and the model chooses
action that has lowest N weights. DA � dopamine; GPI � internal segment of the globus pallidus. See the online
article for the color version of this figure.
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ment, respectively, and hence any phasic bursts that occur during
choice would also affect incentive choice and reaction times (see, e.g.,
Satoh, Nakai, Sato, & Kimura, 2003, in which phasic DA signals were
related to faster RTs), captured by �G and �N parameters.

Results

Model Dynamics

Standard reinforcement learning models, including actor-critic
models, have been proven, under reasonable assumptions, to converge
in probability to estimating the expected sum of future discounted
reward given the state and/or action. It is desirable to ensure that Act
in our model has similar properties that are useful for rational
learning and decision making, for example, that it does not diverge or
that it is a monotonically increasing function of expected reward. We
show here some simulations that validate the most critical aspects to
ensure that OpAL defines a reasonable learning and choice policy
(and include some theoretical derivations in supporting information).

In a first set of simulations (see Figure 2), we manipulated
expected value of a choice by parametrically changing reward
value r � 0 and probability of reward versus no reward (r � 0), in
a single forced choice setting, using neutral (symmetrical) param-
eters (�G � �N � �C � 0.1; �G � �N � 1). These simulations
show that G and N are, respectively, increasing and decreasing
convex functions of r and p(r), while Act is a nonlinear increasing
function (Figure 2B).

In particular, G weights are positively correlated with true
expected value, which increase approach tendencies, but the con-
vexity of the curve indicates that the function is nonlinear: they
exhibit greater differentiation among higher value stimuli. Thus, a
fixed difference of ε between the probability of reward of two
stimuli/actions (i.e., p(r) and p(r � ε)) will be amplified in G
weights to a greater extent when p(r) is high compared to low,
especially if r is also high.

In contrast, N weights are negatively correlated with true ex-
pected value and act to support avoidance tendencies. Here, the
convexity indicates that N weights differentially emphasize lower
(rather than higher) value stimuli/action representations. These
effects are particularly visible in the time course plots (Figure 2A,
middle graphs for G and N). However, it should be noted that with
symmetrical parameters as used here, the net Act values evolve
without biases present in G and N, like standard reinforcement
learning values but with emphasized differentiation at extreme
values (compare top and bottom graphs).3

Parameter Effects

Actor learning rate (�G and �N) effects. In a second set of
simulations (see Figure 3A), we separately manipulated the actor
learning rates. These findings indicated that greater learning rates
emphasize the modulation seen in normal dynamics, such that with
increasing �G, good options are perceived with even stronger G
weights, and bad options with even smaller G weights, leading to
an exaggerated influence of reward value in actor weights. Con-
versely, increasing �N results in greater representation and differ-
entiation among low valued options. Note that these effects hold
despite the fact that positive and negative prediction errors are
treated identically in the update of both G and N weights, i.e., that

positive prediction errors increase G and decrease N weights, and
vice versa for negative prediction errors. The reason these different
systems differentiate among positive versus negative outcomes lies
in the Hebbian modulation of learning rules, which differentially
impact the accumulation of reward prediction errors across time,
such that they come to represent positive and negative values.

Choice incentive (�G and �N) effects. We saw earlier that G
weights amplify differences in p(r) and in r more as their values
increase, whereas N weights amplify differences in p(r) and r more
as their values decrease. Here we show that modulations of �G

versus �N parameters, simulating dopaminergic manipulations at
time of choice, further magnify the corresponding weight biases.
When �G � �N, the differential emphasis of high or low values
cancels out perfectly in Act weights. However, shifting the balance
between the G and N systems using asymmetric �s reveals the
influence of the corresponding bias—even in the presence of
symmetrical learning.

Indeed, simulations (Figure 3C) showed that with �G � �N, Act
is a convex function of p(r), leading to greater differentiation
among good than bad options (revealing influence of G-weights),
whereas the converse was true with �N � �G, revealing the
influence of N-weights.

Simulating Optogenetic Effects on Learning and
Performance

The above simulations reveal how changes in environmental
contingencies (reward probabilities and magnitudes) influence
model dynamics. These modeling results can be directly linked to
capture findings from optogenetic studies showing that stimulation
of D1 or D2 MSNs can differentially influence incentive choice or
reinforcement learning depending on whether stimulation is deliv-
ered during choice or outcome (Kravitz et al., 2012; Tai et al.,
2012). We model these experiments explicitly here and reproduce
all the main findings.

Kravitz et al. (2012) stimulated striatal MSNs expressing either
D1 or D2 receptors immediately following the rat’s selection of a
particular action. D1 stimulation induced approach learning, such
that this action was preferentially selected in the future, whereas
D2 stimulation induced avoidance learning. Moreover, these ef-
fects of direct MSN stimulation did not depend on dopamine, as
they persisted when dopamine blockers were administered.

We model the optogenetic stimulation of MSNs in OpAL by
enhancing the activity-dependent learning rule for the correspond-
ing population (i.e., optogenetic simulations were additive to G
values for D1 MSNs stimulation and to N values for D2 MSNs
stimulation). Specifically, we assumed that stimulation influenced
learning in the same way that dopaminergic prediction error does,
by modulating the G and N activity levels:

Ga(t � 1) � Ga(t) � [�GGa(t)] � [�(t) � OptG] (7)

Na(t � 1) � Na(t) � [�NNa(t)] � [��(t) � OptN] (8)

with OptG � Opt when D1 MSNs are stimulated (and 0 otherwise),

3 Note that actor weights are initialized to 1 throughout this article,
unless explicitly stated otherwise but that no results are dependent on this.
Any positive initialization would produce identical results (see Appendix).
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and OptN � Opt when D2 MSNs are stimulated (and 0 otherwise).
Opt � 0 is the parameter representing the strength of the stimu-
lation. Since no primary reinforcement was provided in this ex-
perimental paradigm, there was no value learning in the critic.
Thus, phasic dopamine prediction errors were assumed to be
�(t) � 0, but we allowed for random fluctuations by adding
0-mean Gaussian noise. We also assumed some forgetting in

learned weights with rate � � 0.2, to capture overall extinction
effects (but with no asymmetry in the G and N weights) as well as
undirected noise in choice selection (ε � 0.25). Note that none of
the results are qualitatively dependent on these parameters. Sim-
ulations were run with symmetric learning rate �G � �N � 0.1, as
well as symmetric softmax weights �G � �N � 10, and optoge-
netic strength Opt � 0.2, for 100 iterations. To obtain similar
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Figure 2. Model dynamics as a function of time, reward value and reward probability. All values are averaged
over 1,000 simulations. Model values are (from top to bottom) critic values V, G weights, N weights and actor
values Act � G � N. A. In these simulations, we show evolution of the model variables as a function of time
for different probabilities of reward, with symmetrical model parameters (�G � �N � �C � 0.1; �G � �N �
1). The top graph shows that critic value V quickly converges to true expected value. The second and third graphs
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number of trials to those observed in the experiment, we modeled
reaction times with RT � 5 � 10/(1 � exp(Act)) sec. Simulations
were run to provide 30 min sessions, corresponding to the exper-
imental design in Kravitz et al. (2012). Effects of dopamine
blockade were simulated by setting an asymmetry in choice pa-
rameters, with 	 � �0.3, such that �G � � � (1 � 	) and �N �
� � (1 � 	).

Accordingly, in the first set of simulations including only stimula-
tion to the D1 or D2 MSNs, the model developed stronger G weights
for the action that was associated with the stimulation side given D1
MSN stimulation and thus increased its likelihood of selection (blue
bars in Figure 4, middle); this was true of the first few trials of each
session, indicating a learning, not performance effect (Figure 4, left).
For D2 MSNs stimulation, the model developed stronger N weights
associated with the triggered action, thus learned avoidance. Further-
more, these increased N weights were accompanied by slower reac-
tion times, thereby leading to fewer overall choices made within the
same period of time, much like that observed in rodents (red bars in
Figure 4, right). Notably, these findings persisted even in the presence
of simulated DA blockade (simulated by altering the choice incentive
parameter): Because learning effects of DA in the model result
from activation of D1 or D2 MSNs, the learning asymmetry
persists with DA blockade due to their direct stimulation.
Importantly, this is not simply a null effect: the model does
predict that DA blockade reduces the absolute number of ac-
tions selected, even without changing the relative preference
between the actions; both of these effects accord well with the
observations of Kravitz et al. (2012; Figure 5).

Finally, Kravitz et al. (2012) reported that learning induced by
D2 MSN stimulation was less robust and rapidly extinguished

relative to D1 MSN stimulation. However we show here that their
full pattern of results are obtained in the model without assuming
any asymmetry in the robustness of learning per se. Specifically,
because D2 stimulation induces avoidance, it by definition reduces
the number of actions selected, and hence the number of training
trials, thereby leading to weaker accumulated N weights and faster
extinction. Indeed, D2 MSN stimulation was associated with ap-
proximately 150 actions compared with 300 actions for dMSN
stimulation. Figure 6 shows that the model simulating equal effects
of D1 and D2 MSN stimulation on learning reproduces both these
effects of number of actions taken and, accordingly, differential
apparent effects on extinction.

Tai et al. (2012) stimulated striatal MSNs expressing D1 or D2
receptors in rodents performing a reversal learning experiment
using standard primary reinforcement. Optogenetic stimulation
was applied at the time of choice, rather than learning, selectively
enhancing activity in the direct or indirect pathway MSNs, selec-
tively for those MSNs that correspond to only one of the available
actions (i.e., action choices were left vs. right responses and
stimulation was applied unilaterally). D1 versus D2 stimulation
differentially impacted choices: stimulation of D1 receptors in-
creased choice of the corresponding action, whereas stimulation of
D2 receptors decreased it. Interestingly, this change in preference
was not categorical (i.e., it did not just induce a motor action to left
or right) but was dependent on reward history (top line of Figure
7, middle right).

