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synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use

excitatory matching and match-based learning to achieve fast category learning and whose

learned memories are dynamically stabilized by top-down expectations, attentional focusing,

and memory search. ART clarifies mechanistic relationships between consciousness, learning,

expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN

architectures that unify processes of invariant object category learning, recognition, spatial and

object attention, predictive remapping, and eye movement search, and that clarify how

conscious object vision and recognition may fail during perceptual crowding and parietal

neglect. The generality of learned categories depends upon a vigilance process that is regulated

by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values,

thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic

learning laws support qualitatively different behaviors: Invariant object category learning in the

inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal

cortices during spatial navigation; and learning of time cells in the entorhinal–hippocampal

system during adaptively timed conditioning, including trace conditioning. Spatial and temporal

processes through the medial and lateral entorhinal–hippocampal system seem to be carried

out with homologous circuit designs. Variations of a shared laminar neocortical circuit design

have modeled 3D vision, speech perception, and cognitive working memory and learning. A

complementary kind of inhibitory matching and mismatch learning controls movement.

This article is part of a Special Issue entitled SI: Brain and Memory.
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1. Linking brain mechanisms to behavioral
functions: Unity and complementarity

Einstein famously said that “A scientific theory should be as
simple as possible, but no simpler”. In the case of how brains
learn and remember, the very phrase “the search for the
engram” (Lashley, 1950, 1960; Thompson, 1976) invokes a
simplicity that may be too simple tomeet the adaptive demands
that are placed on advanced brains by ever-changing and often
unpredictable environments. Before the proper level of simpli-
city can be asserted with conviction, a linkage needs to be made
between brain mechanisms of learning and memory and the
behavioral functions that they realize.

Lashley (1950, 1960) already realized that the substrates of
learning and memory are distributed throughout many parts of
the brain. However, being distributed does not necessarily imply
being mechanistically similar. The current article reviews the
conclusion drawn from neural models of learning and memory
that, at least when one links brain mechanisms to behavioral
functions, it seems that there is no single engram.

One reason for this is that different behavioral functions
sometimes require computationally complementary brain mec-
hanisms (Grossberg, 2000). It is argued below, for example,
that brain mechanisms in the What cortical stream for
learning categories for object recognition and spatial naviga-
tion are complementary to motor mechanisms in the Where
cortical stream that control the movements needed to reach
and manipulate these objects.

Despite the need for complementarity, there seem to none-
theless be some remarkable unities in the brain mechanisms
that underlie very different functions. These include the
mechanisms that are used to represent objects in the infero-
temporal and prefrontal cortices (Cao et al., 2011; Carpenter and
Grossberg, 1987, 1993; Chang et al., 2014; Grossberg, 1980; Fazl
et al., 2009; Foley et al., 2012) and space and time representations
in the entorhinal–hippocampal system (Grossberg and Merrill,
1992, 1996; Grossberg and Schmajuk, 1989; Grossberg and Pilly,
2012; Pilly and Grossberg, 2012; Mhatre et al., 2012). The compu-
tational homology between spatial and temporal representations
has inspired the term neural relativity (Gorchetchnikov and
Grossberg, 2007; Grossberg and Pilly, 2012).
Fig. 1 – Complementary What and Where cortical processing
streams for spatially-invariant object recognition and
spatially-variant spatial representation and action,
respectively. Perceptual and recognition learning use top-
down excitatory matching and match-based learning that
achieves fast learning without catastrophic forgetting.
Spatial and motor learning use inhibitory matching and
mismatch-based learning that enable rapid adaptation to
changing bodily parameters. IT¼ inferotemporal cortex,
PPC¼posterior parietal cortex. See text for details.
[Reprinted with permission from Grossberg (2009).]
2. Learning and memory by complementary
cortical streams for recognition and action

Both perceptual/cognitive and spatial/motor processes undergo
learning and memory. Neural models of these processes
have proposed, and many experiments have supported, the
hypothesis that perceptual/cognitive and spatial/motor pro-
cesses often use different learning and memory laws to carry
out their disparate behavioral functions.

2.1. Excitatory match learning vs. inhibitory mismatch
learning

As summarized in Fig. 1, perceptual/cognitive processes in
the What ventral cortical processing stream often use excita-
tory matching and match-based learning to create predictive
representations of objects and events in the world. This kind of
learning enables humans and other sufficiently advanced
animals to rapidly learn new facts without being forced to just
as rapidly forget what they already know. Such a competence
was invaluable in the dangerous world in which our ancestors
evolved. It is also useful in our advanced societies today, since it
enables us to confidently go out into the world without fearing
that, in learning to recognize new information, such as a face,
we will suddenly forget other useful information, such as the
faces of our family and friends. This is sometimes called the
problem of catastrophic forgetting.

Grossberg (1980) has called the problem whereby the brain
learns quickly and stably without catastrophically forget-
ting its past knowledge the stability–plasticity dilemma. Solving
this problem during perceptual and cognitive development
and learning was one of the main motivations behind the
discovery of Adaptive Resonance Theory, or ART. The stabi-
lity–plasticity dilemma must be solved by every brain system
that needs to rapidly and adaptively respond to the flood of
signals – the “blooming buzzing confusion” of James (1890) –
that subserves even the most ordinary experiences. If the
brain’s design is parsimonious, then similar design principles
should operate in all brain systems that can rapidly learn
yet stably remember an accumulating knowledge base in
response to changing conditions throughout life. The discov-
ery of such principles should clarify how the brain unifies
diverse sources of information into coherent moments of
conscious experience. ART describes several of these princi-
ples and the neural mechanisms that realize them.

Match-based learning solves the stability–plasticity dilemma
and is the kind of learning used in ART. Match-based lear-
ning coexists with excitatory matching. Examples of excitatory
matching occur when a learned top-down expectation is suffi-
ciently well matched against a bottom-up input pattern. Such a
match can support a resonant state wherein gain amplification
of the matched pattern, synchronization of the activities that are
amplified, and attentional focusing occur. ART has predicted,
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moreover, that fast learning can occur only during such a
resonant state – hence the term adaptive resonance – and that
“all conscious states are resonant states”. ART hereby predicted a
link between processes of Consciousness, Learning, Expectation,
Attention, Resonance, and Synchrony, the so-called CLEARS
processes. All current experimental evidence seems to be com-
patible with this family of predictions. See Grossberg (2007, 2012)
for reviews.

Although it is predicted that “all conscious states are resonant
states”, it is not predicted that “all resonant states are conscious
states”. Indeed, some resonant states, such as the storage of a
sequence of events in working memory before rehearsal occurs
(see Grossberg and Pearson, 2008 for a review), or the entorhinal–
hippocampal resonances that may dynamically stabilize the
learning of entorhinal grid cells and hippocampal place cells
(see Section 8), are not accessible to consciousness.

2.2. Learning to be an expert in a changing body

Match learning, and by extension ART, does not describe the
only kind of learning that the brain needs to accomplish
autonomous adaptation to a changing world. If only for this
reason, ART is not a theory about “everything”. There are just
as essential, but complementary, spatial/motor processes in
the Where dorsal cortical processing stream that often use
inhibitory matching and mismatch-based learning (Fig. 1) to
continually update spatial maps and sensory-motor gains
as our bodily parameters change through time (Bullock and
Grossberg, 1988; Bullock et al., 1998; Gaudiano and Grossberg,
1991; Georgopoulos et al., 1982, 1986). Indeed, we do not want
the learned spatial representations and motor gains that
controlled our infant bodies to be remembered and used to
control our adult bodies. In this sense, catastrophic forgetting
is a good property during spatial and motor learning.

Inhibitory matching is illustrated by how we make an arm
movement. To make such a movement, a representation of
where the arm is now (its present position vector) is subtracted
from a representation of where we want the arm to move
(its target position vector), thereby computing a difference vector
that represents the direction and distance of movement needed
to attain the target. After moving to the target, the target and
present positions agree, so the difference vector is zero. This sort
of matching is thus inhibitory (Bullock and Grossberg, 1988).

Neither type of matching and learning is sufficient to design
an adaptive autonomous agent, but each is necessary. By
combining these two types of processes together, our brains
can incrementally learn and stably remember perceptual and
cognitive representations of a changing world, leading to a self-
stabilizing front end that solves the stability–plasticity dilemma
and enables us to become increasingly expert in understanding
the world and predicting outcomes in the world. At the same
time, our brains can adaptively update their representations of
where objects are and how to act upon them using bodies
whose parameters change continuously through time due to
development, exercise, illness, and aging.

2.3. Why procedural memories are not conscious

Brain systems that use inhibitory matching and mismatch
learning cannot generate excitatory resonances. Hence, if “all
conscious states are resonant states”, then spatial and motor
representations are not conscious. This way of thinking provides
a mechanistic reason why declarative memories (or “learning
that”), which are the sort of memories learned by ART, may be
conscious, whereas procedural memories (or “learning how”),
which are the sort of memories that control spatial orienting and
action, are not conscious (Cohen and Squire 1980).

2.4. Spatially-invariant recognition vs. spatially
localized action

There is another basic reason why these complementary
What and Where processes need to work together. The What
stream attempts to learn spatially-invariant object categories,
so that a combinatorial explosion does not occur wherein
every view of every object at every position and distance
needs to be represented by a different category.

Indeed, learning in the What cortical stream leads to
recognition categories that tend to be increasingly indepen-
dent of object size and position at higher cortical levels. The
anterior inferotemporal cortex exhibits such invariance (Bar
et al., 2001; Sigala and Logothetis, 2002; Tanaka et al., 1991).
Although how this occurs needs careful discussion (e.g.,
Zoccolan et al., 2007), such object invariance prevents a
combinatorial explosion in memory of object representations
that otherwise would need to be learned at every perceived
size and position. Cao et al. (2011) and Grossberg et al. (2011)
have used ART to simulate recent neurophysiological data
about properties of invariant category learning and recogni-
tion in inferotemporal cortex.

In becoming spatially invariant, recognition categories lose
information about how to direct action towards the locations
in space where desired objects may be found. In contrast, the
Where stream learns spatial maps that do enable us to locate
such desired objects, as well as the movement gains that
enable us to accurately act with respect to them. On the other
hand, Where stream spatial processing gives up information
about which objects are in those spatial locations. Interactions
between the What and Where stream (“What–Where fusion”)
overcome these complementary deficiencies to enable learned
spatially-invariant object representations to control actions
towards desired goals in space (e.g., Brown et al., 2004; Fazl
et al., 2009; Grossberg, 2009), including actions that are learned
by observing a teacher who experiences the world from a
different perspective, by sharing joint attention during social
cognition (Grossberg and Vladusich, 2010).

In summary, because of their different types of matching
and learning, perceptual and cognitive learning provide a
self-stabilizing front end to control the more labile spatial
and motor learning that enables changing bodies to effec-
tively act upon recognized objects in the world.

2.5. Synaptic learning laws that support complementary
computing

Object, spatial, and temporal representations all use a family
of learning laws whose variations are called gated steepest
descent, normalized gated steepest descent, instar, outstar,
fuzzy ART, and adaptive threshold learning laws. These
variations of ART learning laws all support match-based
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learning and excitatory matching. Indeed, when these synap-
tic learning laws are embedded into ART networks, their
learning turns on when resonance occurs, and turns off when
a big enough mismatch occurs between the predicted state
(e.g., a learned top-down expectation) and the actual data
(e.g., a bottom-up input pattern).

The motor representations use variations of vector asso-
ciative map, or VAM, learning laws that support mismatch-
based learning and inhibitory matching (Gaudiano and
Grossberg, 1991, 1992). In VAM learning laws, the difference
vectors that control actions also serve as error signals that
drive the learning process. Just as ART learning laws are
triggered by a context-sensitive state, namely a resonance,
VAM learning laws are modulated by whether or not the
system is in a postural or movement state. Learning during a
fixed posture can adaptively change movement gains to help
achieve desired target positions. Shutting off learning during
movement prevents learning from undermining correctly
calibrated gains. All these movement systems have GO and
STOP, or burster and pauser, signals that can be used to
control the modulatory signals that gate learning off and on.
3. Equations for short-term memory, medium-
term memory, and long-term memory

Despite the need for specialization to accommodate require-
ments such as complementary computing, all of the neural
learning laws that the author has introduced to model a wide
range of behavioral functions, and that are used by many
other modellers, can be characterized using a small set of
equations for short-term memory, or STM; medium-term
memory, or MTM; and long-term memory, or LTM). These
laws are embedded within a somewhat larger number of
modules or microcircuits (e.g., shunting on-center off-sur-
round networks, gated dipole opponent processing networks,
associative learning networks, spectral spacing and timing
networks, difference vector networks, and the like) which, in
turn, are specialized and assembled into modal architectures,
where the term “modal” stands for modality (e.g., archi-
tectures for vision, audition, cognition, cognitive-emotional
interactions, sensory-motor control, and the like).

