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Review

Conventional stereotactic surgery, such as pallidotomy and 
thalamotomy that make small lesions in the globus pallidus 
and thalamus, went through a renaissance as treatment for 
Parkinson’s disease in early 1990s (Laitinen and others 
1992). Around the same time, deep brain stimulation 
(DBS) that applies high-frequency electrical stimulation 
through chronically implanted electrodes into a specific 
target in the subcortical structures was put into practical 
use (Benabid and others 1991, 1994). DBS was soon found 
to be an effective and safe alternative to lesion therapy, 
because it was reversible and adjustable. DBS has now 
been widely accepted as an effective surgical treatment for 
movement disorders. DBS targeting the ventral intermedi-
ate nucleus of the thalamus dramatically reduces essential 
and resting tremor (Benabid and others 1991, 1996). DBS 
targeting the subthalamic nucleus (STN) and the internal 
segment of the globus pallidus (GPi) has been largely used 
for treatment of advanced Parkinson’s disease and dyski-
nesia, a major side effect of l-DOPA treatment (Deep-
Brain Stimulation for Parkinson’s Disease Study Group 
2001; Kringelbach and others 2007; Limousin and others 
1995; Vitek 2008; Wichmann and Delong 2006). GPi-DBS 
has marked effects on the improvement of dystonic symp-
toms (Ostrem and Starr 2008). DBS is also applied for 
treatment of pain, epilepsy, and neuropsychiatric disorders, 
such as obsessive compulsive disorders, Tourett’s syn-
drome and depression (Wichmann and Delong 2006).

However, despite clinical benefits of DBS, the exact 
mechanism underlying its effectiveness has remained to 

be clarified and there are still several controversies about 
its action mechanism: Does DBS inhibit or excite local 
neuronal elements? (Deniau and others 2010; Kringelbach 
and others 2007; Perlmutter and Mink 2006; Vitek 2008; 
Wichmann and Delong 2006). Since DBS brings about 
similar beneficial effects to those of lesion therapy, it was 
initially believed to inhibit local neuronal elements 
(“inhibition hypothesis”). Actually, STN-DBS and GPi-
DBS inhibited firings of neighboring neurons. On the 
other hand, it is not surprising that DBS excites local neu-
ronal elements just as single stimulation does (“excitation 
hypothesis”). STN-DBS and GPi-DBS excited their 
efferents and provided effects on the GPi and thalamus, 
respectively.

In this short review, first, we will summarize current 
concepts regarding the pathophysiology of Parkinson’s 
disease and other movement disorders, because DBS is 
considered to normalize, or at least change, the patho-
physiological states of movement disorders. Second, we 
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will critically review “inhibition hypothesis” and “excita-
tion hypothesis” as the mechanism of DBS. Finally, we 
would like to introduce our recent work on the physiolog-
ical mechanism of DBS and propose an alternative expla-
nation: DBS dissociates input and output signals, resulting 
in the disruption of abnormal information flow through 
the stimulation site (“disruption hypothesis”) (Chiken 
and Nambu 2013).

Pathophysiology of Parkinson’s 
Disease

Parkinson’s disease is a neurodegenerative disorder char-
acterized by the progressive loss of nigrostriatal dopami-
nergic neurons originating from the substantia nigra pars 
compacta. The loss of dopaminergic neurons induces 
severe motor and non-motor dysfunctions, such as akine-
sia, tremor, rigidity, postural instability, cognitive impair-
ments and depression. Three models have been proposed 
to explain the pathophysiology of Parkinson’s disease.

Firing Rate Model

Dopamine provides tonic excitatory inputs to striatal 
direct pathway neurons projecting to the GPi and tonic 
inhibitory inputs to striatal indirect pathway neurons pro-
jecting to the external segment of the globus pallidus 
(GPe), and dopamine depletion reduces these tonic excit-
atory and inhibitory inputs (Albin and others 1989; 
DeLong 1990; Gerfen and others 1990; Mallet and others 
2006). Both of these changes are thought to increase mean 
firing rates of GPi and substantia nigra pars reticulata 
(SNr) neurons by reduced inhibitory inputs through the 
striato-GPi/SNr direct pathway and increased excitatory 
inputs through the striato-GPe-STN-GPi/SNr indirect 
pathway. Such increased mean firing rates in the output 
nuclei of the basal ganglia seem to induce decreased activ-
ity in thalamic and cortical neurons, resulting in akinesia 
(“firing rate model”). These firing rate changes of the 
basal ganglia, that is, increased mean firing rates in the 
GPi and STN and decreased mean firing rates in the GPe, 
were confirmed in 1-methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine (MPTP)–induced parkinsonian monkeys 
(Bergman and others 1994; Boraud and others 1996, 1998; 
Filion and Tremblay 1991; Heimer and others 2002; 
Miller and DeLong 1987; Soares and others 2004; 
Wichmann and others 2002). Moreover, lesioning of the 
STN or GPi, whose activity was increased, had beneficial 
effects on Parkinson’s disease (Baron and others 2000, 
2002; Bergman and others 1990), supporting this “firing 
rate model.” This model seems to be applicable to hyper-
kinetic disorders, such as dystonia and hemiballism that 
exhibit involuntary movements, as well. It was reported 
that firing rates in the GPe and GPi were decreased in 

