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Abstract Deep brain stimulation (DBS) is highly effective
for both hypo- and hyperkinetic movement disorders of basal
ganglia origin. The clinical use of DBS is, in part, empiric,
based on the experience with prior surgical ablative therapies
for these disorders, and, in part, driven by scientific discover-
ies made decades ago. In this review, we consider anatomical
and functional concepts of the basal ganglia relevant to our
understanding of DBS mechanisms, as well as our current
understanding of the pathophysiology of two of the most com-
monly DBS-treated conditions, Parkinson’s disease and dys-
tonia. Finally, we discuss the proposedmechanism(s) of action
of DBS in restoring function in patients with movement dis-
orders. The signs and symptoms of the various disorders ap-
pear to result from signature disordered activity in the basal
ganglia output, which disrupts the activity in thalamocortical
and brainstem networks. The available evidence suggests that
the effects of DBS are strongly dependent on targeting senso-
rimotor portions of specific nodes of the basal ganglia-
thalamocortical motor circuit, that is, the subthalamic nucleus
and the internal segment of the globus pallidus. There is little
evidence to suggest that DBS in patients with movement dis-
orders restores normal basal ganglia functions (e.g., their role
in movement or reinforcement learning). Instead, it appears
that high-frequency DBS replaces the abnormal basal ganglia

output with a more tolerable pattern, which helps to restore the
functionality of downstream networks.
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Introduction

Neurosurgeons first targeted the basal ganglia for movement
disorders in the 1930s, using ablative procedures, with emerg-
ing evidence that pathology in the basal ganglia was associat-
ed with movement abnormalities and a growing understand-
ing of the anatomy of the basal ganglia and subcortical struc-
tures [1]. By the 1950s and 1960s, lesioning of the globus
pallidus (pallidotomy) and the thalamus (thalamotomy) were
widely performed for treating Parkinson’s disease (PD), dys-
tonia, and various forms of tremor. The successful introduc-
tion of levodopa for PD in the mid-1960s, however, spelled
the nearly complete demise of functional stereotaxic surgery,
other than thalamotomy for medically intractable tremor.

The revival in the early 1990s of pallidotomy as a treatment
for PD resulted, in part, from the need for a more effective
treatment for the unforeseen, and often disabling, levodopa-
induced motor complications (severe motor fluctuations and
dyskinesias). Other factors were the growing understanding of
the pathophysiology of basal ganglia disorders, including the
development of circuit models of basal ganglia function and
circuit dysfunction in movement disorders and studies in the
newly introduced 1-methyl-1,2,3,6-phenyl-tetrahydropyridine
(MPTP) primate model of parkinsonism [2]. Collectively,
these advances provided a clear rationale and impetus for the
revival of ablative procedures. The report by Laitinen et al. [3]
in the early 1990s, of significant benefits of pallidotomy for
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both parkinsonism and levodopa-induced side effects, contrib-
uted greatly to the renewed use of this approach.

The return to ablative procedures was short-lived, however.
Beginning in the late 1990s, the lesioning strategies were in-
creasingly replaced by high-frequency deep brain stimulation
(DBS), a reversible and adjustable form of neuromodulation
that was perceived to be less invasive yet equally effective
[4]. The use of DBS stems from the seminal publication by
Benabid et al. [5], reporting that DBS of the thalamus was an
effective treatment for tremor, which led to a replacement of
thalamotomy. The successful application of DBS to the subtha-
lamic nucleus (STN), following the report of reversal of par-
kinsonism with STN ablation in the MPTP primate model of
parkinsonism [6], led to its widespread use for the treatment of
PD and, later, dystonia. DBS is currently approved by the US
Food and Drug Administration for use in patients with tremor,
PD, dystonia, and obsessive compulsive disorder. DBS has also
been explored for many other neurologic and neuropsychiatric
disorders, including epilepsy, Alzheimer’s disease, Tourette
syndrome, and treatment-resistant depression [7].

The introduction of DBS and the use of electrophysiologic
techniques to guide the placement of DBS electrodes also
provided a unique opportunity to learn more about the patho-
physiology of the disorders, as well as the mechanism of ac-
tion of DBS. In this review, we first consider relevant anatom-
ical and functional concepts of basal ganglia circuits and cir-
cuit dysfunction, and then discuss the current understanding of
the pathophysiology of the two basal ganglia movement dis-
orders most frequently being treated with DBS, PD and dys-
tonia, and the proposed mechanism of action of DBS in
treating these and related disorders.

Functional/Anatomic Considerations of the Basal
Ganglia Circuits

The basal ganglia are key components of a family of largely
segregated parallel cortical-subcortical circuits, which involve
the cerebral cortex, basal ganglia, and the ventral thalamus [8,
9]. The circuits have been grouped and designated broadly as
Bmotor^, Boculomotor^, Bprefrontal^, and Blimbic^, reflecting
the perceived functions of the frontal cortical areas from
which they originate and to which they return. Dysfunction
within these circuits is generally associated with signs and
symptoms that broadly reflect the functions of the cortical
areas they serve. We will limit ourselves here to a description
of the connectivity of the nodes of the motor circuit (without
discussion of interneuronal processing), since their dysfunc-
tion, when propagated to downstream targets in the brainstem
and thalamus, leads to the signs and symptoms of movement
disorders, both hypokinetic (e.g., PD) and hyperkinetic (e.g.,
dystonia, chorea, ballismus, or motor tics).

Throughout its subcortical course, the motor circuit (in-
cluded in Fig. 1) maintains its somatotopic organization and
neuronal specificity, reflecting highly topographic projections
[8, 10]. This circuit originates in multiple pre- and postcentral
sensorimotor areas, including the motor cortex (MC),
premotor cortex, cingulate motor area, and the supplementary
motor area. These areas project primarily to the putamen, the
sensorimotor portion of the striatum [8, 10], terminating on
two distinct populations of striatal medium spiny projection
neurons (MSNs), which, in turn, send projections either to the
external segment of the globus pallidus (GPe), or to the inter-
nal segment of the globus pallidus (GPi) and the substantia
nigra pars reticulata (SNr), the two output nuclei of the basal
ganglia. The monosynaptic striatal projection to GPi/SNr is
called the direct pathway, while the projection linking the
striatum to the GPi/SNr by way of GPe and the STN is called
the indirect pathway (see Fig. 1). All connections of the basal
ganglia are inhibitory except for those from the STN. Another
cortical input to the basal ganglia, the Bhyperdirect^ pathway,
links frontal cortical areas directly to the GPi/SNR via topo-
graphic projections to the corresponding functional domains
of the STN (Fig. 1) [11, 12].