Modal architectures are less general than a Turing or von
Neumann architecture for general computing, but far more
general than a traditional AI algorithm. They are designed to
be capable of general-purpose self-organizing processing of a
particular modality of biological intelligence. Their particular
specializations of the basic equations and modules have been
selected over the millennia by evolutionary pressures. ART
networks form part of such modal architectures.

Modal architectures, in turn, embody new paradigms
for brain computing, including Complementary Computing
(Grossberg, 2000) and Laminar Computing (Grossberg, 1999).
As noted above, Complementary Computing describes how
the global brain is organized into complementary parallel
processing streams whose interactions generate biologically
intelligent behaviors. Laminar Computing describes how and
why the cerebral cortex is organized into layered circuits
whose specializations can support all forms of higher-order
biological intelligence. ART networks are embodied in
laminar cortical circuitry for vision and visual object recogni-
tion; audition, speech, and language; cognitive information
processing; and cognitive-emotional dynamics.

Grossberg (1968c, 1969a, 1969b) introduced laws of STM,
MTM, and LTM that are used, with suitable variations and
specializations, in many contemporary neural models,
including ART architectures. One variant of them is:
3.1. STM: Short-term memory dynamics of fast cellular
activation and inhibition

dxi
dt

¼ �Axi þ ðB�CxiÞ

� Ii þ ∑
n

k ¼ 1
f kðxkÞykDkizki

" #
� Eþ Fxið Þ Ji þ ∑

n

k ¼ 1
gkðxkÞYkGkiZki

" #
:

ð1Þ
This equation describes the activity, or potential, xi, of the

ith cell (population) in a network of n interacting neurons. It
includes both the Additive and Shunting models that were
introduced in Grossberg (1968c, 1969a). In the shunting
model, the parameters Ca0 and Fa0: The parameter E¼ 0
when there is “silent” shunting inhibition, whereas Ea0
describes the case of hyperpolarizing shunting inhibition.
In the Additive model, parameters C¼ F¼ 0: The excitatory
interaction term Ii þ∑n

k ¼ 1f kðxkÞykDkizki
� �

describes an external
input Ii plus the total excitatory feedback signal ∑n

k ¼ 1f k
�

ðxkÞykDkizki� that is a sum of signals from other populations
via their output signals f kðxkÞ. These output signals are often
interpreted in terms of the spiking frequencies that are
generated by potential xk. The term Dki is a constant connec-
tion strength between cell populations k and i, whereas terms
yk and zki describe MTM and LTM variables, respectively.
The inhibitory interaction term Ji þ∑n

k ¼ 1gkðxkÞYkDkiZki
� �

has a
similar interpretation.

Eq. (1) assumes “fast inhibition”; that is, inhibitory inter-
neurons respond instantaneously to their inputs. Slower
finite-rate inhibition, with activities Xi that are computed by
inhibitory interneurons, uses an equation like (1) to describe
the temporal evolution of the inhibitory activities. The output
signals from these inhibitory interneurons provide the inhi-
bitory feedback signals to the excitatory activities. With slow
inhibition, the inhibitory feedback signals would be gkðXkÞ
instead of gkðxkÞ:
3.2. MTM: Habituative transmitter gates and depressing
synapses

dyi
dt

¼HðK�yiÞ�Lf kðxkÞyk: ð2Þ

Eq. (2) describes how the strength yi of the habituative
transmitter gate, or depressing synapse (Abbott et al., 1997), or
dynamic synapse (Tsodyks, Pawelzik, and Markram, 1998), in
the excitatory feedback term of (2) accumulates at a fixed rate
H to its maximum value K via term hðK�yiÞ and is inactivated,
habituated, or depressed via a mass action interaction
between the feedback signal f kðxkÞ and the gate concentration
yk: The mass action term may be more complex than this in
some situations; e.g., Gaudiano and Grossberg (1991, 1992).
The habituative transmitter gate Yk in the inhibitory feedback
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term of (1) obeys a similar equation. It should be noted that
not all signals are habituative.

3.3. LTM: Gated steepest descent learning combines
Hebbian and anti-Hebbian properties

dzij
dt

¼Mf iðxiÞ hjðxjÞ�zij
� � ð3Þ

and

dzij
dt

¼Mf jðxjÞ hiðxiÞ�zij
� �

: ð4Þ

Eq. (3) describes the outstar learning equation, by which an
ith source cell can sample and learn a distributed spatial
pattern of activation across a network of sampled cells. When
the gating signal f iðxiÞ is positive, the adaptive weights zij can
learn about the activity-dependent signals hjðxjÞ across the
sampled network of cells. Then each zij converges via term
hjðxjÞ�zij
� �

to a time-average of the signals hiðxiÞ at a rate
determined by f iðxiÞ. As a result, zij can either increase or
decrease through time while tracking hiðxiÞ. This tracking
operation is called steepest descent; hence the general name
of such a learning law: gated steepest descent. When the gating,
or sampling, signal f iðxiÞ equals zero, then neither learning
nor forgetting can occur.

Eq. (4) describes another variant of learning by gated
steepest descent; namely, the instar learning equation, by
which the adaptive weights zij that abut the jth target cell
can, when f jðxjÞ is positive, sample and learn the distributed
pattern of signals hiðxiÞ that are passing through their
synapse. The adaptive tuning of these weights converts term
∑n

k ¼ 1f kðxkÞykDkizki in (1) into an adaptive filter whereby an
input pattern can more effectively activate the cells that were
able to sample it during prior learning. This is the learning
equation that was used in the competitive learning and self-
organizing map models in Grossberg (1976a, 1978), and later
applied by Kohonen (1984). The catastrophically unstable
memories of competitive learning and self-organizing maps
in response to dense non-stationary series of input patterns
led to the introduction of ART as a way to dynamically
stabilize learned memories using matching and attentional
focusing by top-down expectations upon bottom-up input
patterns.

There are many variations of these gated steepest descent
equations that are been used in networks that support
different behavioral functions; e.g., normalized gated steepest
descent, doubly-gated learning, spike-timing dependent
learning, etc. It should also be noted that not all connections
are adaptive. Variations of the following normalized instar
learning law have been used to learn maps of orientation
and ocular dominance in cortical area V1 (Grossberg and
Seitz, 2003; Grossberg and Williamson, 2001), grid cells and
place cells in the entorhinal cortex and hippocampal cortex,
respectively (Grossberg and Pilly, 2012, 2014; Mhatre et al.,
2012), and recognition categories in the inferotemporal cortex
(Carpenter and Grossberg, 1987, 1993):

dzij
dt

¼Mf jðxjÞ hiðxiÞðA�zijÞ�zij ∑
ka i

hðxkÞ
" #

: ð5Þ
In (5), the term �zij ∑
ka i

hðxkÞ describes a competition for

synaptic activity by other signals converging on the jth cell.
Rewrite (5) as

dzij
dt

¼Mf jðxjÞ AhiðxiÞ�zij∑
k
hðxkÞ

#
;

"
ð6Þ

and then as

dzij
dt

¼Mf jðxjÞ∑
k
hðxkÞ

AhiðxiÞ
∑
k
hðxkÞ

�zij

2
64

3
75: ð7Þ

The sum zi ¼∑
j
zij over all the weights zij in (7) that converge

onto the jth cell obeys:

dzi
dt

¼Mf jðxjÞ∑
k
hðxkÞ A�zi½ �: ð8Þ

Eq. (8) shows that the total synaptic weight zi converges to
A, and thus is normalized with a value that is independent of
the total number of connections that abut the jth cell. This
property is often called conservation of total synaptic weight.

This sort of learning law is experimentally supported by
data about the competition among developing axons that abut
a target neuron for limited target-derived neurotrophic factor
in order to survive (Cabelli et al., 1995, 1997; Purves, 1988), and
about the conservation of total synaptic weight by balanced
synaptic depression and potentiation (Royer and Pare, 2003).
4. When learning is not Hebbian: Combining
LTP and LTD

4.1. Gated steepest descent learning

As noted above, gated steepest descent learning weights
can increase (long-term potentiation, or LTP) or decrease
(long-term depression, or LTD) during the learning process.
One reason for this assumption is that these weights learn
about distributed patterns of inputs across a network, as was
first mathematically proved in Grossberg (1968a, 1968b), not
just about a single input through a single connection between
pairs of cells, as postulated by Hebb (1949).

If the initial value of a weight that learns by gated steepest
descent is smaller than the activity in a pattern that it is learning,
then the weight will increase during learning (LTP). However, if
the initial weight value is larger than the activity in a pattern that
it is learning, then the weight will decrease during learning (LTD).
Likewise, if two or more patterns are sampled sequentially in
time during learning, one with larger activities and another with
smaller activities at a given cell, then the corresponding adaptive
weight may first increase and then decrease to track the average
of the activities that it samples through time.

Reflecting this difference in the assumed functional units of
learning, Hebb (1949) asserted that adaptive weights can only
increase during learning whenever there is temporally contig-
uous pre- and post-synaptic pairing of inputs. Due to this
property, weights could saturate at their maximum values as
learning trials continue, assuming that all biological computa-
tions, including the computation of adaptive weights, have finite
maximum values. They could then become useless for dealing
with changes in environmental contingencies such as those that
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might require a later reduction of weight. Such a reduction in
weight can occur, for example, during reinforcement learning
when a previously reinforced cognitive-emotional association,
such as a conditioned reinforcer or incentive motivational
adaptive weight, is later extinguished in favor of different
reinforcing contingencies (Dranias et al., 2008; Grossberg, 1972,
1975; Kamin, 1969; Pavlov, 1927).

Despite this basic problem of Hebbian learning, it has
become commonplace for many experimental neuroscien-
tists to reflexively label results about associative learning as
being examples of Hebbian learning. This attribution does not
sufficiently take into account what Hebb actually wrote.

Outstars and instars were the first mathematically defined
neural learning laws to combine both Hebbian (weight increase,
LTP) and anti-Hebbian (weight decrease, LTD) properties, so
that they can they track the patterns with which they are
associated in time. These tracking properties were mathemati-
cally proved in a series of articles in the 1960s and early 1970s
for increasingly complicated learning situations; e.g., for spatial
pattern learning in outstars and recurrent networks (Grossberg,
1968b, 1969a), serial list learning (Grossberg, 1969c; Grossberg
and Pepe, 1971), learning of arbitrarily complicated space-time
patterns (Grossberg, 1969d) as in the case of birdsong
(Hahnloser et al., 2002), and category learning in competitive
learning and self-organizing map models (Grossberg, 1976a).

Instars and outstars were joined at recurrent competitive
networks in Grossberg (1976a) to show how to learn arbitrary
maps from m-dimensional to n-dimensional vectors. In this
universal recoding model, instars use their adaptive filters to
enable the m-dimensional input vectors to selectively acti-
vate category cells as part of a competitive learning or self-
organizing map model, after which the category cells read out
the n-dimensional output vectors that they learn using out-
star learning. This type of instar–outstar map learning
scheme was called counter propagation by Hecht-Nielsen
(1987). ART shows, in addition, how to learn maps whose
adaptive weights are dynamically self-stabilizing, by using
learned top-down expectations from the category cells that
are matched against the m-dimensional input patterns. The
top-down expectations also often use outstar learning; e.g.,
Carpenter and Grossberg (1987).

