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This article develops the Synchronous Matching Adaptive Resonance Theory (SMART)
neural model to explain how the brain may coordinate multiple levels of thalamocortical
and corticocortical processing to rapidly learn, and stably remember, important information
about a changing world. The model clarifies how bottom-up and top-down processes work
together to realize this goal, notably how processes of learning, expectation, attention,
resonance, and synchrony are coordinated. The model hereby clarifies, for the first time,
how the following levels of brain organization coexist to realize cognitive processing
properties that regulate fast learning and stable memory of brain representations: single-
cell properties, such as spiking dynamics, spike-timing-dependent plasticity (STDP), and
acetylcholine modulation; detailed laminar thalamic and cortical circuit designs and their
interactions; aggregate cell recordings, such as current source densities and local field
potentials; and single-cell and large-scale inter-areal oscillations in the gamma and beta
frequency domains. In particular, the model predicts how laminar circuits of multiple
cortical areas interact with primary and higher-order specific thalamic nuclei and
nonspecific thalamic nuclei to carry out attentive visual learning and information
processing. The model simulates how synchronization of neuronal spiking occurs within
and across brain regions, and triggers STDP. Matches between bottom-up adaptively filtered
input patterns and learned top-down expectations cause gamma oscillations that support
attention, resonance, learning, and consciousness. Mismatches inhibit learning while
causing beta oscillations during reset and hypothesis testing operations that are initiated in
the deeper cortical layers. The generality of learned recognition codes is controlled by a
vigilance process mediated by acetylcholine.
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1. Introduction

1.1. The link between learning, expectation, attention,
resonance, and synchrony

This article proposes how the brain coordinates multiple
levels of thalamocortical and corticocortical processing to
rapidly learn, and stably remember, important information
about the world. The Synchronous Matching Adaptive Reso-
nance Theory (SMART) model that is presented here shows
how bottom-up and top-down pathways work together to
accomplish this goal by coordinating processes of learning,
expectation, attention, resonance, and synchrony. In particu-
lar, SMART explains how attentive learning requirements
are realized by detailed brain circuits, notably the layered
organization of cells in neocortical circuits and how they
interact with first-order (e.g., the lateral geniculate nucleus,
LGN) and higher-order (e.g., the pulvinar nucleus, PULV;
Sherman and Guillery, 2001; Shipp, 2003), and nonspecific
thalamic nuclei (van Der Werf et al., 2002).

Corticothalamocortical pathways work in parallel with
corticocortical routes (Maunsell and Van Essen, 1983; Salin
and Bullier, 1995; Sherman and Guillery, 2002). Specific first-
order thalamic nuclei relay sensory information to the
cerebral cortex, whereas specific second-order thalamic nuclei
receive their main input from layer 5 of lower-order cortical
areas and relay this information to higher-order cortical areas
(Sherman and Guillery, 2002, Fig. 1a).
Fig. 1 – (a) A cortical area A receives thalamocortical inputs from
the gray zone). Layer 6 neurons from cortical area A sendmodulat
and to nearby thalamic sectors, as well as a modulatory projecti
loop (area B), where driving connections (giant endings) originating
connections can activate the thalmocortical pathway to layer
supplements the direct corticocortical pathway (double-headed
of each thalamocortical loop. [Modified and reprinted with perm
of the diffuse and specific subcortical inputs that terminate i
geniculate nuclei of macaque monkeys, and the layer-specific
to the cerebral cortex. Cortical areas are indicated by schemati
reprinted with permission from Jones (2002)].
The SMARTmodel clarifies how amatch at the specific first-
order and higher-order thalamic nuclei may induce fast
learning and stable memory of neural representations in the
thalamocortical system (cf., Gove et al., 1995; Grossberg, 1980,
2003). Such a match may occur, for example, at LGN cells in
response to bottom-up driving retinal inputs and top-down
modulatory expectations from layer 6 of cortical area V1
(Sillito et al., 1994). At a higher level of brain organization, a
match may occur at pulvinar cells in response to driving
bottom-up inputs from layer 5 of V1 (Rockland et al., 1999) and
top-down modulatory cortical inputs from layer 6 of V2. The
model proposes how this bottom-up/top-down matching
process can allow bottom-up and top-down feedback loops
to cause a persistent resonant state which supports spike
synchronization in the gamma frequency range (20–70 Hz).
Such an oscillation frequency is fast enough to support spike-
timing-dependent plasticity (STDP; Levy and Steward, 1983;
Markram et al., 1997; Bi and Poo, 2001), since STDP is maximal
when pre-synaptic and post-synaptic cells fire within 10–
20ms of each other (Traub et al., 1998;Wespatat et al., 2004). In
contrast, during a mismatch, slower beta frequency (4–20 Hz)
oscillations are caused. STDP is disabled at this lower
frequency. The model hereby proposes how thalamocortical
matching, resonant feedback, synchronous oscillations, and
STDP learning may be coordinated, notably how match-
sensitive differences in oscillation frequency can enable or
disable learning.

The matching process is carried out by a top-down,
modulatory on-center, off-surround circuit (Grossberg and
the corresponding thalamic sector (thalamocortical neuron in
ory feedback projections (small endings) to the corresponding
on to the thalamic nucleus of a higher-order thalamocortical
in layer 5 neurons of cortical area A are found. These driving

IV in area B. This corticothalamocortical indirect pathway
arrow) from A to B. Dashed lines correspond to the border
ission from Rouiller and Welker (2000)]. (b) Schematic views
n the matrix and core compartments of the dorsal lateral
and diffuse or focused projections of these compartments
c vertical sections with the layers indicated. [Modified and



Fig. 2 – (a) LGN core cells in the specific pathway activate
layer 4. LGN core cells also send axons to layer 6I cells, and
thereby also activate layer 4 via a 6I→4modulatory on-center,
off-surround network that implements divisive contrast
normalization of LGN inputs in layer 4. Layer 4 cells, in turn,
activate cells in layer 2/3. In parallel, LGN matrix cell
activation in the nonspecific pathway primes layer 5 cortical
cells via excitatory connections to cortical layer 1, where
layer 5 apical dendrites terminate. Layer 5 cells fire only
when both matrix cells and layer 2/3 cells fire. Matrix cells
hereby enable layer 5 cells to fire in response to layer 2/3
inputs, thereby closing closes the intracortical 4→2/
3→5→6I→4 resonant loop while activating driving inputs
from layer 5 to the PULV. (b) Top-down feedback from V1
layer 6II has a dual effect on LGN core cells: excitation via
adaptive synapses (hemi-disks at ends of axonal pathways)
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Stone, 1986; Carpenter and Grossberg, 1987, 1991; Grossberg,
1995, 1999a) which selects a critical feature pattern of attended
features, while inhibiting unattended features. This process
clarifies how attention carries out a form of “biased competi-
tion” (Desimone and Duncan, 1995; Desimone, 1998). The
attended feature patterns are the ones that can be rapidly
learned in the adaptive weights of bottom-up adaptive filters
and top-down expectations. In the case of a partial mismatch,
there may simultaneously be cells at which matching and
learning occurs, as well as other cells at which mismatch,
inhibition, and suppression of learning occurs. Thus, in
describing match vs. mismatch states, one needs to under-
stand that there may be cells at which bottom-up and top-
down signals mismatch, even though there is a good enough
partial match for a synchronous resonant state to persist long
enough for STDP to occur at the matched features.

If a mismatch between bottom-up and top-down signal
patterns is large enough, it prevents such a synchronous
resonant state from developing. Within the model, resonance
is prevented when mismatch causes a rapid reset of ongoing
information processing, and triggers a memory search, or
hypothesis testing, foruncommittedcells, or analready familiar
recognition category that can better match bottom-up data. In
particular, suchamemory searchcanenable either a totallynew
recognition category to be learned, or a learned refinement of
the critical features that can activate an already familiar
recognition category. Thus, the model proposes that there are
cycles of resonance and reset, with resonance supporting
learning, and reset driving hypothesis testing that leads away
from poorly matched states to better ones.
START clarifies how such a memory search may be
controlled by an interaction between specific thalamic nuclei,
nonspecific thalamic nuclei, and the cerebral cortex. The
SMART model (Figs. 2 and 3) predicts how a big enough
mismatch at a specific thalamic nucleus can generate a
novelty-sensitive burst of activation at a nonspecific thalamic
nucleus. Nonspecific thalamic nuclei, such as the midline and
intralaminar nuclei (van Der Werf et al., 2002), as well as
“matrix” cells in the specific thalamic nuclei (Jones, 2002),
derive their name from the fact that they receive diffuse
innervations from the sensory periphery and the reticular
and broad inhibition via the thalamic reticular nucleus (TRN)
pathway. (c) Layer 2/3 cell outputs feed back to layer 5 cells,
which can fire if matrix cells also input to the layer 1 apical
dendrites of layer 5 cells. Layer 5 cell firing can, in turn,
activate layer 6I cells that activate layer 4 cells. Matrix cells
hereby enable layer 5 cells to close the intracortical 4→2/
3→5→6I→4 resonant loop, even while they activate driving
inputs from layer 5 to the PULV. (d) During bottom-up
processing, bottom-up inputs send convergent excitatory
signals to the nonspecific thalamus. In parallel, LGN core
cells send specific inputs to layers 4 and 6I of the cortex, as
well as to TRN cells. The TRN cells, in turn, send convergent
inhibition to the nonspecific thalamus. During bottom-up
processing, the total excitatory and inhibitory signals are
balanced, so that the nonspecific thalamus is not activated by
the bottom-up input. (e) During top-down matching, layer 6II

cells excite TRN cells which, in turn, send inhibitory signals
via a broad off-surround to LGN core cells. This inhibition
helps to prevent cells that receive only bottom-up or
top-down signals from firing, but not cells that receive both.
Only LGN cells that receive matching bottom-up input and
top-down cortical feedback cross the spiking threshold and
propagate their activity to V1, while also (see (d)) exciting the
TRN and inhibiting the nonspecific thalamus. (f) If a
bottom-up/top-down mismatch is too great, then the
decrease of LGN excitation reduces TRN inhibition to the
nonspecific thalamus. The firing rate of the nonspecific
thalamus hereby increases, which propagates via the apical
dendrites of layer 5 cortical cells to cause a reset of active
coding cells in layer 4 (see text).



Fig. 3 – (a) Layer 5 of V1 provides a driving bottom-up input to the pulvinar (PULV), which is matched against top-down signals
from layer 6II of V2. This circuit is homologous to the bottom-up driving input from the retina to the LGN, which is matched
against top-down signals from layer 6II of V1 (see Fig. 2). Layer 5 of V1 also excites PULVmatrix cells, which provide nonspecific
priming input to layer 5 cells in V2. (b) Layer 6II of V2 also provides top-down corticocortical feedback to layer 4 of V1 via
layer 1 apical dendrites of layer 5 cells that project to layer 6I and then to 4 via a modulatory on-center, off-surround circuit. (c)
The entire SMARTmodel circuit includes thalamic nuclei and laminar cortical circuits. The thalamus is subdivided into specific
first-order and second-order nuclei, nonspecific nucleus, and thalamic reticular nucleus (TRN). The first-order thalamic
matrix cells (1 cell population at each specific thalamic nucleus, shown as an open ring) provide nonspecific excitatory priming
to layer 1 in response to bottom-up input, priming layer 5 cells and allowing them to respond to layer 2/3 input. This allows
layer 5 to close the intracortical loop and activate the PULV. V1 layer 4 receives inputs from two parallel bottom-up
thalamocortical pathways: a direct LGN→4 excitatory input, and a 6I→4 modulatory on-center, off-surround network that
contrast-normalizes the pattern of layer 4 activation via the recurrent 4→2/3→5→6I→4 loop. V1 activates the bottom-up V1→V2
corticocortical pathways from V1 layer 2/3 to V2 layers 6I and 4, as well as the bottom-up corticothalamocortical pathway from
V1 layer 5 to the PULV, which projects to V2 layers 6I and 4. In V2, as in V1, the layer 6I→4 pathway provides divisive contrast
normalization to V2 layer 4 cells. Corticocortical feedback from V2 layer 6II reaches V1 layer 1, where it activates apical
dendrites of layer 5 cells. Layer 5 cells, in turn, activate the modulatory 6I→4 pathway in V1, which projects a V1 top-down
expectation to the LGN. TRN cells of the two thalamic sectors are linked via gap junctions, which synchronize activation across
the two thalamocortical sectors when processing bottom-up stimuli. The nonspecific thalamic nucleus receives convergent
bottom-up excitatory input from specific thalamic nuclei and inhibition from the TRN, and projects to layer 1 of the laminar
cortical circuit, where it regulates mismatch-activated reset and hypothesis testing in the cortical circuit (see text).
Corticocortical feedback connections from layer 6II of the higher cortical area terminate in layer 1 of the lower cortical area,
whereas corticothalamic feedback from layer 6II terminates in its specific thalamus and on the TRN. This corticothalamic
feedback is matched against bottom-up input in the specific thalamus.
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Fig. 4 – Search for a recognition code within an ART learning
circuit: (a) The input pattern I is instated across the feature
detectors at processing stage F1 as a short term memory
(STM) activity pattern X. Input I also nonspecifically activates
the orienting system with a gain that is called vigilance (ρ);
that is, all the input pathways converge with gain ρ onto the
orienting system and try to activate it. STM pattern X is
represented by the hatched pattern across F1. Pattern X both
inhibits the orienting system and generates the output
pattern S. Pattern S ismultiplied by learned adaptiveweights,
also called long-termmemory (LTM) traces. These LTM-gated
signals are added at F2 cells to form the input pattern T, which
activates the STM pattern Y across the recognition categories
coded at level F2. (b) Pattern Y generates the top-down output
pattern U which is multiplied by top-down LTM traces and
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formation, and project diffusely to the superficial layers of the
cerebral cortex (Fig. 1b).

In particular, the nonspecific thalamic nuclei are predicted
to generate reset signals in the form of novelty-sensitive
bursts of activation during mismatch episodes. Such a burst
is broadcast nonspecifically to the superficial layers of the
cerebral cortex, notably layer 1. The nonspecific burst is
sensed by dendrites in layer 1 of cortical layer 5 cells. The
model explains how the burst leads to a reset event by
propagating from layer 1 dendrites via their layer 5 cells to
layer 6 and then on to layer 4, shutting down previously active
cells there, and thereby enabling a different pattern of
activation to take hold in layer 4. This reset event causes a
slower beta oscillation frequency in the model. Thus the reset
event prevents learning of poorly matched bottom-up and
top-down information, both by inhibiting the active learned
categorical representations whose top-down expectations led
to the mismatch, and also by creating a slower oscillation
frequency to which STDP is insensitive. The details of how this
works will be described below.

As noted above, the SMART model predicts that the reset
event is expressed in the deeper layers of cerebral cortex,
such as layers 4 to 6, and may thereby initiate slower beta
oscillations in these layers. The more superficial cortical
layers (e.g., layers 2/3) may, in contrast, express faster
gamma oscillations. The model supports its proposal about
how match-sensitive differences in oscillation frequency can
enable or disable learning by quantitatively simulating data
about single-cell biophysics, pharmacology, and neurophy-
siology; laminar neuroanatomy; aggregate cell recordings,
such as current source densities and local field potentials;
large-scale oscillations at beta and gamma frequencies; and
functionally links them all to requirements about how to
achieve fast attentive learning and stable memory. It is also
suggested below how to directly test this prediction.