human patients of dystonia (Starr and others 2005; Tang 
and others 2007; Vitek and others 1999; Zhuang and oth-
ers 2004) and an animal model of dystonia (Chiken and 
others 2008). The development of the involuntary move-
ments can be explained as the result of reductions in inhib-
itory inputs to the thalamus from the GPi.

Firing Pattern Model

Dopamine depletion enhances connections between the 
GPe and STN, and promotes oscillatory activity in the 
basal ganglia. Oscillatory and/or synchronized firings of 
the basal ganglia disable individual neurons to process 
and relay motor-related information, resulting in the fail-
ure of appropriate movements (“firing pattern model”) 
(Bergman and others 1998). Abnormal firing patterns, 
such as bursts and oscillations, were recorded in the GPe, 
GPi and STN of parkinsonian monkeys (Bergman and 
others 1994; Heimer and others 2002, 2006; Raz and oth-
ers 2000; Tachibana and others 2011; Wichmann and 
Soares 2006) and parkinsonian patients (Levy and others 
2000). Oscillatory local filed potentials (LFPs), espe-
cially those in the beta frequency band, were also 
observed in parkinsonian patients using DBS electrodes 
(Brown 2003; Brown and others 2001; Brown and 
Williams 2005; Gatev and others 2006; Hammond and 
others 2007).

Dynamic Activity Model

In the normal state, signals through the cortico-STN-GPi/
SNr hyperdirect, cortico-striato-GPi/SNr direct, and cor-
tico-striato-GPe-STN-GPi/SNr indirect pathways cause 
dynamic activity changes in the GPi (see Fig. 3C) and 
release only a selected motor program at a selected timing 
with a clear boundary between the selected and other 
unnecessary competing motor programs (Nambu 2008; 
Nambu and others 2015). In Parkinson’s disease, dopa-
mine depletion reduces movement-related GPi inhibition 
through the direct pathway and facilitates movement-
related GPi excitation through the hyperdirect and indi-
rect pathways (Boraud and others 2000; Degos and others 
2005; Kita and Kita 2011; Leblois and others 2006). 
These changes shorten and narrow movement-related 
GPi inhibition, which leads to the reduction of disinhibi-
tion in the thalamus and cortex, resulting in akinesia 
(“dynamic activity model”). In hyperkinetic disorders, 
movement-related inhibition in the GPi through the direct 
pathway is enhanced, and GPi excitation through the 
hyperdirect and indirect pathways is reduced. These 
dynamic changes induce excessive, uncontrolled disinhi-
bition in the thalamus and cortex, leading to involuntary 
movements (Chiken and others 2008; Nambu and others 
2011; Nishibayashi and others 2011).
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“Inhibition Hypothesis”: DBS Inhibits 
Local Neuronal Elements

Both DBS and lesion therapy have similar beneficial 
effects on the alleviation of symptoms. STN-DBS 
(Benazzouz and others 1993; Benabid and others 1994; 
Limousin and others 1995) showed similar effects on par-
kinsonian motor signs to STN-lesion (Aziz and others 
1991; Bergman and others 1990; Levy and others 2001) 
or STN-blockade (Luo and others 2002). Thus, DBS was 
initially believed to inhibit local neuronal elements 
(“inhibition hypothesis”). Actually, the most common 
effects of STN-DBS and GPi-DBS are the reduction of 
the firing rates of neighboring neurons. Suppression of 
neuronal activity was recorded around the stimulating 
sites of STN-DBS in parkinsonian patients (Filali and 
others 2004; Welter and others 2004), parkinsonian mon-
keys (Meissner and others 2005; Moran and others 2011) 
and parkinsonian rats (Shi and others 2006; Tai and oth-
ers 2003). However, a limited number of STN neurons 
showed complete cessation of firings, and other STN 
neurons exhibited residual neuronal activity during STN-
DBS (Meissner and others 2005; Tai and others 2003; 
Welter and others 2004). Inhibitory effects of GPi-DBS 
on firings of neighboring neurons were also reported in 
parkinsonian patients (Dostrovsky and others 2000; 
Lafreniere-Roula and others 2010; Wu and others 2001), 
parkinsonian monkeys (Boraud and others 1996) and 

normal monkeys (Fig. 1A) (Chiken and Nambu 2013). 
GPi-DBS induced complete inhibition of local neuronal 
firings more commonly than STN-DBS.