4.2. Monotonic weights during match-modulated category
learning

As noted above, if adaptive weights could only get larger or
smaller through time whenever temporally contiguous pre-
and post-synaptic inputs were paired, then they could
become “stuck” at maximum or minimum values that may
not adapt to changes in environmental contingencies. How-
ever, some category learning models do posit adaptive
weights that can only change monotonically through time,
such as fuzzy ART and fuzzy ARTMAP (Carpenter et al., 1991,
1992). Because of the monotonic change through time of
these weights, they are guaranteed to converge to a limit. The
problem is to ensure that the limiting values enable useful
category recognition behaviors. Unlike the Hebb rule, this is
ensured by control processes that prevent learning except
when there is a good enough match between a currently
active learned top-down expectation and bottom-up input
pattern. Temporally contiguous pre- and post-synaptic pair-
ing of inputs is not sufficient. See Section 6 for a discussion of
how such matching happens.
5. Neurophysiological data about LTP and LTD

Bliss and Lomo (1973) using the anesthetized rabbit preparation,
and Bliss and Gardner-Medwin (1973) using the unanesthetized
rabbit, provided the first demonstration of a long-term potentia-
tion (LTP) of synaptic efficacy following tetanic stimulation of
afferent fibers in the perforant path to dentate gyrus synapse in
the hippocampus. Long-tem depression (LTD) has also been
reported in the hippocampus, including at area CA1 pyramidal
cells, in pathways that can also induce LTP at higher rates of
stimulation (e.g., Dudek and Bear, 1992; Levy et al., 1983; Levy
and Desmond, 1985, Levy and Steward, 1983; Mulkey and
Kalenka, 1992). Such LTP and LTD effects have also been reported
in the cerebral cortex, including in the visual cortex of cats and
rats (e.g., Artola and Singer, 1987, 1993; Fregnac et al., 1994;
Kirkwood et al., 1995; Komatsu et al., 1981; Singer, 1983), among
other structures in a literature that is, by now, vast.

These results do not disclose, however, how shared synaptic
properties may control different behavioral functions in differ-
ent parts of the brain, or how and why particular combinations
of functions are controlled by specific brain regions. For exam-
ple, how do similar learning laws contribute to the learning of
categories for visual object recognition by inferoretmporal and
prefrontal cortex, as well as to spatial navigation via the
entorhinal–hippocampal system? Why are both spatial naviga-
tion (space!) and adaptively timed conditioning (time!) repre-
sented in the medial and lateral streams, respectively, of the
entorhinal–hippocampal system? This article reviews some of
the network- and system-level interactions that are proposed to
give rise to such behavioral properties.
6. Adaptive resonance theory: Fast category
learning without catastrophic forgetting

6.1. Solving the stability–plasticity dilemma

One emerging family of neural models controls how the visual
cortex learns, recognizes, and remembers invariant visual
object recognition categories and how this process is linked to
object and spatial attention, predictive remapping, conscious-
ness, and object search in the visual cortex. All these models
build upon the category learning and memory capabilities of
Adaptive Resonance Theory, or ART, models (Carpenter, 1997,
2003; Carpenter and Grossberg, 1987, 1993; Carpenter et al.,
1991, 1992; Grossberg, 1976a, 1976b, 1978, 1980).

All of the main ART predictions have received increasing
support from psychological and neurobiological data since ART
was introduced in Grossberg (1976a, 1976b), and ART is cur-
rently the cognitive and neural theory of recognition learning
and memory with the broadest explanatory and predictive
range. Successive developments of ART have explained and
predicted increasingly large behavioral and neurobiological data
bases, ranging from normal and abnormal aspects of human
and animal perception and cognition, to the spiking and
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oscillatory dynamics of hierarchically-organized laminar thala-
mocortical networks in multiple modalities. Indeed, some ART
models explain and predict behavioral, anatomical, neurophy-
siological, biophysical, and even biochemical data. In this sense,
they provide a growing set of examples capable of partially
solving the classical mind/body problem. See Grossberg (2012)
for a review of these developments.

6.2. Top-down matching, resonance, attention, and fast
learning

ART solves the stability–plasticity dilemma by proposing how
top-down expectations focus object attention on salient
combinations of visual features, and characterizes how
attention may operate via a form of self-normalizing “biased
competition” (Desimone, 1998). There is a convergence across
models of how to mathematically instantiate the ART atten-
tional circuit that have grown out of the results about the
properties of shunting on-center off-surround networks that
were originally proved in Grossberg (1973). For example, the
“normalization model of attention” (Reynolds and Heeger,
2009) simulates several types of experiments on attention
using the same equation for self-normalizing attention as the
distributed ARTEXture (dARTEX) model (Bhatt et al., 2007,
equation (A5)) used to simulate human psychophysical data
about Orientation-Based Texture Segmentation (OBTS, Ben-
Shahar and Zucker, 2004).

When a good enough match occurs between a top-down
learned expectation, that is read out by a currently active
recognition category, and a bottom-up input pattern, a
synchronous resonant state emerges that embodies an atten-
tional focus. This resonance is capable of driving fast learning
of bottom-up recognition categories and top-down expecta-
tions within the attentional focus that can refine previous
knowledge; hence the name adaptive resonance. It has been
mathematically proved that match learning within an ART
model leads to stable memories of arbitrary events presented
in any order (e.g., Carpenter and Grossberg, 1987, 1991).
Simple learning laws, such as variants of instar and outstar
learning, can solve the stability–plasticity dilemma when
they are modulated by the results of such an attentional
match. In particular, the adaptive weights in bottom-up
pathways that help to learn recognition categories are often
normalized instar or fuzzy ART laws (Eq. (5)), whereas the
weights in top-down pathways that help to learn expecta-
tions are often outstar laws (Eq. (3)).

6.3. Matching and synchronous oscillations

The resonance process is predicted to take place in the What
cortical stream, notably in the sensory, temporal, and prefrontal
cortices, where top-down expectations are matched against
bottom-up inputs. When a top-down expectation achieves a
good enough match with bottom-up data, the emerging atten-
tional focus is often realized by oscillatory dynamics that
synchronize the firing properties of the resonating neurons.

These match-sustained oscillations were predicted to
occur in Grossberg (1976b), where they were called order-
preserving limit cycles to specify that the oscillating activities
do not reverse their relative sizes through time, in keeping
with the idea that resonating features preserve their relative
importance during the resonant event. Such oscillations are
currently called synchronous oscillations (e.g., Eckhorn et al.,
1988; Engel et al., 2001; Gray and Singer, 1989). Several
subsequent modeling studies have simulated how these
oscillations can explain data about such varied properties
as fast synchronization by cooperative feature linking during
perceptual grouping and attentional matching (Grossberg and
Somers, 1991), perceptual framing, temporal order judg-
ments, and stochastic resonance (Grossberg and Grunewald,
1997), and analog sensitivity of fast synchronization of
perceptual grouping by the laminar circuits of visual cortex
(Yazdanbakhsh and Grossberg, 2004). Of particular interest
are simulations within realistic spiking laminar cortical
circuits of faster gamma oscillations during a top-down
attentional match and slower beta oscillations during a big
enough mismatch, with the mismatch initiated within the
deeper layers of the cortex (Grossberg and Versace, 2008).
This gamma/beta prediction has received neurophysiological
support from several labs in different parts of the brain (e.g.,
Berke et al., 2008; Buffalo et al., 2011; Buschman and Miller,
2009). The prediction is consistent with the possibility that
other neural mechanisms can also cause such oscillatory
frequencies.

6.4. The cycle of resonance and reset

Match learning has a serious potential weakness: If a brain
can only learn when there is a good enough match between
bottom-up data and learned top-down expectations, then how
can it ever learn anything that is really novel? When learning
first begins, and no learned recognition categories exist, then a
novel input pattern can activate a potential future category that
has the best match with it via the small, random initial weights
in the bottom-up pathways. Then contrast enhancement via
the rules of competitive learning and self-organizing maps
(Grossberg, 1976a; Kohonen, 1984; von der Malsburg, 1973) can
strengthen these bottom-up weights to ensure a better match
with the input pattern in the future. However, this can occur
only if, on the first learning trial, the activated category can read
out top-down signals that provide a good enough match with
the novel input pattern to allow learning to proceed. In order for
a top-down expectation to match the features that activate any
new recognition category, all of its top-down adaptive weights
initially have large values, which are pruned by the learning of a
particular expectation to match the feature patterns that
activate the category. After this first category is learned, its
large learned weights can compete with the small random
weights in the bottom-up filter to interfere with learning about
new objects and events. How is this problem overcome in a
situation where the learning is unsupervised, and no external
teacher is available to force the selection of a correct answer?

ART proposes that this problem is solved by an interaction
between complementary processes of resonance and reset
that are predicted to control properties of attention and
memory search, respectively. These processes help our
brains to balance between the complementary demands of
processing the familiar and the unfamiliar, the expected
and the unexpected. A big enough mismatch, which is com-
puted within the attentional system, is proposed to activate a



Fig. 2 – Search for a recognition code within an ART learning
circuit: (a) Input pattern I is instated across feature detectors at
level F1 as an activity pattern X, while it nonspecifically
activates the orienting system A with gain ρ, which is called
the vigilance parameter. Output signals from activity pattern X
inhibits A and generates output pattern S. S is multiplied by
learned adaptive weights to form the input pattern T. T
activates category cells Y at level F2. (b) Y generates the top-
down signals U which are multiplied by adaptive weights and
added at F1 cells to form a prototype V that encodes the learned
expectation of active F2 categories. If Vmismatches I at F1, then
a new STM activity pattern X* (the hatched pattern) is selected
at F1. X* is active at I features that are confirmed by V.
Mismatched features (white area) are inhibited. When X
changes to X*, total inhibition decreases from F1 to A. (c) If
inhibition decreases sufficiently so that the total inhibition due
to X* is less than the total excitation due to I multiplied by the
vigilance parameter ρ, then A is activated and releases a
nonspecific arousal burst to F2; that is, “novel events are
arousing”. Arousal resets F2 by inhibiting Y. (d) After Y is
inhibited, X is reinstated and Y stays inhibited as X activates a
different activity pattern Y*. Search for better F2 category
continues until a better matching or novel category is selected.
When search ends, an attentive resonance triggers learning of
the attended data. [Adapted with permission from Carpenter
and Grossberg (1993).]
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complementary orienting system, which is activated by unex-
pected and unfamiliar events (Fig. 2b and c), and which
includes the nonspecific thalamus and the hippocampal sys-
tem. See Carpenter and Grossberg (1993) and Grossberg and
Versace (2008) for consistent data. Output signals from the
orienting system rapidly reset the recognition category that has
been reading out the poorly matching top-down expectation.
The cause of the mismatch is hereby removed, thereby freeing
the system to activate a different recognition category (Fig. 2d).
In this way, a reset event triggers memory search, or hypothesis
testing, which automatically leads to the selection of a recogni-
tion category that can better match the input.

6.5. Memory consolidation and direct access to globally
best match

As sequences of inputs are practiced over learning trials, the
search process eventually converges upon stable categories.
It has been mathematically proved (e.g., Carpenter and
Grossberg, 1987) that familiar inputs directly access the
category whose prototype provides the globally best match,
without undergoing any search, while unfamiliar inputs
continue to activate the orienting subsystem to trigger mem-
ory searches for new or better-fitting categories until they
become familiar. In other words, ART provides a solution of
the local minimum problem and clarifies how familiar objects
can be rapidly recognized even as the total number of learned
memories increases dramatically. The processes of search
and category learning continue until the memory capacity,
which can be chosen arbitrarily large, is fully utilized.

6.6. Vigilance, acetylcholine, and nucleus basalis

A vigilance parameter controls how big a mismatch is needed
to drive a memory search. Low vigilance permits the learning
of general and abstract categories because it tolerates large
mismatches between the currently active top-down expecta-
tion and the bottom-up input exemplar with which it is being
matched. High vigilance forces learning of more specific and
concrete categories, with individual input exemplars learning
to activate their own categories in the limit of very high
vigilance.

