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It is widely believed that the prefrontal cortex (PFC) facilitates delib-
erative control over behavior1,2, but many of the mechanistic details of 
this influence remain to be defined. Here we describe how a PFC–basal 
ganglia system implements slower, more controlled decisions during 
difficult choices. The mPFC has been proposed to instantiate control 
over behavior based on an evaluation of endogenous or exogenous 
conflict3,4. When control is needed, the mPFC communicates with the 
STN of the basal ganglia, which acts as a brake on the cortico-striatal 
system to facilitate a more deliberative response process5,6. The STN 
receives direct projections from the mPFC, forming a ‘hyperdirect’ 
pathway that can rapidly modulate cortico-striatal processing6–9. This 
architecture makes the STN ideally suited to receive input from, and 
ultimately influence, processing of action selection in mPFC.

Theories of cortico–basal ganglia functioning predict an interac-
tion between mPFC and the STN in the online regulation of behavior, 
particularly when habitual responses are overridden to make planned 
and controlled responses. Although the mPFC is involved in both 
the facilitation and inhibition of candidate motor actions, the STN is 
thought to primarily inhibit the prepotent action10,11. According to 
this framework, mPFC-STN communication serves to exert control in 
conditions in which cortico-striatal signaling would induce impulsive 
responding. Although evidence supports this idea of a hyperdirect 
pathway, much of it remains correlational (functional magnetic reso-
nance imaging, white matter tractography and nonhuman primate 
electrophysiology)7,10–13.

Disrupting STN function through high-frequency deep brain stim-
ulation (DBS) is an increasingly common treatment for Parkinson’s 
disease, providing an opportunity to manipulate the STN area 

while monitoring control over decisions and actions. As might be 
expected, DBS can induce impulsivity in affected individuals’ day-
to-day lives14, and this effect can be captured in the laboratory.  
A previous study reported that STN-DBS disrupted the tendency to 
adaptively slow down when faced with difficult decisions15. On the 
basis of computational modeling of basal ganglia function in decision 
making, it was proposed that the mPFC influences processing in STN 
to modulate the decision threshold during response conflict5, and 
that DBS interferes with this function, thereby leading to impulsivity. 
Crucially, this abstract measure of decision threshold can be inferred 
from computational modeling of response time distributions16. This 
model-based approach helps to parse variance between multiple latent 
processes that have been suggested to be reflected in accuracy and 
response time. As yet, however, there are no empirical data that dem-
onstrate such mPFC-STN interactions during conflict.

Electroencephalograpy (EEG) is commonly used to assess mPFC 
activities during conflict and control3,4. Specifically, theta-band power 
over the mPFC increases following punishment, error or conflict, and 
the degree of theta power increase predicts subsequent response time 
slowing, suggesting a direct role in adaptive control17–19. Thus, this 
EEG feature is a promising candidate for measuring the influence of 
mPFC on conflict-related threshold adjustment while manipulating 
the effective functioning of the STN area via DBS (see Fig. 1a).

Here we present evidence from two separate studies in which we 
manipulated or directly measured activity in the STN area. Healthy 
participants and individuals with Parkinson’s disease performed a 
reinforcement learning and choice conflict task while concurrent 
EEG was recorded. Affected individuals were tested twice, alternating 
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Subthalamic nucleus stimulation reverses 
mediofrontal influence over decision threshold
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It takes effort and time to tame one’s impulses. Although medial prefrontal cortex (mPFC) is broadly implicated in effortful 
control over behavior, the subthalamic nucleus (STN) is specifically thought to contribute by acting as a brake on cortico-striatal 
function during decision conflict, buying time until the right decision can be made. Using the drift diffusion model of decision 
making, we found that trial-to-trial increases in mPFC activity (EEG theta power, 4–8 Hz) were related to an increased threshold 
for evidence accumulation (decision threshold) as a function of conflict. Deep brain stimulation of the STN in individuals with 
Parkinson’s disease reversed this relationship, resulting in impulsive choice. In addition, intracranial recordings of the STN area 
revealed increased activity (2.5–5 Hz) during these same high-conflict decisions. Activity in these slow frequency bands may 
reflect a neural substrate for cortico–basal ganglia communication regulating decision processes.
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between DBS ON or OFF conditions. Response time and model-
estimated decision threshold increased as a function of cortical theta 
during response conflict, but this link between mPFC theta and deci-
sion threshold was reversed with STN-DBS. Intraoperative recordings 
of the STN area provided direct evidence of enhanced activity dur-
ing these same high-conflict situations. We conclude that the STN is 
important for facilitating adaptive cortico–basal ganglia responses in 
the face of decision conflict.