Many authors have examined synchronous oscillations
within and across brain regions as one way in which be-
haviorally significant brain states are organized (Engel et al.,
2001). Aggregate and single-cell recordings from multiple
thalamic and cortical levels of mammals have shown high-
frequency and low-frequency rhythmic synchronous activity
correlated with cognitive, perceptual and behavioral tasks. In
addition, large-scale neuronal population models have been
proposed tomodel oscillatory dynamics (Bazhenov et al., 1998;
Lumer et al., 1997; Destexhe et al., 1999; Siegel et al., 2000).
However, these models do not link brain spikes, oscillations,
added at F1 cells to form a prototype pattern V that encodes
the learned expectation of the active F2 nodes. Such a
prototype represents the set of commonly shared features in
all the input patterns capable of activating Y. If Vmismatches
I at F1, then a new STM activity pattern X* is selected at F1. X*
is represented by the hatched pattern. It consists of the
features of I that are confirmed byV. Mismatched features are
inhibited. The inactivated cells corresponding to
unconfirmed features of X are unhatched. The reduction in
total STMactivitywhich occurswhenX is transformed intoX*
causes a decrease in the total inhibition from F1 to the
orienting system. (c) If inhibition decreases sufficiently, the
orienting system releases a nonspecific arousal wave to F2;
that is, a wave of activation that equally activates all F2 cells.
This wave instantiates the intuition that “novel events are
arousing”. This arousalwave resets theSTMpatternY at F2 by
inhibiting Y. (d) After Y is inhibited, its top-down prototype
signal is eliminated, and X can be reinstated at F1. The prior
reset event maintains inhibition of Y during the search cycle.
As a result,X can activate a different STMpatternY at F2. If the
top-down prototype due to this new Y pattern also
mismatches I at F1, then the search for an appropriate F2
category continues until a better-matching one is selected.
Such a search cycle represents a type of non-stationary
hypothesis testing. When search ends, an attentive
resonance develops and learning of the attended data is
initiated. [Adapted with permission from Carpenter and
Grossberg (1993).]
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and self-stabilizing STDP with the brain states that subserve
attentive cognitive information processing.

1.2. ART, LAMINART and SMART

The SMART model fills this gap. It clarifies data about how
bottom-up processing and learned tuning of adaptive filters is
modulated by top-down attentive learned expectations that
embody predictions or hypotheses that focus attention on
expected bottom-up stimuli (Salin and Bullier, 1995; Engel
et al., 2001; Gao and Suga, 1998; Krupa et al., 1999; Desimone,
1998; Ahissar and Hochstein, 2002; Herrmann et al., 2004).
These data support predictions of Adaptive Resonance
Theory, or ART (Grossberg, 1980, 2003; Carpenter and Gross-
berg, 1987, 1991, 1993; Carpenter et al., 1991) that top-down
expectations regulate predictive coding and matching and
thereby help to focus attention, synchronize and gain-
modulate attended feature representations, and trigger fast
learning that is dynamically buffered against catastrophic
forgetting. The goal of achieving fast stable learning without
catastrophic forgetting is often summarized as the stability–
plasticity dilemma (Grossberg, 1980). The stability–plasticity
dilemma must be solved by every brain system that needs to
rapidly, yet stably, learn about the flood of signals that
subserves even the most ordinary experiences. If the brain's
design is parsimonious, then we should expect to find similar
principles operating in all the brain systems that can stably
learn an accumulating knowledge base in response to chan-
ging conditions throughout life.

ART has predicted that some fundamental properties of
human and animal perception and cognition are part of the
brain's solution of the stability–plasticity dilemma. In parti-
cular, humans are intentional beings who learn expectations
about the world and make predictions about what is about to
happen. Humans are also attentional beings who focus proces-
sing resources upon a restricted amount of incoming informa-
tion at any time. Why are we both intentional and attentional
beings, and are these two types of processes related? The
stability–plasticity dilemma and its solution using resonant
states provides a unifying framework for understanding these
issues.

In particular, ART predicted that there is an intimate
connection between the mechanisms that enable us to learn
quickly and stably about a changing world, and the mechan-
isms that enable us to learn expectations about such a world,
test hypotheses about it, and focus attention upon informa-
tion that we find interesting. ART also proposes that, in order
to solve the stability–plasticity dilemma, only resonant states
can drive rapid new learning, which gave the theory its name.
Table 1 – ART operations and their new implementation in the SMART circuitry

ART operations SMART implementation

Arousal Intralaminar/midline nonspecific thalamic nuclei projections to layer 5 apical dendrites in layer 1
Reset and search Layer 5 → 6I → 4 and layer 6I → 4 habituative synapses respond to arousal increases with graded reset of

previously active cells
Vigilance regulation Intralaminar/midline nonspecific thalamic nuclei → Nucleus basalis of Meynert → Layer 5
Resonance/learning enabled Gamma (γ) oscillations
Reset/learning disabled Beta (β) oscillations
Fig. 4 illustrates these ART ideas in a simple two-level example
whose anatomical, physiological, and pharmacological sub-
strates are clarified by SMART. Here, a bottom-up input
pattern, or vector, I activates a pattern X of activity across
the feature detectors of the first processing stage F1. For
example, a visual scene may be represented by the features
comprising its boundary and surface representations (Cao and
Grossberg, 2005; Grossberg, 1994; Grossberg and Yazdan-
bakhsh, 2005). This feature pattern represents the relative
importance of different features in the inputs pattern I. In
Fig. 4a, the pattern peaks represent more active feature de-
tector cells, the troughs less activated feature detectors. This
feature pattern sends signals S through an adaptive filter to
the second level F2 at which a compressed representation Y
(also called a recognition category, or a symbol) is activated in
response to the distributed input T. Input T is computed by
multiplying the signal vector S by amatrix of adaptive weights
that can be altered through learning. The representation Y is
compressed by competitive interactions across F2 that allow
only a small subset of its most strongly activated cells to
remain active in response to T. The pattern Y in the figure
indicates that a small number of category cells may be
activated to different degrees. These category cells, in turn,
send top-down signals U to F1 (Fig. 4b). The vector U is
converted into the top-down expectation V by being multi-
plied by another matrix of adaptive weights. When V is
received by F1, a matching process takes place between the
input vector I and Vwhich selects that subset X⁎ of F1 features
that were “expected” by the active F2 category Y. The set of
these selected features is the emerging “attentional focus”.

If the top-down expectation is close enough to the bottom-
up input pattern, then the pattern X⁎ of attended features
reactivates the category Y which, in turn, reactivates X⁎. The
network hereby locks into a resonant state through a positive
feedback loop that dynamically links, or binds, the attended
features across X⁎ with their category, or symbol, Y. Figs. 4c
and d shows how such an ART circuit can search for a novel or
better marching recognition category if there is not a good
enough match.

This match-based learning process is the foundation of the
stability of learned memories, both bottom-up categories and
top-down expectations, in an ART model. Match-based
learning allows memories to change only when input from
the external world is close enough to internal expectations, or
when something completely new occurs. This feature makes
ART systems well suited to problems that require online
learning of large and evolving databases. For example, ART
systems have been applied in fields ranging from technologi-
cal solutions in industrial design and manufacturing, to the



Fig. 5 –The large shaded gray arrows in the figure indicate the SMART pathways involved in the generation of the (a) AROUSAL
burst, (b) RESET, (c) SEARCH, and (d), VIGILANCE control. See text for details.
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control of mobile robots, to remote sensing land cover
classification (see Carpenter et al., 2005 for a review).

Reconciling distributed and symbolic representations using
resonance. ART models also clarify fundamental issues con-
cerning symbol grounding, in addition to intentional and
attentional aspects of primate cognition. The individual
features at F1 have no meaning on their own, just like the
pixels in a picture are meaningless one-by-one. The bottom-
up category, or symbol, in F2 is sensitive to the global
patterning of these features, but it cannot represent the
“contents” of the experience, including their conscious qualia,
due to the very fact that a category is a compressed, or
“symbolic” representation. The bottom-up/top-down reso-
nance between these two types of information converts the
pattern of attended features into a coherent context-sensitive
state that is linked to its category through feedback. It is this
coherent state, that joins together distributed features and
symbolic categories, that can enter consciousness. ART
predicts that all conscious states are resonant states. In particular,
such a resonance binds spatially distributed features into
either a synchronous equilibrium or oscillation, until it is
dynamically reset. Such synchronous states were predicted in
the 1970′s in the articles which introduced ART (see Grossberg,
1999b, 2003 for data reviews). The SMART model simulates
finer properties of synchronous oscillations and their reset in
the form of gamma and beta oscillations.

Recent ART models, called LAMINART, began to show how
ART predictions may be embodied in laminar cortical circuits
(Grossberg, 1999a, 2003; Raizada and Grossberg, 2003). These
LAMINART models unify properties of visual development,
learning, perceptual grouping, attention, and 3D vision. They
did not, however, incorporate spiking dynamics, higher-order
specific thalamic nuclei and nonspecific thalamic nuclei,
control mechanisms for regulating resonance vs. reset, or
pharmacological modulation of learning. The SMART model
goes beyond ART and LAMINART models by showing how



Table 2 – Major simulated anatomical pathways

Model connections Type Functional interpretation References

First-order thalamic relay
cells → Layer 4 cells V1

D Primary thalamic relay cells drive layer 4. Blasdel and Lund (1983)

First-order thalamic relay
cells → Layer 6I cells V1

D Primary thalamic relay cells prime layer 4 via the
6 → 4 modulatory circuit.

Blasdel and Lund (1983) for LGN → 6; LGN
input to 6 is weak (Callaway, 1998,
page 56); Layer 5 projects to 6 [Note 1]

First-order thalamic relay
cells → TRN

D Recurrent inhibition to primary and secondary
thalamic relay cells.

Sherman and Guillery (2001); Jones (2002)

TRN → First-order thalamic
relay cells

I Off-surround to primary and secondary thalamic
relay cells, synchronization of thalamic relay cells.

Pinault and Deschenes (1998); Sherman
and Guillery (2001)

TRN → TRN I Normalization of inhibition. Jones (2002); Sohal and Huguenard (2003)
TRN → TRN GJ Synchronize TRN and thalamic relay cells. Landisman et al. (2002)
TRN → Nonspecific thalamic cells I Inhibition of nonspecific thalamic cells, participates

in the reset mechanism.
Kolmac and Mitrofanis (1997); van der
Werf et al. (2002)

Nonspecific thalamic cells → Layer
5 cells V1

M To 5 through apical dendrites in 1, participates in
the reset mechanism.

van der Werf et al. (2002)

Layer 4 cells V1 → Layer 4
inhibitory interneurons V1

D Lateral inhibition in layer 4. Markram et al. (2004)

Layer 4 inhibitory interneurons
V1 → Layer 4 cells V1

I Lateral inhibition in layer 4. Markram et al. (2004)

Layer 4 inhibitory cells V1 → Layer
4 inhibitory interneurons V1

I Normalization of inhibition in layer 4. Ahmed et al. (1997), Markram et al. (2004)

Layer 4 cells V1 → Layer 2/3 cells V1 D Feedforward driving output from 4 to 2/3. Fitzpatrick at al. (1985); Callaway and
Wiser (1996)

Layer 2/3 cells V1 → Layer 2/3
cells V1

D Recurrent connections (grouping) in 2/3. Bosking et al. (1997); Schmidt et al. (1997);
Raizada and Grossberg (2003)

Layer 2/3 cells V1 → Layer
2/3 inhibitory interneurons V1

D Avoid outward spreading (bipole) in 2/3. McGuire et al. (1991); Raizada and
Grossberg (2003)

Layer 2/3 inhibitory cells V1 → Layer
2/3 inhibitory interneurons V1

I Normalization of inhibition. Tamas et al. (1998); Raizada and
Grossberg (2003)

Layer 2/3 cells V1 → Layer 4 cells V2 D Feedforward output from cortical Area A to
cortical Area B.

Van Essen et al. (1986)

Layer 2/3 cells V1 → Layer 6II

cells V2
D Feedforward output from cortical Area A to

cortical Area B.
Van Essen et al. (1986)

Layer 2/3 cells V1 → Layer 5 cells V1 D Conveys layer 2/3 output to layer 5. Callaway and Wiser (1996)
Layer 2/3 cells V1 → Layer 6II

cells V1
D Conveys layer 2/3 output to layer 6II. Callaway (1998)

Layer 5 cells V1 → Pulvinar D Feedforward connections from cortical Area A to
cortical Area B through secondary thalamic
relay neurons.

Sherman and Guillery (2001).

Layer 5 cells V1 → Layer 6I cells V1 D Delivers corticocortical feedback to the 6I → 4
circuit from higher cortical areas, sensed at the
apical dendrites of 5 branching in 1.

Callaway (1998); Callaway and Wiser
(1996, “class B” cells) [Note 2]

Layer 6I cells V1 → Layer 4 cells V1 M On-center to 4. Mediated by habituative synapses. Stratford et al. (1996); Callaway (1998);
Raizada and Grossberg (2003)

Layer 6I cells V1 → Layer 4
inhibitory interneurons V1

D Off-surround to 4. McGuire et al. (1984); Ahmed et al. (1997);
Callaway (1998);

Layer 6II cells V1 → First-order
thalamic relay cells

M On-center to primary thalamic relay cells. Sillito et al. (1994); Callaway (1998);

Layer 6II cells V1 → TRN D Off-surround to primary thalamic relay cells
mediated by thalamic TRN.

Guillery and Harting (2003); Sherman
and Guillery (2001)

Layer 6II cells V2 → Layer 5 cells
V1 → Layer 6II cells V1→ Layer 4
cells V1

M Intercortical feedback from 6II Area B to 1 area A,
where it synapses on layer 5 cells apical dendrites
branching in 1, resulting in subliminar priming of
layer 4 cells via 5 → 6I→ 4 on-center/off-surround
circuit.

Rockland and Virga (1989); Salin and
Bullier (1995)

Abbreviations: TRN=thalamic reticularnucleus;D=drivingconnections;M=modulatory connections; I=inhibitory connections;GJ=gap junctions. [Note
1]:Callaway (1998) subdivides cortical layer6neurons in3classes:Class I:project to4C, also receive input fromLGN,andproject toLGN;Class IIa:dendrites
in layer 6, receive projections from2/3, project back to 2/3withmodulatory connections;Class IIb: dendrites in 5, project exclusively to deep layers (5 and
6) and claustrum. In the model, these populations are clustered in 2 classes, layer 6I and 6II, which provide feedback to thalamic relay cells and
layer 4, respectively. [Note 2]: Callaway (1998) subdivides Layer 5 neurons in 3 classes: Class A: dendrites in 5, axons from 2/3, project back to 2/3
with modulatory connections; Class B: dendrites in 5, axons from 2/3, project laterally to 5 and the pulvinar; Class C: dendrites in 1, project to SC.
In the model, layer 5 neurons receive input from 2/3 (Classes A and B), as well modulatory input from nonspecific thalamic nucleus (Class C,
apical dendrites in layer 1), and provides output to 6I and second-order thalamic nuclei.
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these properties naturally coexist in the LAMINART framework.
In particular, SMART explains and simulates how laminar
cortical circuits may interact with specific primary and higher-
order thalamic nuclei and nonspecific thalamic nuclei to
controlmatch vs.mismatch processes that regulate recognition
learning and dynamically buffer learned memories against
catastrophic forgetting; how spiking dynamics are incorporated
into synchronous oscillations whose oscillation frequencies
can provide an additional degree of freedom for controlling
cognitively-mediated operations such as matching and fast
learning; and how acetylcholine-based processes may embody
predicted properties of vigilance control that regulate the
generality of learned recognition categories in a way that is
sensitive to changing environmental statistics, using only
locally computed signals in the network. Table 1 illustrates
the new ART operations implemented in the SMART circuitry.
Fig. 5 depicts anatomical pathways that are predicted to
subserve the arousal, reset, search, and vigilance operations.