Vigilance is computed within the orienting system of an
ART model (Fig. 2b–d), where the total bottom-up excitation
from all the active features in an input pattern I is reduced by
the total inhibition from all the feature detectors that it
activates (see F1 in Fig. 2). If the ratio of the total activity
across the active features in F1 (that is, the “matched”
features) to the total activity due to all the features in I is
less than a vigilance parameter ρ (Fig. 2b), then a nonspecific
reset, or arousal, wave is activated (Fig. 2c), which can drive
the search for another category with which to classify the
exemplar. This can be accomplished by letting ρ multiply the
bottom-up inputs I to the orienting system; that is, ρ is the
gain of the bottom-up inputs to the orienting system. The
orienting system is activated when the total excitatory input
ρI is greater than the total inhibition from the features Xn

across F1 that survive top-down matching; that is, when
ρ
���I���� ���Xn

���40, where
���:��� denotes the number of positive inputs

or matched features. Rewriting this inequality as ρ4
���Xn

������I����1
shows that the orienting system is activated whenever ρ is
chosen higher than the ratio of active Xn matched features in
F1 to total features in I. In other words, the vigilance para-
meter controls how bad a match can be before search for a
new category is initiated. If the vigilance parameter is low,
then many exemplars can all influence the learning of a
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shared prototype, which eliminates all the features that are
not shared with all the exemplars, thereby leading to learning
of an abstract category. If the vigilance parameter is high,
then even a small difference between a new exemplar and a
known prototype (e.g., F vs. E) can drive the search for a new
category with which to represent F, thereby leading to
learning of a more exemplar-like category.

Vigilance can vary across learning trials. For example,
during supervised learning, it may be controlled by a process
of match tracking (Carpenter et al., 1991, 1992) whereby a
predictive error (e.g., E is predicted in response to F) causes
the vigilance parameter ρ to increase just enough to trigger
reset and search for a better-matching category. Match
tracking gives up the minimum amount of generalization in
the learned categories to search for a better-matching cate-
gory. It hereby “tracks” the degree of match between input
exemplar and matched prototype, and thus increases vigi-
lance by the minimum amount needed to trigger a reset and
search for a new category. Match tracking hereby realizes a
Minimax Learning Rule that conjointly maximizes category
generality while it minimizes predictive error. Otherwise
expressed, match tracking uses the least memory resources
that can correct errors in classification.

ART predicts how vigilance may be controlled by acet-
ycholine via the nucleus basalis of Meynert (Grossberg and
Versace, 2008; Palma et al., 2012; Palma et al., 2012), thereby
proposing a more precise interpretation of various data about
the role of acetylcholine in cortical dynamics (e.g., Kraus
et al., 1994; van Der Werf et al., 2002).
6.7. Vigilance diseases: Autism and amnesia

Various mental disorders seem to include problems with
vigilance control, leading to the hypothesis that it may be
useful to classify the symptoms due to vigilance malfunc-
tions as illustrations of “vigilance diseases”. Autism and
medial temporal amnesia seem to be examples of such
diseases. It should be clear, however, that a problem with
vigilance is not the only problem that individuals with these
mental disorders may have.

Persistent high vigilance has been predicted to cause
symptoms of hyperspecific category learning and attentional
deficits in some autistic individuals (Grossberg and Seidman,
2006). This prediction has been tested through psychophysi-
cal experiments done with high-functioning autistic indivi-
duals (Church et al., 2010; Vladusich et al., 2010). It is also
consistent with reports of abnormal cholinergic activity in
the parietal and frontal cortices of autistic individuals that is
correlated with abnormalities in the nucleus basalis (Perry
et al., 2001; Rubenstein and Merzenich, 2003).

Persistent low vigilance has been predicted to cause some
symptoms of medial temporal amnesia (Carpenter and
Grossberg, 1993). A lesion of the hippocampus removes the
orienting system from cortico-hippocampal interactions
(Fig. 2). Memory search is hereby prevented, and the ability
to learn new categories is impaired. A hippocampal lesion
has the effect of causing vigilance to equal zero. Learning that
occurs without mismatch-mediated reset and memory
search can only form general categories.
Relevant data from amnesic individuals have been
reported by Knowlton and Squire (1993), who showed that
amnesic subjects and normal subjects perform equally well
on easy categorization tasks, but amnesic subjects perform
far worse on more demanding tasks. To explain these data,
Knowlton and Squire (1993) posited two separate memory
systems. However, Zaki et al. (2003) quantitatively fit these
data with a single exemplar-based model whose sensitivity
parameter was chosen lower for amnesic than for normal
subjects. This exemplar model is usually expressed in terms
of formal algebraic equations. When the formal exemplar
model is interpreted as a real-time dynamic process under-
going only locally defined interactions, its operations include
a top-down attentional matching process akin to that in ART.
A low sensitivity parameter c in this exemplar model (see
their Eq. (4)) then plays a role similar to that played by a low
vigilance parameter ρ in an ART model (Amis et al., 2014).
7. Invariant object category learning,
attention, predictive remapping, and search

In order to achieve autonomous learning and memory in a
mobile organism, ART models are embedded within larger
architectures that can solve several fundamental problems
that arise when searching a scene. The first architecture of
this type is called the ARTSCAN model (Fazl et al., 2009;
Grossberg, 2009). ARTSCAN predicts how an observer can
learn to recognize objects when seen from multiple perspec-
tives, and thereby to learn view-invariant object categories
while scanning a 2D scene with eye movements. As the eyes
scan a scene, two successive eye movements may focus on
different parts of the same object or on different objects. How
does the brain avoid erroneously classifying views of differ-
ent objects together under unsupervised learning conditions,
even before the brain knows what the object is? ARTSCAN
proposes how the brain controls eye movements that enable
it to learn multiple view-specific categories of a given object
and to associatively link them with view-invariant category
representations of that object, and only that object. See Fig. 3
for a macrocircuit of the more comprehensive ARTSCAN
Search model.

7.1. Attentional shrouds and Where-to-What modulation
of invariant category learning

To accomplish view-invariant object category learning during
free scanning of a 2D scene, the ARTSCAN model predicts a
critical role for spatial attentional signals from the Where
cortical stream in modulating invariant category learning in
theWhat cortical stream. Several studies have reported that the
distribution of spatial attention can configure itself to fit an
object’s form. Form-fitting spatial attention is sometimes called
an attentional shroud (Tyler and Kontsevich, 1995). ARTSCAN
explains how an object’s pre-attentively formed surface repre-
sentation in prestriate cortical area V4 may induce such a form-
fitting attentional shroud in parietal cortex. In particular, feed-
back between the surface representation and the shroud are
predicted to form a surface-shroud resonance that locks spatial
attention on the object’s surface. I have predicted that such a



Fig. 3 – ARTSCAN Search diagram. The dashed boxes indicate the boundary and surface process. (a) Category learning. The
arrows represent the excitatory cortical processes from the Where cortical stream to the What cortical stream whereby
invariant category learning and recognition, and reinforcement learning, occur. The connections ending in circular disks
indicate inhibitory connections. (b) One pathway for controlling top-down primed search for a valued object from the What to
the Where cortical stream. The green arrows represent bottom-up image-driven processes and the blue arrows represent top-
down processes from the What cortical stream to the Where cortical stream. ITa: anterior part of inferotemporal cortex, ITp:
posterior part of inferotemporal cortex, PPC: posterior parietal cortex, LIP: lateral intraparietal cortex, LGN: lateral geniculate
nucleus, ORB: orbitofrontal cortex, Amyg: amygdala, BG: basal ganglia, PFC: prefrontal cortex, SC: superior colliculus, V1 and
V2: primary and secondary visual areas, V3 and V4: visual areas 3 and 4. [Reprinted with permission from Chang et al. (2014).]
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surface-shroud resonance supports conscious perception of the
object’s visible surface qualia. After such a resonance locks
attention upon a surface, it can also propagate top-down to
lower cortical areas, such as V1 and V2, and bottom-up to
higher cortical areas, such as prefrontal cortex, to synchronize
them all to support the conscious percept, as discussed more
completely in the next section.

While this surface-shroud resonance remains active, it
also has other important functions: First, it ensures that eye
movements tend to end at locations on the object’s surface,
thereby enabling different views of the same object to be
sequentially explored, as confirmed by Theeuwes et al. (2010).
Second, it keeps the emerging view-invariant object category
active while different views of the object are learned by view-
specific categories and associated with it.

This latter function works as follows: As each view-
specific category is learned by the What stream, say in
posterior inferotemporal cortex (ITp), it focuses object atten-
tion via a learned top-down expectation on the critical
features in the visual cortex (e.g., in prestriate cortical area
V4) that will be used to recognize that view and its variations
in the future. Such a view-specific category and its learned
top-down expectation are modeled by ART. When the first
such view-specific category is learned, it also activates a cell
population at a higher cortical level, say anterior inferotem-
poral cortex (ITa), that will become the view-invariant object
category (Fig. 3a).

Suppose that the eyes or the object move sufficiently to
expose a new view whose critical features are significantly
different from the critical features that are used to recognize
the first view. Then the first view category is reset, or
inhibited. This happens due to the mismatch of its learned
top-down expectation, or prototype of attended critical fea-
tures, with the newly incoming view information. This top-
down prototype focuses object attention on the incoming
visual information. Object attention hereby helps to control
which view-specific categories are learned by determining
when the currently active view-specific category should be
reset, and a new view-specific category should be activated.
Such a reset is controlled by the usual balance between
resonance and reset in any ART model (Section 6.4).

However, the view-invariant object category should not be
reset every time a view-specific category is reset, or else it can
never become view-invariant. This is what the attentional
shroud accomplishes: It inhibits a tonically-active reset signal
that would otherwise shut off the view-invariant category
when each view-specific category is reset (Fig. 3a). As this
process is iterated, and the eyes foveate a sequence of views
on a single object’s surface through time, they trigger learn-
ing of a sequence of view-specific categories, and each of
them is associatively linked through learning with the still-
active view-invariant category.

When the eyes move off an object, its attentional shroud
collapses in the Where stream, thereby transiently disinhibit-
ing the parietal reset mechanism that shuts off the view-
invariant category in the What stream. This shroud-mediated
reset mechanism between the Where and What cortical
streams is different from the top-down mismatch-mediated
reset within the What stream that resets the individual view-
specific categories.
When the eyes look at a different object, its shroud can
form in the Where stream and a new view-specific category
can be learned that can, in turn, activate the cells that will
become a new view-invariant category in the What stream.

Are there data that support thesemodel predictions and that
can be used to further test and develop the model? Chiu and
Yantis (2009) have described rapid event-related fMRI experi-
ments in humans showing that a spatial attention shift causes
a domain-independent transient parietal burst that correlates
with a change of categorization rules. This transient parietal
signal is a marker against which further experimental tests of
model mechanisms can be based. It supports the predicted
sequence of V4-parietal surface-shroud collapse (shift of spatial
attention), transient parietal burst (reset signal), and collapse of
the currently active invariant object category in cortical area ITa
(shift of categorization rules). The transient parietal burst is
domain-independent because any object’s surface-shroud reso-
nance can inhibit it, and the burst itself can inhibit any view-
invariant object category. These and related results (e.g., Cabeza
et al., 2008; Corbetta et al., 2000; Yantis et al., 2002) are
consistent with the model prediction of how different regions
of the parietal cortex maintain sustained attention to a cur-
rently attended object (e.g., the shroud) and control transient
attention switching (e.g., the reset burst) to a different object.

7.2. Conscious awareness of visual qualia: Crowding and
parietal neglect

The ARTSCAN model enables an answer to be proposed to
the following fundamental question: What brain event sub-
serves conscious awareness of visual qualia? The background
leading to this proposal unifies two streams of neural model-
ing. ART predicts that “all conscious states are resonant
states” and the FACADE theory of 3D vision and figure-
ground perception (e.g., Grossberg, 1994) predicts that “all
consciously visible percepts are surface percepts”. Combining
these two predictions raises the question: What sort of
resonance supports conscious visible surface percepts?

I have predicted that a surface-shroud resonance supports
conscious percepts of an object’s visible surface qualia. After
such a resonance locks attention upon a surface, it can also
propagate top-down to lower visual areas where finer visual
features are represented, such as V1 and V2, and bottom-up
to regions as high as prefrontal cortex, and can synchronize
them all to support the conscious percept. A wide range of
data are naturally explained by this prediction, such as data
about crowding (Green and Bavelier, 2007; He et al., 1996;
Intriligator and Cavanagh, 2001; Levi, 2008) and data about
parietal neglect (Driver and Mattingley, 1998; Mesulam, 1999).

Crowding probes the relationship between seeing and
recognition (and thus learning and memory) by showing
how seeing and recognition of individual objects can fail
during certain conditions. ARTSCAN provides a deceptively
simple explanation of crowding (Foley et al., 2012). It predicts
that we consciously see an object only when its surface
features are included within a surface-shroud resonance.
When crowding occurs, however, such a resonance may not
isolate an individual object. This can happen, for example, if
the cortical magnification factor, among other factors, causes
multiple, peripherally-viewed, object surfaces to all share a
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single surface-shroud resonance. Since surface-shroud reso-
nances create a link between conscious perception and the
categories that we used to recognize objects, objects that
share a single surface-shroud resonance cannot be individu-
ally recognized.