To model this, we assumed the normal OpAL learning proce-
dure as described in the methods, without optogenetic interference,
but hypothesized that optogenetic stimulation affected the choice
policy, selectively influencing the actor weights associated with
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one of the actions (left or right) at the time of choice, through the
increase of �G weight in D1-MSN stimulation, and of �N weight
in D2-MSN stimulation. Parameters were symmetrical learning
rates �G � �N � �C � 0.12, � � 0.15 and ε � 0.5. In absence of
stimulation, softmax choice parameters were symmetrical: �G �
�N � 20. Optogenetic stimulation was simulated as a 20% increase
in the corresponding � weight (	 � �0.2). This allows us to
account for observed results (see Figure 7, bottom line): Simula-
tions showed that stimulation produced a reward-history depen-
dent bias toward stimulated side (D1 stimulation) or away from it
(D2 stimulation).

Probabilistic Selection Task

Next we examine how model dynamics play out to explain
differences in choice proportions in tasks empirically known to be
sensitive to dopaminergic manipulations. Here we report simula-
tions with a simplified and generalized version of the probabilistic

selection task (Frank, Moustafa, et al., 2007; Frank et al., 2004; see
Figure 3), but the same results hold with the empirical version of
the task.

In this version, on each trial, the model is presented with a
choice between two options. On some trials it is presented with a
choice between A or B, where A is the probabilistically most
rewarding option and B the most punishing option. On other trials
it is presented a choice between options M1 and M2, which each
have neutral values:

p(r � 1 | choice is A) � 1 � p(r � 0 | choice is A) � p � 0.5 (9)

p(r � 1 | choice is B) � 1 � p(r � 0 | choice is B) � 1 � p  0.5

(10)

p(r � 1 | choice is M1 or M2) �1 � p(r � 0 | choice is M1 or M2)

� 0 . 5 (11)
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Copyright 2012 by Macmillan. See the online article for the color version of this figure.
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During the learning phase, the model reliably learns to choose
A over B. In a subsequent transfer phase, the model is presented
with all possible novel pairings of the four choice options (e.g.,
A vs. M1, A vs. M2 and B vs. M1, B vs. M2). No feedback is
provided so there is no further opportunity to learn; preferences
thus depend on values learned for each of the individual options
during the learning phase. As in the empirical task, we define
Choose-A (ChA) performance as the probability of picking A
over M, and Avoid-B performance (AvB) as the probability of
choosing M over B. Notably, across a range of empirical studies
with this task, manipulations that increase striatal dopamine
enhance ChA and impair AvB, and vice versa for manipulations
that decrease dopamine; for review, see Maia and Frank (2011).
Note that the difference in expected value between A and M is
identical to that between M and B. Thus any performance
differences between Choose-A and Avoid-B constitute a Bias �
ChA � AvB, reflecting differential sensitivity to positive versus
negative outcomes. Importantly, standard reinforcement learn-

ing models should converge to the theoretical expected value
and are thus expected to produce equal ChA and AvB perfor-
mance, leading to zero Bias.

To examine influences of learning and incentive without con-
founding effects of amount of experience (differential sampling)
for different options, we first investigated a random action selec-
tion policy during the learning phase, and assess preferences
between all choice options in a subsequent transfer phase. We also
investigated a more standard action selection policy during learn-
ing using softmax.

We first considered how biases in sensitivity to positive versus
negative outcomes (as revealed in ChA and AvB choice proportions in
the test phase of this task) changed as a function of either learning
phase actor learning rates �G and �N, or test phase choice incentive
parameters �G or �N. Simulations (left panel in Figure 8) showed that
manipulating the asymmetry either between learning rates or between
test �s induced biases toward better Choose A than Avoid B for �G �
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graphs: proportion of laser-paired trigger contacts during the whole session. Both lines, right graphs: DA
antagonists reduced the total number of actions (laser-paired and non-laser-paired) emitted during the
session, despite preserving the relative bias. An asterisk represents a significant difference from chance
(50), based on an alpha of .05. Top left graph reproduced from “Distinct Roles for Direct and Indirect
Pathway Striatal Neurons in Reinforcement,” by A. V. Kravitz, L. D. Tye, and A. C. Kreitzer, 2012, Nature
Neuroscience, 15, p. 817. Copyright 2012 by Macmillan. See the online article for the color version of this
figure.
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�N or �G � �N (and inversely for reverse asymmetries). These biases
were amplified as reward probability increased/decreased for A and
B, respectively.

We next fixed reward probability to that of the standard
empirical task (p(r | A) � 0.8) to investigate the interaction
between learning and performance parameters, by simultane-
ously varying � and � asymmetries. We fixed �G � �N � 0.2,
�G � �N � 2 but parametrically altered their difference.
Simulations (right panel in Figure 8) showed that bias toward
ChooseA versus AvoidB increased with both �G � �N and
�G � �N. Interactive effects of the parameters were also visible
on overall performance: when either of the set of parameters
was balanced across G and N, the effect of asymmetry in the
other parameter was smaller (middle column). However, when
one of the parameters was strongly asymmetrical (left- and
right-most columns), overall performance improved if the other

parameter was asymmetrical in the same direction but dropped
to chance if asymmetrical in the other direction. In other words,
performance depends on motivational/dopaminergic state at the
time of choice being in the same range as it was at the time of
learning. Nevertheless, for more moderate learning biases, it is
also possible to reverse the asymmetry in choice: when options
are learned with a bias toward N weights, a sufficiently large
asymmetry in choice incentive toward G weights can still result
in relatively better ChA than AvB performance. These findings
support the observations that motivational state at the time of
choice can impact an animal’s behavior to approach an action
which had been preferentially associated with negative out-
comes during learning (Zhang et al., 2009).

Note that these results require the specific nonlinear update rule
(including the three-factor Hebbian term) that we have introduced

30

50

70

P
er

ce
nt

 la
se

r−
pa

ire
d 

tr
ig

ge
r 

co
nt

ac
ts

Entire session pokes

0

100

200

300

# 
po

ke
s

0

100

200

300

# 
po

ke
s

30

50

70

P
er

ce
nt

 la
se

r−
pa

ire
d 

tr
ig

ge
r 

co
nt

ac
ts

Retra
in Ext

Retra
in Ext

Retra
in Ext

Retra
in Ext

Retra
in Ext

Retra
in Ext

dMSN-ChR2

iMSN-ChR2

Retra
in Ext

Retra
in Ext

O
p

A
L 

S
im

u
la

ti
o

n
s

E
xp

e
ri

m
e

n
ta

l 

R
e

su
lt

s

Retra
in Ext.

Retra
in Ext.

50

75

25

0

Entire session

iMSNdMSN

Figure 6. Optogenetic effects and extinction (Ext). Top line: experimental results (left graph reproduced from
Kravitz, Tye, & Kreitzer, 2012; middle and right graphs plotted from result tables in Kravitz et al.). Findings
ostensibly indicate that indirect medium spiny neuron (iMSN) stimulation is less robust and more susceptible to
extinction. Bottom line: opponent actor learning (OpAL) simulations assuming equal effects of direct MSN
(dMSN) and iMSN stimulation on learning reproduce the same pattern. Middle graph: proportion of laser-paired
trigger contacts during the whole session. Right: total number of triggers (laser-paired and non-laser-paired)
during the session. d(i)MSN-ChR2 indicates groups of mice expressing channelrhodopsin2 in d(i)MSNs. An
asterisk represents a significant difference from chance (50), based on an alpha of .05. Top left graph reproduced
from “Distinct Roles for Direct and Indirect Pathway Striatal Neurons in Reinforcement,” by A. V. Kravitz, L. D.
Tye, and A. C. Kreitzer, 2012, Nature Neuroscience, 15, p. 816. Copyright 2012 by Macmillan. See the online
article for the color version of this figure.
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Figure 7. Optogenetic stimulation at choice time. Top line: experimental results (reproduced from Tai, Lee, Benavidez, Bonci, & Wilbrecht, 2012).
Bottom line: opponent actor learning (OpAL) simulations. Left: reversal learning performance. Middle left: probability of choice for different reward history
in last two trials. Middle right: proportion of left choices with and without stimulation of left D1-MSNs, for different reward history in last two trials. Right:
proportion of left choices with and without stimulation of left D2-MSNs reward history in last two trials. DMS � dorsomedial striatum; MSN � medium
spiny neuron. D1(2)-Cre � Chr2-eYFP indicates groups of mice manipulated for the genetic control of direct (indirect) pathway MSNs, respectively. Top
row of graphs adapted from “Transient Stimulation of Distinct Subpopulations of Striatal Neurons Mimics Changes in Action Value,” by L.-H. Tai, A. M.
Lee, N. Benavidez, A. Bonci, and L. Wilbrecht, 2012, Nature Neuroscience, 15, pp. 1282–1283. Copyright 2012 by Macmillan. See the online article for
the color version of this figure.
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for OpAL. Indeed, the gray curves in Figure 8 show simulations of
a simplified model stripped of the multiplicative modulation by G
or N values in the update equations. These simulations show that
no bias is observed with any combination of asymmetries of
learning rates or � parameters. Without the multiplicative update,
G and N weights evolve symmetrically, with no preferential dif-
ferentiation among positive or negative values, and as such are
linear combinations of true expected value, leading to equal
Choose-A and Avoid-B performance (see Appendix, supplemental
simulations in Figure A2).