Projections from the output nuclei, GPi/SNr, are sent to por-
tions of the thalamus, terminating in the anterior ventrolateral
thalamic nucleus (VLa) and the magnocellular portion of the
ventral anterior nucleus, as well as the caudal intralaminar nu-
clei, that is, the centromedian and parafascicular nuclei (CM/
Pf). While CM/Pf projections are mostly part of a pallido–CM/
Pf–striatal feedback system (see below), cortical projections
from VLa close the motor loop, sending efferents to respective
precentral motor fields, the MC, SMA, premotor cortex, and
cingulate motor area. The same GPi and SNr neurons that send
their axons to the thalamus also project to the brainstem, termi-
nating predominately in the pedunculopontine nucleus and
tectum.

A major feature of basal ganglia output is that the γ-
aminobutyric acid (GABA)ergic neurons in GPi and SNr are
tonically active and inhibitory upon their projection targets in
thalamus and brainstem. The basal ganglia motor circuit is
thus viewed as holding the thalamic and brainstem networks
in check [13–16], and the level of tonic and phasic inhibition
is determined by the interplay of direct, indirect, and
hyperdirect pathways at the level of GPi/SNr.

The arrangement of the intrinsic basal ganglia path-
ways into direct/indirect and hyperdirect pathways is in-
corporated into several interpretations of basal ganglia
function, including the hypothesis that these pathways
may play a role in action selection [e.g., 15, 17–19], the
scaling of movement parameters [20], and, in a more gen-
eral sense, "motor motivation", or action Bvigor^ [21], and
cost/benefit aspects of actions [21, 22].

The role of the basal ganglia in action selection has been
long considered to be one of the fundamental roles of these
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nuclei [23]. It is most often used in the sense that the basal
ganglia play a role in making the most appropriate action for a
given situation by selecting the optimal response and blocking
competing ones [24]. The general concept that activation of
the direct pathway facilitates movement, while activation of
the indirect pathway reduces movement, is supported by re-
cent optogenetic studies [25–27]. This general framework
may have pathophysiologic relevance (see below), in that
hypokinetic diseases such as PD are associated with increased
basal ganglia output, while hyperkinetic diseases (such as
dystonia or chorea) are associated with abnormally low basal
ganglia output [15, 16].

In addition to influencing the direct and indirect pathways,
the cerebral cortex can also influence basal ganglia output via
the hyperdirect corticosubthalamic pathway. While much
sparser than the indirect pathway, the hyperdirect projection
has received increasing attention. By circumventing the stria-
tum, it may provide a mechanism for cortical inputs to influ-
ence GPi and SNr output with shorter latencies and thereby
assist in situations that require rapid Bstop^ responses to ex-
ternal and internal triggers [17, 19, 28–41].

It is important to point out that some of the aforementioned
hypotheses for the motor functions of the basal ganglia, in
particular, a role of the basal ganglia in the initiation of move-
ment, are difficult to reconcile with much of the available data.
Combined single-cell/behavioral studies in primates have
found highly specific changes in neuronal activity in relation
to (trained) limb movements throughout the nodes of the motor
circuit, particularly in relation to movement amplitude/velocity,
However, the observed changes in discharge lag behind activity
changes in the MC [42–45], and the activation of (antidromi-
cally identified) corticoputaminal neurons lags that of nearby
corticofugal projections to brainstem and spinal cord [46, 47].
Moreover, lesions interrupting the output of the motor circuit in
the sensorimotor territory of GPi in normal primates and indi-
viduals with PD or dystonia [48], following pallidotomy, have
little or no effect on reaction times, although a slowing of
movement is a consistent finding [49–52]. Of course, it could
be argued that the basal ganglia might play a more direct role in
the initiation of internally generated movements. The lack of
obvious deficits in humans undergoing pallidotomy or animals
following large bilateral lesions of GPi, however, does not

Fig. 1 Corticosubcortical motor circuits. Black arrows indicate
inhibitory connections; gray arrows indicate excitatory connections.
Basal ganglia, thalamus, and cerebellum are marked. CM/Pf =
centromedian and parafascicular nuclei of the thalamus; Cereb. Cortex
= cerebellar cortex; CMA = cingulate motor area; DCN = deep cerebellar
nuclei; DP = direct pathway; D1 = D1-like dopamine receptor subtype;
D2 = D2-like dopamine receptor subtype; GPe = external segment of the

globus pallidus; GPi = internal segment of the globus pallidus; HP =
hyperdirect pathway; IP = indirect pathway; MC = motor cortex; PMC
= premotor cortex; PN = pontine nuclei; PPN = pedunculopontine
nucleus; SMA = supplementary motor area; SNc = substantia nigra pars
compacta; SNr = substantia nigra pars reticulata; STN = subthalamic
nucleus; VA/VL = ventral anterior and ventral lateral nuclei of the
thalamus. Figure from Wichmann 2015 [339]
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support this. Collectively, these findings argue against a role of
the motor circuit in the initiation and selection of movement
and support a more general effect on speed and amplitude of
movement or motor vigor.

It is likely that the projections of the motor circuit portions
of GPi to the pallidal receiving areas of the thalamus and to the
brainstem serve different functions. Studies of lesioning in the
primate have found that pharmacologic (transient) inactiva-
tion of the basal ganglia receiving territory of the ventral mo-
tor thalamus resulted in a reduced number of internally or
externally triggered movements and an increased reaction
time (depending on the injection site), with no obvious effect
on spontaneous movements outside the task [53]. Large bilat-
eral permanent lesions interrupting the basal ganglia receiving
areas and sparing the cerebellar receiving areas resulted in
impaired motor learning without a significant effect on spon-
taneous movements, providing evidence for a role of the basal
ganglia–thalamocortical components of the motor circuit in
motor learning [54]. In contrast, interventions at the PPN level
in primates seem to have more overt effects on spontaneous
behavior, resulting in akinesia/bradykinesia [55]. The effects
of functional surgery targeting the VLa and PPN in patients
are mentioned below.

As stated above, collaterals from the pallido- and nigrofugal
projections are also directed in a topographically specific man-
ner to the intralaminar nuclei of the thalamus, that is, the CM/Pf
(see Fig. 1). The CM/Pf–striatal system is seen as providing
sensory and salience information to the basal ganglia, which
may assist in procedural and reinforcement learning and action
selection (see below) [56, 57]. Lesions of CM, the motor por-
tions of CM/Pf, have little or no effect in relieving akinesia/
bradykinesia in the MPTP-treated primate [58], although DBS
of CM in patients with PD has been reported to be beneficial for
dyskinesias in limited studies [59].