RESULTS
Study I: OFF versus ON STN-DBS
Our reinforcement learning and choice conflict task involved multiple 
interleaved phases of training, in which stimulus-reinforcement prob-
abilities were learned, and testing, in which participants were asked to 
select between novel stimulus combinations involving low (win-lose) 
or high (win-win and lose-lose) decision conflict (Fig. 1b). There 
were no differences between DBS conditions in learning the reinforce-
ment probabilities or in the optimal selection between them in the test 
phases (P values > 0.40), in median response times (P values > 0.17),  
or in response time variability (t values < 1) (Fig. 1c). To test the 
specificity of ON and OFF DBS differences on conflict-related adap-
tation, we computed high-conflict response times as the percentage 
change from low conflict and analyzed them as a function of accuracy. 
A repeated-measures ANOVA for DBS (ON, OFF) × valence (win-
win, lose-lose) × accuracy (suboptimal, optimal) revealed significant 
main effects for valence (F1,13 = 18.49, P < 0.001) and accuracy (F1,13 =  
5.43, P = 0.036) with a valence × accuracy interaction (F1,13 = 4.56, 
P = 0.05). Response times were fastest on win-win trials, suboptimal 
choices and the conjunction between the two, suggestive of impulsive 
responding in the face of conflict.

Follow-up planned contrasts were computed for ON and OFF 
sessions separately. We found main effects for valence (F1,13 = 5.67,  
P = 0.033) and accuracy (F1,13 = 14.07, P = 0.002) in affected individuals 
in ON DBS sessions; they responded faster when making suboptimal  

choices than when making optimal choices in both lose-lose  
(P = 0.009) and win-win (P = 0.012) cases (Fig. 1d). There was a main 
effect for valence (F1,13 = 17.89, P = 0.001), but not accuracy (F < 1) 
in affected individuals in OFF DBS sessions; there were no significant 
contrasts (P values > 0.12) between accuracy conditions in affected 
individuals in OFF DBS sessions. Thus, high-conflict suboptimal 
choices appeared to be driven by premature responding in affected 
individuals in ON, but not OFF, DBS sessions.

Study I: EEG and performance
Cues and responses elicited a robust increase in theta power and a sup-
pression of beta power (Fig. 2a), as seen previously in studies of conflict 
processing and reinforcement learning17–20. Filtering removed the DBS 
artifact from the EEG (Online Methods). Notably, there were no con-
dition-wide effects of DBS on mPFC theta power, enabling us to test 
trial-to-trial brain-behavior dynamics in the absence of DBS effects on 
mPFC itself. Thus, we sought to determine whether trial-to-trial vari-
ations in mPFC theta were predictive of conflict-related response time 
adjustment and whether this relationship was altered by STN-DBS.

Previous studies computed the single trial relationships between 
error-related EEG theta power and response time on the subsequent 
trial17–19. We computed the theta–response time relationship to 
responses directly following cues that indicated an easy (low conflict) 
or difficult (high conflict) decision. Within-condition estimates were 
computed as standardized regression weights (β), with a larger posi-
tive weight indicating a stronger positive correlation between theta 
power and response time. Note that these individual regression weight 
analyses are independent of any general influence of DBS on the EEG 
recording, which would be constant across trials.