Dopaminergic manipulations in the probabilistic selection task
have been shown repeatedly (Frank, Moustafa, et al., 2007; Frank
& O’Reilly, 2006; Frank et al., 2004; Jocham et al., 2011; Shiner
et al., 2012; Smittenaar et al., 2012) to induce changes in
Choose-A versus Avoid-B bias, although it has not been clearly
disentangled whether this was due to learning effects or perfor-
mance effects. As noted earlier, some studies show effects of
dopamine medication in which Choose-A performance is im-
proved even when the design was such that medications could
have only affected test performance rather than learning (Shiner et

al., 2012; Smittenaar et al., 2012). However, other experiments in
which dopamine was modulated during both learning and test
showed greater effect on choice asymmetry than these showing
effects at test alone. Further, imaging studies showed that the
effect of dopaminergic manipulations on Choose-A performance is
correlated with the extent to which it boosts reward prediction
error signaling during learning (Jocham et al., 2011; Ott, Ull-
sperger, Jocham, Neumann, & Klein, 2011). The above simula-
tions suggest that both learning and incentive motivational effects
could account for the results either separately or jointly. They are
also consistent with the fact that dopamine modulation effects
should be parametric, as observed in genetic studies (Frank,
Moustafa, et al., 2007).

Choice bias in the probabilistic selection task have usually been
modeled with classic reinforcement learning models that include
asymmetric learning rates for positive versus negative errors (Doll
et al., 2011; Frank, Moustafa, et al., 2007). We show in further
simulations in the Appendix (Figure A1) and in the discussion that
while such models can indeed account for some bias effects, they
cannot account for the variety of data that OpAL can.
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Figure 8. Simplified probabilistic selection task: relative values in opponent actor learning (OpAL). All values
are final values after 100 trials, averaged over 1,000 simulations. Left: choice bias for different probabilities of
reward p(r). Top left: fixed �G � �N, varying �G versus �N asymmetry. Bottom left: fixed �G � �N, varying
�G versus �N asymmetry. Both learning or incentive (performance) effects can produce a choice bias empha-
sizing positive or negative values. This bias increases as the most rewarding/punishing outcomes are increasingly
deterministic. Right: Choose-A (full line) versus Avoid-B (dotted line), and Bias (relative difference) as a
function of asymmetries in � and � parameters. Bias increases monotonically with asymmetries in either
parameter type, but effects of both parameters interact: Given an asymmetry in learning (�), performance is best
when the asymmetry in incentive (�) is in the same direction, i.e., when dopaminergic motivational state at the
time of choice is similar to that at the time of learning. Even so, for intermediate levels of asymmetry, it is
possible to exhibit greater learning in one system but to express greater influence of the other during choice, as
in some experiments (Zhang, Berridge, Tindell, Smith, & Aldridge, 2009). Horizontal black lines in the top line
of graphs show simulations for a version of the model without the Hebbian nonlinear term in the actor weight
updates: This model cannot account for differential sensitivity of Choose A or avoid B, as can be seen by null
bias across all parameters, due to symmetrical representation of positive and negative values in both G and N
weights. See the online article for the color version of this figure.
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Our model can thus account for previously observed effects of
dopamine in the probabilistic selection task, both in the learning
stage and in the subsequent performance stage. However, it also
makes additional predictions, in an experimental design where
dopamine would be manipulated separately during the learning
phase and during the test phase. As seen in Figure 8, middle,
OpAL predicts that the bias is exaggerated if both learning rates
and � parameters are adjusted. Moreover, it predicts that overall
performance declines precipitously if the learning and testing
phase are performed in different dopaminergic states. For example,
near chance performance is predicted given high dopamine during
learning (strong �G � �N asymmetry) but low dopamine during
test (strong �N � �G asymmetry; see Figure 8, right group, middle
left plot).

Motivation and Incentive Effects on Effort-Based
Decision Making

Perhaps the most clear example of dopamine on motivational
incentive comes from tasks that manipulate the amount of effort
an animal (or human) has to exert to attain a reward (Cousins &
Salamone, 1994; Floresco, Tse, & Ghods-Sharifi, 2008; Sala-
mone et al., 2005; Treadway et al., 2012). Here we consider the
paradigm in which humans or animals need to press a single
lever a number of times T to obtain a reward. In such studies,
dopamine modulations strongly influence the degree of effort
exerted, such that the tendency for animals to work harder for
higher potential rewards is proportional to striatal DA: It is
enhanced with DA elevations and suppressed with DA deple-
tions. These findings are not easily accounted for by learning
theories because manipulations are conducted after the animal
or human has learned the effort cost and reward benefit con-
tingencies. Nevertheless, this procedure mainly reflects the
tradition from which effort-based decision making has been
studied, and there is no principled reason why dopamine ma-
nipulations could not be conducted during learning itself. We
thus consider potential roles both of learning and of motiva-
tional incentive and their interaction.

In a first simulation, we parametrically varied the number of
actions required to attain a reward, indexed by the reward proba-
bility associated with a single choice. We used a fixed learning
period (100 lever presses) to acquire the contingencies, and sym-
metrical learning rates but varied the balance 	 between �G and �N

during choice (see supplemental methods in Appendix). Figure 9
shows that increasing 	, thus �G � �N, leads to a greater proba-
bility of selecting the option. This effect interacts with the amount
of effort required to obtain a reward: for high effort (e.g., p(r) �
0.1), the effect of changing 	 further becomes very apparent once
there is any bias for �G � �N (green curves), whereas the same
change in 	 for the opposite asymmetry has little effect. Con-
versely, for low effort (e.g., p(r) � 0.9), the effect of changing 	
by the same amount has a far greater effect given the opposite
asymmetry �N � �G (red curves).4

In a second set of simulations, we directly modeled dopamine’s
influence on the D2 pathway, in accordance with evidence that
manipulation of D2 receptors and of adenosine A2A receptors
(which are colocalized on the same NoGo neurons) predictably
modulates the cost of effort. Specifically, D2 blockade effectively
enhances the cost of effort, whereas A2A blockade, by having

opposing effects on neuronal excitability, counteracts this effect
(Farrar et al., 2010, 2008; Mingote et al., 2008; Nunes et al., 2010).
We explored potential effects on learning the effort cost (varying
�N � 0.1 or 0.125) and on the expression of this cost (�N � 1 or
1.5), while keeping G parameters fixed (�G � 0.1, �G � 1).
Simulations revealed that D2 blockade either during learning (gray
vs. black lines), or during performance (green circles vs. red
squares) reduce the effective actor weight Act of the option, and
hence the probability of engaging in the effort necessary to select
the option. Notably, these D2 effects increase with the cost of the
option (number of presses required).

These simulations also provide a novel, testable prediction. In
addition to the main effects of effort cost on action engagement,
and the effects of both learning and incentive parameters, we also
observe interactions between each pair of factors, as well as a
three-way interaction (all ps 
 .01). Learning and performance
effects of D2 manipulation are stronger the more effort is required
(as evidenced by the increasing distance between the curves), and
the combination of both manipulations during learning and choice
amplifies the effect. Moreover, contrasting the two effects indi-
vidually, the effects of choice incentive are stronger than learning
effects when effort cost is relatively low, but for high costs, this
can be reversed (compare �/� and �/� conditions for 2–4 vs.
16–20 lever presses). This is because with high effort, the in-
creased frequency of negative reward prediction errors (lack of
reward for most presses) accumulates over time, due to the mul-
tiplicative influence of N weights on updates, resulting in stronger
learning effects. Thus, the triple interaction is a specific prediction
of the OpAL model, not predicted without the Hebbian term (see
Appendix, Figure A2).

In addition to providing novel, testable predictions, we show
more directly that the OpAL framework can account for existing
data by simulating it on common effort protocols, including those
that manipulate the number of lever presses required to obtain a
reward with and without dopamine blockade (Aberman & Salam-
one, 1999; Niv et al., 2007), and those that add a barrier that a rat
has to climb over to obtain a larger reward in a T-maze. In both
cases, the model learns choice contingencies in the intact state,
modeled with �G � �N and �G � �N, then is tested in extinction
(no learning), either in the intact state or with dopamine blockade
(modeled as an asymmetry in parameters �G 
 �N).

Specifically, to model the environment of the lever-pressing
effort task, we assume a single state and choice, that is selected or
not according to Equation 6. When selection occurs, feedback is
modeled with a Bernoulli probability p(r) � 1/T. We allow the
model to learn these contingencies and manipulate dopamine ef-
fects during this learning through actor learning rates �G, �N. We
then manipulate motivational incentive following learning in ex-
tinction, by modulating the �G,N parameters: we varied the balance
between �G and �N during choice, by setting �G � � � (1 � 	),
�N � � � (1 � 	), with � � 1. Parameter �1 
 	 
 1 represents
the normalized difference between �G and �N.

To apply this specifically to data from Aberman and Salamone
(1999), we used the following parameters: � � 10, � � .02, 	 �
0, 	DAblock � �0.9. The model learned to choose between two

4 Note that this cannot be reduced solely to a shift in a single softmax
curve.
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options: press the lever or do nothing. If press was chosen, the
probability of reward r � 1 was 1/FR, with fixed ratio FR � {1,
4, 16, 64}. The reaction time was modeled as RT � 0.5 � 1.5/(1 �
exp(Act)). When reward was obtained, we assumed a fixed eating
time (I � 6). Simulations were ran for two 30-min equivalent
sessions, then choice results plotted from the third posttraining
session (following the fact that animals are extensively trained
prior to performance in these paradigms).