Collaterals from the basal ganglia output projections to that
thalamus also reach the PPN (Fig. 1) [60–73]. The STN sends
a more modest glutamatergic projection to PPN [74–76]. The
PPN is a very heterogeneous structure, consisting of a
caudolateral pars compacta (PPNc) and an anteromedial pars
dissipata. Cholinergic cells predominate in PPNc, but PPNc
and anteromedial pars dissipata also contain large populations
of GABAergic or glutamatergic neurons [77–79]. The input
and output relationships of the various neuron groups in the
PPN have not been precisely determined, but it is known that
the nucleus gives rise to projections to the basal ganglia, thal-
amus, basal forebrain, reticular formation, and spinal cord [69,
74, 80–93], thus being, at the same time, part of the extended
basal ganglia family of nuclei [74], and a conduit of descend-
ing basal ganglia outputs. The function(s) of this nucleus are
poorly understood, although portions of the (primate) PPN are
implicated in the control of gait and balance because of over-
lap with the physiologically identified mesencephalic locomo-
tor region and possibly other motor functions (see below).

Although it has long been believed that basal ganglia and
cerebellar subcortical networks are segregated, there is growing
evidence for highly specific anatomical connections and physi-
ologic interactions between the basal ganglia and the cerebellum
([94]; see Fig. 1). Thus, it appears that both the basal ganglia and
cerebellum participate and interact under normal conductions in
motor and nonmotor functions, and that they share pathologic
activity in certain movement disorders, such as parkinsonian
tremor and some types of dystonia [95–98].

Basal ganglia networks are influenced by several
neuromodulators. Among these, the effects of dopamine on
striatal transmission play a central role in all models of basal
ganglia function and in the proposed pathophysiologic mecha-
nisms in both PD and dystonia. Dopamine is released in the
striatum and other nodes of the motor circuit from terminals of
projections from the substantia nigra pars compacta, and regu-
lates the activity of the basal ganglia output neurons by facilitat-
ing corticostriatal transmission upon MSNs of the direct path-
way and inhibiting corticostriatal transmission upon MSNs of
the indirect pathway ([99–102]; Fig. 1). The net effect of striatal
dopamine release appears to be to reduce basal ganglia output to
the thalamus and other targets. According to the classic circuit
model, this will result in increased overall movement. By con-
trast, a decrease in striatal dopamine release, as is seen in PD,
leads to a decrease in movement. Dopamine also has effects in
all other nodes of the basal ganglia–thalamocortical network.
The specific effects of dopamine at sites outside of the striatum
are poorly understood [103].

Striatal dopamine release also plays a role in procedural
and reinforcement learning [e.g., 104–108], owing to synaptic
plasticity and remodeling. In terms of procedural learning, the
Bassociative^ portions of the caudate nucleus appear to be
involved in early phases of learning, while the Bmotor^ puta-
men is more prominently engaged when animals execute pre-
viously learned movement sequences [109–118]. Hypotheses
about the role of dopamine in reinforcement learning are
closely tied to the finding that dopamine neurons fire in rela-
tion to (positive) prediction errors in rewarded tasks
[119–125]. Substantia nigra pars compacta neurons also re-
ceive information about negative prediction errors, through
connections that originate in the lateral habenula [126–131].

Pathophysiology of Parkinsonism and Dystonia

Parkinsonism

PD is a progressive multisystem neurodegenerative disorder
that affects many regions of the central and peripheral nervous
systems [132], and leads to a plethora of motor and nonmotor
signs and symptoms. However, the cardinal motor features of
PD, constituting what is termed parkinsonism (including
akinesia/bradykinesia, tremor, and muscular rigidity), are the
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most prominent aspects of the disease during the initial
phases. They arise from dopamine loss in the basal ganglia,
in particular the sensorimotor portions of the putamen. During
later phases of the disease, other signs and symptoms emerge,
specifically gait and balance problems, and cognitive impair-
ments. It is widely believed that balance problems are the
result of degeneration in the portion of the PPN that belongs
to the mesencephalic locomotor region and/or degeneration of
cholinergic cell groups [e.g., 90, 133–139]. Cognitive impair-
ments are likely caused by a combination of factors, including
the extension of significant dopamine loss to nonmotor por-
tions of the basal ganglia, and the spread of pathology to
prefrontal cortical regions [132].

Parkinsonism (as defined above) is highly responsive to the
administration of levodopa, the precursor of dopamine. As
mentioned, the long-term use of dopaminergic replacement
therapies can have substantial side effects, especially the
emergence of highly disruptive dyskinesias and unpredictable
Boff times^ and motor fluctuations. These problems, together
with medication-refractory tremor, are the major factors for
the use of DBS in PD.

Early studies of primates in (nondyskinetic) MPTP-treated
monkeys emphasized the importance of changes in the overall
activity of striatopallidal pathways. Metabolic studies sug-
gested [140, 141], and microelectrode recording studies dem-
onstrated, a reduction of neuronal discharge in GPe, and in-
creased activity in the STN, leading to increased excitatory
drive upon the basal ganglia output nuclei, GPi, and SNr
[142–145], all strongly implicating increased activity over
the indirect pathway in the pathophysiology of PD. Based
on this evidence, models were developed positing that
akinesia/bradykinesia results from excessive inhibitory output
from GPi [13, 15, 16], and emphasizing the role of increased
GPi output in hypokinetic and decreased output in hyperki-
netic disorders.

It was later recognized, however, that changes in the pat-
terning of activity in the basal ganglia are likely to be at least
as important as rate changes for the development of parkinso-
nian motor signs [146]. Among these, abnormal bursting and
oscillatory fluctuations of neuronal discharge are particularly
noticeable [147–152]. Oscillatory activity can be identified in
electrophysiological recordings of the activity of single neu-
rons in GPi, SNr, STN, and MC in animals and patients with
PD [153]. The proportion of cells in STN and GPi that dis-
charge in bursts is also greatly increased in parkinsonism [143,
144, 152, 154, 155]. Finally, a highly important parkinsonism-
related change in spontaneous discharge is the abnormal level
of synchrony between neighboring neurons [144, 152]. It is
not specifically known how changes such as burst discharges,
oscillatory discharge, or abnormal synchrony develop in par-
kinsonism, although altered striatal output to the extrastriatal
basal ganglia, changes in collateral inhibition in the external
pallidum [156], or changes in the strength and morphology of

synapses within the subthalamopallidal network of connec-
tions (see below and [157, 158]) may contribute to correlated
oscillatory activity in the output nuclei of the basal ganglia
[152, 159, 160] .