Parietal neglect describes how a parietal lesion can cause a
patient to consciously ignore the corresponding region of
space. ART proposes that neglect may happen because,
despite the fact that the lesion may leave the visual cortex
intact, the corresponding surface-shroud resonance cannot
form to support a conscious percept of the corresponding
object surface.

7.3. Seeing and knowing via two kinds of attention and
resonance

Models like ARTSCAN illustrate how two different types of
resonances may occur that support the difference between
seeing and knowing. A surface-shroud resonance coordinates
What and Where stream representations of surfaces and
spatial attention, respectively. It supports conscious seeing
of an object’s surface qualia. The attention that occurs during
such a resonance is spatial attention. A feature-category
resonance coordinates What stream representations of object
features and their recognition categories, as modeled by ART.
It supports knowing what the object is. The attention that
occurs during such a resonance is object attention. During
conscious awareness of an object, both kinds of resonances
may be active, and even synchronous, to support seeing the
object and knowing what it is.

7.4. Invariant object learning, recognition, predictive
remapping, and search

The pARTSCAN (positional ARTSCAN) model (Cao et al., 2011)
builds upon ARTSCAN to propose how an observer can learn
view-, size-, and positionally-invariant object categories in a
2D scene. pARTSCAN suggests a role for persistently firing
cells in the inferotemporal cortex (Brunel, 2003; Fuster and
Jervey, 1981; Miyashita and Chang, 1988; Tomita et al., 1999)
in this process. Such persistence represents a specific kind of
short-term memory that is reset when spatial attention shifts
from one object to another.

The 3D ARTSCAN model (Grossberg et al., in press)
extends ARTSCAN to propose how the brain maintains the
stability of binocularly fused representations of a 3D scene as
the eyes fixate different objects in the scene. Each eye
movement requires a new binocular match of an object’s
features, yet perceptual stability is maintained. This compe-
tence requires that predictive remapping occurs (Duhamel
et al., 1992; Gottlieb et al., 2005; Mathot and Theeuwes,
2010; Melcher, 2007; Melcher, 2008–2009; Saygin and Sereno,
2008; Sommer andWurtz, 2006; Tolias et al., 2001; Umeno and
Goldberg, 1997) via gain fields (Andersen et al., 1985;
Andersen and Mountcastle, 1983; Deneve and Pouget, 2003;
Gancarz and Grossberg, 1999; Grossberg and Kuperstein, 1986;
Pouget et al., 2003) to ensure that predictive eye position
information enables the attentional shrouds and binocularly
matches to be computed in head-centered coordinates that
are stable as the eyes move.
The dARTSCAN (distributed ARTSCAN) model (Foley et al.,
2012) clarifies why visual backgrounds do not become dark
when spatial attention, via a surface-shroud resonance, is
focused on a particular object, how Where stream motion-
activated transient attentional components and What stream
sustained attentional components interact (Corbetta et al.,
2008; Corbetta and Shulman, 2002; Dosenbach et al., 2007,
2008; Egeth and Yantis, 1997), and how prefrontal priming
interacts with parietal attention mechanisms to influence
search efficiency.

The ARTSCAN Search model (Fig. 3; Chang et al., 2014)
builds upon pARTSCAN view-, size-, and positionally-
invariant object category learning and recognition via
Where-to-What stream interactions. It can also learn to focus
motivated attention upon such an object using a combination
of conditioned reinforcer learning and incentive motivational
learning during cognitive-emotional interactions (Grossberg,
1975; Grossberg and Seidman, 2006). Finally, it can search a
2D scene for a valued goal object using What-to-Where
stream top-down ART expectations and basal ganglia volition
(Fig. 3b), hereby proposing a neurobiologically-grounded solu-
tion of the Where’s Waldo problem.

Combining all of these developments within a 3D ARTS-
CAN Search model enables learning of view-, size-, and
positionally-invariant object categories of objects in a 3D
scene, and search of such a scene to detect, attend, recognize,
and look at a valued target object in it, without disrupting
perceptual stability during the search.
8. Laminar cortical dynamics of vision,
speech, and cognition

How similar learning mechanisms may govern different
functions is exemplified at multiple organizational levels.
For example, although all neocortex seems to share many
basic anatomical features, notably its characteristic organiza-
tion into six horizontal layers and sublaminae, their specia-
lizations in different cortical regions may support vision, or
speech, or cognition. Figs. 4–6 summarize three examples of
the LAMINART family of laminar cortical architectures: the
3D LAMINART model (Cao and Grossberg, 2005, 2012;
Grossberg and Yazdanbakhsh, 2005) of 3D vision and figure-
ground separation, the cARTWORD model of speech learning
and perception (Grossberg and Kazerounian, 2011), and the
LIST PARSE model of cognitive working memory and learned
list unitization or chunking (Grossberg and Pearson, 2008).
These models illustrate how functional diversity may arise
even when the synaptic learning laws and the overall anato-
mical architecture share many features.

8.1. Laminar computing: A revolutionary new paradigm
for intelligent computation

These LAMINART models illustrate the computational para-
digm of Laminar Computing (Grossberg, 2007, 2012) whose goal
is to clarify how specializations of the characteristic bottom-up,
top-down, and horizontal interactions in the cerebral cortex
embody different types of biological intelligence. Laminar
Computing proposes how this can happen, while explaining



Fig. 4 – (a) The 3D LAMINART model circuit diagram. The
model consists of a (V1 Interblob)–(V2 Pale Stripe)-V4 boundary
stream which computes 3D perceptual groupings, and a (V1
Blob)–(V2 Thin Stripe)-V4 surface stream which computes 3D
surface representations of lightness, color, and depth. The two
processing streams interact to overcome their complementary
computational deficiencies (Grossberg, 1994) and create
consistent 3D boundary and surface percepts. (b) A block
diagram of the 3D LAMINART model. [Reproduced with
permission from Cao and Grossberg (2005).]
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how the laminar design of neocortex enables it to support (1)
self-stabilizing development, learning, and memory that solve
the stability–plasticity dilemma, (2) probabilitistic decisions that
reconcile the demands of automatic data-driven bottom-up
processing and task-selective attentive top-down processing,
and (3) analog coherence, or the ability to unify the sensitivity of
analog computing and the stability of digital computing. LAMI-
NART hereby embodies the best properties of feedforward and
feedback processing, digital and analog processing, and bottom-
up data-driven processing and top-down attentive hypothesis-
driven processing.
8.2. Fast feedforward vs. slower feedback processing of
unambiguous vs. ambiguous data

When unambiguous information is processed, such as a famil-
iar and well-rendered scene, a LAMINART architecture (Fig. 7)
can quickly group the scene in a fast feedforward sweep of
activation that passes directly through layer 4 to 2/3 and then
on to layers 4 to 2/3 in subsequent cortical areas (Fig. 7c and e).
This property clarifies how recognition can be so fast in
response to unambiguous scenes; e.g., Thorpe et al. (1996).

On the other hand, if there are multiple possible groupings in
a scene, say in response to a complex textured scene, then
competition among these possibilities due to inhibitory interac-
tions in layers 4 and 2/3 (black cells and synapses in Fig. 7) can
cause all cell activities to become smaller, because activities in
the model’s competitive circuits are self-normalizing, or tend to
conserve the total activity of the circuit. This property emerges
from the architecture’s shunting on-center off-surround net-
works, which also enable input contrasts to be processed over a
large dynamic range without saturation (Douglas et al., 1995;
Grossberg, 1973, 1980; Heeger, 1992).
8.3. Trading certainty against speed: Real-time
probabilities that run as fast as they can

Said in another way, these self-normalizing circuits carry out
a type of real-time probability theory in which the amplitude
of cell activity covaries with the certainty of the network’s
selection, or decision, about a grouping. Amplitude covaries
with processing speed and, due to the feedback interactions
within these circuits, the coherence and synchronization of
cell activations. Low activity slows down feedforward proces-
sing in the circuit because it takes longer for cell activities to
exceed output thresholds and to activate subsequent cells
above threshold. Network uncertainty is resolved through
feedback (Fig. 7c and e): Active layer 2/3 grouping cells feed
back signals to layers 6-then-4-then-2/3 to close a cortical
feed back loop that contrast-enhances and amplifies the
winning grouping to a degree and at a rate that reflect
the amount of statistical evidence for that grouping. As the
winning grouping emerges, and weaker groupings are sup-
pressed, the activities of the winning cells become more
active and synchronous, and thus can resume transmitting
this cortical decision to subsequent processing stages.

In summary, a LAMINART circuit “runs as fast as it can” in
response to the available evidence, trading certainty against
speed: It operates in a fast feedforward mode when there is
little uncertainty, and automatically engages a slower feedback
mode when there is uncertainty. Feedback selects a winning
decision that enables the circuit to speed up again, since
activation amplitude, synchronization, and processing speed
both increase with certainty. Such decision-making properties
go beyond the Bayesian statistical approaches to biological
intelligence that are so popular today.



Fig. 5 – The cARTWORD model describes a hierarchy of
levels responsible for the processes involved in speech and
language perception. Each level is organized into laminar
cortical circuits, wherein deep layers (6 and 4) are
responsible for processing and storing inputs, and
superficial layers (2/3) are proposed to group distributed
patterns across these deeper layers into learned unitized
representations. The lowest level is responsible for
processing acoustic features (cell activities Fi and Ei) and
items (cell activities CðIÞ

i ), whereas the higher level is
responsible for storing of sequences of acoustic items in
working memory (activities Yi and Xi), and representing
these stored sequences of these items as unitized, context-
sensitive representations by list chunks (activities CðLÞ

J ) in a
network, called a masking field, that is capable of selectively
representing lists of variable length. [Reprinted with
permission from Grossberg and Kazerounian (2011).]
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8.4. Combining the stability of digital with the sensitivity
of analog computing

The LAMINART model also embodies a novel kind of hybrid
computing that simultaneously realizes the stability of digital
computing and the sensitivity of analog computing. This is true
because the feedback loop between layers 2/3-6-4-2/3 that
selects or confirms a winning grouping (Fig. 7c and e) has the
property of analog coherence (Grossberg, 1999; Grossberg et al.,
1997; Grossberg and Raizada, 2000; Yazdanbakhsh and
Grossberg, 2004); namely, this feedback loop can synchronously
choose and store a winning grouping, while suppressing losing
groupings, without losing analog sensitivity to amplitude differ-
ences in the input pattern. Such synchronous storage in the
feedback loop provides the stability of digital computing – for
example, the feedback loop exhibits hysteresis that can pre-
serve the stored pattern against external perturbations – while
preserving the sensitivity of analog computation—so that it can
weigh the evidence for a grouping and translate evidence into
the graded activities of the winning grouping.
9. Spatial navigation: Entorhinal grid cell and
hippocampal place cell learning

9.1. Place cells and spatial navigation

Section 7 noted how an ART category learning circuit could be
embedded in larger architectures that can autonomously carry
out invariant object category learning as the eyes search a scene.
Are similar laws of learning and memory used to accomplish
behavioral competences that may seem to a casual observer to
be totally unrelated? One affirmative example concerns how
spatial navigation is controlled. This example is particularly
relevant to classical data about LTP and LTD because these data
were recorded in the hippocampus, and the hippocampus and
medial entorhinal cortex (MEC) play an important role in the
control of spatial learning, memory, and navigation (Davis et al.,
1992; Morris et al., 1982; Parron and Save, 2004).

Place cells in the hippocampus fire whenever a rat is in
a specific localized region, or “place”, in an environment
(O’Keefe and Dostrovsky, 1971). They can also exhibit multi-
ple firing fields when an animal navigates in large spaces
(Fenton et al., 2008; Henriksen et al., 2010; Park et al., 2011).
The ensemble of all place cells enables an animal to localize
itself in an environment. Research on place cells has clarified
that they receive two kinds of inputs: one conveying informa-
tion about the sensory, notably visual, context experienced
from a given place, and the other from a navigational, or path
integration, system that tracks relative position in the world
by integrating angular and linear velocity self-movement
estimates for instantaneous rotation and translation, respec-
tively. An important open problem is to explain how sensory
context and path integration information are combined to
control navigation; e.g., Chen et al. (2013).