Cue-related mPFC theta power predicted slower response times 
during high-conflict trials in healthy control participants and affected 
individuals in OFF, but not ON, DBS sessions (Fig. 2b). There was 
a significant DBS × conflict interaction in the cue-locked regression 
weights (F1,13 = 6.43, P = 0.025) with no main effects (Fig. 2c). Simple 
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Figure 1  Theoretical model, task and performance. (a) Proposed model of mPFC-STN gating of decision threshold. Action plans are gated in a cortico-
striatal loop (dashed line). In the presence of mPFC-detected conflict, the STN inhibits behavioral output by raising the threshold required for the 
striatum to gate action plans. This results in conflict-varying response times (solid lines). DBS to the STN interrupts this process, resulting in a 
disruption of the ability of mPFC to regulate control. RT, response time. (b) Task dynamics. During training, participants learned to choose one item 
in each pair (termed A/B and C/D) that was reinforced more often (A/B, 100%/0%; C/D, 75%/25%). In this example, the butterfly might be A and 
the piano might be B. During testing, participants had to choose the better stimulus, leading to high-conflict choices for win-win (A/C) and lose-lose 
(B/D) as well as low-conflict choices (A/D, C/B). For example, if the cake was C in training, this would reflect a high-conflict win-win cue. (c) Study I 
performance data (mean ± s.e.m.). (d) Study I conflict adaptation split by accuracy (mean ± s.e.m.). Suboptimal trials were relatively speeded compared 
with correct trials ON (but not OFF) DBS (**P < 0.01).
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contrasts revealed a difference between DBS 
conditions during high conflict (P = 0.006). 
There was no difference between high-conflict  
valence conditions (win-win versus lose-lose) 
or when the EEG data was time-locked to 
the response (Supplementary Figs. 1 and 2).  
To determine whether the brain-behavior  
patterns seen in OFF DBS sessions are natural 
features of human cognitive architecture and 
not specific to individuals with Parkinson’s 
disease, we explicitly compared the theta–response time relationships 
between healthy participants and affected individuals in ON and OFF 
DBS sessions (Supplementary Results and Supplementary Fig. 3). 
Notably, controls did not differ from affected individuals in OFF DBS 
sessions in their relationship between mPFC theta and response time 
adjustment (interaction, P = 0.91; high-conflict contrast, P = 0.52). In 
contrast, in ON DBS sessions, this relationship was significantly dif-
ferent from controls (interaction, F1,77 = 6.38, P = 0.014), with a signi
ficant contrast for high conflict (P = 0.013). In summary, cue-locked 
high-conflict mPFC theta power predicted an increase in response 
time; STN-DBS abolished this adaptive slowing and actually revealed 
an inverse mPFC–response time relationship. These patterns can be 
accounted for using a computational model of action selection.

Study I: drift diffusion modeling
Given these EEG and conflict effects on response times, we sought to 
determine whether the combined pattern of behavioral results could 
be accounted for by the hypothesized role of mPFC-STN interactions 
on conflict-related adjustments in decision threshold. To this end, 
we fit participants’ choices with the drift diffusion model (DDM)16, 
the most widely used mathematical model of two-alternative forced-
choice decision-making tasks. DDM can simultaneously account for 
the proportion of correct and error trials (or optimal and suboptimal 
trials here) and the full response time distributions for these trials 
in each task condition. In this framework, behavioral response time 
distributions are considered to be observations that arise as a func-
tion of underlying latent parameters of a decision-making model. 
Core parameters include the rate of evidence accumulation (drift 
rate), decision threshold and non-decision time (capturing stimulus 
encoding and motor execution). Our neural models suggest that, on 
stimulus presentation, the mPFC first generates candidate actions 
as a function of their prior probabilities of execution given the 
stimulus. When there is response conflict (reflected by similar levels 
of activation between alternative cortical responses), the mPFC-STN 
network increases the decision threshold, buying more time for the 
corticostriatal network to evaluate and compare their reward values. 

This leads to slower, more dispersed response time distributions and, 
critically, a relatively lower proportion of fast errors.

To test this hypothesis, we employed hierarchical Bayesian param-
eter estimation, which deduces the posterior probability density of the 
diffusion model parameters generating the observed data for the entire 
group of participants simultaneously, while allowing for individual dif-
ferences (see Online Methods). We estimated regression coefficients to 
determine the relationship between trial-to-trial variations in mPFC 
theta power and decision threshold in low- and high-conflict trials, 
and whether any such relationship interacted with DBS status.

For affected individuals in OFF DBS sessions, decision thresh-
old in high-conflict trials increased in proportion to the degree of 
mPFC theta in those trials (P = 0.01; Fig. 3a). This effect was not 
present in low-conflict trials (P = 0.11). Notably, this effect of theta 
on high-conflict decision threshold was reversed when DBS was 
turned ON (P = 0.045), yet again there was no effect on low-conflict 
trials (P = 0.23). This influence of DBS state on the correlation 
between mPFC theta-band power and decision threshold under 
high conflict was confirmed by a critical DBS × theta interaction 
under high conflict (P = 0.001), but not low conflict (P = 0.39). 
These effects of theta and DBS on decision threshold were found 
even after controlling for drift rate effects on trial type. Moreover, 
the data cannot be explained by assuming that frontal theta modu-
lates drift rate (which would also alter mean response times, but 
have different effects on their distributions and error rates), demon-
strating the specificity of mPFC theta and STN-DBS in altering the 
latent decision threshold parameter (see Supplementary Results 
and Supplementary Tables 1–3).