It is clear that the synchronous oscillatory activity in pop-
ulations of neurons in the nodes of the corticobasal ganglia
motor circuit contributes to the finding of power spectral
changes in recordings of local field potentials (LFPs) in pa-
tients with PD, as well as in animal models of the disorder
[161]. LFP signals reflect membrane potential fluctuations,
both subthreshold (synaptic potentials) and suprathreshold
(spiking-related). The realization that the amplitude of LFPs
depends on the degree of temporal alignment of the electrical
activities of the neural tissue from which they originate has
rendered the recording and analysis of LFP signals an impor-
tant tool for the exploration of circuit-level synchrony.

The fact that implanted DBS electrodes can also be used to
record electrical signals in patients with these conditions has
been one of the major scientific benefits of the introduction of
DBS technology and had a major impact on our thinking
about the pathophysiology of parkinsonism and other neuro-
psychiatric disorders. LFP recordings in patients with PD,
particularly in the dorsolateral motor regions of the STN and
GPi, have demonstrated oscillations in the 10–25 Hz (beta)
range in the unmedicated state, and in the 60–80 Hz (gamma)
range in the levodopa-treated state [152, 162]. It is thought
that the overly strong beta-band LFP oscillation indicates that
desynchronization processes of neurons within the circuitry
fail in PD, which may contribute to the hypokinetic features
of the disease. This has led to the proposal that beta-band LFP
oscillations are antikinetic and strongly correlated with rigid-
ity and bradykinesia [163], while gamma-band oscillations (a
sign of desynchronization) are thought to be prokinetic [162].
Beta oscillations are viewed as normal for the resting or
Bidling^ state; their reduction with movement onset may play
a role in allowing movement to take place. Conceivably in-
creased or persistent beta-band oscillations could disrupt
movement initiation and execution, or may reflect the under-
lying impairment of movement initiation or even be a com-
pensatory mechanism [164].

There is no evidence that LFP oscillations per se influence
motor performance. The finding of LFP signals with greater
amplitude in patients with PD may simply reflect the fact that
the system is in a state of increased synchrony [152]. A similar
caveat applies to the recently described finding of increased
coupling between the amplitude of gamma-band oscillations
and the phase of beta-band activity at the same location [165].
This finding likely corresponds to synchronized bursts of single
cell activity (accounting for the broadband gamma-band peak)
whose timing reflects an underlying beta-rhythm (accounting
for the apparent entrainment of activity in the beta-band range).

Although it is tempting to attribute signs and symptoms to
specific abnormalities in neuronal activity or LFPs in PD, the
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(causal) importance of any of the multiple changes in basal
ganglia activity for the development of parkinsonism remains
uncertain because they are not always found in animal models
of parkinsonism, or in humans with PD, and, if they occur,
tend to occur late in the development of parkinsonian signs in
animal models, well after their onset [158–161].

Changes in the basal ganglia other than dopamine loss (but
likely related to it) may also contribute to activity changes in
the basal ganglia. These include a growing list of chronic
morphological changes in the basal ganglia, affecting gluta-
matergic and GABAergic transmission in these structures. For
instance, plasticity at glutamatergic synapses has been dem-
onstrated in animal models of parkinsonism and in patients
with PD, affecting the corticostriatal, thalamostriatal, and
corticosubthalamic pathways [166–173]. Recent studies have
suggested additional plasticity of the GABAergic collaterals
within the GPe, as well as the pallidosubthalamic projection,
the latter perhaps related to heterosynaptic homeostatic mod-
ulations, driven by N-methyl-D-aspartate receptor activation
at corticosubthalamic synapses [157, 158, 174]. The fact that
many of these changes can be identified in dopamine deple-
tion models strongly suggests that they are a late consequence
of dopamine loss, affecting brain areas rich in dopamine (like
the striatum), as well as those with little direct dopamine input
(e.g., the STN or the thalamus). It is not known whether these
late morphologic changes are reversible.

The role of brain structures outside of the basal ganglia in the
motor manifestations of PD remains uncertain. Traditional ex-
planations focus on the transmission of abnormal patterns of
activity via the basal ganglia-thalamocortical projections.
However, as mentioned above, the available evidence suggests
a more important role of the projections of GPi to the thalamus
in motor learning than in movement execution. In contrast, in-
terventions directed at the PPN have revealed significant motor-
ic effects in animal experiments [55]. Thus, PPN inactivation in
normal primates reduces body movements of arms, trunk, and
legs [142–146], and PPN injection of a GABA-A receptor an-
tagonist, or low-frequency stimulation of PPN, alleviates exper-
imental akinesia in monkeys, presumably by increasing PPN
activity [146–156]. This constellation of findings suggests the
possibility that the descending basal ganglia projections to the
brainstem may play a greater role in the pathophysiology of
akinesia/bradykinesia and movement than is commonly as-
sumed. A particular role of the PPN in the axial control of gait
and balance, and in abnormalities of these functions in patients
with movement disorders, is suggested by the fact that portions
of the PPN are part of the brainstem locomotor region [90, 137,
138], and the finding that PPN neurons in this region degenerate
in PD [133–136].

Finally, the cerebellar outflow pathways also seem to be
involved in aspects of the pathophysiology of PD, specifically
tremor [95, 175, 176], as suggested by imaging studies [177],
and by the finding that, unlike other signs of the disease,

parkinsonian tremor is effectively treated with surgical inter-
ventions targeting the cerebellar-receiving portions of the thal-
amus [178, 179].While dopamine loss is, in someway, related
to the expression of tremor, this parkinsonian sign is often less
sensitive to dopamine replacement therapy than the other par-
kinsonian signs, and not strongly related to beta-band power
in LFP signals recorded in the basal ganglia [163].

Dystonia

Dystonia is a heterogeneous hyperkinetic movement disorder
Bcharacterized by sustained or intermittent muscle contrac-
tions causing abnormal, often repetitive movements, postures,
or both. Dystonia is often initiated or worsened by voluntary
action and associated with overflow muscle activation^ [180].
Co-contraction of agonist and antagonist muscles is common.
Dystonia can be classified by the presence or absence of as-
sociated clinical manifestations, differentiating Bisolated
dystonia^ from Bcombined dystonia^, where dystonia appears
as a component of other disorders, such as PD. In adults, focal
forms of dystonia are common, whereas in children and young
adults, generalized inherited forms of dystonia are more com-
mon, such as idiopathic torsion dystonia [DYT1; 181].