9.2. Grid cells and path integration

What is the source of path integration inputs to place cells?
More generally, how do place cells get learned? Grid cells in
the superficial layers of medial entorhinal cortex (MEC)
provide inputs to hippocampal place cells, and the primary
determinants of their firing are path integration inputs
(McNaughton et al., 2006). Grid cells are so called because
each of them, unlike a place cell, fires at multiple spatial



Fig. 6 – Circuit diagram of the LIST PARSE model. An Item
and Order working memory is realized by a recurrent
shunting on-center off-surround network in layers 4 and 6
of the Cognitive Working Memory, which is assumed to
occur in ventrolateral prefrontal cortex. The list chunks are
learned in layer 2/3. Outputs from the Cognitive Working
Memory to the Motor Working Memory interact with a
Vector Integration To Endpoint (VITE) trajectory generator
(Bullock and Grossberg, 1988; see Section 9), modulated by
the basal ganglia, to perform sequences of variable length at
variable speeds. Solid arrows indicate fixed excitatory
connections. Solid lines with hemi-disks indicate learned
connections. Dashed arrows indicate fixed inhibitory
connections. Only 1-item chunks (C) and their feedback
connections within a single Cognitive Working Memory
channel are shown, whereas the model uses chunks of
various sizes in layer 2/3 and feedback from layer 2/3 to
layer 5/6 of the Cognitive Working Memory is broadly
distributed. Also, only the excitatory projections from
Cognitive Working Memory to the Motor Plan Field ðY-FÞ
are shown. [Reprinted with permission from Grossberg and
Pearson (2008).]
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positions that form a regular hexagonal grid during naviga-
tion in an open field (Hafting et al., 2005). Grid cells also
exhibit a gradient of spatial scales along the dorsoventral axis
of the MEC, with larger receptive fields towards the ventral
end, and anatomically neighboring cells sharing similar grid
spacings and orientations but having different spatial phases
that are not topographically organized.
9.3. Both grid and place cells are learned from
self-organizing maps that obey the same laws

Despite their dramatically different appearance, the receptive
fields of grid cells and place cells can be learned within
successive processing stages in a hierarchy of self-organizing
maps, wherein each processing stage obeys the same laws,
including the normalized instar law of Eq. (5). This Grid-
PlaceMap model has been developed with both rate-based
and spiking neurons (Pilly and Grossberg, 2012, 2013); see
Fig. 8. The difference in appearance of the cell receptive fields
emerges from the different statistical properties of their input
patterns (Fig. 9). The receptive fields that are learned by the
GridPlaceMap model fit neurophysiological data about grid
and place cells and their development in juvenile rats
(Langston et al., 2010; Wills et al., 2010).

Due to the inputs that they receive from multiple scales of
developing grid cells, the learned hippocampal place fields
can represent much larger spaces than the grid cells, indeed
spaces whose spatial scale may be the least common multi-
ple of grid cell scales (Gorchetchnikov and Grossberg, 2007).
These least common multiple scales are large enough to let
place cells support navigational behaviors. In addition to both
grid cell and place cell properties emerging from the same
self-organizing map equations, albeit at different processing
levels, at both of these processing levels, the self-organizing
maps amplify and learn to categorize the most energetic and
frequent co-activations of their inputs.

9.4. Top-down attention stabilizes grid and place cell
memory

In the GridPlaceMap model, place cells are spatial category
cells that are activated by multiple scales of entrohinal grid
cells in a self-organizing map. However, when Grossberg
(1976a, 1978) introduced the modern laws for competitive
learning and self-organizing maps, he proved that they can
learn well in response to sparse input environments, indeed
with Bayesian properties, but that they exhibit catastrophic
forgetting in response to dense non-stationary environments.
Grossberg (1976b) introduced ART as an enhanced model
capable of dynamically stabilizing its category learning in
response to arbitrary environments.

If, in fact, grid and place cell learning occur in self-
organizing maps, then, as in all self-organizing map models,
one expects that grid cell and place cell learning are dyna-
mically stabilized by ART top-down attentive matching
mechanisms (Section 6). Anatomical and neurophysiological
data from several labs support this hypothesis.

The anatomy of the hippocampal system supports the
possibility that such attentive feedback exists, since feedback
pathways exist from the hippocampal CA1 region to the
entorhinal cortex. Neurophysiological data also support the
predicted role of attention in hippocampal learning. For
example, Kentros et al. (2004) showed that “conditions that
maximize place field stability greatly increase orientation to
novel cues. This suggests that storage and retrieval of place
cells is modulated by a top-down cognitive process resem-
bling attention and that place cells are neural correlates of
spatial memory” (p. 283). It has similarly been proposed that



Fig. 7 – The LAMINART model clarifies how bottom-up,
horizontal, and top-down interactions within and across
cortical layers in V1 and V2 interblob and pale stripe regions,
respectively, carry out bottom-up adaptive filtering,
horizontal grouping, and top-down attention. Similar
interactions seem to occur in all six-layered cortices. See
text for details. [Reprinted with permission from Raizada
and Grossberg (2001).]
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learning of place cell receptive fields reflects an “automatic
recording of attended experience” (Morris and Frey, 1997,
p. 1489). These experiments clarify that cognitive processes
like attention play a role in hippocampal learning and
memory stability, just as they do in learning object cate-
gories, and interact with NMDA receptors to mediate long-
lasting hippocampal place field memory in novel environ-
ments (Kentros et al., 1998). Thus, the learning of grid cells
and place cells in the medial entorhinal cortex and hippo-
campus may be viewed as part of a specialized ART system
for learning spatial representations as an animal or human
navigates its environment, just as the learning of invariant
object categories in the inferotemporal cortex may be viewed
as part of a specialized ART system for learning object repre-
sentations as an animal or human scans its environment.
9.5. Unifying angular and linear acceleration, grid and
place, and space and time

In addition to showing how both grid cells and place cells can
be learned using the same equations, including learning laws,
at different levels of a model hierarchy, the GridPlaceMap
model also illustrates two other parsimonious and elegant sets
of properties that are predicted to arise from specializations of
homologous circuits.

The first homology concerns the fact that path integration
inputs to the model are sensitive to both angular velocity and
linear velocity duringmovement. Angular velocity is processed
by a well-known type of cell, a head-direction cell (Ranck, 1984;
Taube et al., 1990). The GridPlaceMap model and its precursor
(Mhatre et al., 2012) predicted the existence of a cell that is
sensitive to linear velocity as well. It is called a stripe cell. Both
head direction cells and stripe cells are predicted to exist
within similar types of ring attractor circuits (e.g., Song and
Wang, 2005), where they receive angular and linear velocity
signals and process them into a form that inputs to model
stripe cells. See Fig. 9 for a simulation of stripe cell responses.
Recent experiments have reported cell properties that are
consistent with those predicted by stripe cells (Krupic et al.,
2012; Sargolini et al., 2006).

9.6. Neural relativity: Spectral timing and spectral spacing
in the hippocampus

The second homology concerns the fact that the entorhinal–
hippocampal system processes information about both space
and time: In addition to supporting spatial navigation with
grid and place cells, it can also support adaptively timed
conditioning (Smith, 1968; Thompson et al., 1987). Why, from
a mechanistic viewpoint, are both spatial and temporal repre-
sentations processed in the same part of the brain? The fact of
this convergence is consistent with data and hypotheses about
a possible role of hippocampus in episodic learning and
memory, since episodic memories typically combine both
spatial and temporal information about particular autobiogra-
phical events; e.g., Eichenbaum and Lipton (2008).

As noted in Section 9.3, multiple scales of entorhinal grid
cells can cooperate in a self-organizing map to form place cell
receptive fields. These multiple grid cell scales form along a
dorsoventral spatial gradient in the entorhinal cortex such
that grid cells have increasingly large spatial scales (that is,
larger spatial intervals between activations in a hexagonal
grid) in the ventral direction. Grid cells with several different
spatial scales along the dorsoventral gradient can cooperate
to learn place cells that can represent spaces much larger
than those represented by individual grid cells (Grossberg and
Pilly, 2012). In fact, place cells that are learned from these grid
cells are capable of representing the lowest common multiple
of the grid cell scales that activate them (Gorchetchnikov and
Grossberg, 2007; Pilly and Grossberg, 2012). These place cell
spatial scales are large enough to be useful in spatial naviga-
tion. In this way, a “spectrum” of small grid cell spatial scales
can be combined in place cells to represent much larger and
behaviorally relevant spaces. This homology has led to the
name Spectral Spacing for the mechanism whereby grid cells
give rise to place cells.

With this background, we can begin to see a similarity in
how the entorhinal–hippocampal system deals with both
space and time. In the case of spatial representation, the
issue is how to generate spatial representations on behavio-
rally relevant scales. The cooperation of multiple, but smaller,
scales of entorhinal grid cells to learn hippocampal place cells
accomplishes this. In the case of temporal representation, a
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Fig. 8 – The GridPlaceMap self-organizing map hierarchy of grid and place cell activation and learning: Stripe cells in either the
parasubiculum (PaS) or the deeper layers of medial entorhinal cortex (MEC), self-organizing grid cells in layer II of MEC, and
self-organizing place cells in hippocampal area CA3 learn to represent position in increasingly large spaces based on
internally generated signals corresponding to translational and rotational movements during navigation. [Reprinted with
permission from Pilly and Grossberg (2012).]
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spectrum of small time scales can be combined to represent
longer and behaviorally relevant durations of cell activation,
as occur, for example, during trace conditioning (Moyer et al.,
1990; Solomon et al., 1986). A model that accomplishes this is
called the Spectral Timing model (Grossberg and Merrill, 1992,
1996; Grossberg and Schmajuk, 1989).

The Spectral Timing model shows how large temporal
intervals can be bridged by a spectrum of cells, or cell sites,
with different reaction rates can learn to match the statistical
distribution of expected delays in reinforcement. Although
each of these cells, or cell sites, reacts relatively briefly at
different times, their population response as a whole can
bridge a much longer time interval, ranging from hundreds of
milliseconds to seconds, that can be tuned by learning to
match temporal experimental contingencies.

Spectrally-timed learning has Weber law properties such
that larger inter-stimulus intervals between unconditioned
and conditioned stimuli lead to learned response curves with
broader variances, a property that is also called “scalar
timing” (Gibbon, 1991; Roberts, 1981; Roberts et al., 1989;
Smith, 1968). Hippocampal “time cells” with all the properties
required to achieve spectral timing, including the Weber law,
have been reported (MacDonald et al., 2011); in particular, “…
the mean peak firing rate for each time cell occurred at
sequential moments, and the overlap among firing periods
from even these small ensembles of time cells bridges the
entire delay. Notably, the spread of the firing period for each
neuron increased with the peak firing time ….”

It remains to be shown whether the spectrum of time cells
arises from a gradient in a single rate parameter, as is predicted
by the Spectral Timing model. How Spectral Timing can bridge
long temporal intervals using such a gradient has beenmodeled
in terms of calcium dynamics in the metabotropic glutamate
receptor (mGluR) system within the cerebellum (Fiala et al.,
1996). The most parsimonious prediction is that a similar
mechanism holds in all cases of spectral timing throughout
the brain, including cerebellum, hippocampus, and basal gang-
lia (Brown et al., 1999; Fiala et al., 1996; Grossberg and Merrill,
1992, 1996; Grossberg and Schmajuk, 1989).

9.7. Lateral stream for time and medial stream for space

The Spectral Timing model reflects the part of entorhinal–
hippocampal dynamics that is devoted to representing objects
and events, notably adaptively timed durations of these
events, and includes lateral entorhinal cortex. The Spectral
Spacing model reflects a complementary part of entorhinal–
hippocampal dynamics that is devoted to representing spatial
representations, and includes medial entrorhinal cortex. Both
of these processing streams are joined in the hippocampus to
support spatial navigation as well as episodic learning and
memory (Eichenbaum and Lipton, 2008).
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This heuristic homology between spatial and temporal
representations in these parallel streams is supported by
rigorous mathematical modeling and data simulations.
Grossberg and Pilly (2012) developed the Spectral Spacing
model to show that neural mechanisms that enable a
dorsoventral gradient of grid cell spatial scales to be learned
are formally the same as mechanisms which enable a
gradient of temporal scales to form in the Spectral Timing
model. This claim was supported by quantitative simulations
of challenging data about parametric neurophysiological
properties of grid cells along the dorsoventral gradient that
could not be explained without this assumption. Thus, it may
be that space and time are both in the hippocampus because
they exploit shared computational mechanisms. The phrase
“neural relativity” has been introduced to summarize this
predicted property of the entorhinal–hippocampal system.