The relationship between mPFC theta and threshold preferentially 
applied to high-conflict relative to low-conflict decisions (theta × 
conflict interaction; Fig. 3b). A positive interaction indicated that the 
effect of mPFC on decision threshold was greater for high-conflict 
relative to low-conflict trials. This positive interaction was signifi-
cant in both the control group (P = 0.04) and in affected individuals 
in OFF DBS sessions (P = 0.02). Moreover, although control and 
affected individuals in OFF DBS sessions did not differ in the effects 
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Figure 2  DBS ON/OFF study: scalp EEG (FCz 
electrode) from the test phase split by high 
and low conflict. (a) Stimulus presentation and 
response commission were characterized by 
notable beta power suppression and theta power 
enhancement compared with baseline in both ON 
and OFF conditions, which were combined here. 
(b) Topoplots of the high-low conflict difference 
in standardized regression (β) weights for cue-
locked theta power and response time (±0.1 std β).  
The FCz site is indicated on the control topoplot. 
(c) Standardized regression (β) weights (mean ± 
s.e.m.) for cue-locked theta power and response 
time, demonstrating that DBS reversed a natural 
coupling of theta band power with response time 
slowing on high-conflict trials.
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of mPFC and conflict in modulation of decision threshold (P = 0.23), 
affected individuals in ON DBS sessions showed the opposite rela-
tionship, differing from both control individuals (P = 0.03) and OFF 
DBS sessions (P = 0.014).

Finally, we examined how the estimated change in decision thresh-
old translates into response time distributions (Fig. 3c). Higher 
theta/threshold was associated with more dispersed response time 
distributions and a lower probability of fast suboptimal choices. These 
Bayesian DDM parameter fits were corroborated by full DDM (non-
hierarchical) analysis using the fast-dm program21 (Supplementary 
Results and Supplementary Fig. 4).

Study II: intraoperative direct recording of the STN
With a nearly identical task, we tested individuals with Parkinson’s 
disease during DBS implantation. The subjects first performed the 
task 3–5 h before their surgical session, and 
again during surgery for DBS implantation 
when STN area activity was recorded. In the 
pre-surgical session, participants performed 
above chance on the training phase (t7 = 6.74, 
P = 0.001, mean = 68% accurate, s.d. = 8%), 
demonstrating that the task was well-learned 
before surgery. Participants performed less 
well during surgery (M = 58% accurate,  
s.d. = 21%; this was not significantly differ-
ent, paired samples t test, P = 0.12), likely as a 
result of the distraction and stress of the sur-
gical environment (Supplementary Fig. 5).

Intracranial EEG recordings revealed low-
frequency power enhancement and beta 
power suppression in the STN area (Fig. 4). 
High-conflict conditions were specifically 

characterized by a rapid diminishment in low-frequency power, fol-
lowed by greater cue-locked high-delta power (2.5 to 4 Hz) approxi-
mately 750 ms after stimulus presentation in the dorsal STN electrodes, 
as well as greater post-response power (3–5 Hz) across all electrodes. 
These findings provide evidence that decision conflict is reflected 
in local STN area activity during the same period as those observed 
in mPFC and, notably, with similar time courses as those observed  
in monkey single-unit recordings11. Similar effects were seen in both 
win-win and lose-lose conditions (Supplementary Fig. 6), and in a 
post-hoc analysis of a subgroup of the best performers (Supplementary 
Fig. 7). Together with the results of study I, these findings are consist-
ent with the suggestion that mPFC and STN communicate in low-
frequency bands to represent decision conflict and that STN-DBS 
interferes with the normal ability of the STN to react to decision con-
flict (that is, by modulating decision threshold).

Figure 3  DBS ON/OFF study: Bayesian posterior 
densities of decision thresholds estimated from 
the drift diffusion model (ordinates) and how they 
varied as a function of mPFC theta (abcissa). 
Peaks of the distributions reflect the most likely 
value of the parameter. Significance was assessed 
by at least 95% of the distribution being to the 
left or right of zero. (a) Simple effects of theta. 
OFF DBS, increased theta was associated with 
increased decision threshold for high-conflict 
trials, but not low-conflict trials. ON DBS, 
increased theta was associated with a decreased 
decision threshold on high-conflict trials, but 
not low-conflict trials. (b) Theta × conflict 
interaction. Increases in theta resulting from 
high > low conflict were associated with increases in threshold OFF DBS and in healthy controls. The opposite pattern was seen ON DBS. (c) These threshold 
effects are reflected by changes in response time distributions. These plots show the best fit response time distributions for optimal and suboptimal choices 
as a function of low and high mPFC theta/threshold in affected individuals in OFF DBS sessions. Higher theta power is associated with a reduction in the 
density of fast suboptimal choices and greater dispersion of optimal response time distributions, fitting with an account of increased threshold.
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DISCUSSION
Direct manipulation of and recording from the STN yielded electro-
physiological evidence for mPFC-STN interactions during conflict-
instantiated control. Cognitive systems involved in evaluating stimuli 
and adapting actions are known to be instantiated in cortico-striatal 
circuits, including mPFC and STN5,7,10,11,15,17,18,22,23. High-frequency 
STN-DBS has been proposed to compromise the dynamic function-
ing and self-regulation of this system, leading to impulsive or poorly 
planned behaviors5,15. Our results identify a potential mechanistic 
role of low-frequency band dynamics for instantiating conflict-
specific communication in this network.