Physiologic studies in isolated generalized and focal hand
dystonia have demonstrated evidence of a widespread loss of
GABAergic inhibition, involving cortex, brainstem and spinal
cord, evidence of abnormal sensorimotor integration, and ab-
normalities of synaptic plasticity [182]. Some forms of dysto-
nia are clearly associated with basal ganglia dysfunction. For
instance, dystonia may result from disturbances in dopaminer-
gic transmission assumed to affect strongly basal ganglia ac-
tivity [183]. Thus, dystonia may develop either acutely or
delayed (tardive dystonia), in normal individuals treated with
dopamine-receptor blocking agents, or can be a sign of other
diseases with disturbed dopamine metabolism, such as PD,
levodopa-responsive dystonia, or DYT1 [184–189].
Transient dystonia has also been observed in monkeys treated
with the dopaminergic neurotoxin MPTP [190–192].

Studies in primate models have shown that dystonia is asso-
ciated with a reduction of activity along the putamen–GPe con-
nection, and increased inhibition of STN and GPi by GPe effer-
ents [193, 194]. Based on pharmacologic studies, there seems to
be a relative increase in the activity of striatal neurons of the
direct pathway over those that give rise to the indirect pathway
in dystonia [195, 196], and single-cell recording studies in pa-
tients undergoing functional neurosurgical treatments have dem-
onstrated low discharge rates in both GPe andGPi [197–202], in
distinction to the aforementioned changes in PD where GPi
discharge rates are generally increased. The presence of low-
frequency discharge in the GPi in patients with dystonia is sim-
ilar to that in other hyperkinetic disorders, including chorea/
ballismus and motor tics [197, 203, 204]. Other studies have
shown the emergence of low-frequency oscillations in single-
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cell and LFP activities in the basal ganglia or thalamus [200,
201, 205–207], comparable with those found in PD.
Electrocorticographic recordings over the MC in patients with
isolated dystonia showed less coupling between the phase of
beta-band oscillations and the amplitude of gamma-band oscil-
lations than found in patients with PD [208].

In some types of dystonia, the cerebellum may also be
involved, either alone or in conjunction with basal ganglia
abnormalities [96, 98, 209, 210]. For instance, gene carriers
of the autosomal dominant DYT1 and DYT6 dystonias show
functional disturbances of cerebellar connections. DYT1 has a
relatively low penetrance (about 30%) that may result from an
additional abnormality in thalamocortical projections, which
may be protective in these cases [97, 211–213]. Subtle
structural cerebellar pathology is suspected to occur in some
forms of dystonia [214]. Interplay between the cerebellar and
basal ganglia circuits in the development of dystonias is sug-
gested by experiments aimed at replicating the pathophysiol-
ogy of the genetically inherited rapid-onset dystonia parkin-
sonism [RDP; 210].

DBS

Implantation and Programming

Candidates for DBS therapy with PD or dystonia undergo
placement of stimulating leads into the STN or GPi, guid-
e d b y n e u r o im a g i n g f o l l ow e d b y e l e c t r i c a l
macrostimulation to assess clinical responses and sensory
and motor thresholds. Microelectrode recording and map-
ping of the targeted area is used by some groups, prior to
placement and testing of the DBS lead, since correct place-
ment is critical to the success of DBS. An internal pulse
generator (IPG), which is similar to a cardiac pacemaker,
is simultaneously or subsequently implanted, usually in
the subclavicular region, and connected to the electrode
[215]. The currently available electrodes contain 4 sepa-
rate contacts, spaced either 0.5 or 1.5 mm apart.
Programming of the IPG is typically carried out 2–4 weeks
after implantation of the electrodes, using a telemetric sys-
tem by which the clinician can remotely select specific
electrode contacts used for stimulation, their configuration
for mono- or bipolar stimulation, and parameters, includ-
ing frequency, pulse width, and amplitude of the stimuli.
Several groups are currently working on improvements to
the design of electrodes and pulse generators. Some of
these efforts are mentioned below.

Use of DBS in PD

DBS is currently used to treat patients with PD for whom the
signs and symptoms cannot be satisfactorily controlled by

medications due to the development of side effects.
Stimulation of the sensorimotor STN or GPi between 30 and
100 Hz is relatively ineffective for parkinsonian features,
while benefit is seen around 100 Hz and above, using stimu-
lation amplitudes of 2–4 Vand pulse widths of 60–90 μs. The
available data indicate that both STN and GPi DBS in patients
with PD relieve tremor, rigidity, and bradykinesia [216–221],
and may improve gait and postural control in some patients
[222].

Although the STN is most commonly targeted for
PD, both GPi and STN DBS have comparable benefits
for the cardinal features of PD. The pros and cons of
STN versus GPi targeting are debated [223], and the
relative incidence of side effects and complications of
either of these procedures have been the focus of con-
siderable discussion [215, 224]. Differences between
these procedures are, in part, explainable by anatomical
differences between the STN and GPi. As illustrated in
Fig. 2, the STN is surrounded by major fiber systems
and receives direct input from the cortex via the
hyperdirect pathway. The STN is much smaller than
the GPi, making inadvertent activation of nonmotor
areas and extrinsic fiber systems and side effects more

Fig. 2 Major anatomical pathways that are affected by subthalamic
nucleus (STN) stimulation, and may contribute to the generation of
cortical evoked potentials. Excitatory (glutamatergic) pathways are shown
as red lines, inhibitory (γ-aminobutyric acid-ergic) connections are shown
as black lines, and modulatory dopaminergic fibers as green lines. The blue
circles symbolize the spread of the electrical stimulation of the STN. CM =
centromedian nucleus of the thalamus; DLG= lateral geniculate body; FF =
Fields of Forel; IC = internal capsule; GPe = external pallidal segment; GPi
= internal pallidal segment; OT = optic tract; Put = putamen; SN =
substantia nigra; VA = ventral anterior nucleus of the thalamus; VL =
ventrolateral nucleus of the thalamus; ZI = zona incerta. Figure from
Devergnas and Wichmann 2011 [298], used with permission
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likely. The greater proximity and potential overlap of
motor, associative, and limbic territories in this nucleus
(compared with the larger GPi) contributes to the fact
that DBS at this location is more likely to produce
nonmotor effects than GPi DBS [225]. Another
(unexplained) difference between these procedures is
that the levodopa dose can usually be reduced in pa-
tients treated with STN DBS but not with GPi DBS.