Thus, in the lever press task, OpAL simulations reproduce the
basic pattern commonly observed for fixed ratio schedules: an
increase in lever presses as the schedule demands increase but
where dopamine blockade preferentially decreases lever pressing
as effort increases (Figure 10A). The model suggests that this
pattern results from the fact that the high effort condition is
associated with greater cost that is traded off against the reward
benefit, where the cost is exaggerated with dopamine blockade.

In the T-maze task, animals learn to choose the arm providing most
food pellets (4 vs. 0, or 4 vs. 2). Intact animals continue to choose the
arm with four pellets even when a barrier is added such that they have
to climb over it. However, dopamine blockade induces them to stop
choosing the most rewarding arm in the 4 versus 2 case, but not in the
4 versus 0 (Cousins, Atherton, Turner, & Salamone, 1996; Figure
10B). The observation that dopamine blockade preserves choice of
the high effort option in the 4 versus 0 case suggests that effort is not
coded distinctly from reward value (i.e., the animals are able to climb
the barrier if they want to) but that they are rather performing a
cost-benefit analysis, i.e., that the cost of climbing the barrier is
compared in some currency to the benefit of the reward.

We modeled the T-maze with barrier task in Cousins et al.
(1996) by assuming a single state, and two possible actions (left

arm, right arm). The left arm choice deterministically provided r �
4 pellets, while the right arm choice deterministically provided
either r � 0 or 2. The model was trained for 100 trials and learned
to robustly choose the left arm. To model the barrier effort, we
separately trained the model in an environment where it had to
pick the action [climb the barrier] and assumed this action led to a
cost of c � �1 for 100 trials. Thus the model developed G and N
weights for that action. The model was then tested on the combi-
nation of the T-maze with barrier: animals had to climb a barrier
in the left arm in order to access pellets. We assumed that the
choice was made between {left arm and barrier} and {right arm}
so that the actor weights considered for the left choice were the
sum of the learned left arm and barrier weights. OpAL parameters
were �s � 0.1, � � 3.5, 	 � 0. Dopamine blockade was modeled
with 	 � �0.55, leading to �G 
 �N. Results are averaged over
1,000 simulations. Figure 10B (right) shows that OpAL simula-
tions reproduce the behavioral pattern quantitatively.

We have now shown that this model accounts for the two
main classes of results of dopamine effects on learning and
motivation. Differential sensitivities to gains versus losses in
reinforcement learning experiments have heretofore been attrib-
uted primarily to learning effects, which the model can capture.
But the model also shows that choice incentive/performance
effects can also contribute to those findings. Symmetrically,
dopamine effects on effort-based decision making have largely
been studied in the context of motivational incentive models
(performance effects), which our model can capture but shows
that learning effects could also contribute if dopamine is ma-
nipulated during that period.
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. Left:

Increasing asymmetry toward G system enhances willingness to engage in effort. Darker colors indicate
asymmetry toward G vs. N (	 
 0). Right: With �G and �G fixed, simulation of D2 receptor blockade during
either learning (higher �N) or subsequent choice (higher �N), or both. Gray versus black lines indicate control
versus drug during learning, green circles versus red squares indicate control versus drug during performance.
Both manipulations produce decreased effort, especially when combined (�/�), and these effects are magnified
with increased effort cost. Learning effects alone (�/�) are greater than performance effects alone (�/�) for
high effort cost; this pattern reverses for decreased effort cost. DA � dopamine. See the online article for the
color version of this figure.
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Both of these sets of simulations further suggested potential
interactive effects of learning and performance, as novel predic-
tions. To more concretely link these predictions to empirical data,
we next turn to motor skill learning experiments that have con-
vincingly shown these interactions.

Learning and Performance Interactive Effects on
Motor Skills

Striatal dopamine has long been implicated in motor perfor-
mance, but its role in learning, and particularly the impact of
DA depletion on aberrant learning, has only recently been
appreciated. In Beeler et al. (2012), the authors administered
dopamine blockade to rodents performing the accelerating ro-
tarod task, a motor skill learning task where rodents are put on

a rod that turns with accelerating speed: The animal integrates
visual and proprioceptive feedback to walk forward at the
correct rate to avoid falling. They showed interactive effects on
learning and performance, which were captured by a neural
network model of basal ganglia. In particular, dopamine block-
ade either during first exposure to the rotarod or after having
learned the task led to very poor performance. While superfi-
cially these findings could be attributed to performance deficits,
further results showed that it also induced aberrant learning.
Indeed, after drug washout, learning was significantly slower
than for naive animals. Similarly, after having learned the task
in an intact state, D2 blockade in particular resulted in progres-
sive decline in skill performance. Synaptic plasticity studies
showed that D2 blockade induced potentiation of corticostriatal

Figure 10. Effort tasks. A. Fixed ratio lever press task. Left: data from lever press task (from Aberman &
Salamone, 1999). Right: opponent actor learning (OpAL) simulations of the task. As in the data, the number of
lever presses increases with fixed ratio schedule, but dopamine depletion decreases the number of lever presses
as effort demands increase. B. T-maze with barrier task: Experimental data from Cousins, Atherton, Turner, and
Salamone (1996) on the left, model simulations on the right. Healthy rodents and intact models prefer the arm
with the largest reward despite the increased effort. Dopamine depletion reverses this preference, but only for
the 4 versus 2 pellet case, without impacting choice in the 4 versus 0 pellet case. LP � lever press; DA �
dopamine; HD � high density food; BL � baseline; Veh � group injected with vehicle; 6-OHDA � group
injected with 6-hydroxydopamine. Full star indicates significant difference from Veh condition, open star
indicates significant difference between 4-2 and 4-0 condition. Error bars are standard error of the mean. Left
graph in Panel A reproduced from “Tonic Dopamine: Opportunity Costs and the Control of Response Vigor,”
by Y. Niv, N. D. Daw, D. Joel, and P. Dayan, 2007, Psychopharmacology, 191, p. 512. Copyright 2007 by
Springer. Left graph in Panel B reproduced from “Nucleus Accumbens Dopamine Depletions Alter Relative
Response Allocation in a T-Maze Cost/Benefit Task,” by M. Cousins, A. Atherton, L. Turner, and J. Salamone,
1996, Behavioural Brain Research, 74, p. 192. Copyright 1996 by Elsevier.
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synapses onto D2 MSNs. These same mechanisms have been
proposed to account for the progressive development of Par-
kinsonian symptoms given repeated administration of low dose
D2 blockers in catalepsy experiments (Wiecki et al., 2009). We
tested here if our largely simplified version of the neural
network reinforcement learning mechanism could account for
the effects on motor skill learning and performance.

Our OpAL simulations made similar assumptions as previous
neural network simulations modeling this task: We assumed four
states and four motor actions (simplistically, corresponding to
which paw to move). Moreover, the correct action needed to be
taken rapidly enough, otherwise the animal would fall off the rod.
We thus assumed that correct action choice leads to reward (r � 1)
with a probability dependent on reaction time:

p(r | correct) � 0.1 � .8 ⁄ (1 � exp(�G � G(s, a) � �N � N(s, a))),

but a punishment (r � 0) otherwise; whereas incorrect actions
always lead to a punishment (r � 0). Parameters used are � � 3,
�G/N � 0.1, �C � 0.05, 	drug � �0.75, 	control � 0.5, with �G �
� � (1 � 	), �N � � � (1 � 	).

Figure 11 shows the main simulation results of the rotarod task.
Performance effects of DA blockade are modeled here by setting
�G 
 �N (while the nontreated condition has �G � �N), with all
other parameters kept fixed (in particular, �G � �N). In a first
simulation (Figure 11A), DA blockade at first encounter with the
task (colored part) accentuates NoGo activity, leading to weak
actor weights Act (bottom right), thus slowed action selection,
even for actions that would have otherwise been correct. Thus, this
performance effect means that even correct actions are rarely
rewarded, leading not only to a lack of learning (no increase in
performance, top graph) but also to aberrant learning: a decrease
in G weights (bottom left) and increase in N weights (bottom
middle), even for correct actions. This is revealed by subsequent
exposure to the task in the intact dopaminergic state (white region).
Learning then proceeds, with the model correctly learning G and N
weights for correct and incorrect actions (full black and gray lines),
but slower than that in the naive case (dotted lines).

In a second set of simulations (Figure 11B), the model first
learns the task normally. Exposure to DA blockade after establish-
ment of the skill leads to a rapid drop in performance but also to
aberrant learning: G weights decrease and N weights increase for
both correct and incorrect actions, leading to progressive decline in
performance. This again makes subsequent relearning of the task
in the absence of blockade slower, for the same reasons as the
previous experiment.

We thus showed that the OpAL model can account for interac-
tive effects of learning and performance in the rotarod task, in-
cluding aberrant learning due to performance effects of dopamine
blockade. This pattern of results is again dependent on having the
multiplicative update rule in OpAL.

Instruction Bias

Finally, we considered a higher level cognitive interaction between
performance and learning: how top-down, rule-guided instruction in
humans can affect performance and bias learning. We simulated the
instructed probabilistic selection task, a variant of the probabilistic
selection task in which one of the six stimuli is (rightly or wrongly)

shown to the subject prior to learning of task contingencies, framed as
a hint that this option is likely to be a good choice.