In particular, we found that mPFC activity predicted an increase 
in the decision threshold during high-conflict trials and that STN-
DBS reversed this relationship: high mPFC theta was associated with 
a speeding of response times and reduction of decision threshold. 
This inverse relationship between conflict and response time result-
ing from STN-DBS has been previously described for high-conflict 
win-win trials in which multiple high-value responses result in impul-
sive responding5. Given the hypothesis that mPFC and STN interact 
to unidirectionally increase decision threshold6–9, this finding may 
seem surprising. However, an a priori computational explanation15 of 
the pattern of response time and accuracy findings that we observed 
suggests that, by disrupting the mPFC-STN route, DBS may reveal 
the influence of parallel cortico-striatal mechanisms for facilitating 
high-value actions and reducing decision thresholds23–25.

Simulations with the DDM have shown that, during reinforce-
ment-based decisions, thresholds are raised as a function of conflict 
in both neural models of basal ganglia and healthy human participants  
(R. Ratcliff and M. Frank, unpublished data). We found that this effect is 
related to increases in mPFC theta in both healthy control and affected 
individuals in OFF DBS sessions, and that DBS interferes with this rela-
tionship. The specificity of behavioral findings and replication across 
studies15 suggest that high-conflict suboptimal choices in affected 
individuals in ON DBS sessions are likely to result from premature 
responses. Our results extend these findings, demonstrating that this 
effect may be mediated by mPFC-STN interactions, as formalized in 
terms of decision threshold. Although field spread and antidromic stim-
ulation of the cortex are possible side effects of STN-DBS, the observa-
tion that reinforcement conflict is reflected in the STN area partially 
mitigates this potential interpretative issue. Monkey electrophysiological 
recording data also support this interpretation, in that mPFC and STN 
unit activity have been associated with behavioral inhibition during 
controlled responding with short latencies from mPFC to STN10,11.

Alternatively, it is possible that mPFC-STN interactions are medi-
ated indirectly, via mPFC effects on the inferior frontal gyrus (IFG), 
which then inhibits behavior via STN. Indeed, diffusion tensor imag-
ing studies suggest that both mPFC and IFG project directly to STN7. 
Combined transcranial magnetic stimulation and functional connec-
tivity studies imply that, although mPFC is necessary for behavioral 
inhibition, its effects are mediated via projections to IFG and then 
STN13. Other neuroimaging findings suggest that decision threshold 
is modulated by functional connectivity between mPFC and striatum, 
rather than by STN23,24. However, these data are not mutually exclu-
sive; although our results suggest that the STN is involved in dynami-
cally raising the threshold as a function of reinforcement and decision 
conflict, other studies have focused on the role of mPFC-striatal com-
munication in reducing decision threshold in a speed-over-accuracy 
tradeoff23,24. In fact, this type of cortico-striatal effect is posited to 
cause the win-win speeding observed in affected individuals in ON 
DBS sessions, which is otherwise counteracted by intact STN conflict 
processing15 (also see Supplementary Discussion).

Systems-level neural models of cortical-basal ganglia interactions 
suggest that both STN and striatum exert modulatory effects that 
would be reflected in a change in decision threshold, with different 
underlying mechanisms5,25. Some algorithmic models also posit that 
response conflict is computed in the STN, and in the simple case of 
two responses, cortical-basal ganglia circuitry precisely implements 
the diffusion decision process22. Although broadly consistent with the 
neural models mentioned above and our data, this formulation suggests 
a particular form of the function of conflict encoded by the STN, pro-
portional to the sum of the evidence across responses22. This function 
implies that STN activity would be greatest in win-win, lowest in lose-
lose and intermediate in our low-conflict win-lose condition. Instead, 
our intraoperative recording data suggest that conflict is processed as a 
function of similarity of the two response options (see Supplementary 
Fig. 6). Notably, this parallels an influential theory of the representation 
of conflict in mPFC3, especially in regard to EEG signals4.