Several other targets have been used to treat patients with
PD. There is a general consensus among neurosurgeons that
DBS of the ventral intermediate nucleus of the thalamus (Vim)
is highly effective for tremor (but not other parkinsonian
signs). Vim receives strong inputs from the cerebellum, and
the effectiveness of tremor control with DBS at this location is
a strong argument in favor of cerebellar involvement in the
pathophysiology of tremor. PPN DBS [226–239], alone or in
combination with STN or GPi DBS, is currently under study
for patients with advanced PD who develop levodopa-
unresponsive freezing of gait, balance impairments, and falls.
DBS of the PPN has been shown to be most effective at low
stimulation frequencies [240]. However, the location of effec-
tive PPN stimulation sites remains debated [e.g., 231, 241].
Other groups have targeted the zona incerta and CM in pa-
tients with PD [7, 59], particularly for tremor or dyskinesias.

Use of DBS for Dystonia

There is strong evidence supporting the use of GPi DBS for
the treatment of isolated generalized or segmental dystonia, as
well as for patients with cervical dystonia [242, 243]. The
stimulation parameters are typically the same as for PD, al-
though some patients may also respond to lower frequencies.
There is growing evidence supporting the use of GPi DBS for
the treatment of tardive dystonia or myoclonus dystonia
[244–254]. Lesser and inconsistent benefit is seen in dystonia
secondary to structural brain damage [255]. DBS at other lo-
cations, particularly the STN, has also been found in pilot
studies to be effective for isolated dystonia [256–262].
Compared with GPi DBS, STN DBS may offer the advantage
of more rapid improvement for dystonia and reduced stimula-
tion parameters [257]. While there is a prior history of
thalamotomy for generalized dystonia, thalamic DBS has not
been utilized for this indication, perhaps because of the suc-
cess with GPi and STN DBS, although thalamic DBS
(targeting Vim, or the thalamic ventralis oralis nucleus) is
being explored for focal forms of dystonia, such as writer’s
cramp [263–265].

Time Course of Responses

The signs and symptoms of basal ganglia disorders respond to
DBS with different time courses [266]. It seems intuitively
clear that signs and symptoms that respond rapidly to DBS

must be mediated by modulation of ongoing network activity,
whereas signs and symptom that respond after longer delays
may be the result of synaptic plasticity with gradual reshaping
of synaptic activity or morphology. Most striking are the very
short (seconds) latencies needed to treat essential tremor with
thalamic DBS and rest tremor of PD with DBS in the STN.
The response of appendicular rigidity and bradykinesia in PD
with DBS delivered to the STN or GPi is likewise rapid.

At the other end of the time spectrum, the effects of GPi
DBS for generalized dystonia may take days to begin and
months to reach maximum effect, suggesting that short- and
long-term plasticity may play a role [261]. Movement-
induced limb dystonia responds more rapidly than fixed pos-
tural dystonia. It is also noteworthy that delayed temporal
responses are the norm for both pallidotomy and DBS for
dystonia, strongly suggesting that the mechanism of action
may, in both cases, involves long-term plastic remodeling of
cortical and brainstem mechanisms. The return of symptoms
once DBS is turned off generally mirrors the time course of
the onset times [267, 268].

DBS Mechanism of Action

Considering the complex anatomical connectivity and the rel-
atively widespread effects of electrical stimulation with cur-
rent DBS electrodes within the nodes of the basal ganglia
motor circuit and beyond, it is no surprise that the mechanisms
of action of DBS remain controversial. The early finding that
DBS of the STN or GPi results in clinical benefits that are
strikingly similar to those of lesioning at these sites for tremor
and PD, respectively, suggested initially that DBS may act by
inhibiting neurons in the area of stimulation [269–271]. This
view was supported by the demonstration that some neurons
in the vicinity of the stimulation site in STN and GPi in ex-
perimental animals and in patients with PD are, indeed,
inhibited [272–275], perhaps by depolarization block or the
release of GABA from terminals of afferents to the stimulated
area [276–280].

Later electrophysiologic recording studies in primates and
patients demonstrated that DBS has, in fact, multiple actions
that may differ with the distance from the stimulation site and
the spatial orientation of electrodes and neural elements
studied [276, 277]. Axons are known to be more sensitive to
stimulation than cell bodies [276, 277, 281–283], so that high-
frequency DBS may alter the activity of axons emerging from
a given area (this was specifically shown for STN and GPe
DBS [283, 284]), thus leading to a functional blockade of
transmission of information, whether pathological or normal,
through the stimulated area, but without silencing of the tissue.
This effect is summarized in the term Binformational lesion^
[285]. The concept that DBS produces an informational lesion
provided an explanation for the fact that DBS is equally
effective for a variety of hypo- and hyperkinetic disorders.
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Support for the idea that DBS produces an informational le-
sion comes from studies of evoked responses of GPi neurons
to electrical stimulation of the MC [279]. In intact animals,
such stimulation triggers triphasic response patterns in some
GPi neurons, which are thought to bemediated via the sequen-
tial actions of the hyperdirect, direct, and indirect pathways
[286]. GPi DBSwas found to inhibit such stimulation-induced
responses due to GABAergic inhibition of cell bodies [279].

Recent studies in awake behaving primates, however, have
provided some evidence that physiologic sensorimotor-related
discharge in the basal ganglia output nucleus (GPi) may be at
least partially maintained during STN or pallidal DBS [266,
287]. These studies have suggested that DBS may act as a
Bselective filter^ that permits some sensorimotor-related mod-
ulation of the activity of neurons in the stimulated area, while
eliminating transmission of pathological low-frequency neu-
ronal activity patterns.

The conclusion that DBS does not completely disrupt basal
ganglia activities is also supported by the (limited) literature
on the effects of DBS on motor learning. Contrary to the
expectation that DBS of the STN or GPi would disrupt this
important basal ganglia function, GPi DBS and STN DBS
were, in fact, shown to improve performance in a motor se-
quence learning task or rewarded decision learning tasks
[288–291]. Concomitant positron emission tomography stud-
ies suggested that the improvement after DBS was related to
an enhancement of the activity of prefrontal or frontal
corticobasal ganglia–thalamocortical loops [288, 291].