Specifically, this task builds on the basic probabilistic selection
task (Frank, Moustafa, et al., 2007): During an initial learning
phase, subjects learned to pick the most rewarding option for three
pairs of stimuli (pair AB with p(r | A) � 0.8 � 1 � p(r | B), pair
CD with p(R | C) � 0.7 � 1 � p(R | D), and pair EF with p(R |
E) � 0.6 � 1 � p(R | F)); then, during the transfer phase, all
possible pairs of stimuli are presented, but there was no feedback
following choice. Bias was measured again during the test phase as
Bias � ChA � AvB, with Choose-A (ChA) defined as performance
on choosing A over lower valued stimuli C, D, E, or F (which have
on average value of 0.5 and thus correspond to the simplified
version of comparing A to M); and Avoid-B (AvB) as performance
on avoiding Stimulus B in favor of these same more neutral
choices. In the instruction bias version of this experiment (Doll et
al., 2011; Doll, Jacobs, Sanfey, & Frank, 2009), prior to the
learning phase one of the six stimuli was shown randomly and
instructed the subjects that it was likely to be good, truthfully or
not.

Experimental results (Doll et al., 2009) showed that subjects
initially select this instructed option, but when instructions were
misleading they eventually learned to avoid it during the training
phase. Nevertheless, transfer phase choices indicated that the
learned value of this instructed stimulus was inflated relative to
uninstructed options of the same objective value. Indeed, model
fits suggested that a confirmation bias could account for the
findings, where during the training phase outcomes that were
consistent with the instructions were amplified, and inconsistent
ones discounted, leading to an inflation of objective value.

Genetic results (Doll et al., 2011) showed that a DARPP32
polymorphism (a dopaminergic genetic variant influencing plas-
ticity in opposite directions in D1 and D2 pathways) was linked
both to asymmetries in Choose-A relative to Avoid-B perfor-
mance, whereas DRD2 polymorphism related to D2 receptor func-
tion was related to Avoid-B performance, as had been previously
reported. Moreover, in the instructed version, these genetic vari-
ants were, respectively, predictive of the tendency to amplify the
values of instruction-consistent outcomes and to discount the neg-
ative outcomes. Behaviorally, this amounted to better ability to
choose the instructed stimulus when it was appropriate to do so
(Choose-I) and worse ability to avoid it (Avoid-I) when paired
with more valued options. Thus, genes associated with basic
uninstructed reinforcement learning are also predictive of the ex-
tent to which learning is subject to confirmation bias, suggesting
that this bias in the instructed experiment arises not from a separate
mechanism (e.g., higher level strategy) but from a modulation of
those same basic RL mechanisms. We thus test our OpAL model
to see whether its pure reinforcement learning mechanisms can
account for this set of data.

Here we attempted to account for these findings in OpAL by
modeling initial instruction about a given stimulus being good, by
simply boosting its initial G weight and depressing its initial N
weight by a fixed value (0.3). Simulations showed that OpAL
model could account for this array of results, suggesting that
DARPP-32 modulates learning asymmetry but that DRD2 modu-
lates choice incentive. First, Figure 12 shows that the model learns
away from a wrongly instructed stimulus, without completely
overcoming the initial bias (compare cyan instructed to gray un-
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Figure 11. Rotarod task simulations. Dopamine (DA) blockade effects on performance are modeled by setting
	 � �0.75 instead of �0.5, with all other parameters fixed. Periods of drug administration are indicated by gray
background. A. Top: performance (proportion of rewarded trials) over time for drug followed by intact (full line)
or for intact control without previous exposure to the task (dotted line). Bottom: G and N weights and actor
values Act for model parameters. Performing is impeded during first presentation of the task with drug and leads
to avoidance learning of both correct and incorrect actions. This provokes slower learning after the drug is
removed, compared to controls, as seen in empirical studies. B. In second set of simulations, drug is administered
after the task is learned, leading to a rapid drop in performance that further degrades with time. In the third phase,
without drug, relearning is again significantly slowed compared to initial learning (dotted line). See the online
article for the color version of this figure.
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instructed, for OpAL Act values). More generally, the top middle
graph shows an overall boosting of asymptotic Act(s) when this
stimulus has been instructed as good, as was observed experimen-
tally. Simulations also reproduce test performance Choose-I versus
Avoid-I, showing better performance at choosing a stimulus over
a statistically worse stimulus when it has been instructed as good
and increasingly so when this instruction was misleading (gray
bar). Conversely, subjects have a harder time avoiding to choose a
stimulus over a statistically better stimulus when it has been
instructed as good, but less so when the instruction was mislead-
ing.

Finally, simulations can reproduce genetic effects (see Figure 12
right panel). First, increase in learning parameter �N compared to

�G leads to a decrease in the Choose-A versus Avoid-B bias by
increasing No-Go learning efficiency. This also leads to increased
avoid I performance by providing better unlearning of wrongly
instructed stimuli. Thus, DARPP-32 effects can be accounted for
by changes in asymmetry in learning parameters, as originally
interpreted (Doll et al., 2011)). DRD2 effects, by contrast, are not
accounted for by learning asymmetries but instead are accounted
for by choice incentive effects (� asymmetry). As described above,
with �G � �N, Avoid-B performance is reduced, but counterin-
tuitively, this also increases Avoid-I performance. The reason for
this pattern is that due to the prior instruction effects, the instructed
stimulus I develops stronger G rather than N weights, and hence
differentiating between it and higher valued G weights depends on
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Figure 12. Instructed probabilistic selection task. Left column of graphs: Model values for different stimuli
over time: G and N weights, Actor values Act. The line labeled FI (light blue in the online version of the figure)
gives an example of misleadingly instructed F stimulus (objective reward probability is 40%) as good, compared
to the line labeled FN (gray), for uninstructed F. Note that the asymmetry in actor weights is stronger in G than
N, compared to Figure 2. This is because sampling is unequal: Over time, the model learns to choose A, C, and
E more often and thus learns more about them. Since these are positively valenced options, the effects are more
visible in G weights. Note that Act(F) ends up below Act(E), showing that the instruction bias becomes unlearned
during training but that the prior initialization persists, as it nevertheless does not catch up with its uninstructed
version value. Middle top: Final Act values for instructed (black circles) and uninstructed (gray squares) stimuli.
Error bars indicate standard error of the mean. Middle bottom: Effect of instruction on test phase, showing
relatively increased choice of instructed versus noninstructed stimuli (higher Choose-I and lower Avoid-I) for
both accurate (white) and inaccurate (gray) instructions. Right column of graphs: Parametric gene effects:
Increasing �N leads to relatively worse Choose-A (ChA), compared to Avoid-B (avB), but simultaneously
improves Avoid-I (avI) performance, as observed for the DARPP-32 polymorphism. Increasing � asymmetry
(�N 
 �G) decreases Avoid-B performance but increases Avoid-I, as observed for the DRD2 polymorphism. See
the online article for the color version of this figure.T
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relatively stronger influence of �G. This provides an explanation
for how the DRD2 gene can modulate the sensitivity to unin-
structed negative outcomes in one direction, but those to instructed
stimuli in the opposite direction. Note that this account diverges
from the original interpretation of the role of DRD2 in terms of
learning effects. Indeed, we suggest here that it may be better
explained by choice incentive effects, which accounts for both
standard and instruction effects we observed. It remains to be seen
whether previously documented effects of DRD2 on uninstructed
avoidance are due to incentive rather than learning effects.

Why Have Two Systems: Normative Analysis

We have shown that OpAL can account for a wide pattern of
experimental data relating to reinforcement learning and deci-
sion making, as well as dopaminergic influence thereof. These
simulations rely crucially on OpAL’s structure as a dual repre-
sentation mechanism, with G and N coding for strongly anti-
correlated values. This relative redundancy between informa-
tion in the direct and indirect pathways generates the question
of why two systems, coding for negatively correlated value
estimates, are necessary or beneficial. Intuitively, this system
provides for added flexibility, such that whether one empha-
sizes distinctions between learned prospective rewards or costs
can be subject to their current motivational state, i.e., the level
of dopamine at the time of choice. Future work will investigate
how this state can itself be optimized as a function of other
variables.

Here, we focus on the ability of OpAL, even without any
asymmetry in learning or choice parameters, to learn probabilistic
contingencies and compare its performance to standard RL algo-
rithms (results presented below hold for both standard actor-critic
and Q-learning). Models were presented with two pairs of options
to choose from, where overall reinforcement schedules were either
rich (probabilities of reward r � 1 vs. 0 of 0.8 and 0.7) or lean (0.3
and 0.2). Over time, models should learn to pick the objectively
optimal option for each pair (0.8 and 0.3).

We optimized model parameters to obtain best mean perfor-
mance in picking the optimal option over 50 learning trials

across 10,000 simulations (see supplemental methods in Ap-
pendix). As noted above, we constrained symmetry, with �G �
�N and �G � �N, to investigate the specific role of two systems
even without imbalance between them. Simulations with opti-
mized parameters showed that OpAL performed better on av-
erage than an RL model (for which parameters were also
optimized) and that this was particularly true for learning about
the lean options (Figure 13). Follow up analysis indicated that
in RL, learning for the lean option was slowed compared to the
rich one, because of an exploitation/exploration conflict. A
mathematical derivation of this problem for RL is presented in
the Appendix. Intuitively, in the 20/30 discrimination, as soon
as the model begins exploiting the 30 option, it fails to learn the
true value of the worse one (20), so that its estimated value remains
closer to initialization (0.5), and hence closer to the 30 option. Sim-
ilarly, for the 70/80 option, once the model exploits the 80 choice, its
estimated value for the 70 option remains closer to 0.5, but in this case
it is helpful because the effective difference between the exploited and
nonexploited values is larger. Thus for the same softmax � parameter,
the RL model does not discriminate between 30 and 20 as well as it
does between 70 and 80. Moreover, simply increasing the � param-
eter does not help (indeed it was optimized), because overly high
values prevent exploration to acquire true contingencies of alternative
options.