Consistent with previous findings, mPFC theta power (4–8 Hz) 
enhancement was present during both low-conflict and high-conflict 
trials, but it was only during high-conflict situations that it was behav-
iorally relevant17–19. Activity in these low-frequency bands may reflect 
a neural substrate for cortico–basal ganglia communication during 
conflict-related behavioral adjustment. It is notable that decision con-
flict reflected in the STN area is in the same broad ~2.5–5-Hz range 
as is the frequency of Parkinson’s tremor and associated oscillations 
in the STN26,27. Models also exhibit slow STN oscillatory activity in 
the dopamine-depleted state5,28, which are exacerbated with increased 
cortical conflict5. Although speculative, this model predicts that 
higher amplitude tremor may be detectable when affected individuals 
are faced with increased decision conflict.

In summary, we found that STN-DBS dynamically altered the cou-
pling between low-frequency cortical signals and conflict-related 
behavioral adaptation. Bayesian parameter estimation using the drift 
diffusion model confirmed that this is a result of a disruption of an 
mPFC-STN network that raises decision threshold following the evalu-
ation of conflict. Alteration of this network facilitated conflict-induced 
speeding, suggesting an interactive cortico–basal ganglia mechanism 
by which STN-DBS induces impulsivity14. In addition, intraopera-
tive recordings demonstrated that the STN area is characterized by 
enhanced low-frequency activity during learned high conflict situ-
ations. We conclude that the STN is important for buying time for 
cortico-striatal systems to react and respond to conflict. Thus, future 
research on DBS protocols may benefit from an attempt to preserve this 
low frequency communication between mPFC and STN, to mitigate 
cognitive and impulsivity side effects associated with DBS14,15,29.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
Study I: OFF versus ON STN-DBS. Subjects were referred to the study by 
their healthcare provider based on an assessment of eligibility. Inclusion crite-
rion included a diagnosis of mild to moderate idiopathic Parkinson’s disease as 
assessed by their physician, being over 40 years old, being medically stable for  
3 months after DBS surgery and their referring neurologist determining that they 
could tolerate a period with the DBS unit turned off in a preliminary screening, 
absence of a significant medical history not related directly to Parkinson’s disease 
(for example, stroke, head injury, clinical dementia, epilepsy, life-threatening 
concurrent illness such as schizophrenia or manic depression, documented or 
suspected history of drug abuse and/or alcoholism), and the presence of at least 
two of the following three symptoms: resting tremor, rigidity and bradykinesia, 
All of the subjects gave informed consent and were compensated $25 for their 
participation. We tested 19 individuals with Parkinson’s disease in both the ON 
and OFF DBS conditions. The research ethics committee of the University of 
Arizona approved these experiments. Two individuals were unable to tolerate 
the DBS stimulator being turned off and were sent home before completing the 
experiment. Computer problems corrupted the data from another participant. 
Two participants failed to learn the task according to criterion described below. 
The final sample for EEG and behavioral data were taken from the remaining 14 
participants (Supplementary Table 4). Details of the control group participants 
can be found in the Supplementary Results.

The task consisted of a series of brief forced-choice training blocks with 16 
trials, each followed by a subsequent testing block with 16 trials (Fig. 1b). There 
were eight train/test blocks, with an optional additional two train/test blocks 
per set that were performed if the participants agreed. Participants performed 
these sets twice, once in the ON DBS and once in the OFF DBS condition, in a 
randomized counterbalanced order. There was always a 30-min break between 
the time that the stimulator was turned on or off and the beginning of each task. 
Stimulus pictures were not repeated between blocks during the experiment, and 
the association between any specific picture and training block / reward value 
was randomized between participants. Most participants completed the maxi-
mum ten blocks in each DBS condition (11 of 14 ON, 13 of 14 OFF); the others 
completed eight blocks.

Study I: EEG recording and processing. Scalp voltage was measured using 
62 Ag/AgCl electrodes referenced to a site immediately posterior to Cz using a 
Synamps2 system (bandpass filter 0.5–100 Hz, 1,000-Hz sampling rate). During 
pre-processing, data were low-pass filtered at 50 Hz and eyeblinks were removed 
using independent components analysis30. The 50-Hz low-pass temporal filter 
effectively removed the majority of the DBS artifact in the ON condition. Epochs 
were transformed to current source density31, which acts as a spatial filter by 
computing the second spatial derivative of voltage between nearby electrode sites. 
Data from the FCz electrode were used for display and analysis.