Yet another mechanism of action of DBS may be that it
disrupts synchrony of neuronal discharge. This is suggested
by studies in MPTP-treated monkeys [292]. Recent reports
have provided additional evidence that pathological low-
frequency oscillations are reduced or decoupled between
nodes of the basal ganglia thalamocortical circuits at clinically
effective high-stimulation frequencies [293, 294]. Thus, it has
been found in the MPTP-treated monkey that therapeutically
effective STN DBS alters the pattern and power of oscillatory
activity of neuronal activity in the motor thalamus, resulting in
more regular firing patterns and significant changes in burst-
ing activities [295]. Other recent studies in such animals have
shown that clinically effective levels of GPi DBS also affected
the firing rates and rhythmicity of cortical neurons [296, 297].

As is shown in Fig. 2, STN DBS, because of its loca-
tion and proximity to nearby structures and fiber systems,
could produce effects through a variety of mechanisms.
Thus, STN DBS, with use of the contacts in the sensori-
motor region of the nucleus, may stimulate nearby
pallidal–thalamic fibers and cerebellar–thalamic fibers in
the zona incerta, and may antidromically activate afferents
from GPe, which send (inhibitory) collaterals to GPi. STN
DBS may also directly activate the nigrostriatal tract
[298], but this is unlikely to be relevant in the treatment
of PD because of the degeneration of this pathway in PD.

Spread of stimulation from the STN stimulation site may
also activate nearby corticospinal or corticobulbar fibers.
STN stimulation has also been found to influence directly
cortical neurons via antidromic activation of the
cort icosubthalamic pathway [298–301]. In fact ,
optogenetic studies in rodents have suggested that the an-
tidromic activation of motor cortical input may be respon-
sible for the clinical effects of STN DBS [299, 302].
While antidromic stimulation of cortex has also been
shown in nonhuman primates and in patients, based on
short-latency cortical-evoked potentials [298, 301,
303–305], it is not clear what role they play in the overall
behavioral response to STN DBS in patients with move-
ment disorders. Antidromic effects are not likely to play a
prominent role in the case of GPi DBS [297, 298], which
achieves the same motor result as STN DBS. Finally, a
recent rodent study of STN DBS showed that STN DBS
may also engage cerebellar activity to improve parkinso-
nian motor symptoms [306].

DBS has been shown to alter some of the electrophys-
iologic abnormalities observed in patients with movement
disorders. For instance, STN DBS in patients with PD
suppresses beta-band oscillations in the basal ganglia
and reduces the aforementioned pathological coupling be-
tween beta-band phase and gamma-band amplitudes in
MC [307–310]. GPi DBS also reduces beta-band oscilla-
tions in GPi and MC [297, 311]. These findings suggest
that DBS may exert some of its effects by disrupting ab-
normal cortical synchronization. The fact that the clinical
DBS effects are reflected in changes to electrophysiologic
markers of disease severity may become practically rele-
vant, as it may permit dynamic adjustment of DBS using
closed-loop control designs (see below).

Based on animal studies, DBS may have effects on the
release of growth factors (e.g., brain-derived neurotrophic fac-
tor), which may, in turn, promote neuroplasticity,
neurogenesis, or neuroprotection [312–316]. At the present
time there is no strong evidence from the human literature
for a disease-modifying effect of DBS, although a recent study
suggests that such effects may occur [317].

Discussion

The use of DBS has proven to be a major clinical advance for
movement disorders and other neurologic conditions, and has
already helped more than150,000 patients to achieve better
control of the signs and symptoms of their disease, and to
improve their quality of life. However, despite intense re-
search, the use of DBS remains largely empiric. Here, we
make several general points about the lessons learned regard-
ing the clinical effects and possible mechanisms of action of
DBS.
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The Removal of Abnormal Basal Ganglia Output is
Sufficient to Treat Signs and Symptoms of Movement
Disorders of Basal Ganglia Origin

The experience with ablation and functional inactivation of
the basal ganglia motor circuit in STN or GPi has shown that
interruption of pathologic output can efficiently restore func-
tionality for PD and dystonia and other hyperkinetic disorders.
While DBS clearly has diverse effects on the stimulated brain
areas, it is clear that the clinical benefits of DBS are not the
result of a DBS-induced restoration of normal basal ganglia or
brain function. Whether by inducing an Binformation lesion^
or by acting as a Bselective filter^, DBS appears to override the
impact of pathologic basal ganglia activity on downstream
targets. The DBS-induced activities in the basal ganglia
thalamocortical network are perhaps more stable, allowing
normal short- and long-term plasticity to take place down-
stream from the site of DBS.

The fact that GPi or STN DBS is effective for both
hypokinetic and hyperkinetic disorders is similar to the clini-
cal experience with pallidotomy for these disorders. This re-
inforces the impression that the actual effects of the interven-
tion (lesion or DBS) may not matter so much, as long as the
activity of downstream areas of the brain are released from
pathologic basal ganglia output, and are allowed to reach a
new equilibrium that is conducive to an improved clinical
state.

The Basal Ganglia Assist (or Disturb) the Activities
of Other Brain Regions

A corollary of the preceding discussion is that the signs
and symptoms of movement disorders do not necessarily
represent or reflect the normal motor functions of the bas-
al ganglia, but rather the dysfunction of the targeted
thalamocortical and brainstem networks resulting from
pathologic basal ganglia output in the motor circuit. In
fact, the striking variety of clinical abnormalities of move-
ment in clinical disorders of the basal ganglia seems to
give a greatly exaggerated and distorted picture of the role
and extent of basal ganglia participation in normal motor
function as discussed earlier.

The finding that interruption of basal ganglia output by
pallidotomy or thalamotomy (or DBS of basal ganglia or
thalamus) relieves signs and symptoms of movement dis-
orders, with modest effects on movement in patients and
experimental animals, has been called the Bparadox of
stereotaxic surgery^ [318]. The clinically identifiable im-
pairments of pallidotomy appear to be only a small degree
of bradykinesia and a minor disruption of reinforcement
learning [51, 318–320]. As mentioned above, the avail-
able evidence suggests that GPi DBS or STN DBS does
not disrupt procedural learning, and may even improve it

[288–291]. The absence of overt motor impairments with
surgical disruption of basal ganglia output in patients with
movement disorders does not negate a more significant
function of the basal ganglia under normal conditions.
The fact that the basal ganglia can be identified at the
earliest stages in vertebrate evolution and that the evolu-
tionary expansion of these structures mirrors that of the
cerebral cortex is indirect evidence for their biological
importance [23, 321]. However, the Bparadox^ suggests
that the contribution of the basal ganglia to movement
may be largely assistive rather than essential, and that its
loss can be compensated for by the system as a whole
with little deficit. The impression that it is Bparadoxical^
that the basal ganglia can be lesioned without major func-
tional consequences may simply belie our failure to rec-
ognize that the clinical features of basal ganglia disorders
do not represent or reflect the actual functions of the basal
ganglia but dysfunction of the downstream networks
resulting from propagated abnormal basal ganglia activity.