What is vigilance and why is it needed? It is not enough to
just regulate the stability of learned memories in a changing
world. Survival requires that a human or animal learn to
correctly discriminate, recognize, and predict important
objects and events. An effective learner must be sensitive
to changing environmental statistics and feedback that
determine how specific or general learned knowledge must
be to control and predict the external environment. How
does the brain determine how specific (concrete) or general
(abstract) a learned recognition category should be in a
given situation? If matches trigger learning, then a flexible,
situationally-sensitive, criterion of matching is needed to
control specific vs. general learning. Such a criterion has been
called vigilance (Carpenter and Grossberg, 1987, 1991), corre-
sponding to the intuition that higher vigilance enables finer
discriminations to be made. In all ART models, including
SMART, high vigilance triggers reset and search for a new
category when even small mismatches occur, thereby lead-
ing to concrete learning. Low vigilance allows even coarse
matches to trigger resonance, and to thereby learn abstract
categories that respond to many input variations. What is
new in SMART is the prediction that neuromodulation by
acetylcholine (ACh) may regulate the level of vigilance
through time.

1.3. Specific and nonspecific interactions control attention,
learning, reset, and memory search

The remainder of this section specifies in greater detail how
SMART model circuits work. SMART clarifies how retinal
inputs activate the thalamus, and from there, the cortex,
through two separate pathways, a specific pathway targeting
middle cortical layers (LGN core cells to layers 4 and 6I cells, a
subdivision of layer 6, see Table 2), and a nonspecific pathway
targeting superficial layers (LGN matrix cells and nonspecific
thalamic nucleus to layer 1 of V1). These two pathways are
treated separately due to the different functional roles that
were outlined in the previous section.

1.3.1. The specific pathway
The SMART specific pathway includes both specific first-order
and second-order thalamic nuclei projecting to the middle
layers of the cerebral cortex (Jones, 2002). Specific thalamic
nuclei are often divided into first-order relays, such as the
LGN, which receive inputs from the sensory periphery, and
second-order relays, which receive their main inputs from the
cerebral cortex (Sherman and Guillery, 2002). Although the
largest part of the thalamus consists of second-order relays,
themost widely studied structures are the first-order thalamic
nuclei. As a consequence, thalamic nuclei are usually seen as
relay stations of information from the sensory periphery to
the cerebral cortex. This picture is misleading. For instance in
the LGN, a first-order relay nucleus, the retina contributes only
5–10% of the total afferents (Sherman and Guillery, 2001). The
pulvinar (PULV), one of the largest second-order thalamic
nuclei, receives only minimal afferents from the sensory
periphery. Most of its inputs originate from the cerebral cortex
and the superior colliculus (SC). The LGN receives a massive
cortical projection from V1 cortical layer 6, and the PULV
receives afferents from layers 5 and 6 of several cortical areas
(Rockland, 1998; Wang et al., 2002; Shipp, 2003).

Driving vs. modulatory pathways: Round-large vs. round-small
terminals. In the primate, synaptic terminals in the thalamus
can be roughly subdivided into two classes (Rockland, 1996;
Sherman and Guillery, 2001): (a) round-large (RL) synapses,
such as retinogeniculate synapses. These synapses are be-
lieved to be driving; (b) round-small (RS) terminations, such as
the corticothalamic synapses from V1 layer 6 to the LGN.
These synapses are believed to be modulatory. Terminations
arising from layer 5 to a second-order thalamic nucleus are
similar to retinogeniculate RL synapses, or driving, connec-
tions, often found in more proximal segments of the den-
drites. This dual pattern of connectivity seems to be constant
across species (Rouiller and Welker, 2000). A functional cor-
relate of the distinction between RL and RS synapses is that,
whereas lesioning a cortical area that innervates the thalamus
through layer 6 alone does not change the receptive field
property of the thalamic cell, lesioning an area that innervates
the thalamus through layer 5 does abolish the receptive field of
the cell (in, for example, areas 17, 18 and 19; Sherman and
Guillery, 2002; Soares et al., 2004). In addition, the observed
receptive fields in the PULV resemble those of complex cells in
visual cortex (binocular and direction selective).

In the SMART specific pathway, LGN core cells are driven by
bottom-up sensory inputs and excite both layer 4 and layer 6I

(Fig. 2a). Layer 6I, in turn, contrast-normalizes layer 4 cell
activities in response to bottom-up input patterns (Grossberg,
1980; Heeger, 1992; Douglas et al., 1995) via a modulatory on-
center, driving off-surround network (Carpenter and Gross-
berg, 1987; Grossberg, 1980, 2003) whose off-surround is
mediated by layer 4 inhibitory interneurons (Grieve and Sillito,
1991). The direct pathway from LGN to layer 4 enables the
cortex to fire despite the modulatory nature of the on-center
from layer 6I to 4. The on-center off-surround of the
LGN→6I→4 pathway biases the emergence of orientation
sensitivity in layer 4 cells that spike after the arrival of the
LGN input within the STDP learning window (see Section 2.1).

Top-down matching, attention, and learning. Top-down feed-
back pathways coexist with bottom-up pathways in the brain.
SMART proposes that top-down feedback from layer 6II of V1
to the LGN controls attention and plasticity in both the
bottom-up adaptive filter pathways from LGN to V1 and in
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the top-down expectation pathways (Fig. 2b). As in previous
ART models, SMART corticothalamic feedback is realized by a
top-down, modulatory on-center, driving off-surround circuit
whose on-center helps to create an attentional focus that
selects, enhances, and synchronizes behaviorally relevant,
bottom-up sensory inputs (match), and whose off-surround
suppresses inputs that are irrelevant (mismatch).

The processing that goes on between LGN and V1 has
homologs in the processing by PULV and V2, and beyond.
Bottom-up driving inputs to higher-order specific thalamic
nuclei, such as the PULV, arise from layer 5 of V1, as indicated
in Fig. 3a (Salin and Bullier, 1995; Callaway, 1998). Top-down
feedback from layer 6II (see Table 2) of V2 to PULV can match
the bottom-up input pattern from V1 layer 5 in a manner
similar to how top-down feedback from layer 6II of V1matches
retinal input in the LGN (Figs. 3a and 2a, respectively).

Accumulating experimental evidence supports the ART
prediction (Carpenter and Grossberg, 1987; Grossberg 1980,
1999a, 2003) that that top-down attentional signals are
mediated by a modulatory on-center, off-surround network.
Both V2→V1 feedback (Bullier et al., 1988) and V1→LGN
feedback (Sillito et al., 1994) possess this structure. A similar
modulatory on-center, off-surround architecture has been
observed in feedback interactions from auditory cortex to the
medial geniculate nucleus (MGN) and the inferior colliculus
(IC) (Zhang et al., 2004; Gao and Suga, 1998). Consistent with
the ART prediction of the role of attention in controlling adult
plasticity, Gao and Suga (1998) found that acoustic stimuli
caused plastic changes in the IC of bats only when the IC
received top-down feedback from auditory cortex. Moreover,
plasticity is enhanced with behaviorally relevant auditory
stimuli, consistent with the ART proposal that top-down
feedback allows matched, and therefore attended, critical
feature patterns to be learned,while suppressingmismatched,
and thus unattended, features. Nicolelis and colleagues have
shown that cortical feedback also controls thalamic plasticity
in the somatosensory system (Krupa et al., 1999).

ART also predicted that matching synchronizes the firing
patterns of cells coding matched stimuli and thereby facil-
itates fast stable learning (cf., Engel et al., 2001; Fries et al.,
2001; Grossberg, 1976, 1980, 1999a; Pollen, 1999; Usrey, 2002).
SMART further develops that proposal to include spiking
neurons and the role of the higher-order specific and
nonspecific thalamic nuclei.

SMART clarifies how the thalamic reticular nucleus (TRN)
mediates the off-surround that helps to select thalamic cells
during the matching process (Fig. 2b). The TRN forms a shell
around the lateral and dorsal portions of the thalamus, lying in
the axonal path connecting the specific and nonspecific thala-
mus and the cortex (Guillery and Harting, 2003). Afferents to the
TRN are mainly branches of bottom-up axons from a specific
thalamus to its target cortex, or branchesof top-downaxons from
cortical layer 6 to its specific thalamic nucleus. Notably, the TRN
does not receive projections from layer 5. The TRN has a rather
uniform local structure. TRN cells are GABAergic, and are
reciprocally linked both by chemical inhibitory projections and
by electrical synapses (Landisman et al., 2002). Top-down
inhibitory feedback from the TRN to specific thalamic nuclei
helps to balance top-down cortical layer 6 excitatory signals at
their shared target cells (Figs. 2b and 3a), and thereby enables the
excitatory signals to have only amodulatory effect on these cells
(GuilleryandHarting, 2003)when theseare theonlyactive inputs.
In addition to projecting to first-order and higher-order specific
thalamicnuclei (Guillery andHarting, 2003), theTRNalsoprojects
to the nonspecific intralaminar and midline thalamic nuclei
(KolmacandMitrofanis, 1997); seeFigs. 2eand3c.TRNprojections
to the intralaminar andmidline nuclei aremore diffuse than the
reticular projection to the specific dorsal thalamic nuclei. The
TRN is known to influence a number of important brain
processes. In particular, it influences the sleep/wake cycle
(Steriade et al., 1993), the efficacy of thalamic inputs to the cortex
(Nicolelis andFanselow, 2002; Swadlowet al., 2002), andattention
(Sherman and Guillery, 2001). The current article focuses on the
latter two processes, which are clearly relevant to the sleep/wake
cycle, while suggesting an additional role for the TRN in
suppressing unmatched features in recognition and learning.

Both V1 layer 2/3 and PULV inputs are required to fully
activate the SMART V2 area. V1 layer 2/3 and PULV can drive
V2 layer 4, which in turns activates V2 layers 2/3, 5 and 6II,
whose axons project to the PULV, where V1 input from layer 5
is attentively matched against the layer 6II feedback (Figs. 3a
and c). Layer 5 of V1 excites thematrix cells (see below), whose
input is necessary for V2 layer 5 cells to close the intracortical
resonant loop in V2 that is capable of driving fast self-
stabilizing learning in V2; see Section 1.3.2.

V2 layer 6II can also influence attentive top-down cortico-
cortical feedback to layer 4 of V1 via layer 1 apical dendrites of
layer 5 cells that project to layer 6I and then to 4 via a
modulatory on-center, off-surround circuit (Fig. 3b). See
Section 2.2 for simulation results.

In summary, the SMART specific pathway is responsible for
attentively matching bottom-up and top-down information in
the specific thalamus, and creating attentive and synchronous
resonant states that can support fast stable learning of
bottom-up oriented filters and top-down oriented modulatory
expectations. When the specific pathway interacts with the
nonspecific pathway, it can also experience reset andmemory
search for better-matching filters and expectations, as the
following section clarifies.

1.3.2. The nonspecific pathway
The thalamic nonspecific pathway includes both the “matrix”
cells in the specific thalamic nuclei (Fig. 2a; Jones, 2002) and
the nonspecific thalamic nuclei (Figs. 2d–f). Both pathways
project to the superficial layers of the cerebral cortex. The term
nonspecific, as opposed to specific, thalamic nuclei (both first-
order and second-order nuclei), refers to the midline thalamic
and the intralaminar nuclei. The term nonspecific derives from
three characteristics of these nuclei, namely: (1) their diffuse
innervation from pontine, medullary and mesencephalic
reticular formation; (2) the signature of their stimulation in
the cortical mantle (somnolence for low-frequency stimula-
tion, arousal for high-frequency); and (3) the anatomical
observation that they project to cerebral cortex in a fairly
uniform fashion (van Der Werf et al., 2002). Most of the
nonspecific thalamic nuclei are characterized by a high degree
of convergent cortical input, widespread projections to large
portions of neocortical layer 1, inhibition from the thalamic
reticular nucleus (TRN), and strong neuromodulatory input
from several brainstem centers (van Der Werf et al., 2002).
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Neuropsychological and neurological evidence has demon-
strated the importance of the intralaminar and midline nuclei
for cortical functioning (Llinas and Pare, 1991; Llinas et al.,
2002). Midline lesions of the thalamus affect general cognition,
resulting in lethargy or coma (Facon et al., 1958) or unilateral
hemineglect (Heilman et al., 1993), despite the fact that the
specific sensory stimuli are relayed to the cortex.

Core vs. matrix cells. Recent studies have shed additional
light on the dichotomy between specific and nonspecific
thalamic nuclei, showing how the distinction between pat-
terns of cortical termination (superficial vs. deep layers) not
only characterizes cells between nuclei, but also cells within
specific thalamic nuclei. Cytological studies on thalamocor-
tical relay cells in monkeys conducted with the use of
immunoreactivity for the calcium binding proteins parvalbu-
min and calbindin have shown a “core” of parvalbumin-rich
cells projecting to the middle layers of their cortical targets,
surrounded by a “matrix” of calbindin-rich cells projecting to
the superficial layers (Jones, 2002). This matrix extends to all
specific thalamic nuclei irrespective of nuclear borders, and
differs from the core also by the nature of its input.

Core cells receive subcortical afferents that are highly
ordered topographically, and a similarly ordered pattern is
maintained at the site of cortical terminations of core cell
axons at layer 4 (Jones 2002). Matrix cells receive subcortical
Fig. 6 – (a) STDP curves obtained by varying the time interval bet
ms for five gating functions: grey (no gating), blue (dual OR gating
(dual AND gating),modified fromGorchetchnikov et al. (2005b). Fo
Gorchetchnikov et al. (2005a). (b) Presentation of a horizontal bar
bottom-up synaptic weights of LGN→layer 4 synapses (postsyna
6II→LGN weights change by adapting to the BU input shape (pre
connections from V2 layer 6II to the layer 1 apical dendrites of la
active (dual AND gating). Episodes of asynchronous activities can
Dual AND gating prevents learning when only V2 layer 6II cells a
input which tends to terminate in multiple thalamic nuclei,
show a less precise stimulus–response relationship, have
receptive fields that are not easily definable, and project to
superficial cortical layers. For instance, in the medial genicu-
late complex, core cells receive tonotopically-ordered inputs
from the central nucleus of the inferior colliculus, represent-
ing the most direct ascending pathway from the cochlea.
Matrix cells are instead innervated by a less direct auditory
pathway which ascends in the midbrain tegmentum and
terminates diffusely inmost of the nuclei that form part of the
medial geniculate complex. Similar patterns of terminations
are repeated in somatosensory and visual sections of the
thalamus (ventral posterior complex and dorsal lateral
geniculate nucleus, respectively). The results of Jones (2002)
suggest that a functional microarticulation similar to the one
observed in the specific and nonspecific thalamic nuclei may
be mirrored by the core/matrix cell dichotomy in the specific
thalamic nuclei. Both the matrix cells and nonspecific
thalamic cells in the nonspecific pathway terminate on apical
dendrites of layer 5 cells, mirroring the anatomical and
functional similarities between matrix cells in specific nuclei
and nonspecific thalamic cells (Jones, 2002).