Given the prediction and simulations of mGluR involve-
ment in Spectral Timing, it is natural to ask if mGLuR plays a
central role in controlling the dorsoventral gradient in Spec-
tral Spacing as well.
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Fig. 10 – Vector Integration To Endpoint circuit (Bullock and
Grossberg, 1988) for control of movement trajectories. T is
the target position vector, P the outflow present position
vector, D the difference vector, and G the volitional GO signal
that multiplies, or gates, D. See text for details.
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10. Movement control: Inhibitory matching
and mismatch learning

10.1. Complementary computing for object recognition and
movement control

ART-based learning of object representations in the What
stream uses excitatory matching and match-based learning.
Where stream learning for the control of movement, in
contrast, often uses computationally complementary pro-
cesses of inhibitory matching and mismatch-based learning
(Fig. 1). Correspondingly, the What stream learns object
representations that strive to become positionally-invariant,
whereas the Where stream represents the positions and
actions that enable recognized objects to be manipulated.

Excitatory matching andmatch-based learning can solve the
stability–plasticity dilemma. In contrast, inhibitory matching
and mismatch-based learning can continually update the
spatial maps and sensory-motor gains that are used to move
as our bodily parameters change through time (Bullock and
Grossberg, 1988; Bullock et al., 1998; Gaudiano and Grossberg,
1991; Georgopoulos et al., 1982, 1986). Indeed, we would be ill-
served by spatial and motor learning processes that solve the
stability–plasticity dilemma, since we do not want the spatial
representations and motor gains that were suitable for control-
ling our infant bodies to be remembered as we grow up and
used to control our adult bodies. In this sense, catastrophic
forgetting is a good property during spatial and motor learning.
10.2. Target position, present position, and difference
vector

As an example of inhibitory matching, consider how we
make an arm movement. To make such a movement, a
representation of where the arm is now (its present position
vector) is subtracted from a representation of where we want
the arm to move (its target position vector), thereby computing
a difference vector that represents the direction and distance
of movement needed to attain the target. After moving to
the target, the target and present positions agree, so the
difference vector is zero. In other words, this sort of match-
ing is inhibitory (Bullock and Grossberg, 1988). The differ-
ence vector is volitionally gated, or multiplied, by a basal
ganglia GO signal that determines when and how fast the
movement will occur (Bullock and Grossberg, 1988; Bullock
et al., 1998).

Such a volitionally-gated difference vector computation is,
for example, used in the Vector Integration To Endpoint, or
VITE, model, and its variants, for computing arm movement
trajectories (Bullock et al., 1998, 1993; Bullock and Grossberg,
1988). Let T denote the target position vector, P the present
position vector, D the difference vector, and G the volitional
GO signal (Fig. 10). Then:

dD
dt

¼ að�Dþ T�PÞ ð9Þ

and

dP
dt

¼G D½ �þ; ð10Þ
where D½ �þ ¼maxðD; 0Þ. Eq. (9) says that D computes a time-
average of the difference (T–P) between the target and present
position vectors, and (10) says that the present position vector P
integrates the difference vector D at a rate proportional to the
GO signal G until P equals T, whence the movement stops.
10.3. Difference vectors as error signals for learning

During motor learning, a difference vector can also generate
error signals when the same target position and present
position are encoded but not properly calibrated. These error
signals activate a form of mismatch learning that eliminates
the mismatch through time by recalibrating system maps
and gains to be consistent. The following pair of equations
illustrate how this can happen by replacing Eq. (9) by

dD
dt

¼ að�Dþ TZ�PÞ ð11Þ

and

dZ
dt

¼ bf ðTÞð�cZ�dDÞ: ð12Þ

In this learning process, the adaptive weight Z in Eq. (12)
changes in response to a non-zero difference vector D at times
when the target position T and present position P represent
the same position, but are not properly calibrated. The weight
Z increases if D is negative, and decreases if D is positive.
Learning continues until the adaptive weight Z in Eq. (12), by
acting as an adaptive gain that multiplies the target position T
in Eq. (11), causes D to approach zero at the appropriate times.

Neural models explain and predict data about how mis-
match learning may tune spatial representations and adap-
tive motor gains in basal ganglia, cerebellum, motor cortex,
parietal cortex, and prefrontal cortex (Brown et al., 1999, 2004;
Fiala et al., 1996; Grossberg and Paine, 2000; Guenther, 1995;
Guenther et al., 1994). Models that carry out computation
and learning by difference vectors are often called Adaptive
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Vector Integration To Endpoint (aVITE) or Vector Associative
Map (VAM) models (Gaudiano and Grossberg, 1991, 1992).
10.4. Joining ART and VAM: Self-stabilizing expertise in
evolving bodies

In summary, perceptual/cognitive processes often use ART-like
excitatory matching and match-based learning to create self-
stabilizing representations of objects and events that enable
us to gain increasing expertise as we learn about the world.
Complementary spatial/motor processes often use VAM-like
inhibitory matching andmismatch-based learning to continually
update spatial maps and sensory-motor gains to compensate for
bodily changes throughout life. Together (Fig. 1) these comple-
mentary predictive and learning mechanisms create a self-
stabilizing perceptual/cognitive front end for intelligently manip-
ulating the more labile spatial/motor processes which enable our
changing bodies to act effectively upon a dynamic world.

r e f e r e n c e s

Abbott, L.F., Varela, K., Sen, K., Nelson, S.B., 1997. Synaptic
depression and cortical gain control. Science 275, 220–223.

Amis, G., Carpenter, G.A., Ersoy, B., Grossberg, S., 2014. Cortical
Learning of Recognition Categories: Towards Resolving the
Exemplar vs. Prototype Debate. Submitted for publication.

Andersen, R.A., Essick, G.K., Siegel, R.M., 1985. Encoding of spatial
location by posterior parietal neurons. Science 230, 456–458.

Andersen, R.A., Mountcastle, V.B., 1983. The influence of the
angle of gaze upon the excitability of the light-sensitive
neurons of the posterior parietal cortex. J. Neurosci. 3,
532–548.

Artola, A., Singer, W., 1987. Long-term potentiation and NMDA
receptors in rat visual cortex. Nature 330, 649–652.

Artola, A., Singer, W., 1993. Long-term depression of excitatory
synaptic transmission and its relationship to long-term
potentiation. Trends Neurosci. 16, 480–487.

Bar, M., Tootell, R.B.H., Schacter, D.L., Greve, D.N., Fischl, B.,
Mendola, J.D., Rosen, B.R., Dale, A.M., 2001. Cortical mechanisms
specific to explicit object recognition. Neuron 29, 529–535.

Ben-Shahar, O., Zucker, S., 2004. Sensitivity to curvatures in
orientation-based texture segmentation. Vis. Res. 44, 257–277.

Berke, J.D., Hetrick, V., Breck, J., Green, R.W., 2008. Transient 23- to
30-Hz oscillations in mouse hippocampus during exploration
of novel environments. Hippocampus 18, 519–529.

Bhatt, R., Carpenter, G., Grossberg, S., 2007. Texture segregation
by visual cortex: perceptual grouping, attention, and learning.
Vis. Res. 47, 3173–3211.

Bliss, T.V.P., Lomo, T., 1973. Long-lasting potentiation of synaptic
transmission in the dentate area of the anaesthetized rabbit
following stimulation of the perforant path. J. Physiol.
(London) 232, 331–356.

Bliss, T.V.P., Gardner-Medwin, A.R., 1973. Long-lasting
potentiation of synaptic transmission in the dentate area of
the unanaesthetized rabbit following stimulation of the
perforant path. J. Physiol. (London) 232, 357–374.

Brown, J., Bullock, D., Grossberg, S., 1999. How the basal ganglia
use parallel excitatory and inhibitory learning pathways to
selectively respond to unexpected rewarding cues. J. Neurosci.
19, 10502–10511.

Brown, J.W., Bullock, D., Grossberg, S., 2004. How laminar frontal
cortex and basal ganglia circuits interact to control planned
and reactive saccades. Neural Networks 17, 471–510.
Brunel, N., 2003. Dynamics and plasticity of stimulus selective
persistent activity in cortical network models. Cerebral Cortex
13, 1151–1161.

Buffalo, E.A., Fries, P., Landman, R., Buschman, T.J., Desimone, R.,
2011. Laminar differences in gamma and alpha coherence in
the ventral stream. Proc. Natl. Acad. Sci. U.S.A. 108,
11262–11267.

Bullock, D., Cisek, P., Grossberg, S., 1998. Cortical networks for
control of voluntary arm movements under variable force
conditions. Cerebral Cortex 8, 48–62.

Bullock, D., Grossberg, S., 1988. Neural dynamics of planned arm
movements: emergent invariants and speed-accuracy
properties during trajectory formation. Psychol. Rev. 95, 49–90.

Bullock, D., Grossberg, S., Guenther, F.H., 1993. A self-organizing
neural model of motor equivalent reaching and tool use by a
multijoint arm. J. Cogn. Neurosci. 5, 408–435.

Buschman, T.J., Miller, E.K., 2009. Serial, covert shifts of attention
during visual search are reflected by the frontal eye fields and
correlated with population oscillations. Neuron 63, 386–396.

Cabelli, R.J., Hohn, A., Shatz, C.J., 1995. Inhibition of ocular
dominance column formation by infusion of NT-4/5 or BDNF.
Science 267, 1662–1666.

Cabelli, R.J., Shelton, D.L., Segal, R.A., Shatz, C.J., 1997. Blockade of
endogenous ligands of trkB inhibits formation of ocular
dominance columns. Neuron 19, 63–76.

Cabeza, R., Ciaramelli, E., Olson, I.R., Moscovitch, M., 2008. The
parietal cortex and episodic memory: an attentional account.
Nat. Rev. Neurosci. 9, 613–625.

Cao, Y., Grossberg, S., 2005. A laminar cortical model of stereopsis
and 3D surface perception: closure and da Vinci stereopsis.
Spat. Vis. 18, 515–578.

Cao, Y., Grossberg, S., 2012. Stereopsis and 3D surface perception
by spiking neurons in laminar cortical circuits: a method of
converting neural rate models into spiking models. Neural
Networks 26, 75–98.

Cao, Y., Grossberg, S., Markowitz, J., 2011. How does the brain
rapidly learn and reorganize view- and positionally-invariant
object representations in inferior temporal cortex?. Neural
Networks 24, 1050–1061.

Carpenter, G.A., 1997. Distributed learning, recognition, and
prediction by ART and ARTMAP neural networks. Neural
Networks 10, 1473–1494.

Carpenter, G.A., 2003. Default ARTMAP. In: Proceedings of the
International Joint Conference on Neural Networks (IJCNN’03),
pp. 1396–1401.

Carpenter, G.A., Grossberg, S., 1987. A massively parallel
architecture for a self-organizing neural pattern recognition
machine. Comput. Vis. Graphics Image Process. 37, 54–115.

Carpenter, G.A., Grossberg, S., 1991. Pattern Recognition by Self-
Organizing Neural Networks. MIT Press, Cambridge, MA.

Carpenter, G.A., Grossberg, S., 1993. Normal and amnesic
learning, recognition, and memory by a neural model of
cortico-hippocampal interactions. Trends Neurosci. 16,
131–137.

Carpenter, G.A., Grossberg, S., Markuzon, N., Reynolds, J.H.,
Rosen, D.B., 1992. Fuzzy ARTMAP: a neural network
architecture for incremental supervised learning of analog
multidimensional maps. IEEE Trans. Neural Networks 3,
698–713.

Carpenter, G.A., Grossberg, S., Reynolds, J.H., 1991. ARTMAP:
supervised real-time learning and classification of
nonstationary data by a self-organizing neural network.
Neural Networks 4, 565–588.