How does OpAL avoid this problem to perform equivalently
well for rich and lean choice discriminations? Of critical es-
sence, OpAL includes both G and N weights into its choice
function. Thus, initially, before either set of weights accumu-
lates sufficient values to dominate the other, they contribute
relatively equally. In the 20/30 case, the differences among
learned G values is de-emphasized (e.g., Figure 2), and hence
this half of the choice function effectively increases explora-
tion. However, once the N weights accumulate sufficiently, they
dominate, and hence the contribution of G weights is negligible,
and the model can effectively exploit the 30 option. This
functionality implies that exploration is dynamically regulated
as the system learns to favor either G or N weights appropri-
ately. This functionality crucially relies on the nonlinear rep-
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Figure 13. Discrimation learning. Simulation of opponent actor learning (OpAL) and reinforcement learning
(RL) model on a discrimination learning task, with optimized parameters, averaged over 10,000 iterations. One
pair of options lead to reward 80% versus 70% of the time, the other 30% versus 20%. Graphs show average
probability of selecting the “correct” option, namely, the 80% or 30% options. See the online article for the color
version of this figure.
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resentation of the values (see supplemental results Appendix).
Moreover, straightforward approaches to dynamically changing
the � parameter in simple RL as a function of time did not
accomplish the same goal. Thus, this analysis shows that having
a dual system with nonlinear update rules in OpAL affords
better performance in discrimination learning, by virtue of
including a mechanism for detecting the appropriate actor
weights that contribute to choice.

Empirically, although we have made the case that the neu-
robiology is more in accordance with OpAL than standard RL
models, this normative analysis raises the question of whether
human behavior accords with the predictions of OpAL. In
contrast to OpAL, standard RL models predict a clear difference
in accuracy in lean versus rich stimuli. Although we are not
aware of experiments testing the precise design we simulated
above, a related rich versus lean design was employed by
Pessiglione et al. (2006), showing no performance difference
between conditions. Nevertheless, when simulating this exper-
iment with standard RL models and best fit parameters provided
in Pessiglione et al. (2006), we obtained a strong asymmetry in
performance, again with better performance for the rich (more
rewarded) pair, contrary to that observed empirically. In con-
trast, with appropriate parameters OpAL reproduced the ob-
served pattern of data across both conditions, for the same
reasons as described baove. Thus, while limited, available data
indicates that RL models are inconsistent with learning curves
observed in human subjects and that OpAL overcomes this
issue.

Discussion

We have presented a new computational model to simulta-
neously account for learning and incentive/performance effects
of striatal dopamine. Existing models have largely focused on
one aspect or the other, but we show here how the combination
of these features and their interactions are needed to explain a
wide range of data. This model is based on an actor-critic
architecture with a few key novel features. First, it relies on
opponent actor weights that independently track the attractive-
ness and aversiveness of options, with a choice policy depend-
ing on a weighted competition between those signals. Second,
these actor weights mimic striatal plasticity rules by including
a multiplicative Hebbian term, which leads to a nonlinear
representation of values with separate emphasis of attractive or
aversive parts of the scale.

These features combined together provide the flexibility
needed to account for a wide array of data. Indeed, due to the
nonlinear learning rule, the G and N weights come to differen-
tiate distinct aspects of value representations, which are stored
separately, and dynamically recombined with parameterized
weighting as a function of dopamine levels during choice. This
system thus allows a great flexibility in the way past learned
information is expressed as a choice in different situations, as a
function of motivational state. Indeed, we showed that OpAL
could account for learned choice biases and for how dopami-
nergic manipulation, either during learning, or at the time of
choice, could shift those biases. We also showed that OpAL
could account for complex interactive effects of performance
and learning, capturing empirical findings in the rotarod motor

skill learning task but also leading to novel predictions for
reward-based decision making: Choice incentive effects were
stronger when choice is made in the same dopaminergic state as
that during learning. Similarly, the model predicts that both
learning and incentive effects can impact effort-based decision
making, that these effects amplify each other, and that the
relative impact on one or the other process is dependent on the
overall degree of effort required (Figure 9).

The Multiple Computational Roles of Dopamine in
Learning and Choice

Our new OpAL model relies critically on well-established neu-
rological data: the existence of two opposing, seemingly redundant
systems: the D1-direct and D2-indirect pathway (modeled here
through G and N weights) and the role of dopamine in reinforce-
ment learning but also in choice and motivation. It has been a
matter of speculation to figure out why this double encoding
existed in the brain and what computational advantage it offered.
It is also unclear why dopamine seems to play so many roles,
functionally encoding signals such as prediction error, motiva-
tional salience, etc. Our model provides no direct answers to these
questions, but opens the way to investigating them further. By
allowing flexible exploration of behavior in different environments
as well as normative analysis, it offers some clues into the potential
roles of these key characteristics.

In particular, our simulations investigated the interaction be-
tween the role of dopamine for learning and for choice. In the
probabilistic selection task, we showed that overall performance
became strongly impaired if dopaminergic status was different
between learning and testing. This may provide a clue as to why
the same neurotransmitter is apparently used to modulate incentive
and learning: if any factor (disease, development, etc.) causes
dopamine levels to be either high or low, that will lead to an
asymmetry in learning in the G versus N weights but will also
allow the choice function to rely preferentially on the weights that
have accumulated the most useful information. A coupling be-
tween the control of the balance between the opponent systems
during learning and during testing might thus optimize choice.

Our model also proposes a new understanding for the seemingly
redundant coding in direct and indirect pathways of choice values.
Indeed, our simulations show that it allows better performance in a
discrimination learning task, when having to learn away from an
optimistic initial estimation brings on a conflict between exploring
and exploiting different choices. Thus, the presence of an opponent
system enforces a temporarily suboptimal representation of prefer-
ences, that nevertheless allows for better long term estimation: It
obviates a tradeoff between exploration and exploitation for environ-
ments with sparse reward schedules. We have also shown that the
opponent systems represented redundant signals but that their repre-
sentations were more precise in different domains of value: G-weights
emphasize differences between good options, while N weights em-
phasize differences between bad options. Speculatively, having the
flexibility of setting the emphasis on either of those signals might
allow the system to dynamically decide, based on a motivational state
that could be encoded by dopamine levels at the time of choice (�
weights), which information to put more stock on to decide on a
policy: Do costs matter more or gains? This is a potential benefit of
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the opponent structure that will need to be explored in further re-
search.

Relationship to Neural Network Models

OpAL was built to mimic some of the core principles embedded
within more complex dynamical neural network models of the
corticostriatal circuitry in reinforcement learning and reward-
based decision-making articles (e.g., Beeler et al., 2012; Collins &
Frank, 2013; Frank, 2005; Wiecki et al., 2009), by simplifying
these neurobiologically inspired neural network models into an
algorithmic form. This raises the question of what advances it
provides in comparison to this class of models: Indeed, as such, it
qualitatively accounts for a similar array of results simulated with
this neural network model. Nevertheless, we believe our work
offers several new contributions. Although OpAL does not con-
sider neural dynamics among multiple basal ganglia nuclei, thal-
amus, and cortex, it presents several advantages over the neural
network version, which we detail now.

First, prior articles showing neural network simulations of some
of the tasks we modeled here (e.g., the probabilistic selection task)
emphasized the role of dopamine on learning. Although some
articles alluded to performance effects on choice incentive by
referring to the effects of dopamine on Go versus NoGo activity in
the striatum of that model, the differentiable roles of this choice
incentive effect has not been formally investigated in a publication,
except in the specific case of motor skill learning and performance
(Beeler et al., 2012), as in the rotarod simulations we include here.
But the role of dopamine in modulating cost/benefit choice incen-
tives in reward based tasks, including reinforcement learning and
effort-based decision making tasks, has never been reported or
accounted for by ours or any other existing model. Furthermore,
previous simulations of dopamine manipulations in neural network
studies have generally used one set of parameters simulating an
increase or decrease of DA by fixed values. Conversely, OpAL
allows full characterization of effects across the entire range of
parameters for both learning and motivation and how they interact.

On a pragmatic side, as a simpler, low parameter algorithmic
model, OpAL provides strong advantages for analysis. It can be
quantitatively fit to empirical data, and affords simple theoretical
analysis: Understanding the information represented by model vari-
ables is straightforward, the dependence of the model’s dynamics on
model parameters and task environments can be easily and exhaus-
tively analyzed, and we can identify regimes that optimize its perfor-
mance in various environments. Thus, while the neural network
version focuses on more detailed mechanisms, its high level functions
are not as transparent. The current model thus provides a better
understanding of how various components of the system interact with
each other, leading to novel predictions described in this report, which
had not previously been elucidated. For example, we assess the
influence of these modulations not only on one particular version of
a task (e.g., the probabilistic selection task with fixed reward proba-
bilities) but to a generalized version, showing novel predictions about
how the standard results should change as a function of task proba-
bilities (Figure 8). Similarly, the model predicts differential effects of
dopamine manipulation depending on the experimental stage of the
manipulation: Whereas effort tasks typically manipulate dopamine
after learning about effort has already occurred, our model predicts
that manipulation during the learning phase would interact with those

of manipulation during the performance phase and, moreover, that
their differential impact would depend on the level of effort required
(Figure 9).