Priming vs. reset. As noted above, in the SMART model, the
matrix cells in the nonspecific pathway provide a priming
input that allows the cortical hierarchy to fully process a
ween presynaptic and postsynaptic spikes between [−30, 30]
), red (presynaptic gating), green (postsynaptic gating), yellow
r a discussion of all gating functions, seeMethods section and
to a untrained thalamocortical circuit causes changes in the
ptic gating, 100 ms episode). (c) At the same time, TD layer
synaptic gating). (d) Top-down synaptic weights at the
yer 5 cells change during learning when layer 6II feedback is
occur at learnable synaptic stages in different cortical areas.
re active and no activity is present in V1 layer 5.
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bottom-up input (Fig. 2a). Sudden increments in activity
within the nonspecific thalamic nucleus are also responsible
for generating reset signals and memory search during
predictive mismatch episodes. The model cell population in
this nucleus is excited by converging bottom-up input (Fig. 2d),
and sends excitatory connections to layer 1 of the cerebral
cortex (Jones, 2002; Miller and Benevento, 1979), where its
collaterals contact apical dendrites of layer 5 pyramidal cells
(Vogt, 1991; Cauller, 1995; Cauller and Connors, 1994, 2001;
Larkum et al., 2002, 2004). The nonspecific thalamus is also
inhibited by the thalamic reticular nucleus, or TRN (Fig. 2e),
and the balance between bottom-up excitation and TRN
inhibition is controlled by thematching process. If amismatch
is large enough, the decrease of excitation in the LGN due to
the misalignment of bottom-up and top-down input will
decrease LGN firing and, thus, TRN inhibition to the non-
Fig. 7 – Regulation of nonspecific thalamic nucleus firing rate by
bottom-up input pattern (horizontal bar, in green) is matchedwith
in the on-center (layer 6II→specific thalamus) off-surround (layer
convergent bottom-up excitation to the nonspecific thalamus is (
the nonspecific thalamus. A spatial match (green horizontal area
target, and inhibit the nonspecific thalamus via the TRN. (b) A spat
and a top-down expectation (horizontal dotted bar) causes only
area), excite their cortical target, and inhibit the nonspecific thal
input to the nonspecific thalamus does not change in a match vs
mismatch triggers a higher firing rate in the nonspecific thalamu
specific thalamus, while the excitatory bottom-up input will
remain unchanged. Thus the total excitatory input to the TRN
from layer 6II and LGN is, all else being equal, larger in cases of
match, when many LGN cells are excited, than in cases of
mismatch, when only a smaller subset or no LGN cells are
allowed to fire. The net result is an increase in firing rate in the
nonspecific thalamus (see Section 2.3) that causes a spatially
diffuse arousal burst to layer 1 of the cortex.

Arousal, reset, and search. How does a spatially diffuse
arousal burst from the nonspecific thalamic nucleus selectively
reset the cortical codes that caused a mismatch? At the
moment when a mismatch occurs, the brain does not know
which cortical areas caused the predictive failure (Grossberg,
1980). Despite this lack of information in the nonspecific
thalamus, the mismatch there needs to be able to selectively
reset active representations throughout the cortical hierarchy.
the amount of match in the specific thalamic nucleus. (a) A
a top-down expectation from layer 6II (dotted horizontal bar)
6II→TRN→specific thalamus) corticothalamic loop. The
partially or totally) cancelled by convergent TRN inhibition to
) allows specific thalamic cells to fire, excite their cortical
ialmismatch between a bottom-up input pattern (vertical bar)
a subset of specific thalamic cells to fire (bright green square
amus via the TRN. (c) Since the total, convergent bottom-up
. a mismatch episode, the lower TRN firing rate during a
s.
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SMART proposes, in accord with known anatomical and
physiological data both in vivo and in vitro (Larkum et al.,
1999; Larkum and Zhu, 2002), that layer 5 pyramidal cell firing
rate is jointly controlled by nonspecific thalamic inputs and
specific layer 2/3 inputs, thus explaining how layer 5 cells
exhibit two distinct firing modes (Williams and Stuart, 1999):
Layer 5 cells that receive layer 2/3 inputs and nonspecific
thalamic inputs during a mismatch episode fire in bursts at
high rates (see Section 2.6 for experimental and simulation
results). Active 2/3 cells represent cortical codes that caused
the mismatch. In contrast, single spikes are produced in layer
5 cells when only one of these sources is activated, either
during a match, or during a mismatch when layer 2/3 cells are
inactive.

As noted above, layer 5 pyramidal cells send driving inputs
directly to higher cortices through the thalamus (e.g., the
pulvinar; Sherman and Guillery, 2002; Shipp, 2003; see Fig. 3a),
indirectly control corticothalamic feedback at their own cor-
tical level through layer 6II (Figs. 2b and 3a), and also control
corticocortical feedback to layer 4 at their own cortical level via
layer 6I (Figs. 2c and 3c). Layer 5 can hereby generate wide-
spread bursts of synchronized activity throughout the neo-
cortex mediated by driving layer 5 terminations on higher-
order thalamic nuclei (including pathological epileptogenic
activity; Williams and Stuart, 1999), and selectively reset mul-
tiple cortical areas by relaying from the nonspecific thalamus
layer 5 bursts to layer 4 via the 6I→4 pathway. In particular,
model layer 6I cells are predicted to respond to a thalamic
mismatch with selective cortical reset and search for a more
Fig. 8 – Burst and tonic firing in thalamic relay cells. Data: intrace
of the low threshold spike for a geniculate relay cell. The same d
holding potentials causes either tonic firing (top, cell depolarized
de-inactivated). Modified and reprinted with permission from Sh
(horizontal bar) is injected in a simulated LGN cell in the absence
The hyperpolarization of the cell and the presence of low-thresh
de-inactivation of the IT current, inducing burst firing.
predictive cortical code in layers 4 and 2/3 (see Section 2.6 for
simulation results).

The nonspecific pathway may also help to regulate
modality-specific attention during reset episodes (Crick,
1984; Guillery et al., 1998; Montero, 1997; Weese et al., 1999).
SMART predicts how cortical areas that experience strong
predictive mismatches in a given modality may reduce
priming of the cortical area of a competing modality by
inhibiting the corresponding nonspecific thalamic nucleus. In
particular, Crabtree and Isaac (2002) have shown that non-
specific thalamic nuclei which subserve different modalities
are linked by mutually inhibitory interactions. SMART simu-
lates how TRN-mediated (van Der Werf et al., 2002) inhibitory
interactions (Crabtree and Isaac, 2002) between nonspecific
thalamic nuclei can cause a pause in firing of one nonspecific
thalamic nucleus that can transiently down-regulate layer 5
pyramidal cells of the competing cortical area (see simulations
in Section 2.9). SMART further predicts that competing specific
nuclei, not only nonspecific nuclei as shown by Crabtree and
Isaac (2002), might be inhibited by the TRN in cases of strong
mismatches, therefore being a possible thalamic substrate for
competitive allocation of attention.

Learned generalization, vigilance, and acetylcholine. How is the
generality of recognition categories regulated to represent
statistical properties of the environment? As noted above, ART
predicts that resonance and learning occur when the degree of
match between bottom-up and top-down representations is
greater than a gain parameter, called vigilance (see Fig. 4).
Vigilance can change due to internal factors, such as fatigue,
llularly in vitro recording illustrating the voltage dependency
epolarizing current pulse administered at two different initial
, IT inactivated) or burst firing (bottom, cell hyperpolarized, IT
erman and Guillery, 2002. Simulation: a 0.3 nA current
(top) or presence (bottom) of a hyperpolarizing voltage clamp.
old Ca++ currents (see Eqs. (21)–(27) in Methods) causes the
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or external factors, such as predictive mismatch or punish-
ment. A baseline vigilance determines how big a mismatch is
initially tolerated before cortical representations are reset.
When a predictive error causes a mismatch to occur, the
vigilance level is predicted to increase just enough to drive a
memory search for a new recognition code. This process is
called match tracking (Carpenter and Grossberg, 1987; 1991;
Carpenter et al., 1992). Match tracking realizes a kind of
minimax learning rule; namely, it enables a learning system to
minimize predictive error while maximizing generalization.
Choosing a low baseline vigilance leads to the learning of
general categories and thus a minimum use of memory
resources. Match tracking increases this baseline vigilance
just enough to learn the most general categories that are
consistent with predictive success.

The SMART model predicts that one way to control
vigilance may be to modify the excitability of layer 5 cells
during mismatch episodes (Fig. 5). Anatomical studies in
monkeys, cats and rats have established that the nonspecific
thalamus (in particular, the midline and central lateral
thalamic nuclei), whose activation is sensitive to the degree
of mismatch, projects to the cholinergic nucleus basalis of
Meynert (van Der Werf et al., 2002), one of the main sources of
cholinergic innervations of the cerebral cortex. The nucleus
basalis of Meynert is also influenced by noxious stimulation
and cortical control (Zhang et al., 2004). Saar et al. (2001) have
shown that ACh release reduces the after-hyperpolarization
(AHP) current and increases cell excitability in layer 5 cortical
cells (see Section 2.8). In SMART, this increased layer 5
excitability due to predictive mismatch may cause reset via
the layer 5-to-6I-to-4 circuit, even in cases where top-down
feedbackmay earlier have partiallymatched bottom-up input,
which is a key property of vigilance control. The increase of
ACh might therefore promote search for finer recognition
categories in response to environmental feedback, even when
bottom-up and top-down signals have a pretty good match in
the nonspecific thalamus based on similarity alone.

Fig. 3c summarizes all of the simulated SMART circuitry.
Table 2 summarizes the main anatomical features simulated,
their functional interpretation, and supportive experimental
literature. TheMethods section provides a detailed description
of the model equations and parameters.
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2. Results

2.1. Learning bottom-up oriented filters in the specific
pathway

In both the brain and the model, LGN parvalbumin-rich “core”
cells receive topographically highly ordered bottom-up sensory
input andproject to layers 6I and4of cortical areaV1 (Jones 2002,
Fig. 1b) in a manner that is sensitive to stimulus orientation
(Reid and Alonso, 1995). SMART simulates how adaptive
synapses may become orientationally tuned in the pathways
from LGN core relay cells to V1 layer 4 and layer 6I cortical
neurons (Fig. 2a) via postsynaptically gated STDP (Fig. 6a) during
synchronous match-mediated gamma oscillations.

Fig. 6b illustrates the development of orientation sensi-
tivity in a layer 4 cell that wins the competition with its
neighboring cells. It spikes within a few milliseconds after the
arrival of the LGN input, while nearby cells are suppressed
and their spiking delayed by the on-center off-surround layer
6I→4 network. This delay reduces or completely suppresses
learning in cells other than the winning neurons. The gamma
oscillations (see Section 2.10) during match episodes allow
layer 4 cells to fire a few ms after LGN cells, and thus within
the STDP window. The orientation selectivity is expressed in
terms of LGN→4 synaptic weights (cf., Alonso et al., 2001)
before and after a 100 ms exposure to a horizontally-oriented
stimulus. Orientationally selective cells in layer 4 of V1 excite
layer 2/3 cells, which in turn project to layer 5 of V1. Layer 5
projects to layers 6I and 6II of the same area (Callaway, 1998).
Layer 6I closes the layer 2/3→6I→4→2/3 intracortical mod-
ulatory excitatory loop that helps select the most activated
cells in layer 4, while strongly suppressing less active cells
Fig. 9 – (a) Top-down corticothalamic feedback exerts a subthres
relay cells. Data (upper left panel):whole-cell recording from a rela
mouse thalamocortical slice in vitro. A single weak electrical stim
monosynaptic EPSP (asterisk in enlarged inset) followed by a de
corticothalamic excitation of the TRN (Jones, 2002). Simulation (lo
this simulation. Stimulation via current injection is provided to a
bottom-up stimulus, until a single spike is produced, and the som
bottom-up stimulus is recorded in the absence of external stimu
dendrites, simulating the top-down feedback excitation exerted b
on-center, off-surround network. (c) The nonspecific thalamic nu
in an auditory mismatch negativity (MMN) paradigm. Data: Extra
and deviant stimulus (2450 Hz, thick line) obtained from the cau
(MGcm) in guinea pigs (Kraus et al., 1994). Significant differences b
indicated in the box under the differencewave. Significant negati
the nonspecific MGcm but not in the specific medial geniculate bo
used in 300 ms simulation epochs, and the potential of the nons
layer 6II cell that has previously learned a horizontal stimulus pr
mismatches a vertically oriented bottom-up input. The mismatc
stimulus builds up top-down expectations that are mismatched
nonspecific nucleus firing rate is caused by the release from inh
thalamic nucleus, whereas the second increase in firing rate is ca
the synchronized layer 5 firing that is caused by activation of the
widespread activation of cortical layer 1, including the dendrites
synchronously in response to the increased nonspecific thalami
(stimulation of a layer 6II cell with horizontal top-down thalamoc
the top-down feedback mismatches the vertically oriented botto
and noise. Layer 6II closes the thalamocorticothalamic loop
by projecting with top-down modulatory connections to the
specific thalamic nuclei (Figs. 2b, 3a, and 3c) and nonspecific
thalamic nuclei (Figs. 2e and 3c), and with driving connec-
tions to the TRN (Figs. 2b, 3a, and c), as detailed below.

2.2. Top-down attention and STDP learning

V1 layer 6II cells send top-down modulatory excitatory
glutamatergic signals to thalamic relay cells in LGN (Sherman
and Guillery, 2001; Murphy et al., 1999; Ichinohe et al., 2003).
Although LGN neurons respond to unoriented visual stimuli,
oriented spatial arrays of LGN neurons can respond to
oriented contours in an image or scene, and corticothalamic
feedback comes from oriented cortical cells. SMART simulates
how top-down feedback signals from V1 layer 6II are matched
andmismatched in LGN, and thereby help to stabilize learning
in both bottom-up adaptive filters and top-down modulatory
expectations. Learning during a match state encodes top-
down orientation sensitivity, which has also been reported in
neurophysiological experiments (Murphy et al., 1999). Fig. 6c
illustrates the learned oriented shaping of model corticotha-
lamic synaptic weights using an STDP rule with presynaptic
gating (see Methods) before and after 100 ms presentation of a
horizontal bar. The oriented synaptic weights are learned in a
gamma oscillation regime (see Fig. 14b below) and allow
subsequent attentive top-down signals to subliminally prime
the consistent learned bottom-up stimulus, and match it or
mismatch it with incoming bottom-up inputs. In particular,
the oriented top-down expectation supports competitive
selection, synchronization, and gain modulation of matched
LGN cells, which has been reported in neurophysiological
experiments (Sillito et al., 1994).
hold excitatory effect on the membrane potential of thalamic
y neuron in the somatosensory ventral posterior nucleus of a
ulus (arrow) applied to a corticothalamic fiber elicits a small

ep and long-lasting disynaptic IPSP resulting from collateral
wer left panel): a complete corticothalamic module is used in
central layer 6II neuron, which has previously learned a
atic membrane potential of the cell which coded the learned
lation. (b) Electrical stimulation of model layer 5 apical
y layer 6II of V2, induces layer 4 priming via the 6I modulatory
cleus, not the specific nuclei, is involved in novelty detection
cellular recordings to standard stimulus (2300 Hz, thin line)
domedial portion of the nonspecific medial geniculate body
etween the responses to the standard and deviant stimuli are
ve deflections (at 30–80ms and 135–170ms) were identified in
dy (MGv). Simulation: a complete corticothalamic module was
pecific thalamic nucleus cell was recorded. Stimulation of a
ovides top-down feedback to the thalamus, where it
h corresponds to the MMN condition, in which a repetitive
when a novel stimulus is presented. The first increase in the
ibition from the TRN due to the reduced firing of the primary
used by thalamocortical layer 6II feedback, in turn caused by
nonspecific thalamus during a mismatch, followed by
of layer 5 cells. (d) Simulation of all layer 5 cells firing
c input. In these simulations the top-down feedback
ortical receptive field) is kept on for one second, during which
m-up input.
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2.3. Attentive matching in the specific thalamus

The SMART model proposes functional roles for both the
specific and nonspecific projections of the TRN (Figs. 2b and e).
The specific inhibitory projections of the TRN to the LGN
(Guillery et al., 1998; Guillery and Harting, 2003) provide a
detailed anatomical realization of the ART matching process
that suppresses bottom-up inputs that mismatch cortical top-
down excitatory expectations. In particular, the top-down
excitatory on-center, adaptive pathway from layer 6II to LGN
core cells is supplemented by an TRN-mediated inhibitory off-
surround (Figs. 2b and 7).