Abnormal Levels of Synchrony may be a Fundamental
Electrophysiologic Abnormality Resulting
in Akinesia/Bradykinesia and Dystonia

The use of DBS electrodes for recording purposes in
humans, and in a large number of animal studies [44,
152, 322–326], has emphasized that many of the identi-
fied electrical disease markers (e.g., oscillatory bursting or
phase-amplitude coupling) can be explained by an abnor-
mal level of synchronous neuronal discharge that may
ultimately result in increased beta-band oscillations
throughout the corticobasal ganglia circuits. Studies in
the normal basal ganglia have shown that neighboring
neurons tend to fire independently (e.g., [44, 45]), perhaps
continuing at the cellular level what is readily apparent as
circuit segregation at the macroanatomic level [8, 10]. The
finding of increased cross-correlation of single-cell dis-
charge in many basal ganglia regions in animal models
and patients with PD and increased LFP amplitudes in
specific power spectral ranges indicates that the normal
level of independence of discharge is substantially re-
duced in the parkinsonian state [44, 322, 323, 325, 326].
Effective antiparkinsonian therapies, including levodopa
replacement and DBS reduce the LFP amplitudes to more
normal levels, and reduce the abnormal synchrony of neu-
rons in at least some brain regions [see, e.g., 152, 297,
327].

Studies in animal models of parkinsonism and in pa-
tients with PD have shown that parkinsonism is associated
with peaks in power spectra of LFP signals. The location
of these spectral peaks appears to differ between species,
ranging from the theta-range of frequencies to the low
gamma-range [328]. The exact spectral position of such
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peaks may be less important than the fact that there is a
(low-frequency) peak at all, suggesting the presence of
abnormally synchronized activity patterns that may inter-
rupt cortical and brainstem operations. Synchrony of this
kind is most easily studied with spectral methods, but it is
not clear whether the disruptive synchrony has to be os-
cillatory in nature. For future research it may be fruitful to
focus less on studies of spectral LFP peaks and more on
the correlation of single-cell discharge. It is also worth
emphasizing that, if synchrony between neurons is an im-
portant element of parkinsonism (and dystonia), these dis-
eases may respond favorably to DBS regimes that specif-
ically desynchronize circuit activities (see below).

Technical Developments and Future of Neuromodulation

Current DBS technology is essentially 25 years old.
Engineers have already developed IPGs that deliver con-
stant stimulation currents (rather than the conventional
constant stimulation voltages) and are now developing
pulse generators that will allow the use of more flexibly
programmable stimulation regimes, allowing, for exam-
ple, patterned stimulation instead of the currently avail-
able constant-frequency stimulation [329, 330]. Greater
flexibility is desirable because it has been shown that
intermittent or irregular stimulation may be as effective
or even more effective than continuous stimulation [329,
331], and may help to preserve the battery life of the
implanted devices. A related effort is that of developing
stimulators that would allow the use of stimulation param-
eters that may desynchronize circuit activities [e.g., 332,
333] by stimulating with stimulation patterns that involve
(in predetermined temporal sequences) multiple contacts
in the stimulated area (Bcoordinated reset^ stimulation).
With regard to the disorders mentioned in this article, this
approach has been used with some success in preliminary
studies in MPTP-treated monkeys and in patients with PD
[333, 334]. In the patient study, coordinated reset stimu-
lation was carried out for 2 short daily sessions over a
period of 3 days. This resulted in antiparkinsonian effects
that persisted for days. Over the 3-day trial periods, the
patients showed a gradual decrease in beta-band power in
their STN.

Device development also tries to address the fact that the
signs of symptoms of basal ganglia diseases are not necessar-
ily stable over time. While slow drifts in severity can be ad-
dressed by repeated (re-) programming of the existing devices,
short-term fluctuations are not easily remedied with the cur-
rent technology. The generation of closed-loop adaptive stim-
ulation devices, a type of stimulation that dynamically adjusts
the stimulation parameters according to the level of patient’s
disability is therefore a major development goal. The most
pressing scientific and engineering issue in this effort is that

reliable biomarkers for disease severity need to be found, and
that the implanted device(s) must be able to detect them and
adjust their output accordingly. In encouraging studies in par-
kinsonian primates it was shown that STN DBS triggered by
the firing patterns of MC cortical neurons treated parkinson-
ism more effectively than conventional DBS [335], and sub-
sequent studies in humans showed that STN DBS can be
controlled by recorded LFP signals in the STN [336]. Major
issues remain unsolved, including further optimization of the
detection and extraction of the control signals, demonstration
of the stability of the relationship between these signals and
the disease signs and symptoms, and the obvious need to
minimize battery consumption of the added sensing circuitry
in the new devices.

The further development of new electrodes is also un-
derway, with the goal of permitting more precise shaping
and steering of the electrical field, through the use of
multiple contacts along the electrode shaft [337, 338], in
order to better control unintended spread and optimal
shaping of current flow. Obviously, the freedom of being
able to use additional electrode contacts must be balanced
against the resulting more complex programming
requirements.

Conclusion

The introduction of DBS had a strong impact on the treat-
ment of movement disorders and other neuropsychiatric
conditions, and has led to a better understanding of the
pathophysiology of these disorders. The focus on neural
networks and the mechanism of action of DBS have
opened wide areas for further exploration in the form of
novel targets and forms of stimulation for a variety of
neuropsychiatric disorders.

DBS, although less invasive that ablation, is, nonethe-
less, an invasive procedure, requiring long-term care and
maintenance. Moreover, although highly effective for
nonprogressive disorders such as dystonia and the
dopamine-responsive features of parkinsonism, it is a
purely symptomatic treatment. While substantial refine-
ments and progress is being made with current technolo-
gy, other forms of neuromodulation may become impor-
tant, in particular optogenetic and chemogenetic stimula-
tion methods. Both techniques have the benefit of being
cell-specific (through the use of cell-specific promoters)
and less invasive, and may, therefore, produce benefits
similar to those of DBS, but with fewer side effects.
Major biological hurdles remain for both of these tech-
niques, however. While it is hoped that less invasive and
more effective forms of neuromodulation will be devel-
oped, it seems clear that DBS will undergo significant
improvements and it is unlikely that it will be supplanted
in the near future.
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