Finally, because OpAL is indeed simpler (far fewer parameters)
than the neural network model, it is amenable to quantitative fitting
provided experimental designs that are rich enough to distinguish
between learning and motivational effects. Moreover, this simpler
model affords the type of normative analysis we provide in the
article.

Relationship to Existing Models

To our knowledge, other computational models cannot account
for the range of data presented here. In particular, classic rein-
forcement learning models track true expected value and make
choices based on relative differences in expected value, and as
such cannot reproduce any choice biases observed experimentally.

Previous attempts at modeling asymmetries in learning used a
classic RL model without separating G and N systems but instead
simply assumed different learning rates for positive and negative
prediction errors within a single value system (e.g., Doll et al.,
2011; Frank, Moustafa, et al., 2007). That model was able to
account for some asymmetries due to learning, but the effects were
rather counterintuitive: Better Choose-A performance was associ-
ated with lower learning rates from positive prediction errors, and
better Avoid-B was associated with lower learning rates from
negative prediction errors. Moreover, systematic investigation of
that model reveals that while these effects hold in general, they are
quite nonlinear (see Appendix, Figure A3C). More important,
allowing only for asymmetry in learning rates precludes the pos-
sibility of differentially expressing preferences during perfor-
mance: Since this method still integrates all information into a
single value, it fails to provide the flexibility needed to account for
potential incentive performance effects (see Appendix for detailed
results). Further, the current model more closely aligns with the
biology and neural models of differential G and N systems that
operate during learning and choice.

A model by McClure et al. (2003) included in a single frame-
work the reinforcement learning and incentive theories of dopa-
mine by assuming that the phasic dopamine signal at stimulus
presentation, encoding choice incentive, corresponded to future
expected value and modulated the gain in the softmax choice
function. While that model accounted for some incentive effects in
the appetitive domain, it predicts systematically lower perfor-
mance in choosing between less valuable stimuli (which would
amount to low gain). This is the opposite of what is observed in the
low dopaminergic state empirically and in OpAL.

Computational models that focus on the motivation or incentive
part of the dopamine literature typically focus on effort or response
vigor for a single action (Dayan, 2012; Niv et al., 2007) and, as such,
have not addressed the potential influence of dopamine on relative
emphasis on prospective gains or losses. Similarly, models that in-
clude Pavlovian to instrumental transfer (PIT) effects (e.g., Huys et
al., 2011) account for the impact of stimulus values on the overall
invigoration of action but do not predict differential effects on choice
of positively versus negative valenced options. Berridge and Zhang’s
model (Zhang et al., 2009) tries to account for all learning and
incentive effects through a single incentive mechanism, reflected by a
� parameter. Although this model does account for a wide range of
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data, the � model also does not address the tendency for low DA
levels to enhance performance in avoiding (or differentiating be-
tween) negatively valenced options. Their model does simulate the
possibility for an animal to “want” what is not expected to be liked,
nor remembered to be “liked” (i.e., a valence reversal), by differen-
tially impacting motivational state at the time of choice to inflate the
effective value of an option that had been encoded as mostly aversive.
Our model can also account for these same effects, where an asym-
metry in learning can be reversed by an asymmetry in choice incen-
tive (Figure A4). Moreover the � model required an alteration to use
a log-based transformation that only applies in the case of a valence
reversal, whereas the OpAL model captures this naturally without
alteration.

Limitations

By simplifying the neurobiologically inspired neural network
model from Frank (2005) into an algorithmic form, we have
introduced some limitations. One key limitation is that we have
focused fully on the actor (or dorsal striatal) part of the problem,
and neglected the critic side (ventral striatum). Dopamine should
also have effects on the critic, and a more detailed model, beyond
the scope of this work, should incorporate them. However, we are
confident that modification of this aspect would not significantly
alter the qualitative results presented here. Indeed, we simulated
different versions of the critic part of our model (for example
including asymmetric gain/loss learning rate) and obtained quali-
tatively similar results, if quantitatively different.

We also simplified some aspects in the actor part of the model. For
example, it could be reasonably expected that plasticity constants are
not equal for potentiation or depression in each pathway. This could
be modeled by including separate gain and a loss learning rates in
each system G and N, thus leading to four actor learning rates. While
this could potentially include more flexibility in the way biases
express themselves, we chose to analyze a simpler version, because
we could not find experimental data that would allow us to success-
fully dissociate roles of each of these learning rates. We also do not
consider the roles of the subthalamic nucleus and modulations of
decision thresholds that remain an important aspect of the neural
circuit (Frank & O’Reilly, 2006; Wiecki & Frank, 2013).

Although our model can account for effects of dopamine on dif-
ferent kinds of effort tasks, including lever pressing tasks and the
T-maze with barrier, our model cannot at this point capture some finer
grained notions of effort. For example, we do not model the strength
or force with which a response is emitted—although intuitively, the
relative G to N difference for each action under consideration should
determine not only which action wins and its response time but also
the degree of boost provided to motor thalamocortical populations,
which may affect its “strength.” Future work will examine this notion.
Other potential directions for extensions and elaborations includes
accounting more precisely for timing in effort paradigms (in particular
in the fixed ratio lever task, using probabilities as a proxy for fixed
ratio prevents analysis of dynamic changes to vigor in expectation of
reward) or for other indicators of effort.

Contrary to other computational theories such as (Dayan, 2012;
Niv et al., 2007), we do not derive the normative optimization for
dopamine levels given some objective function. Instead, we explore
the effects of differing dopamine levels on the opponent actor weights
via modulation of parameters �G and �N. While this allows us to

capture effects of dopamine manipulations on choice preferences that
are not accounted for by other model is, we have not yet explored how
these levels should change as a function of task context so as to
optimize performance. For example, there may be conditions under
which it is advantageous to emphasize G weights over N weights and
vice versa. Future work should identify these conditions and whether
empirically, dopamine levels are adjusted accordingly.

Conclusion

The OpAL model provides a new biologically grounded rein-
forcement learning framework that accounts for a wide array of
data linking behavior in learning and performance tasks to contri-
butions of dopaminergic and striatal direct and indirect pathway
neurons. It makes further testable predictions and provides some
clues to the understanding of important open questions, such as
why we have redundant pathways in the basal ganglia and why
dopaminergic function is so omnipresent. Future research will
investigate predictions and use the OpAL framework to expand
our understanding of this complex system.
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Appendix

Supplemental Methods: Normative Analysis

Task

Models were simulated over 50 trials per pairs of options with
reinforcement r � 1 or r � 0—good options: p(r � 1) � 0.8 and 0.7,
bad options: p(r � 1) � 0.3 and 0.3. We define performance as the
probability of choosing the objective good option (0.8 and 0.3).

To optimize the model parameters, we ran an optimization
(matlab fminsearch with 20 randomly chosen starting points) pro-
cedure on the average performance of 1,000 simulations, keeping
the same 1,000 random seeds. Those seeds were also kept across
different model optimizations, to ensure that differences were not
due to chance in the stochastic policies.

We also report optimization of a classic delta rule RL model,
and three parameter OpAL model. The RL model estimated the
value of each of the four options according to the Equation 1.
These values were used for choice in a softmax with probability of
choosing si from the pair (s1, s2) equal to

p(si) �
exp(�Vsi

)

exp(�Vs1
) � exp(�Vs2

)
.

V was initialized at chance level of reward, 0.5. Optimized param-
eters were � � 0.24 and � � 27.4.

OpAL model was optimized with three parameters (�C, �G �
�N, �G � �N). Critic and actors are initialized at chance (V � 0.5,
G � N � 1). Optimized parameters were �C � 0.035, �GN � 0.98
and �GN � 1.5. Although RL model was optimized with less
parameters, this could not account for the difference observed:
More flexible RL models (including asymmetric gain/loss learning
rates) were also optimized an did not match OpAL performance. A
model accumulating frequencies of reward for each option also
performed worse than OpAL.

Alternative Models

Win-loss model. A frequently used model to account for
asymmetrical learning effects of dopamine is a win-loss reinforce-
ment learning model. In this model, a single value estimate is

updated according to a classic learning rule, but with different
learning rates depending on the sign of the prediction error:

if �(t) � 0 V(t � 1) � V(t) � �W�(t) (A1)

if �(t) � 0 V(t � 1) � V(t) � �L�(t) (A2)

where �(t) � r(t) � V(t) is the prediction error, and �W and �L are
gain and loss learning rates, respectively.

In previous quantitative fitting studies in humans, individual
differences in fitted �W and �L were related to Choose-A and
Avoid-B performance, respectively, Frank, Moustafa, et al. (2007).
Simulations in Figure A1 confirm that with different values of �W

and �L, the representation of option values is distorted: With
higher �W, estimates are lifted. However, note that this implies a
loss of sensitivity in good options, while increasing �L stretches
their representation and thus increases sensitivity to learning from
positive rewards. This explains that the bias for the probabilistic
learning task, obtained from asymmetry in learning parameters, is
in a counterintuitive direction: better Choose-A performance is
associated with relative decrease in �W, whereas better Avoid-B
performance is associated with decrease in �L (see Figures A1C
and A1D), as found empirically in Frank, Moustafa, et al. (2007).
Moreover, the relationship is nonlinear. In contrast, OpAL pro-
vides more straightforward interpretation, where �G is positively
(and monotonically) related to Choose-A performance, and simi-
larly for �N and Avoid-B. Moreover, as emphasized in the text, the
win-loss model provides no mechanisms to modulate choice in-
centive at the time of decision.