LGN cells that receive only top-down excitatory inputs are
inhibited by the model TRN (balanced excitation and inhibi-
Fig. 10 – (a) In the model, an increase in nonspecific thalamic fir
including apical dendrites of layer 5 cells, where dendritic spikes
(b) Input to the apical dendrite of layer 5 pyramidal neurons result
a layer 5 pyramidal neuron (rats, in vitro) show apical (red), prox
stimulation of the apical dendrite (modified with permission from
dendrites of an isolated simulated layer 5 pyramidal cell via the
potentials at the soma. The arrow indicates the recording from the
located at 400μm from the soma,which is equivalent to the L4 rec
at the proximal dendrite are caused by dendritic spikes occurrin
soma. (c) Data: in vitro (rat) recordings of layer 5 pyramidal cells s
excitation can consists of single spikes or burst firing (modified f
layer 5 pyramidal neuron during a mismatch episode. Dependin
respond with a single spike (no layer 2/3 input) or a burst of spik
network normalizes and primes layer 4 cells activities. Neurotra
competition in layer 4 until a reset occurs. (dII) A reset is driven b
layer 1 nonspecific activation. (dIII) The reset unmasks previous
neurotransmitters which have accumulated in non-depleted laye
layer 4 cell spikes (1). Reset (red bar) favors the activation of prev
tion; one-against-one), whereas cells that receive sufficiently
large simultaneous bottom-up and top-down excitatory
inputs can offset TRN inhibition and fire (two-against-one).
A perfect match occurs when the same subset of LGN cells
receives bottom-up excitation and top-down excitatory mod-
ulatory priming signals from cortical layer 6II; e.g., they both
represent the same horizontal bar, as in Fig. 7a. These
matched LGN cells fire tonic action potentials that activate
layers 4 and 6I of the target cortical area. The tonic firing mode
preserves a linear input–output relationship in LGN cells, and
relays information better than burst firing (Sherman and
Guillery, 2002). A sufficiently big mismatch, such as the top-
down horizontal bar expectation matched against the vertical
bar bottom-up input in Fig. 7b, hyperpolarizes LGN cells via
ing rate during a mismatch nonspecifically activates layer 1,
are triggered that can cause layer 4 somatic action potentials.
s in action potentials recorded at the soma.Data: recordings of
imal (blue) dendritic and somatic (black) potentials during

Larkum et al., 1999). Simulation: stimulation of the apical
nonspecific thalamic nucleus produces a stream of action
intermediate section of the dendrite of the simulated neuron,
ording electrode in the data. The voltage oscillations recorded
g at the cell's apical dendrite, and propagated towards the
how that neuronal firing in response to extracellular synaptic
rom Williams and Stuart, 1999) Simulation: recordings from a
g on the presence of a layer 2/3 input, the cell can either
es (layer 2/3 input). (dI) Layer 6I→4 on-center off-surround
nsmitter depletion (green squares) does not bias the
y mismatch-mediated layer 6I firing in response to a burst of
ly inactive cells that are favored by higher levels of
r 6I→4 synapses. (e) Before a reset occurs, a “wrong” winning
iously inhibited cells (2).
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layer 6II→TRN→LGN feedback, and then voltage-dependent T
(transient) type Ca+ currents causing burst firing (Sherman
and Guillery, 2001). The model exhibits both the tonic and the
burst firing modes that are found in the data (Fig. 8).

Consistent with Sherman and Guillery (2002), SMART
clarifies how burst firing might help to switch attention to a
modalitywherea suddenbottom-upstimulusoccurs, aswhena
sudden visual cue occurs while paying attention to an auditory
stimulus. This mechanism complements the nonspecific tha-
lamus-mediated mismatch, which can use vigilance control to
cause mismatches across multiple modalities. Indeed, using
vigilance control, even if amodality experiences amatch that is
good enough to predict an outcome elsewhere in the brain (e.g.,
seeing a visual object predicts its name), a mismatch with this
outcome can raises vigilance enough to drive a search within
the originalmodality for a recognition category that can predict
the outcome better in the future (see Section 2.8).
Fig. 11 – Neurotransmitter dynamics with different values of dep
respectively, see Eq. (7) in Methods) and different pre-synaptic fi
induced by current injection until firing rates of 23 Hz (panels a, c
pre-synaptic cell membrane potential (top) and the level of neuro
cause larger and quicker neurotransmitter depletion due to the m
(c) Increasing the depletion rate ε from 0.5 to 1 results in larger n
counterbalances the effect of depletion.
2.4. Attentive priming via corticocortical and corticothal-
amic feedback connections

As noted above, the STDP rule (Fig. 6a; see Methods) is used to
learn the top-down corticocortical attentive connection from
V2 layer 6II cells to layer 1 apical dendrites of V1 layer 5 cortical
cells during presentation of a bottom-up input (Fig. 6d). This
learning correlates V2 layer 6II cell outputs with retrograde
dendritic spikes from V1 layer 5 cells to their layer 1 dendrites
(Gorchetchnikov and Grossberg, 2007; Grossberg, 1975, 1982;
Johnston et al., 1999). Such learning subsequently allows the
V2 layer 6II cell to fire the associated V1 layer 5 cell, and from
there the corresponding V1 layer 6I cell, which in turn primes
V1 layer 4 via the modulatory on-center, off-surround layer
6I→4 network. This top-down circuit mediates attention in the
network. It embodies the concept of “folded feedback” where-
by top-down signals are folded into the bottom-up flow of
letion (inactivation, habituation) and recovery rate (ε and τ,
ring frequencies in an isolated layer 6I cell. Stimulation was
) or 70 Hz (panels b, d) were generated. Each panel shows the
transmitter at the synapse (bottom). (a, b) Higher firing rates
ass action (Eq. (7) in Methods), all else being equal.

eurotransmitter depletion. (d) A faster recovery rate τ
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information from layer 6I to 4, where they can attentionally
enhance or suppress bottom-up signals (Grossberg, 1999a).

A key prediction of the model is that the excitatory on-
center of the 6I→4 pathway is modulatory, or subthreshold.
This prediction is consistent with the data showing that layer
4 excitatory post-synaptic potentials (EPSPs) elicited by layer 6
stimulation are much weaker than those caused by stimula-
tion of LGN axons (Stratford et al., 1996), and also with the
finding that binocular layer 6 neurons synapse onto mono-
cular layer 4 cells without reducing the monocularity of the
target layer 4 cells (Callaway, 1998).

Corticothalamic feedback is also modulatory, and provides
excitatory priming of target thalamic cells. Fig. 9a (top left panel)
shows neurophysiological data illustrating modulatory priming
Fig. 12 – Interactions betweennonspecific thalamic glutamatergic
maymodulate reset by regulating AHP currents and cell excitabili
show that the ACh agonist carbachol reduces firing adaptation in
injection (modified with permission from Saar et al., 2001). Simu
simulated, and a constant current injection is provided to the som
The AHP current at the soma is characterized by a long-lasting h
prevents spiking activity. ACh activation is represented as the 100
the soma of the layer 5 pyramidal cell. The activation of the chol
variable, Eq. (7)) in Section 4.4) which reduces the conductance of t
nonspecific thalamic nucleusmay control the cortical release of A
Der Werf et al., 2002).
in the specific somatosensory thalamus caused by layer 6
stimulation (Jones, 2002), and simulated model thalamic cell
modulation (bottomleftpanel) during top-down layer6II priming
of the model LGN. Fig. 9b shows simulated subthreshold
activation of a V1 layer 4 cell after learning top-down feedback
fromaV2 layer 6II cell to theapical dendritesofV1 layer 5 cells. In
the figure, the effect of top-down feedback is simulated by direct
layer 5 stimulation. These experimental and modeling results
are consistent with ART predictions that top-down attentive
signals are typically, by themselves,modulatory and insufficient
to fully activate their target cells. See Grossberg (2000) for an
analysis of how top-down signals can elicit suprathreshold
responses during percepts of visual imagery and hallucinations
when the excitatory and inhibitory signals become imbalanced.
transmission, ACh and after-hyperpolarization (AHP) (a) ACh
ty in layer 5 cortical cells.Data: Intracellular recordings in vitro
layer 2 neurons in response to a constant current step

lation: an isolated, 3-compartment-layer 5 pyramidal cell is
a in order to produce a stream of action potentials at 80 Hz.

yperpolarizing K+ current, which slows down and eventually
ms stimulation of a single cholinergic neuron terminating on
inergic nucleus opens a conductance (multiplicative gating
heAHP current, therefore reducing spiking adaptation. (b) The
Ch via its terminations in the Nucleus Basalis of Meynert (van
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2.5. Nonspecific thalamicnucleus, cortical arousal regulation,
and mismatch negativity

Thematchingprocess in the specific thalamicnuclei is predicted
to regulate the activity of the nonspecific thalamic nucleus.
In particular, a match decreases the firing rate, or cortical
arousal, from the nonspecific nucleus, whereas a mismatch
increases it (Fig. 7). How does the nonspecific thalamus become
sensitive to the degree of match in the specific thalamus?

The total convergent bottom-up excitatory input to a non-
specific thalamic nucleus is unchanged by the matching pro-
cess (van Der Werf et al., 2002; Jones, 2002; Fig. 7). When
a match occurs, the TRN receives stronger excitation via
bottom-up thalamocortical collaterals than during a mis-
Fig. 13 – (a) Stimulation of one nonspecific thalamic nucleus inte
thalamic nucleus.When held close to −55mV, a rostral intralamin
(top recording) to a depolarizing 0.4 nA current pulse (bottom, squ
RIL cell in response to the depolarizing current pulse was interru
intralaminar nucleus (CIL, modified with permission from Crabtr
nonspecific thalamic nuclei and a TRN, all simulated as 1-neuro
nonspecific thalamic nuclei, and inhibiting them with GABA pro
thalamic nucleus 2. (c) Constant stimulation of the nonspecific tha
firing) at 187 Hz. (d) Stimulation of nonspecific thalamic nucleus
nucleus 2. (e) Stimulation of the nonspecific thalamic nucleus 1 (b
nonspecific thalamic nucleus 2.
match (Sherman andGuillery, 2001, 2002; Fig. 7a vs. 5b). During
a match, this leads to strong, convergent inhibition to the
nonspecific thalamic nucleus that can balance the total
excitatory input that it receives. During a mismatch, reduced
specific thalamus spiking causes decreased inhibition by TRN
of the nonspecific thalamus, and a consequent increase in
nonspecific thalamus firing rate, or arousal, that is propor-
tional to the degree of mismatch (Fig. 7c).

The human mismatch negativity (MMN) event-related
potential has features that are consistent with these predicted
properties. Physically deviant stimuli trigger a MMN roughly
200ms after stimulus onset (Näätänen et al., 1978). Kraus et al.
(1994) demonstrated involvement of nonspecific, but not
specific, thalamic nuclei in the MMN (Fig. 9c), with differences
rrupts a train of action potentials in another nonspecific
ar nucleus (RIL) cell respondswith a train of action potentials

arewave). A train of action potentials (bottom recording) in the
pted by glutamate stimulation (black bar) in the caudal
ee and Isaac, 2002). (b) Model simulation includes two
n populations, with the TRN receiving excitation from the
jections. Cell activation was recorded at the nonspecific
lamic nucleus 2 gives rise to a train of action potentials (tonic
1 causes a TRN-mediated IPSP in the nonspecific thalamic
lue) causes a spike in the TRN (red), which in turn inhibits the
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between novel and standard stimuli at 30–80 ms and 135–
170 ms after stimulus onset. The late latency suggests a
cortical contribution, which involves superficial cortical layers
(Karmos et al., 1986).

The SMART model explains and simulates these earlier
thalamic and later cortical components using the following
properties: Mismatch increases nonspecific thalamic
nucleus firing at around 50 ms after stimulus onset (Kraus
et al., 1994; Fig. 9c), reaching cortical layer 1 and causing
synchronized firing in layer 5 (Fig. 9d). The timing of the first
MMN component in SMART is due to synaptic delays and
spiking dynamics of the polysynaptic cycle that links LGN
and the cortical circuit. During a mismatch, layer 5 apical
dendrites accumulate the incoming EPSPs generated by the
nonspecific thalamic nucleus burst until synchronized
dendritic spiking occurs in all layer 5 cells. This layer 5
wave then excites layer 6II (Fig. 3c), which in turn reactivates
the nonspecific thalamic nucleus at around 150 ms after
stimulus onset, thereby causing the second MMN compo-
nent. Low threshold Ca+ currents (see Eqs. (21)–(27) in the
Methods) in the nonspecific thalamic nucleus generate an
Fig. 14 – Power spectra of cumulative spike histograms of a lam
stimulus (horizontal bar, 5 thalamic relay nuclei activated for 100
peak in the slowγ frequency band (20–70Hz) in case ofmatch, and
analyzed into three frequency bands (δ and θ, 2–8 Hz; α and β, 8
different oscillation frequencies is amatch (c) andmismatch (d). N
favor of lower-frequency oscillations.
additional burst of spikes. This spiking pattern occurs when
a hyperpolarized thalamic cell with low-threshold Ca+ T-
current is activated by an excitatory stimulus (Sherman and
Guillery, 2001, 2002; Shipp, 2003). These simulation results
provide an indirect confirmation of the Karmos et al. (1986)
proposal of the cortical origin of the second component in
the MMN.

The SMART model discussion of MMN is related to an
earlier prediction about the interpretation of the ART search
cycle that is summarized in Fig. 4; namely, that the
mismatch, arousal, and STM reset events that are summar-
ized in Figs. 4b and c correspond to different human scalp-
recorded Event Related Potentials, or ERPs, and that these
events should tend to co-occur, as they do in the ART search
cycle, if they occur at all. In particular, as ART gradually
developed, it predicted that the Processing Negativity, N200
(a component of which is MMN), and P300 ERPs correspond
to match, arousal, and STM reset events at various levels of
thalamocortical processing (Grossberg, 1978, 1980, 1984).
This prediction was supported by ERP experiments using an
oddball paradigm with a choice reaction time task, in which
inar primary sensory cortical area during presentation of a
0 ms) during match (a) and mismatch (b) conditions show a
lower frequencies in case ofmismatch. The histogramswere
–20 Hz; γ, 20–70 Hz) to highlight the separate contribution of
otably, γ oscillations are drastically reduced in amismatch in
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correlated components of the P120, N200, and P300 behaved
like the predicted mismatch, arousal, and STM reset events
(Banquet and Grossberg, 1987).

2.6. Layer 5 regulation of cortical reset

Larkum et al. (1999) found that layer 5 cell dendrites can
produce action potentials that actively propagate to layer 5 cell
bodies and cause somatic action potentials (Figs. 10a and b).
Until now, there has been no functional explanation of these
regenerative dendritic potentials. Figs. 10b and 10c compare in
vitro recordings of layer 5 pyramidal apical dendrites and
soma, and model layer 5 cell simulations during match and
mismatch episodes.