The “inhibition hypothesis” fits well with the “firing 
rate model” and “firing pattern model” of movement dis-
orders. DBS reduces abnormally increased firings or 
abnormal firing patterns in the STN and GPi and amelio-
rates parkinsonian motor symptoms. However, it seems 
to be difficult to explain why GPi-DBS can treat dystonic 
symptoms, in which the GPi shows low activity.

Several possible mechanisms can account for the inhibi-
tory responses during DBS: (1) depolarization block, (2) 
inactivation of voltage-gated currents (Beurrier and others 
2001; Do and Bean 2003; Shin and others 2007), and (3) 
activation of inhibitory afferents (Boraud and others 1996; 
Chiken and Nambu 2013; Deniau and others 2010; 
Dostrovsky and others 2000; Dostrovsky and Lozano 2002; 
Johnson and McIntyre 2008; Liu and others 2008; Meissner 
and others 2005). Our recent study (Chiken and Nambu 
2013) confirmed that inhibitory responses induced by GPi-
DBS were mediated by GABA receptors (Fig. 1B). The GPi 
receives inhibitory GABAergic inputs from the striatum 
and GPe (Shink and Smith 1995; Smith and others 1994), 
and these inhibitory GABAergic afferents are considered to 
be activated by GPi-DBS. The GPi also receives excitatory 
glutamatergic inputs from the STN, and these afferents 
should also be activated. However, GABAergic terminals 
are predominant (Shink and Smith 1995), and thus, 
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Figure 1.  Deep brain stimulation (DBS) inhibits local neuronal firings. (A) Responses of an internal pallidal (GPi) neuron to 
local repetitive high-frequency stimulation (GPi-DBS; 30 µA, 100 Hz, 10 pulses; arrows) in a normal monkey. Raw traces of spike 
discharges after removing the stimulus artifacts (1) and raster and peristimulus time histograms (PSTHs; 100 trials; binwidth, 1 
ms) (2) are shown. Spontaneous discharge of the GPi neuron was completely inhibited by GPi-DBS. (B) Effect of local injection 
of gabazine (GABAA receptor antagonist) in the vicinity of the recorded GPi neuron. The inhibition induced by GPi-DBS (1) was 
abolished after gabazine injection (2). Modified from Chiken and Nambu (2013).
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Figure 2.  Directly evoked spikes of internal pallidal (GPi) neurons are inhibited during GPi–deep brain stimulation (DBS). (A) 
Raw traces showing directly evoked spikes (arrowheads) of a GPi neuron by GPi-DBS (40 µA, 100 Hz, 10 pulses; arrows with 
dotted lines) in a normal monkey. Traces with long (top) and short (bottom) time scales are shown. GPi-DBS failed to evoke 
spikes (from 6th to 10th stimuli). (B) Effects of local gabazine injection on the inhibition of directly evoked GPi responses. 
Gabazine injection decreased the failure rate, and each stimulus successfully evoked spikes (5th, 9th, and 10th stimuli). Modified 
from Chiken and Nambu (2013).

GABAergic inhibition probably overwhelms glutamatergic 
excitation. GPi-stimulation induced directly-evoked spikes, 
which are characterized by a short and constant latency 
(Fig. 2A). GPi-DBS also suppressed such directly evoked 
spikes by strong GABAergic inhibition (Fig. 2B). In con-
trast to the GPi, GPe-DBS induced complex responses 
composed of excitation and inhibition in neighboring GPe 
neurons (Chiken and Nambu 2013). Since GABAergic ter-
minals on GPe neurons are less dense than those on GPi 
neurons (Shink and Smith, 1995), glutamatergic excitation 
can be observed in the GPe. Similarly, STN-DBS generated 
both excitatory and inhibitory postsynaptic potentials in 
STN neurons through activation of both glutamatergic and 
GABAergic afferents (Lee and others 2004). Thus, DBS 

activates afferent axons in the stimulated nucleus, and the 
net effects vary depending on the composition of the inhibi-
tory and excitatory axon terminals.