OpAL without Hebbian update rule. To demonstrate the
necessity of the modulation by actor G and N of the learning rules,
we also ran simulations without this modulation. In that model, all
equations are similar to OpAL, without the multiplicative term:

Ga(t � 1) � Ga(t) � [�G] � �(t) (A3)

Na(t � 1) � Na(t) � [�N] � [��(t)] (A4)

Simulations are shown in supplemental Figure A2. In this model,
G, N, and Act are linear functions of the critic value (see
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Figures A2A and A2B, compared to OpAL in Figure 3). Thus, any
information about differences in positive outcomes is contained sym-
metrically by large G values and small N values, and vice versa for
negative outcomes. This prevents the expression of any bias in the
probabilistic selection task, with either learning rate or � asymmetry

(see Figure A2C vs. main text Figure 3). Although similar effort
effects can be obtained to the normal OpAL (Figure A2D, compared
to main text Figure 9 left), by simply modulating the overall contri-
bution of G to N weights for a single action, the model fails to show
the triple interaction described in the main text, which relies on the
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Figure A1. Gain-loss learning rate reinforcement learning (RL) model. All values are final values after 100
trials, averaged over 1,000 simulations. A, B. Value estimates (V) for various probabilities of reward p(R).
Lighter shade and arrow direction indicate higher parameter values (A �L � 0.1, �W � �0.02, 0.2�; B �G � 0.1,
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Hebbian multiplicative term. Similarly, without the Hebbian term, the
model fails to capture the full pattern of data in the rotarod motor skill
learning task (not shown). In particular, it does not capture the critical
signature of slowed recovery after dopamine blockade observed in
Beeler et al. (2012) and prior studies.

Critic Dependent Effects

Critic learning rate effects. In addition to observing the
effects of actor learning rates, we also examined the specific
contributions of the critic. First, we parametrically varied the critic
initialization value. Simulations (Figure A3 top) showed that pes-
simistic critic initialization (V(0) 
 0.5) lead to stronger G than N
actor weights, reflecting the accumulation of more positive pre-

diction errors than negative ones. In particular, this leads to higher
actor weights and a bias toward Choose-A over Avoid-B (blue
line). The opposite happens when the critic is initialized too
optimistically (V(0) � 0.5): In this case, an overbalance of nega-
tive prediction errors favors N weights over G.

In a separate set of simulations (see Figure A3 bottom), we
parametrically manipulated the critic learning rate �C. Results
showed that, although critic learning rates do not modify the
asymptotic critic value, they do affect asymptotic actor weights.
Specifically, smaller critic learning rates led to emphasis in the
modulation seen in normal dynamics, such that good stimuli are
perceived with even stronger G weights, “bad” stimuli with even
smaller G weights, and vice versa for N weights. This is because
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Figure A3. Critic effects on opponent actor learning (OpAL). All values are final values after 100 trials,
averaged over 1,000 simulations. Top graphs: Dashed gray line is critic value V, which always coincides with
expected value. The open circles line (green line online) is G weight, closed circles line (red online) is N weight,
and black stars line is actor value Act � G � N. The crosses line (blue online) indicates the bias that would be
observed compared to an option presenting reward probability 1 � p(R). Bottom graphs: Critic learning rate �C.
Decreasing �C induces slower convergence of critic, leading to longer accumulation of prediction error-related
biases in actor weight, thus exaggerating all biases and nonlinearities. See the online article for the color version
of this figure.
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with slower critic convergence, prediction errors accumulate for a
longer time period in the actor, which thus accumulates stronger
biases.

OpAL stability. The critic equation can be written as

V(t � 1) � V(t) � �C�(t) (A5)

� V(0) ��
i�1

t

�C�(t) (A6)

In stationary environments with sufficient exploration, this esti-
mate converges in probability (under some reasonable assump-
tions) to the true expected reward. In particular, this implies that
the expected value of the prediction error �(t) converges to 0.

The actor weight equations can also be written as a function of
the series of prediction errors:

G(t � 1) � G(t) � �G�(t)G(t) (A7)

� G(t) � (1 � �G�(t)) (A8)

� G(0) � �
i�1

t

(1 � �G�(i)) (A9)

Similarly, we obtain N�t � 1� � N�0���
i�1

t

�1 � �N��i��.
In stationary environments, under the same assumptions that

ensure convergence of classic RL models, the actor weights cannot
diverge. Indeed, we can show that

log(G(t � 1)) � log(G(0)) ��
i�0

t

log(1 � �G�(t)) (A10)

 log(G(0)) � �G�
i�1

t

�(t) (A11)

� log(G(0)) �
�G

�C
(V(t � 1) � V(0))

(A12)

Thus, G is upper bound by a function of the critic and lower
bound by 0 as a constraint of the model, representing the notion

that firing rates cannot go below zero. The same derivation can
be applied for N.

Optimization of Discrimination Learning

RL. Here, we show mathematically why an RL model learns
slower for the 20–30 than for the 70–80 case. Let A and B denote
the two options of a pair. At time point t, the model chooses option
X � A or B with probability from a softmax policy �X and
receives reward 1 with probability pX. We are interested in how the
difference in estimated values between the options, �Q � QA �
QB, which determines performance, changes from the outcome of
the trials. This can be seen in Equation A13. Thus, the expected
value of �Q(t � 1), given all values at time t is

E(�Q(t � 1) | values at t) � �B[(1 � �)QB � QA � �pB]

� �A[QB � (1 � �)QA � �pA]

Taking into account that �A � 1 � �B, then writing QB � QA �
�Q(t), and pB � pA � �, we come to simplify this as

E(�Q(t � 1)) � ��B� � �(2�B � 1)(pA � QA) � �Q(t)(1 � ��B)

Note that only the middle term of this sum depends on the absolute
value of the options (in addition to their relative values), and as
such it is the term of most interest to explain the difference in
learning between the 20–30 case and the 70–80 case. Let’s
assume that B is the better option in the pair, with � � 0. In the
lean case pA � 0.2 and should initially be smaller than the
estimated value QA, which is initialized at 0.5. Thus, if �B � 0.5
(reflecting correct learning that B is the better option), the middle
factor is negative and thus slows the expected increase in discrim-
ination between values. In contrary in the rich case, pA � 0.7,
�B � 0.5 makes the discrimination increase faster, because ini-
tially pA � QA � 0. Thus, to a first approximation, this shows why
learning is slower in the 20–30 case than in the 70–80 case. Of
course, one can initialize values at other points than 0.5, but there
is no unique value that will solve this problem for any arbitrary
probabilistic discrimination.

�Q(t � 1) � (1 � �)QB � � � QA with probability �B � pB

�(1 � �)QB � QA �B � (1 � pB)

�QB � � � [(1 � �)QA � �] �A � pA

�QB � � � [(1 � �)QA] �A � (1 � pA)

(A13)
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OpAL. Here we detail the OpAL discrimination learning sim-
ulation to explore why OpAL mechanism allows better learning in
the 20–30 case (see Figure 11). Investigation of model values
shows that, counterintuitively, the average critic value for 20 is
very similar to the average critic value for 30 (Figure A4 middle
top), reflecting the fact that 20 is sampled less and thus further
away from converging to its true value. In an RL model, this would
translate into chance performance, since the value estimates drive
actor weights in the softmax policy. Here however, actor N
weights carry more information than critic does: They clearly
separate the 20 option from the 30 option (Figure A4 middle
bottom), because they tend to exaggerate value representation of
worse than expected stimuli via accumulation of multiple negative
prediction errors (see main text).

This is very clearly visible in the phase diagram (Figure
A4 bottom right). Here we separated all trials across time and

simulations into 10 quantiles for critic value (separately for each of
the four options), and plotted the average N value across those
trials. We see that for similar critic value, N weights are stronger
for 20 than for 30. This allows the model to perform above chance
even when critic values for the two options are identical. Note that
without the Hebbian term in OpAL, the two lines would overlap.
Thus, more exploration would be needed to ensure a lower average
critic estimate of 20, and better than chance performance. This
shows that this result is critically linked to the nonlinear double
update rule of OpAL.

Received August 9, 2013
Revision received February 7, 2014

Accepted February 10, 2014 �

10 20 30 40
0.5

0.6

0.7

0.8

p(
co

rr
ec

t)

10 20 30 40

0.4

0.5

0.6

0.7

C
rit

ic

10 20 30 40
−10

−5

0

5

10 20 30 40
−10

−5

0

5

0.35 0.4 0.45 0.5
−10

−5

0

lo
g(

G
)

 

 

20
30

0.35 0.4 0.45 0.5
−2

0

2

4

lo
g(

N
)

Critic

 

 

lo
g(

N
)

lo
g(

G
)

20
30

70
80

Figure A4. Discrimination learning. Left and middle columns represent opponent actor learning (OpAL) model
values across time (top left: probability of choosing the most rewarding option; top middle: critic values; bottom
left: logarithm of G weight; and bottom middle: logarithm of N weight). It is noticeable that critic values for
optimal and suboptimal options in the 20–30 case overlap, indicating that a reinforcement learning (RL) model
would not know how to separate them. However, N weights correctly identify the 20 option as more to be
avoided, allowing a better than chance performance. Right columns are diagrams of actor values averaged over
decile trials on critic values. For equivalent critic values, N weights are higher in average in the 20 case than 30,
allowing correct action selection. G are also (incorrectly) higher for the 20 case, allowing exploration early on
when G and N weights are comparable and thus contribute equally to the actor but do not hinder choice later due
to very low values. See the online article for the color version of this figure.
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