2.7. Predictive search using mismatch-mediated arousal
and habituative synapses

How does a mismatch-mediated layer 5 reset signal choose a
new cortical representation that can lead to a better match,
and thus a better prediction? How can reset do this without an
external teacher? How can it be done given that, at the
moment of reset, the correct answer is not known, and at the
location where reset occurs, there is no knowledge of which
active thalamocortical representations caused the reset? A
proposed solution to this problem (Grossberg, 1980) is herein
realized using known laminar corticocortical and thalamo-
cortical circuits. This solution predicts that the pathwaywhich
mediates reset utilizes habituative transmitter gates, also
called depressing synapses (Grossberg, 1976, 1980; Carpenter
Fig. 15 – Example of short range (300μm), single unit–single uni
similar orientation preference in V1; top, left: cross-correlation co
stimulus. top, right: power spectrum of the cross-correlation sho
from Friedman-Hill et al. (2000). Bottom, left: cross-correlation com
cells during stimulation of a learned stimulus (lines show the 95
cross-correlogram shown on the left.
andGrossberg, 1990; Abbott et al., 1997; Tsodyks andMarkram,
1997). In particular, when a bottom-up input froma layer 6I cell
activates its excitatory parthway to layer 4, and its layer 6I-to-4
inhibitory interneurons, an activity-dependent fraction of
neurotransmitter in these pathways is released to activate
layer 4 target cells (Fig. 11; see Methods). The transmitter
recovery rate in these pathways is slow relative to its release
rate (see Fig. 11). Thus the net EPSP recorded at a post-synaptic
site decreases through time to a habituated level of firing after
an initial burst of activation (Beierlein et al., 2002). Despite this
reduction, synaptic transmission remains unbiased, and
stronger inputs produce bigger steady-state EPSPs even as
the corresponding transmitters habituate (Grossberg, 1980;
Fig. 10d(I)).

When a layer 5-mediated reset wave later hits layer 6I

(Fig. 10d(II)), this arousal burst changes the balance of total
input to layer 4 cells. Simulations (Fig. 10e) and mathematical
proofs (Grossberg, 1980; Grossberg and Seidman, 2006) show
how layer 4 cells reset based on their prior activation and the
reset wave size, to favor previously inactive or weakly active
layer 4 cells (Fig. 10d(III)).

2.8. Acetylcholine neuromodulation controls vigilance,
learning, and generalization

How is the concreteness or abstractness of recognition
categories controlled in a task-sensitive manner? A clue is
provided by the fact that the nonspecific thalamic nucleus
controls the excitability of layer 5, and therefore when reset
and search for a new recognition category occurs. If the
t correlation of cells with overlapping receptive fields and
mputed from the two spike trains during the response to the
wn on the left, which shows a peak around 50 Hz. Modified
puted from the spike trains of two nearby simulated layer 4

% confidence limit). Bottom, right: power spectrum of the
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sensitivity of layer 5 to arousal bursts from nonspecific
thalamus can be modulated by predictive success, then the
concreteness or abstractness of learned recognition categories
can be controlled.

Fig. 12a summarizes data compatible with this hypothesis.
ACh release occurs in the cortex from the nucleus basalis of
Meynert. SMART predicts that increased ACh release occurs
in the cortex from the nucleus basalis of Meynert following
a predictive mismatch (Fig. 12b). In both in vitro data (Saar
et al., 2001) and isolated model layer 5 pyramidal cells, ACh
regulates AHP currents and cell excitability in layer 5 cortical
cells. More specifically, Fig. 12a (top) shows that a steady
depolarization current causes rat pyramidal cell firing to
rapidly habituate, whereas injection of the ACh agonist
carbachol reduces the adaptation (Saar et al., 2001). Fig. 12a
(bottom) shows the simulation results for an isolated layer 5
pyramidal cell which include AHP currents in its somatic
compartment, before and after ACh stimulation. Data and
simulations show that the release of ACh can modulate,
through the reduction of AHP and the prevention of spike
adaptation, the excitability of layer 5 pyramidal neurons, and
consequently the amount of thalamic mismatch that can be
tolerated by the cortical area. High levels of ACh may
increase vigilance by reducing spiking adaptation, facilitat-
ing reset and therefore requiring a higher degree of match
between bottom-up and top-down representations.

Given this mechanism, suppose that bottom-up and top-
down information are well enough matched in one cortical
Fig. 16 – Data: Cross-correlation functions of local field potentials
area) and lower layers of area 7 (higher-order visual area) during
with permission from Von Stein et al., 2000). Simulation: The act
synaptic delay between layer 2/3 of the first-order cortical area an
of 1000 ms were aligned to onset of a learned bottom-up stimulu
recording. Analysis was performed on a LFP recorder from two sim
were separated in five different frequency ranges in accordance
8–12, 12–20, and 20–100 Hz. The data were Fourier transformed a
transformation was performed for selected frequency bins (corre
for separate frequency ranges. Cross-correlation functions at diffe
in the lower 0.3 mm of the higher cortical area and the upper 0.3
area to activate a category which generates a prediction else-
where in the brain. If this prediction causes a predictive mis-
matchwith, say, environmental feedback, then increased ACh
release can trigger reset and search throughout the cortex,
including the cortical region that accepted the previousmatch
as sufficient to make the prediction. Reset can rapidly shut
off the previously active recognition category before it can
become engaged in erroneous new learning, and the ensuing
search can discover either a new recognition category, or a
familiar one, that makes a good enough mismatch to prevent
prediction disconfirmation. The new recognition category will
be learned, or the familiar category will be refined, to in-
corporate the new constraints imposed by the bottom-up data.
ACh hereby makes the cortex more “vigilant.” High vigilance
forces learning of more precisely matched, and thus more
concrete, categories than low vigilance.

2.9. Intramodal attention and nonspecific thalamus

Crabtree and Isaac (2002) have shown that activation of cells
in one nonspecific thalamic nucleus leads to a TRN-
mediated IPSP that temporarily switches off tonic firing of
action potentials in cells of another nonspecific thalamic
nucleus (Fig. 13a). A simulation of these results was carried
out in an isolated circuit comprising two nonspecific thal-
amic cells and a TRN cell (Fig. 13b). Constant stimulation of
a nonspecific thalamic nucleus cells caused a tonic stream
of action potentials (Fig. 13c) which was interrupted by
(LFP) from the middle layer of area 17 (primary visual cortical
presentation of a no-go stimulus in behaving cats (reprinted
ivity of two thalamocortical loops was simulated, with a
d layer 4 of the second-order cortical area set at 10ms. Epochs
s that was presented for 1 s prior to the beginning of the
ulated 54-tip-electrodes from the two cortical areas, and data
with classical electroencephalogram conventions: 2–4, 4–8,
nd multiplied with the complex conjugate, and the inverse

sponding to one “band”) to obtain cross-correlation functions
rent frequency bands was performed between LFP produced
mm of the lower cortical area (both areas are 1.2 mm thick).
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the stimulation of a competing nonspecific thalamic cell
(Fig. 13d). Crabtree and Isaac (2002) suggested that this effect
is due to the TRN, as confirmed by our simulation results in
Fig. 13e.

2.10. Synchronous oscillation frequency reflects match and
mismatch

Gamma (γ, 20–70 Hz) and beta (β, 12–30 Hz) oscillations are
observed in visual cortex during various cognitive, perceptual
and attentive states (Singer, 1999; Engel et al., 2001; Hermann
et al., 2004; Grossberg, 1976, 2003). Beta oscillations often
correlate with long-range synchronous activity of neocortical
regions (Roelfsema et al., 1997), and gamma is restricted to
sites within an area (Friedman-Hill et al., 2000) or between two
areas with strong monosynaptic connections (Von Stein et al.,
2000). Gamma and beta oscillation frequencies in the model
reflect match and mismatch dynamics, respectively.

Gamma oscillations are amplified between cells of an in-
put population, and between cells of an input and a receiving
population, when a top-down expectation matches its bot-
tom-up input pattern (Figs. 14a and c). During mismatch
within lower cortical layers, beta oscillations prevail (Figs. 14b
and d) due to the low frequency, widespread synchronized
firing of layer 5 cells, as illustrated in Fig. 9d. Layer 1 apical
dendritic potentials slowly depolarize layer 5 cell bodies,
causing the low frequency, synchronized spikes of layer 5
cells. This frequency component dominates the power spec-
trum of the cumulative spike histogram in cases of mis-
matches, as illustrated in Figs. 14b and d.

Buffalo, et al. (2004) have reported that gamma oscillations
are more frequent in superficial cortical layers, whereas beta
oscillations are found more in deeper cortical layers, consis-
tent with the prediction that the beta oscillations may be due
to the initiation of reset in the deeper layers. Their data would
seem to be due to temporal averaging, since during sustained
periods of match, one might expect all the cortical layers to
synchronize with the same oscillation frequency due to inter-
laminar feedback connections (cf., Yazdanbakhsh and Gross-
berg, 2004). This functional interpretation of the gamma/beta
differential may be testable by varying the relative number of
reset events per unit time.

The SMART model also simulates data about short and
long-range synchrony. Friedman-Hill et al. (2000) showed
gamma synchronization between two adjacent macaque V1
cells with overlapping receptive fields in response to a
preferred stimulus (Fig. 15 top). Model V1 layer 4 cells during
match of a learned stimulus (Fig. 15 bottom) show a similar
cross-correlation power spectrum. These results are consis-
tent with the intuition that cells with a shared bottom-up
input would tend to spike in close temporal proximity, and
therefore express high gamma synchronization when no
strong low-frequency synchronization is imposed by mis-
match-mediated, synchronized layer 5 discharges.

Von Stein et al. (2000) showed (Fig. 16, top) that synchro-
nization between distant cortical areas (middle layers of cor-
tical area 17 and lower layers of area 7 in cats) is prevalent
in the lower and middle frequency ranges, whereas local
interactions (within areas 17 and 7) show gamma band
dominance. The model simulates these properties (Fig. 16,
bottom), showing that synchrony between distant cortical
areas is mediated mostly by lower-frequency oscillations.
These simulations support the hypothesis that monosynapti-
cally connected cells, such as cells within an area or between
nearby areas, can synchronize at gamma frequency bands
(Fig. 15), which is compatible with STDP. Top-down interac-
tions between lower layers of higher-order and upper levels of
lower-order cortical areas are mostly modulatory. Therefore,
upper pyramidal layers of lower-order areas should not
necessarily fire in response to a top-down modulatory influ-
ence from higher cortical areas, and should not necessarily
express gamma frequency synchronization, unless bottom-up
and top-down signals match.
3. Discussion

This article describes a model that functionally links single-
cell properties, such as spiking dynamics, STDP, and ACh
modulation; detailed laminar thalamic and cortical circuit
designs and their interactions; aggregate cell recordings, such
as current source densities and local field potentials; and
single-cell and large-scale inter-areal oscillations in the
gamma and beta frequency domains, as an expression of the
cognitive processing requirements that are needed to regulate
fast learning and stablememory of brain representations. As a
result of this wide descriptive range, the model proposes
many testable predictions that link these various levels of
brain organization as manifestations of how bottom-up
adaptive filters and top-down expectations may be learned,
matched, and stably remembered during thalamocortical and
corticocortical STDP learning. In particular, the model simu-
lates how specific and nonspecific thalamic nuclei regulate
learning via temporal cycles of match/resonance and mis-
match/reset, wherein learning is facilitated during match/
resonance states and reduced during mismatch/reset states.
The predicted involvement of the nonspecific thalamus in
learning is consistent with lesion studies showing a role for
the nonspecific intralaminar/midline thalamic nuclei in
declarative memory (van Der Werf et al., 2003). Moreover,
Kraus et al. (1994) have shown that the nonspecific thalamic
nuclei, but not the specific thalamic nuclei, show significant
differential activation in states of match vs. mismatch,
consistently with the model prediction that the nonspecific
pathway is sensitive to the degree of mismatch between
bottom-up and top-down cortical signals.

Simulations (Figs. 13c–e) and experimental results (Crab-
tree and Isaac, 2002; Fig. 13a) show that the nonspecific
thalamic nuclei innervating different cortical areas compete
via TRN-mediated inhibitory interactions. The model predicts
that competition in the nonspecific pathway does not inter-
fere with bottom-up processing in the specific pathway, but
rather transiently decreases the activation of some layer 5
cells, therefore preventing the corresponding cortical area
from further influencing thalamic and cortical areas in the
cortical hierarchy. The model suggests that this mechanism
might be a subcortical substrate of cross-modality switching
and competitive deployment of attentional resources. This
prediction complements the observation (Zeki and Shipp,
1988; Sillito et al., 1994) that top-down, layer 6-mediated
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attention has similar modulatory effects on target cortical and
subcortical areas even in the absence of bottom-up input
(Grossberg, 1999a; Raizada and Grossberg, 2003). In particular,
simulation results (Figs. 9a and b) show how layer 6-mediated
top-down corticothalamic feedback causes both fast priming
excitation and slower inhibitory effects, as has been reported
in experimental data (Jones, 2002).

A novel role for the neurotransmitter acetylcholine is
postulated, linking levels of cortical ACh release to layer 5
excitability and layer 4 reset. Experimental results (Singer and
Rauschecker, 1982; Kilgard andMerzenich, 1998) andmodeling
work (Hasselmo, 1993; Sánchez-Montañés et al., 2000) have
shown that cholinergic modulation is an essential ingredient
in cortical plasticity. The model predicts how strong ACh
release, such as during repeated mismatches, or as a
consequence of an environmental stressor, can influence the
sharpness of the neural code, by altering the degree of match
required for bottom-up and top-down matches to prevent
reset. Lower levels of ACh favors coarser codes, because higher
levels of mismatch can be tolerated by the system, thereby
enabling more variable bottom-up input patterns to be
associated with the same active recognition category without
causing recoding.

Themodel for the first timemechanistically links cognitive
mechanisms with brain oscillations, notably in the gamma (γ)
and beta (β) frequency ranges, recorded from a variety of cor-
tical and subcortical structures. Kopell et al. (2000) proposed
that γ and β oscillations might subserve different functional
roles. Their simulations showed that β oscillations are more
robust in synchronizing areas separated by larger transmis-
sion delays, whereas γ oscillations tend to be dispersed when
significant delays are interposed. Olufsen et al. (2003) have
shown that β oscillations allow a different separation between
“leading” and “suppressed” cell assemblies than do γ oscil-
lations. Gamma oscillations promote a sharp dichotomy
between active/inactive assemblies, a situation similar to a
“choice”. The SMART model shows how β oscillations can
become a signature of modulatory top-down feedback and
reset. Top-down processing, in both experimental and model
results (Fig. 16), shows prevalence of lower-frequency oscilla-
tions, consistent with their modulatory nature (Olufsen et al.,
2003) and their computational role of priming (Raizada and
Grossberg, 2003; Siegel et al., 2000). In accordance with the
present results, a computational study by Siegel et al. (2000)
has shown that top-down feedback is accompanied by an
overall increase of power in the low-frequency domain in the
target neural population.

The SMART model extends previous modeling work by
explaining how gamma oscillations emerge whenmodulatory
top-down expectations are matched by consistent bottom-up
input patterns. Such a match allows cells to more efficiently
cross their spiking threshold to fire action potentials, leading
to an overall increase in local gamma frequency synchroniza-
tion among cells sharing common top-down priming
modulation.

The SMARTmodel also links the role of different oscillation
frequencies with STDP. Learning episodes tend to be restricted
to match conditions, when on average presynaptic and
postsynaptic cells spike within 10–20 ms, namely within the
STDP learning window, consistent with experimental results
(Wespatat et al., 2004). The model predicts that STDP further
reinforces synchronous activation of related cortical and
subcortical areas, and that the effect of spurious synchroniza-
tions on long-termmemoryweights in a fast learning regimen
can be prevented or rapidly reversed by a synchronous
resonance during a match state. Gamma oscillations, ampli-
fied in case of a match, may favor propagation of spikes
through the cortical hierarchy by packing pre-synaptic spikes
within a narrow temporal window. This prediction is con-
sistent with the observation that the efficacy of pairs of pre-
synaptic LGN spikes on generating post-synaptic activation in
the visual cortex falls off rapidly in time with the increase of
the interspike interval (Usrey, 2002).