Time-frequency calculations were computed using custom-written Matlab 
(MathWorks) routines17–19. Time-frequency measures were computed by multi-
plying the fast Fourier transformed (FFT) power spectrum of single trial EEG data 
with the FFT power spectrum of a set of complex Morlet wavelets, and taking the 
inverse FFT. The wavelet family is defined as a set of Gaussian-windowed complex 
sine waves, e ei tf t− −2 22 2p s/( * ), where t is time, f is frequency (which increased 
from 2.5 to 50 Hz in 50 logarithmically spaced steps) and σ defines the width 
(or number of cycles) of each frequency band, set according to 4.5/(2πf). The 
end result of this process is identical to time-domain signal convolution. Power 
was defined as Z(t) (power time series: p(t) = real[z(t)]2 + imag[z(t)]2), and was 
normalized by conversion to a decibel scale (10 log10[power(t)/power(baseline)]), 
allowing a direct comparison of effects across frequency bands. Values for sta-
tistical analysis were summed (to get total area under the curve) over time and 
frequency (cue-locked, 350–550 ms, 4–8 Hz). For single-trial analyses, power was 
taken from the Hilbert transform of filtered (4–8 Hz) single-trial EEG. Epochs 
were baseline corrected for each frequency by the average power from –300 to 
–200 ms before the onset of the stimulus.

Study I: statistical analyses and DDM. Two participants were removed from 
all analyses for failing to learn any blocks during one of the ON or OFF ses-
sions, set according to a criterion of >50% accuracy in each of the AB and CD 
sets by the end of each block. Statistical tests for DBS differences in EEG theta 
power were performed on difference scores (high – low conflict) to highlight  

conflict-specific EEG events while controlling for global effects resulting 
from STN-DBS. Statistical tests of the single-trial relationship between cue-
locked theta power and immediate response time were calculated as individual  
regression weights.

Estimation of the underlying decision-making process was accomplished by 
DDM analysis16 of test phase choices (after learning). The DDM models two-choice 
decision making as a noisy process accumulating evidence over time. Although the 
noisy accumulation of evidence is most transparently applied in tasks involving 
noise in the stimulus, the same process describes noise in neural processing for 
static stimuli, and in value-based decision making accounts for dynamic shifts 
in attention from one option to the other32. This process approaches one of two 
boundaries with a certain speed (drift-rate, influenced by the amount of evidence 
conveyed by the stimuli). When one of the two boundaries is crossed, the associ-
ated response is executed. The distance between the two boundaries is called the 
decision threshold; larger thresholds lead to slower, but more accurate, respond-
ing, as the influence of noise in the accumulation of evidence is reduced, whereas 
smaller thresholds lead to faster, more impulsive responding with increased error 
probability. Inter-trial variability in drift and non-decision time were estimated as 
well (see Supplementary Results); simulations without these variability param-
eters provided a worse fit to the data, but led to similar results).

Hierarchical Bayesian parameter estimation using Markov-chain Monte-Carlo 
was used to estimate posterior distributions of the DDM parameters33,34. This 
Bayesian form of analysis allows simultaneous estimation of model parameters for 
the whole group, which constrains estimation of parameters for each individual 
participant. There were 30,000 samples generated from the posteriors; the first 
10,000 (burn-in) and every second (thinning) were discarded. Proper chain con-
vergence was tested by comparing between-chain and inter-chain variance35.

On the basis of prior theoretical work36, DBS and theta power were pre-
dicted to have an effect on decision threshold while also allowing for differ-
ent levels of difficulty to influence drift rate (evidence accumulation). Thus, 
although all parameters including threshold were estimated from the DDM 
likelihood functions translating response time distributions and error rates 
to the underlying generative parameters, we also estimated the effects of 
other observable variables on this threshold in the same hierarchical frame-
work, threshold DBS DBSDBS status interaction status= + × + × + × ×a e e eq q q , 
with a reflecting the intercept, DBSstatus reflecting ON or OFF, and θ reflecting 
the single trial–estimated theta-band activity (the same EEG data used in the 
individual regression weights in Fig. 2c). The coefficients eDBS, eθ and einteraction  
provide weights to test the effect of DBS on decision threshold (for average  
θ power), the effect of θ on decision threshold, and the interaction of  
θ and DBS on decision threshold. The theta and interaction terms were esti-
mated separately for low-conflict and high-conflict trials. To ensure these effects 
were independent of trial-type effects on drift rate, we estimated drift rates  
separately. To further test the specificity of the findings, we constructed  
alternative models in which drift rate rather than threshold varied as a function 
of θ and DBS; these models provided a worse fit to the data and did not yield 
significant associations.