“Excitation Hypothesis”: DBS 
Excites Local Neuronal Elements

It is not surprising that DBS excites local neuronal ele-
ments just as single stimulation does (“excitation hypoth-
esis”). Directly evoked spikes were induced by GPi-DBS 
in GPi neurons (Johnson and McIntyre 2008; McCairn 
and Turner 2009). GPi-DBS reduced firings in thalamic 
neurons of parkinsonian monkeys (Anderson and others 
2003) and dystonia patients (Pralong and others 2003; 
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Montgomery 2006) through the inhibitory GPi-thalamic 
projections. STN-DBS increased firings in GPi neurons 
of parkinsonian monkeys (Hashimoto and others 2003) 
and GPi/GPe neurons (Reese and others 2011) and SNr 
neurons (Galati and others 2006) of parkinsonian patients 
through the excitatory STN-GPi/SNr/GPe projections. A 
modeling study has suggested that subthreshold DBS 
suppresses intrinsic firings in the cell bodies, while supra-
threshold DBS induces spikes at the stimulus frequency 
in the axons without corresponding firings in the cell bod-
ies (McIntyre and others 2004). Thus, although stimula-
tion may fail to activate the cell bodies due to strong 
GABAergic inhibition, it can still excite the efferent 
axons and provide spikes to the target nucleus at the stim-
ulus frequency. Other studies showed that GPi-DBS 

induced multiphasic responses consisting of excitation 
and inhibition in the GPi of parkinsonian monkeys (Bar-
Gad and others 2004; Erez and others 2009; McCairn and 
Turner 2009) and dystonia hamsters (Leblois and others 
2010). It was recently reported that GPe-DBS changed 
firing patterns in STN, GPi and thalamic neurons of par-
kinsonian monkeys and improved motor signs, suggest-
ing the GPe as a potential target for DBS (Vitek and 
others 2012).

Deep brain stimulation also excites afferent axons anti-
dromically. STN-DBS activated GPi neurons antidromi-
cally in parkinsonian monkeys (Moran and others 2011), 
probably by current spread to the lenticular fasciculus, a 
part of GPi-thalamic fibers (Miocinovic and others 2006). 
GPi-DBS activated thalamic neurons antidromically in 

Figure 3.  Deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) disrupts information flow through 
the GPi. (A, B) Effects of local GPi-DBS on cortically evoked responses of a GPi neuron in a normal monkey. PSTHs in response 
to a single-pulse stimulation of the primary motor cortex (Cx) (arrowhead with dotted line) without (A) and with GPi-DBS 
(arrows) (B) are shown. In (B), cortical stimulation was applied 50 ms after the initiation of GPi-DBS. The cortically evoked 
responses were entirely inhibited during GPi-DBS. (C) Schematic diagram showing the cortico-basal ganglia pathways and 
stimulating (Stim and DBS) and recording (Rec) sites. Cortically evoked early excitation, inhibition and late excitation in (A) are 
mediated by the hyperdirect, direct, and indirect pathways, respectively. Cx, cerebral cortex; GPe, external segment of the globus 
pallidus; STN, subthalamic nucleus. Red and blue triangles represent glutamatergic excitatory and GABAergic inhibitory terminals, 
respectively. Modified from Chiken and Nambu (2013).
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dystonia patients, probably by activation of thalamic 
axons passing in the vicinity of GPi-DBS electrodes 
(Montgomery 2006). STN-DBS with low intensity 
induced GABAergic inhibition in the SNr through anti-
dromic activation of GPe neurons projecting to both the 
STN and SNr, while STN-DBS with higher intensity 
induced glutamatergic excitation in the SNr through the 
STN-SNr projections (Deniau and others 2010; Maurice 
and others 2003). STN-DBS activated neurons in the 
motor cortex antidromically (Degos and others 2013; Q. 
Li and others 2012, S. Li and others 2007). Recent devel-
opment of optogenetic study showed that selective stimu-
lation of cortico-STN afferent axons without activation of 
STN efferent axons ameliorated the symptoms of parkin-
sonian mice (Gradinaru and others 2009).

The “excitation hypothesis” fits well with the “firing 
pattern model” of movement disorders, but not with the 
“firing rate model”. Excitation and/or excitation-inhibi-
tion reach the target nucleus along efferent pathways, or 
antidromic activation reaches the original region along 
afferent pathways. These activity changes may alter the 
firing rates and patterns, and normalize or suppress 
abnormal firings of target nucleus (Anderson and others 
2003; Degos and others 2013; Deniau and others 2010; 
Hammond and others 2007; Hashimoto and others 2003; 
Johnson and McIntyre 2008; Q. Li and others 2012; S. Li 
and others 2007; Vitek 2008). However, the precise 
mechanism how DBS normalizes firing patterns remains 
to be elucidated.