The different oscillation frequencies associated with
match/resonance (gamma frequency) and mismatch/reset
(beta frequency) link these frequencies not only to selective
learning, but also to the active search process that can
discover cortical substrates upon which to base new learning.
The fact that mismatch is also predicted to be expressed in
components of the N200 ERP points to new experiments that
combine ERP and oscillation frequency as indices of the
cognitive processes that actively regulate learning.

SMARTpredicts how the nonspecific thalamic nucleusmay
play a crucial role in processing match/mismatch of sensory
information and cortical expectations. However, the nonspe-
cific thalamic nucleus is not the only structure involved in
processing novelty. The hippocampus has long been impli-
cated as a neural substrate that is sensitive to stimulus
novelty; e.g., Deadwyler, West, and Lynch (1979), Deadwyler,
West, and Robinson (1981); O'Keefe and Nadel (1978); Otto and
Eichenbaum (1992); Vinogradova (1975); see Kumaran and
Maguire (2007a) for a review. Previous modeling work (Gross-
berg and Schmajuk, 1989; Grossberg and Merrill, 1992, 1996)
has proposed how the hippocampus may modulate recogni-
tion learning and reinforcement learning by an adaptively-
timed inhibition of orienting responses in delayed non-match
to sample paradigms where both temporal delays between
cues and novelty-sensitive recognition processes are involved.
This proposed role of the hippocampus as a structure involved
in bridging temporal gaps between temporally-disjoint repre-
sentations is consistent with animal (Solomon et al., 1986) and
human (Clark and Squire, 1998; Büchel et al., 1999) studies
showing that the hippocampusmaymaintain amemory trace
between the offset of the conditioned stimulus and the
delayed onset of the unconditioned stimulus to enable
associative learning in trace conditioning. The hippocampus
has also been related to sequence novelty, a type of associative
novelty where familiar items appear in a new temporal order
(Kumaran and Maguire, 2007b).

SMART explains data consistent with the hypothesis that
fine-grained matches between bottom-up sensory informa-
tion and top-down cognitive expectations may occur in the
thalamocortical system. The hippocampal role in adaptive
timing, spatial navigation, and declarative (notably, episodic)
memory supplements the thalamocortical system with tem-
porally and spatially-related expectations (cf. Gorchetchnikov
and Grossberg, 2007). When these hippocampal processes are
dependent on sensory and cognitive recognition events, the
hippocampus might be a recipient, rather than a generator, of
a mismatch response. This hypothesis is consistent with
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anatomical data showing connections from nonspecific tha-
lamus to hippocampus (Pakhomova, 1981). The MMN litera-
ture provides additional evidence that an early generator of
mismatch is located in the nonspecific thalamic nucleus
(Kraus et al., 1994). This hypothesis is partially supported by a
recent ERP study where Rosburg et al. (2007) recorded from
human hippocampus and rhinal cortex in an oddball para-
digm. Both in the rhinal cortex and hippocampus, the
amplitudes of ERP components elicited by deviants exceeded
those of standard tones. The study showed a negative
component in the rhinal cortex with a latency of about
200 ms and a positive component with a latency of about
400 ms, and a large negative component in the hippocampus
with a latency of about 300–400 ms. The authors concluded
that, based on the temporal order of deviance-related ERP
activity, “…the information of sound deviance goes from the
auditory cortex via the rhinal cortex to the hippocampus” (p.
7). These findings are consistent with the proposal that
sensory mismatches occur early in the thalamocortical
system, but further studies are needed to systematically
explore the relative timing of novelty-generated signals in
the thalamus and hippocampus across species, and the
functional differences that these novelty signals represent.

Additional cortical areas, such as the anterior cingulate
cortex (ACC) are known play a role in reward-sensitive error
detection (Bush et al., 2000; Holroyd et al., 2004; Luu and
Pederson, 2004). Among other possible functions, ACC may
be activated by reward-sensitive instrumental mismatches and
Fig. 17 – The generic neuron model. The neuron depicted
above is a 3-compartment-cell with a soma, a proximal and a
distal dendrite. Excitatory driving (arrow terminating in the
proximal dendrite,+), modulatory (arrow terminating in the
distal dendrite,+), plastic (half-ellipse terminating in the
distal dendrite,+), as well as inhibitory (rounded arrow
terminating in the soma,−) connections can terminate in each
cell compartment, which are in turn linked by passive
leakage currents (vertical dotted arrows). Electrical coupling
between different cell compartments (gap junctions, GJ) can
also be present (in the figure, in the distal dendrite).
thereby help to reset the active reward-sensitive and action-
sensitive representations that led to predictive failure, much as
mismatches within the nonspecific thalamic nuclei and hippo-
campus may reset a hierarchy of sensory, cognitive, spatial,
timing, and sequential planning-related representations.

Finally, the SMART model advances a computational
framework that allows testing and further development of
how computations on multiple organizational levels in
cortical and subcortical networks of spiking neurons may
provide additional insights into how the brain learns to predict
and control an increasingly complex and changing environ-
ment in a stable way through time.
4. Experimental procedures

4.1. Model overview

The SMART model (Figs. 2 and 3) includes two hierarchically-
organized thalamocortical loops: a first-order primary loop
(analogous to the LGN-V1) and a higher-order loop (analogous
to the PULV-V2). Each thalamocortical loop simulates a 1.2mm
thick, 6-layered cortical module with cortical excitatory and
inhibitory neurons, a thalamic nucleus composed of core and
matrix cells (Jones, 2002) and local inhibitory interneurons, and
a GABAergic thalamic reticular nucleus (TRN). The primary
thalamocortical loop also includes a nonspecific thalamic
nucleus.All cortical and subcortical layers are organized in 9×9
neural sheets, with the exception of the nonspecific thalamic
nucleus andmatrix thalamic cells that are simulated as single
populations. Units are implemented as multi-compartment
neurons obeying Hodgkin–Huxley-type dynamics (Hodgkin
and Huxley, 1952). The minimal numbers of compartments
andcurrentsneeded toproduce thedesirednetworkproperties
is used in eachneuron's unbranched cable sections (Rall, 1962).
The model implements online spike-timing-dependent plas-
ticity (STDP) learning (Gorchetchnikov et al., 2005a), and the
plastic synaptic weights, as well as each neuron's compart-
mental currents, are recorded to allow off-line local field
potentials (LFP), current source densities (CSD), and oscillation
frequency/synchrony analysis (Versace et al., 2007). Stimuli are
horizontally or vertically oriented bars that enable testing of
model hypotheses about match/mismatch dynamics and
learning.

4.2. Neuron description

Excitatory neurons (thalamic core, matrix, and nonspecific,
cortical layers 4, 2/3, 5 and 6) and inhibitory interneurons (TRN
and thalamic interneurons, cortical layers 4 and 2/3 inter-
neurons), as well as their connections, were constructed
according to known anatomical and biophysical data from
primarily rats and cats. When unavailable, cell parameters
were chosen in order to obtain the desired functional proper-
ties. Each of the two simulated thalamocortical loops consists
of 732 multi-compartmental neurons (Fig. 17), 2,106 compart-
ments, and is described by 17,415 differential equations. Fig. 18
shows the spatial arrangement and cell sizes of the popula-
tions composing the simulated 1.2 mm thick laminar cortical
sheet.



Fig. 18 – Spatial arrangement and cell sizes of the populations composing the 1.2 mm thick laminar cortical sheet. A
multi-compartment model with a spatially explicit structure allows to calculate trans-membrane currents, which can be
employed to derive aggregate cell recordings such as Local Field Potentials (LFP) and Current Source Densities (CSD). The
activity of dendrites and cell somas of the populations can be recorded by an electrode with variable number of tips (black thick
downward arrow, right). Since each compartment is treated as electrically uniform, the center of the compartment is the
physical point at which the current source/sink is calculated (thick dot at the center of soma/dendrite). Cell bodies and dendrites
are vertically aligned parallel to the recording electrode. For each layer, cells are displaced at random distance from the
recording electrode. The distance of the electrode to the selected cell in the population is drawn from a uniform distribution on
the interval [10–200] μm, whereas the distance to all other cells in the population is drawn from a uniform distribution on the
interval [10–1000] μm. In the figure, only one cell for each population is shown. Abbreviations: L=layer; S=soma; D=dendrite
(D0=proximal dendrite; D1=distal dendrite), INT=interneurons. All measurements are in mm.
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Each compartmental membrane potential V[mV] is de-
scribed by:

CM
dV
dt

¼
X
i

Ii: ð1Þ

In Eq. (1), CM [μF·cm2] is the membrane capacitance. Ionic or
chemically-gated channels and inter-compartmental currents
are described by the current density Ii [μA/cm2] equation:

Ii ¼ gCh VEQ � V
� �

; ð2Þ

where the channel conductance gCh and the equilibrium vol-
tage VEQ [mV] change according to the nature of the current.
Inter-compartmental currents from compartment m to com-
partment l are described by Eq. (2), where gCh=gmlDl/4Ll2

[kΩcm], gml is the conductance between compartments m and
l, Dl [mm] and Ll [mm] are the diameter and length of mem-
brane compartment l, respectively, and VEQ=Vm and V=Vl

are potentials of the neighboring compartments. Table 3
lists dimensions, passive cable properties, and ionic channels
(such as sodium (Na++), potassium (K+) and leakage channels)
parameters.

In chemically gated channels (AMPA, GABA, etc.) between
neurons j and k, VEQ=Ei[mV] is the reversal potential of the
channel, and the conductance gCh=wjk ḡjk g(t), where wjk is
the synaptic weight connecting neurons j and k, and ḡjk [pS] is
the maximal channel conductance of the synaptic weight wjk.
The synaptic weightwjk ¼ Ni

pDL
106
cm2

h i
corresponds to the density of

receptors (millions of channels per membrane cm2). The con-
ductance g(t) is defined as a dual exponential factor describing
the time course of the excitatory or inhibitory post-synaptic



Table 3 – Dimensions, passive cable properties and ionic channels parameters of each cellular stage of the thalamocortical
circuit

Cell Compartment
diameter

Compartment
length

Axial
resistance

EL gL gNa gK gCa

Units mm mm KΩ cm mV mS/cm2 mS/cm2 mS/cm2 mS/cm2

First-order thalamic relay
Soma 0.05 0.06 8 −60 0.01 100 100 –
Dendrite 0 0.005 0.008 8 −60 0.01 – – 10
Dentric 1 0.005 0.008 8 −60 0.01 – – 10

First-order thalamic (matrix)
Soma 0.05 0.06 8 −60 0.01 100 100 –
Dendrite 0 0.005 0.008 8 −60 0.01 – – 10
Dentric 1 0.005 0.008 8 −60 0.01 – – 10

First-order thalamic interneurons
Soma 0.02 0.02 60 −49 0.01 50 30 –
Dendrite 0 0.001 0.1 60 −49 0.01 – – –

TRN
Soma 0.05 0.05 10 −69 0.1 100 100 –
Dendrite 0 0.01 0.05 10 −69 0.1 – – 10
Dentric 1 0.01 0.05 10 −69 0.1 – – 10

Thalamic nonspecific
Soma 0.08 0.08 10 −64 0.09 100 100 –
Dendrite 0 0.015 0.1 10 −64 0.1 – – 250
Dentric 1 0.015 0.1 10 −64 0.1 – – 250

Layer 4 Excitory
Soma 0.05 0.05 40 −65 0.01 50 30 –
Dendrite 0 0.01 0.25 40 −65 0.01 – – –

Layer 4 inhibitory
Soma 0.02 0.02 100 −50 0.01 50 30 –
Dendrite 0 0.01 0.05 100 −50 0.01 – – –

Layer 2/3 excitory
Soma 0.05 0.05 100 −65 0.05 50 30 –
Dendrite 0 0.02 0.225 100 −65 0.05 – – –

Layer 2/3 inhibitory
Soma 0.02 0.02 60 −49 0.01 50 30 –
Dendrite 0 0.01 0.05 60 −49 0.01 – – –

Layer 5
Soma 0.1 0.15 5 −72 0.1 50 30 –
Dendrite 0 0.06 0.4 5 −72 0.03 – – –
Dentrite 1 0.06 0.5 5 −72 0.03 50 30 –

Layer 6-I

Soma 0.08 0.1 80 −70 0.15 50 30 –
Dendrite 0 0.05 0.1 80 −70 0.9 – – –

Layer 6II

Soma 0.06 0.1 25 −64 0.1 50 30 –
Dendrite 0 0.08 0.1 25 −64 0.03 – – –
Dentric 1 0.08 0.2 25 −64 0.03 – – –

EL and gL represent the leakage currents equilibrium potential and conductance, respectively. Cell morphologies are the same for cells in the
first-order and second-order thalamocortical loop.
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potentials (EPSP and IPSP, respectively) triggered by the pre-
synaptic spike:

g tð Þ ¼

p
sf � sr

e
� t

sf � e�
t
sr

� �
if sf p sr

t
sf
e

1� t
sf

� �
if sf ¼ sr

;

8>>><
>>>:

ð3Þ

where t is the time since the onset of a pre-synaptic spike, p is a
normalizing coefficient that ensures:

max
p

sf � sr
e
� t

sf � e�
t
sr

� � !
¼ 1 ð4Þ
and τr and τf are the EPSP and IPSP rise and fall time constants,
respectively. See Supplementary Table 4 online for parameters
of chemically-gated channels.

Unless otherwise specified, simulations were implemented
in a full first-order thalamocortical sector including a six-
layered cortical structure (V1), a TRN sector, a first-order
thalamic nucleus (LGN), and a nonspecific thalamic nucleus.
Eqs. (1)–(27) and (29) below describe the cell properties of the
first-order thalamocortical sector, whereas Eq. (28) is used only
in producing the results illustrated in Figs. 12 and 19. The
passive properties of the cells describing each cellular stage in
the first-order thalamocortical sector are listed in Table 3,



Fig. 19 –AHP-controlled inhibitory currents are spike-dependent. (a) Effect of cell spiking frequency on themembrane potential
in the presence of AHP. Themembrane potential of an isolated layer 5 pyramidal cell is plotted after emitting one (dotted trace)
or two (continuous trace) spikes. Stimulation was induced by a 10 ms current injection until one or two spikes were generated.
In order to allow direct comparison of themembrane voltage, the second spike in the “two-spikes” condition and the only spike
in the “one-spike” condition were aligned for comparison. (b) Magnification of (a) shows the different time course and
amplitude of themembrane potential in the two conditions. (c) Higher firing rates, caused by higher currents injections of 24, 33,
40, and 60 mV cause longer-lasting and deeper cell hyperpolarization, almost fully recovering after 500 ms. (d) Firing rate
(output) vs. input intensity (voltage clamp of 3, 9, 15, 24, 33, 40, 60, 72, 77 mV) in a pyramidal cell with (black) and without (red)
AHP. Firing rates of cells with active AHP are generally lower from thosewith blockedAHP. Cells with active or inactive AHP also
differ on the shape by their input/output function.
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whereas chemical and electrical synapses properties are listed
in the Supplementary Table 4 online. Simulations of isolated
cells in the network are performed by preserving all passive
electrical properties of the simulated cell as listed in Table 3,
whereas all synaptic conductances of other cell stages are set to
zero to prevent any interaction with the isolated cell. More
details on the simulationmethods for isolatedcells areprovided
in the pertinent figure captions.