Bayesian hypothesis testing was performed by analyzing the probability mass 
of the parameter region in question (estimated by the number of samples drawn 
from the posterior that fall in this region; for example, percentage of posterior 
samples smaller than zero). This leads to a direct probability measure denoted 
P that can be interpreted in a similar way, but is not equivalent, to P values as 
estimated by frequentist methods. Additional analysis using the Bayes factor and 
deviance information criterion can be found in the Supplementary Results.

Study II: intraoperative recording of the STN. Eight participants with Parkinson’s 
disease consented to participate. The research ethics committee of the University 
of Arizona approved the study and all participants gave informed consent. One 
participant reported here performed both the intraoperative procedure and the 
ON/OFF study. Participant demographics are shown in Supplementary Table 5.

The task was very similar to the task used for Study I except that there were 
always four train/test blocks, stimuli consisted of simple colored shapes, and 
there were a total of 34 low-conflict and 68 high-conflict (34 win-win and 34 
lose-lose) test trials for each task. Participants first performed the task in their 
hospital waiting room 3–5 h before the surgery to become familiarized with the 
instructions and response demands. Performance data from these two sessions 
(pre-surgery, surgery) are shown in Supplementary Figure 5.
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Study II: intracranial EEG recording and processing. Intracranial EEG was 
recorded from a Medtronic 3387 stimulating electrode in the left STN using a 
Synamps2 system (bandpass filter 0.05–500 Hz, 2,000-Hz sampling rate) refer-
enced to a mastoid site and grounded on the collarbone. Electrode placement 
was determined by the surgical staff based on pre-operative stereotaxic planning, 
the firing pattern from the microelectrode recordings, and immediate clinical 
effectiveness of stimulation. The surgical team sought to place the quadripolar 
electrode so that the distal (ventral) contact corresponded to the ventral boundary 
of the STN as determined by microelctrode recordings. The Medtronic electrode 
included four contacts, which were bipolar referenced resulting in three separate 
recordings of STN area activity. These recordings are referred to by their proximal 
location to each other: ventral, middle and dorsal, although their exact location 
in regard to subnuclei of the STN is unknown.

Time-frequency calculations were identical to those used in study I. 
Permutation tests were performed on the voltage difference between high- and 
low-conflict conditions using custom-written Matlab routines. This process tests 
the null hypothesis that the data in the high and low conflict conditions are inter-
changeable. First, paired sample t tests were computed at each time-frequency 
point (pixel) of the empirical data. These tests were then re-done 5,000 times with 
data randomly shuffled between high and low conflict conditions within each 
participant. Each permutation used conditions with the same number of epochs 
(by randomly selecting from the pool of the larger set) in order to control for 
unequal weightings of evidence. Multiple comparison correction was done using 

weighted cluster-based thresholding, sometimes known as exceedence mass37. 
The sum of the t values in each cluster of significant voxels in the empirical data 
was thresholded to be larger than 97.5% of permuted significant clusters (sepa-
rately for positive and negative t value clusters), providing a two-tailed 5% level 
of family-wise error control of multiple comparisons. This method provides a 
data-driven hypothesis test that identifies where conditions differ over time-
frequency space.

30.	Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-
trial EEG dynamics including independent component analysis. J. Neurosci. 
Methods 134, 9–21 (2004).

31.	Kayser, J. & Tenke, C.E. Principal components analysis of Laplacian waveforms as 
a generic method for identifying ERP generator patterns. I. Evaluation with auditory 
oddball tasks. Clin. Neurophysiol. 117, 348–368 (2006).

32.	Krajbich, I., Armel, C. & Rangel, A. Visual fixations and the computation and 
comparison of value in simple choice. Nat. Neurosci. 13, 1292–1298 (2010).

33.	Lee, M.D., Fuss, I. & Navarro, D.J. in Advances in Neural Information Processing 
Systems (eds. B. Scholkopf, J. Platt & T. Hoffman) 809–815 (MIT Press, Cambridge, 
Massachusetts, 2007).

34.	Vandekerckhove, J., Tuerlinckx, F. & Lee, M.D. Hierarchical diffusion models for 
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300–326 (2006).
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