“Disruption Hypothesis”: DBS 
Disrupts Abnormal Information Flow

We recently examined the effects of GPi-DBS on the 
responses of GPi neurons evoked by motor cortical stim-
ulation in normal monkeys (Fig. 3) (Chiken and Nambu 
2013). Cortical stimulation induces a triphasic response 
composed of early excitation, inhibition and late excita-
tion in the GPi (Fig. 3A), which are mediated by the 
hyperdirect, direct, and indirect pathways, respectively 
(Nambu and others 2000, 2002) (Fig. 3C). GPi-DBS 
completely inhibited both cortically evoked responses 
and spontaneous discharges by strong GABAergic inhibi-
tion (Fig. 3B), suggesting that it blocks information flow 
through the GPi (“disruption hypothesis”) (Fig. 4). STN-
DBS may similarly block transmission of signals through 
the STN: Maurice and others (2003) examined the effects 
of STN-DBS on cortically evoked responses in SNr neu-
rons of normal rats. Cortically evoked early and late exci-
tation was abolished or largely reduced during STN-DBS, 
whereas cortically evoked inhibition was preserved, sug-
gesting that information flow through the hyperdirect and 
indirect pathways was blocked by STN-DBS without 
interrupting the direct pathway.

The “disruption hypothesis” fits well with the “firing rate 
model,” “firing pattern model,” and “dynamic activity 
model.” Since abnormally increased firings, abnormal firing 
patterns, or abnormal dynamic activity changes in the basal 
ganglia are transmitted to the thalamus and motor cortex, 
and finally induce motor symptoms, disrupting such abnor-
mal information flow through the GPi and STN can sup-
press the expression of motor symptoms. The GPi is an 
output nucleus of the basal ganglia, and thus GPi-DBS dis-
rupts all information outflow from the basal ganglia. On the 
other hand, the GPe-STN reciprocal connections produce 
abnormal firing patterns in Parkinson’s disease (“firing pat-
tern model”), and interruption of information flow through 
the STN reduces them. In addition, the hyperactivity along 
the hyperdirect and indirect pathways are suggested in 
Parkinson’s disease (“firing rate model” and “dynamic 
activity model”), and interruption of information flow 
through the STN blocks such hyperactivity. The “disruption 
hypothesis” can explain the long-standing paradox as well: 
DBS produces similar therapeutic effects to lesion therapy 
because both DBS and lesions interrupt abnormal informa-
tion flow. Another paradox is that GPi-DBS has therapeutic 
effects to both Parkinson’s disease and dystonia. Parkinsonian 
symptoms are induced by increased firing rates (“firing rate 
model”), abnormal firing patterns (“firing pattern model”) 
or reduced movement-related inhibition (“dynamic activity 
model”) in the GPi. In the case of dystonia, signals through 
the hyperdirect, direct, and indirect pathways may induce a 
sequence of bursts and pauses in the GPi, and subsequent 
inhibition and rebound bursts in the thalamus and cortex, 

Figure 4.  “Disruption hypothesis” explaining the mechanism 
underlying the effectiveness of deep brain stimulation (DBS). 
DBS activates axon terminals in the stimulated nucleus, 
induces extensive release of neurotransmitters, such as GABA 
and glutamate (Glu), and dissociates inputs and outputs in 
the stimulated nucleus. Thus, DBS results in disruption of 
the abnormal information flow through the cortico-basal 
ganglia loop in the pathological conditions. GABAA, GABAA 
receptors.
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leading to the manifestation of involuntary movements 
(“dynamic activity model”). GPi-DBS blocks abnormal 
information flow responsible for motor symptoms in both 
diseases. Other research groups have also proposed similar 
ideas of functional disconnection of the stimulated elements 
(Anderson and others 2006; Deniau and others 2010; Moran 
and others 2011).

Concluding Remarks

Deep brain stimulation has a variety of effects on neu-
rons in the stimulated nucleus of the cortico-basal gan-
glia loop through orthodromic activation of efferent 
axons, antidromic and orthodrimic activation of afferent 
axons. The total effects may vary depending on the com-
position of neuronal elements in the stimulated nucleus. 
Here, we have suggested a common key mechanism of 
DBS: DBS dissociates input and output signals in the 
stimulated nucleus and disrupts abnormal information 
flow through the cortico-basal ganglia loop in the patho-
logical conditions (“disruption hypothesis”) (Fig. 4). 
Understanding the exact mechanism of DBS will lead us 
to better therapeutic options, toward improvements and 
upgrading of DBS.
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