4.3. Synaptic plasticity

Plasticity in the synaptic weight wjk modulates the post-
synaptic conductance g ̄jk g(t) by varying the density of post-
synaptic channels, therefore influencing the impact of a spike
on the magnitude of the current Ii. Learning in synaptic
weights obeys a gated learning law (Grossberg, 1980; Gorch-
etchnikov et al., 2005a):

dwjk

dt
¼ kfG Vk; gjk

� �
gjkfN Vkð Þ kw�ww

� �
þw0 �wjk

� �
; ð5Þ

where λ is the learning rate, fG(Vk,gjk) is a gating signal that turns
learning on and off, w⌣ and w⌢ are the minimum and maximum
weight, and w0 stands for the baseline weight achieved when
there is no correlation between presynaptic and postsynaptic
firing. The gating function fG(Vk) is described as:

fG Vkð Þ ¼

Dþ 1 if VkzVh
k

�10 t� sð Þ þ Dþ 1 if sbtbsþ 0:1 ms
�D
25

t� s� 0:1 msð Þ þ D if sþ 0:1 msVtbsþ 25:1 ms
0 otherwise

;

8>>><
>>>:

ð6Þ
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where Vh
k is the spiking threshold potential, t is time, s is the

moment of the postsynaptic spike, and D ¼ kw�w0

� �
=

ww�kw
� �

.
This scaling function is a non-negative function of pre- and
postsynaptic activity and allows synaptic change to occur only
when pre- and postsynaptic cell are simultaneously active. See
Gorchetchnikov et al. (2005a) for the derivation and the detailed
discussion of the rule.

Two forms of gating are used: post-synaptic and dual-AND
gating. Post-synaptic gating, where fG Vk; gjk

� � ¼ Vkð Þ2, is imple-
mented in specific thalamic projections terminating in layer 4
(bottom-up adaptive weights) and allows the winning layer 4
cells to learn the LGN spatio-temporal pattern of activation.
Dual-AND gating, where fG Vk; gjk

� � ¼ gjk Vkð Þ2, is implemented
in layer 6II projections terminating in the specific thalamus and
in layer 1 apical dendrites of layer 5 cells of a previous cortical
stage (top-down adaptive weights). This gating allows V2 layer
6II cells sending feedbackprojections toV1 layer 5 cells toprime,
and then learn the activation pattern of, active layer 5 cells.

4.4. Neurotransmitter release

The neurotransmitter released by the pre-synaptic terminal
scales the EPSP or IPSP triggered at the post-synaptic site. The
accumulation and depletion (inactivation, habituation) of
neurotransmitter zjk at a synapse between neurons j and k is
described by (Grossberg, 1980):

dzjk
dt

¼ B� zjk
� �

s
� ed tð Þzjk; ð7Þ

where B=1 is the target level of neurotransmitter at rest,
0bεb1 is the depletion coefficient that can scale the amount of
neurotransmitter released at every spike, and 0.1bτb500 is the
recovery rate (in ms) regulating the rate of neurotransmitter
accumulation. A spike δ(t) is defined as:

d tð Þ ¼ 1 if V tð Þb0 and V t� Dtð ÞNVh

0 otherwise ;

�
ð8Þ

where V (t) is the soma membrane voltage at time t, Vθ is the
voltage threshold that is invariably crossed during spikes
(30 mV), V(t−δt) is the soma membrane voltage at time t−δt
that precedes the soma voltage crossing 0 mV. In Eq. (7), the
neurotransmitter zjk accumulates towards B at a rate inversely
proportional to the recovery rate τ, and habituates, or is
depleted, by �ed tð Þzjk every time a spike occurs. Neu-
rotransmitter depletion allows the EPSP and IPSP to be multi-
plicatively gated by the amount of neurotransmitter available,
while still ensuring that 0bgjkzjkbB (for all simulations, B=1).
Fig. 11 shows how neurotransmitter level varies with different
values of ε and τ and different pre-synaptic firing frequencies.

4.5. Ionic currents

Potassium (K+) and Sodium (Na++) currents Ik and INa in Eq. (1)
are derived from Traub and Miles (2001), and are described as:

IK ¼ PgKn
4 EK � Vð Þ; ð9Þ

where

dn
dt

¼ a 1� nð Þ � bn; ð10Þ
a ¼ :032 15� Vð Þ
e15�V

5 � 1
; ð11Þ

b ¼ :5e
10� V
40

; ð12Þ

and

INa ¼ m3hPgNa ENa � Vð Þ; ð13Þ

where

dm
dt

¼ a 1�mð Þ � bm; ð14Þ

a ¼ :032 13� Vð Þ
e13�V

4 � 1
; ð15Þ

b ¼ �:28 40� Vð Þ
e40�V

�5 �1
; ð16Þ

dh
dt

¼ a 1� hð Þ � bh; ð17Þ

a ¼ :128e
27�V
18 ; ð18Þ

and

b ¼ 4
e 40�V

5 þ 1
: ð19Þ

For all neurons, EK=−90 mV and ENa=50 mV. Leakage current
Ileak is defined as:

Ileak ¼ � gleakNleak

pDL
V; ð20Þ

where gleak is the conductance of the leakage channel, Nleak
pDL is

the channel density, and Eleak=0 mV.

4.6 Calcium currents in thalamic cells

Low-Threshold T-Type currents (Destexhe, 2000) are implemen-
ted in thalamicmatrix, core, TRNandnonspecific thalamiccells,
and are described as:

ICa ¼ PgCam
3h ECa � Vð Þ; ð21Þ

where

dm
dt

¼ 1
sm

ml �mð Þ; ð22Þ

sm ¼ 1
e�63�V

7:8 þ 1
; ð23Þ

ml ¼ 2:44þ 2:506d10�2e�9:84d10�2V ; ð24Þ

dh
dt

¼ 1
sh

hl � hð Þ; ð25Þ

sh ¼ 1
�83�V
6:3 þ 1

; ð26Þ

and

hl ¼ 19:5þ 7:171d10�2e�10:54d10�2V : ð27Þ
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For all neurons with Ca++ currents, PgCa ¼ 250 mS=cm2, and
ECa=180 mV.

4.7. Cholinergic modulation and after-hyperpolarization
currents (AHP)

Pharmacological and physiological studies have demonstrated
that ACh has facilitatory effects on cortical pyramidal neurons
(McCormick and Prince, 1985), and rat cortical layer 5 cells seem
to be a preferential target for cholinergic innervation (Turrini et
al., 2001). The known electrophysiological excitatory action is
thought to be mediated by binding of ACh to muscarinic and/or
nicotinic receptors on pyramidal neurons. This causes a
reduction of membrane K+ conductance in cortical neurons,
enhancing depolarization in response to glutamatergic input
(McCormick and Prince, 1985) and reducing spike adaptation
due to the after-hyperpolarization current (AHP, Hille, 2001)
based on a slow and long-lasting increase in K+ conductance.

AHP and its modulation by acetylcholine are modeled by:

Ii ¼ gCh VEQ � V
� �

;

where the AHP current conductance gCh ¼ g⁎PgAHPg tð Þ is modu-
lated by the conductance g⁎ controlled by the cholinergic
presynaptic spike, and PgAHP[nS] is the maximal K+ conduc-
tance of the AHP channel. The AHP conductance g(t) is
described by Eq. (3):

g tð Þ ¼

p
sf � sr

e
� t

sf � e�
t
sr

� �
if sf p sr

t
sf
e

1� t
sf
Þ if sf ¼ sr

�
8>>><
>>>:

where t is time since the action potential of a modulatory cell;
p is the scaling coefficient described in Eq. (4). For the AHP used
in these simulations τ r and τ f, namely the rise and fall time
constants, respectively, are τ r=80 ms and τ f=100 ms. The K+

channels responsible for the AHP are opened by any cell's
axonal output. If there is no spike, t=∞, therefore g=0. If there
is a spike, t=0, causing g to rise. The effect of a cell's spike on
the soma membrane potential in the presence of AHP is
illustrated in Fig. 19.

The cholinergic modulation conductance g⁎ is described by

g⁎ ¼
1� p

sf � sr
e
� t

sf � e�
t
sr

� �
if sf p sr

1� t
sf
e

1 � t
sf

� �
if sf ¼ sr

;

8>>><
>>>:

ð28Þ

where τr=5 ms and τf=6 ms, and t is the time since the pre-
synaptic cholinergic cell spikes (nucleus basalis of Maynert).
These simulations investigate only the fast cholinergic dy-
namics, and donot address longer-lasting effect of ACh on target
neural populations (Hasselmo, 1995). The cholinergic input acts
by closing the normally open gate g⁎, therefore limiting the total
AHP conductance when ACh modulation is active.

4.8. Network connectivity

Connections between and within cell populations link a pre-
synaptic cell with a given postsynaptic cell compartment tar-
get of the axonal projection, and can be categorized as: 1-to-1,
1-to-many, or many-to-1 projections. Synaptic weightswij can
be defined between and within layers according to:

wij ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2pr2

p e� x�Að Þ2=2r2 ; ð29Þ

where μ is the mean and σ is the standard deviation. Each
axonal pathway can be considered as a delay line, which adds
an additional component of delay between pre- and post-
synaptic spike, aside from the time required by EPSPs to trigger
an action potential. Axonal delays were chosen to be con-
sistent with both known transmission delays in cortical and
subcortical areas, and with the spatial conformation of the
model, and are summarized in Supplementary Table 4 online.
In general, inhibitory to excitatory connections have small
delays, intra-cortical feedforward connections have longer
delays (Dinse and Kruger, 1994), and feedback connections
(both corticocortial and corticothalamic) have even longer
delays (Schmolesky et al., 1998; Miller, 1996).

The model accounts for the driving vs. modulatory nature
of synaptic connections by exploiting both the magnitude of
the synaptic weight and the passive neuron cable properties.
An EPSP occurring at the distal dendrite tends to be attenuated
with respect to the one occurring at the proximal dendrite or
the soma depending on compartmental length and diameter.
Inter-compartmental currents are described by Eq. (2), where
gCh=gml ·Dl/4Ll2 [kΩ⁎cm], and where VEQ and V represent the
voltage of neighboring compartments. The longer and smaller
the dendrite, the more attenuated the post-synaptic current
will be at the soma. Differential dendritic termination and
synaptic weight magnitudes can be used to simulate the
proposed functional differentiation between driving, large,
round (R-type) thalamic vesicles occurring at retinothalamic
and thalamocortical synapses, and elongated, small vesicles
that characterize many corticothalamic terminations (Rock-
land, 1998; Sherman and Guillery, 2001). Elongated and round-
type synapses also widely occur a the level of corticocortial
synapses (Rockland, 2002). Besides the different morphology
of synaptic boutons, inputs to thalamic relay cells are not
distributed evenly on their dendrites (Guillery, 1969; Wilson et
al., 1984; Erişir et al., 1997). Retinal and parabrachial inputs are
limited to proximal dendrites, while cortical inputs are located
more distally. The SMART model captures these morphologi-
cal and functional characteristics by concentrating driving
connections in proximal dendrites, and modulatory connec-
tions with smaller synaptic weights in distal dendrites of the
target cell. These characteristics are realized between neurons
in the on-center/off-surround architecture implemented by
inhibitory interneurons in cortical and thalamic areas.

4.9. Stimuli and initial conditions

Each cell compartment is initialized at the respective resting
membrane potential (see Table 3 online for passive cable
properties and ionic channels conductances). Bottom-up
stimuli consist of static vertical or horizontal bars centered
on the 9×9 receptor grid, and implemented via fixed
depolarizing voltage clamp (holding potential=−12 mV; mem-
brane resting potential/leakage=−60 mV) to 5 vertically or
horizontally aligned thalamic specific relay neurons until a
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stream of action potential is induced at a firing rate of 40 Hz.
When indicated, top-down feedback is induced by injecting a
stimulating current to the soma of a layer 6II cortical cell. A
typical run of themodel consists of 100ms epoch, or 1000ms in
recording of neural synchrony, with the membrane potentials
of all neuronal compartments recorded along with the plastic
synaptic weights configuration before and after the run.

4.10. Oscillations analysis

Power analysis of single or collective neural signals allows the
extraction of information contained in different frequency
ranges. Where indicated, analysis of 1000 ms epochs is
performed separately in three different frequency ranges: 2–8
(delta and theta, δ and θ), 8–10 (alpha and beta, α and β) and 20–
70 Hz (gamma, γ). The mean firing rate is subtracted from the
data, and a Hamming window of 200 ms is applied to smooth
the resulting values. The results are then Fourier transformed
and multiplied with the complex conjugate (cross- and auto-
components), and the inverse transformation is performed for
selected, continuous frequency bins (corresponding to one
‘‘band'’). In this way, it is possible to reconstruct a time-
averaged firing rate for selected frequency ranges. These values
can then be used to compute cross- and auto-correlations at
different frequency ranges (Von Stein et al., 2000).

4.11. Local Field Potential and Current Source Density
analysis

Cortical LFP and CSD are recorded via a simulated 54-tip-
electrode. The distance of the electrode to the selected cell in
the population is drawn from a uniform random distribution in
the interval [10–200] μm, whereas the distance to all other cells
in the layer is drawn from a uniform randomdistribution in the
interval [10–1000] μm. An extracellular inward current flow
towards the interior of the cell creates a current sink, while an
outside flow creates a current source in a particular membrane
section. Assuming an extracellular fluid with constant con-
ductance, the potential generated by such current dipole is:

Ve ¼ 1
4pr

Iþ

rþ
þ I�

r�

� �
; ð30Þ

where I-s and r-s are currents and distances between the
electrode and the point where the respective current flows
through the membrane (approximated by the center of the
compartment), respectively,+ and − mark the attributes of
source and sink, respectively, and σ=15 [mS/cm] is the
extracellular conductivity. In the case of more complex cells
with many possible sources and sinks, Ve becomes:

Ve ¼ 1
4pr

X
l

Il
rl
: ð31Þ

Compartmental trans-membrane currents Il[μA] are ex-
pressed in terms of:

Il ¼ JlSl ¼ � glDl

4L2l
Vl � VlF1ð Þ 2

pD2
l

4
þ pDlLl

� �

¼ � glpD2
l

4L2l
Vl � VlF1ð Þ Dl

2
þ Ll

� �
: ð32Þ
Since CSD and LFP can be measured with multiple
electrodes, for each electrode tip the distance rl to the
compartment center is different. CSD is calculated both in
experimental studies and in the present work by linear
approximation of the second derivative of the voltage:

CSD ¼ Veþ1 þ Ve�1 � 2Ve

Dx
; ð33Þ

where Δx is the distance between neighboring electrode tips.

4.12. Simulation environment

The model is implemented in KInNeSS (KDE Integrated
NeuroSimulation Software, www.kinness.net), a software
package that allows the simulation of single neurons with
multiple compartments as well as large networks of such
elements (Versace et al., 2007). All off-line data analysis is
implemented in Matlab (Mathworks Inc.). Simulations are run
on 2.80 GHz Intel CPU, 1 GB of RAM, under Linux operating
system. The network is described in Neuro Markup Language
code (NeuroML, http://www.neuroml.org/). NeuroML is a
variation of XML designed for modeling different aspects and
levels of neural systems, from intracellular mechanisms and
ion channel kinetics to the dynamics of networks of recon-
structed neurons. The code is downloadable in the Research
section at http://www.kinness.net/.
Appendix A. Supplementary Table 4

SupplementaryTable4 associatedwith this article canbe found,
in the online version, at doi:10.1016/j.brainres.2008.04.024.
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