Carpenter, G.A., Grossberg, S., Rosen, D.B., 1991. Fuzzy ART: fast
stable learning and categorization of analog patterns by an
adaptive resonance system. Neural Networks 4, 759–771.

Chang, H.-C., Grossberg, S., Cao, Y., 2014. Where’s Waldo? How
perceptual cognitive, and emotional brain processes

http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref1
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref1
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref2
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref2
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref3
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref3
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref3
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref3
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref4
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref4
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref5
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref5
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref5
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref6
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref6
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref6
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref7
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref7
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref8
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref8
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref8
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref9
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref9
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref9
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref10
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref10
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref10
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref10
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref11
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref11
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref11
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref11
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref12
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref12
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref12
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref12
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref13
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref13
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref13
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref14
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref14
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref14
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref15
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref15
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref15
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref15
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref16
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref16
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref16
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref17
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref17
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref17
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref18
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref18
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref18
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref19
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref19
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref19
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref20
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref20
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref20
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref21
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref21
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref21
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref22
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref22
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref22
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref23
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref23
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref23
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref24
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref24
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref24
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref24
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref25
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref25
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref25
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref25
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref26
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref26
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref26
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref27
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref27
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref27
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref28
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref28
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref29
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref29
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref29
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref29
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref30
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref30
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref30
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref30
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref30
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref31
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref31
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref31
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref31
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref32
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref32
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref32


b r a i n r e s e a r c h 1 6 2 1 ( 2 0 1 5 ) 2 7 0 – 2 9 3290
cooperate during learning to categorize and find desired

objects in a cluttered scene. Front. Integr. Neurosci. http://dx.

doi.org/10.3389/fnint.2014.0043 (http://journal.frontiersin.org/

Journal/10.3389/fnint.2014.00043/full).
Chen, C., King, J.A., Burgess, N., O’Keefe, J., 2013. How vision and

movement combine in the hippocampal place code. Proc.

Natl. Acad. Sci. U.S.A. 110, 378–383.
Chiu, Y.C., Yantis, S., 2009. A domain-independent source of

cognitive control for task sets: shifting spatial attention and

switching categorization rules. J. Neurosci. 29, 3930–3938.
Church, B.A., Krauss, M.S., Lopata, C., Toomey, J.A., Thomeer, M.L.,

Coutinho, M.V., Volker, M.A., Mercado, E. (2010). Atypical

categorization in children with high-functioning autism

spectrum disorder. Psychon. Bull. Rev., 17, 862–868.
Cohen, N.J., Squire, L.R., 1980. Preserved learning and retention of

a pattern-analyzing skill in amnesia: dissociation of knowing

how and knowing that. Science 210, 207–210.
Corbetta, M., Kincade, J.M., Ollinger, J.M., McAvoy, M.P., Shulman,

G.L., 2000. Voluntary orienting is dissociated from target

detection in human posterior parietal cortex. Nat. Neurosci. 3,

292–297.
Corbetta, M., Patel, G., Shulman, G.G., 2008. The reorienting

system of the human brain: from environment to theory of

mind. Neuron 58, 306–324.
Corbetta, M., Shulman, G.L., 2002. Control of goal-directed and

stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3,

201–215.
Davis, S., Butcher, S.P., Morris, R.G., 1992. The NMDA receptor

antagonist D-2-amino-5-phosphonopentanoate (D-AP5)

impairs spatial learning and LTP in vivo at intracerebral

concentrations comparable to those that block LTP in vivo.

J. Neurosci. 12, 21–34.
Deneve, S., Pouget, A., 2003. Basis functions for object-centered

representations. Neuron 37, 347–359.
Desimone, R., 1998. Visual attention mediated by biased

competition in extrastriate visual cortex. Philos. Trans. Roy.

Soc. London, Ser. B 353, 1245–1255.
Dosenbach, N.U., Fair, D.A., Cohen, A.L., Schlaggar, B.L., Petersen,

S.E., 2008. A dual-networks architecture of top-down control.

Trends Cogn. Sci. 12, 99–105.
Dosenbach, N.U.F., Fair, D.A., Miezin, F.M., Cohen, A.L., Wenger, K.K.,

Dosenbach, R.A.T., Fox, M.D., Snyder, A.Z., Vincent, J.L., Raichle,

M.E., Schlagger, B.L., Petersen, S.E., 2007. Distinct brain networks

for adaptive and stable task control in humans. Proc. Natl. Acad.

Sci. U.S.A. 104, 11073–11078.
Douglas, R.J., Koch, C., Mahowald, M., Martin, K.A.C., Suarez, H.H.,

1995. Recurrent excitation in neocortical circuits. Science 269,

981–985.
Dranias, M., Grossberg, S., Bullock, D., 2008. Dopaminergic and

non-dopaminergic value systems in conditioning and

outcome-specific revaluation. Brain Res. 1238, 239–287.
Driver, J., Mattingley, J.B., 1998. Parietal neglect and visual

awareness. Nat. Neurosci. 1, 17–22.
Dudek, S.M., Bear, M.F., 1992. Homosynaptic long-term

depression in area VA1 of hippocampus and effects of

N-methyl-D-aspartate receptor blockade. Proc. Natl. Acad. Sci.

U.S.A. 89, 4363–4367.
Duhamel, J.R., Colby, C.L., Goldberg, M.E., 1992. The updating of

the representation of visual space in parietal cortex by

intended eye movements. Science 255, 90–92.
Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M.,

Reitbock, H.J., 1988. Coherent oscillations: a mechanism of

feature linking in the visual cortex? Biol. Cybern. 60, 121–130.
Eichenbaum, H., Lipton, P.A., 2008. Towards a functional

organization of the medial temporal lobe memory system:

role of the parahippocampal and medial entorhinal cortical

areas. Hippocampus 18, 1314–1324.
Egeth, H.E., Yantis, S., 1997. Visual attention: control,

representation, and time course. Annu. Rev. Psychol. 48,

269–297.
Engel, A.K., Fries, P., Singer, W., 2001. Dynamics predictions:

oscillations and synchrony in top-down processing. Nat. Rev.

Neurosci. 2, 704–716.
Fazl, A., Grossberg, S., Mingolla, E., 2009. View-invariant object

category learning, recognition, and search: how spatial and

object attention are coordinated using surface-based

attentional shrouds. Cogn. Psychol. 58, 1–48.
Fenton, A.A., Kao, H.-Y., Neymotin, S.A., Olypher, A., Vayntrub, Y.,

Lyton, W.W., Ludvig, N., 2008. Unmasking the CA1 ensemble

place code by exposures to small and large environments:

more place cells and multiple, irregularly arranged, and

expanded place fields in the larger space. J. Neurosci. 28,

11250–11262.
Fiala, J.C., Grossberg, S., Bullock, D., 1996. Metabotropic glutamate

receptor activation in cerebellar Purkinje cells as substrate for

adaptive timing of the classically conditioned eye blink

response. J. Neurosci. 16, 3760–3774.
Foley, N.C., Grossberg, S., Mingolla, E., 2012. Neural dynamics of

object-based multifocal visual spatial attention and priming:

object cueing, useful-field-of-view, and crowding. Cogn.

Psychol. 65, 77–117.
Fregnac, Y., Burke, J.P., Smith, D., Friedlander, M.J., 1994. Temporal

covariance of pre- and postsynaptic activity regulates

functional connectivity in the visual cortex. J. Neurophysiol.

71, 1403–1421.
Fuster, J.M., Jervey, J.P., 1981. Inferotemporal neurons distinguish

and retain behaviorally relevant features of visual stimuli.

Science 212, 952–955.
Gancarz, G., Grossberg, S., 1999. A neural model of saccadic eye

movement control explains task-specific adaptation. Vis. Res.

39, 3123–3143.
Gaudiano, P., Grossberg, S., 1991. Vector associative maps:

unsupervised real-time error-based learning and control of

movement trajectories. Neural Networks 4, 147–183.
Gaudiano, P., Grossberg, S., 1992. Adaptive vector integration to

endpoint: self-organizing neural circuits for control of

planned movement trajectories. Hum. Mov. Sci. 11, 141–155.
Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., Massey, J.T., 1982.

On the relations between the direction of two-dimensional

arm movements and cell discharge in primate motor cortex.

J. Neurosci. 2, 1527–1537.
Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E., 1986. Neuronal

population coding of movement direction. Science 233,

1416–1419.
Gibbon, J., 1991. The origins of scalar timing. Learn. Motiv. 22,

3–38.
Gorchetchnikov, A., Grossberg, S., 2007. Space, time and learning

in the hippocampus: how fine spatial and temporal scales are

expanded into population codes for behavioral control. Neural

Networks 20, 182–193.
Gottlieb, J., Kusunoki, M., Goldberg, M.E., 2005. Simultaneous

representation of saccade targets and visual onsets in monkey

lateral intraparietal area. Cerebral Cortex 15, 1198–1206.
Gray, C.M., Singer, W., 1989. Stimulus-specific neuronal

oscillations in orientation columns of cat visual cortex. Proc.

Natl. Acad. Sci. U.S.A. 86, 1698–1702.
Green, C.S., Bavelier, D., 2007. Action-video-game experience

alters the spatial resolution of vision. Psychol. Sci. 18, 88–94.
Grossberg, S., 1968a. Global ratio limit theorems for some

nonlinear functional differential equations, II. Bull. Am. Math.

Soc. 74, 101–105.
Grossberg, S., 1968b. Some nonlinear networks capable of

learning a spatial pattern of arbitrary complexity. Proc. Natl.

Acad. Sci. U.S.A. 59, 368–372.

http://dx.doi.org/10.3389/fnint.2014.0043
http://dx.doi.org/10.3389/fnint.2014.0043
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref34
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref34
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref34
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref35
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref35
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref35
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref36
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref36
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref36
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref37
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref37
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref37
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref37
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref38
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref38
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref38
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref39
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref39
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref39
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref40
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref40
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref40
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref40
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref40
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref41
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref41
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref42
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref42
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref42
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref43
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref43
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref43
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref44
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref44
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref44
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref44
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref44
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref45
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref45
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref45
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref46
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref46
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref46
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref47
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref47
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref48
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref48
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref48
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref48
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref49
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref49
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref49
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref50
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref50
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref50
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref05
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref05
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref05
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref05
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref51
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref51
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref51
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref52
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref52
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref52
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref53
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref53
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref53
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref53
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref54
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref54
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref54
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref54
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref54
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref54
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref55
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref55
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref55
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref55
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref56
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref56
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref56
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref56
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref57
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref57
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref57
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref57
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref58
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref58
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref58
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref59
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref59
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref59
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref60
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref60
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref60
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref61
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref61
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref61
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref63
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref63
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref63
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref63
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref64
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref64
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref64
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref65
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref65
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref66
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref66
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref66
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref66
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref67
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref67
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref67
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref68
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref68
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref68
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref69
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref69
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref70
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref70
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref70
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref71
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref71
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref71


b r a i n r e s e a r c h 1 6 2 1 ( 2 0 1 5 ) 2 7 0 – 2 9 3 291
Grossberg, S., 1968c. Some physiological and biochemical

consequences of psychological postulates. Proc. Natl. Acad.

Sci. U.S.A. 60, 758–765.
Grossberg, S., 1969a. On learning and energy-entropy dependence

in recurrent and nonrecurrent signed networks. J. Stat. Phys.

1, 319–350.
Grossberg, S., 1969b. On the production and release of chemical

transmitters and related topics in cellular control. J. Theor.

Biol. 22, 325–364.
Grossberg, S., 1969c. On the serial learning of lists. Math. Biosci. 4,

201–253.
Grossberg, S., 1969d. Some networks that can learn, remember,

and reproduce any number of complicated space-time

patterns, I. J. Math. Mech. 19, 53–91.
Grossberg, S., 1972. A neural theory of punishment and

avoidance, II: Quantitative theory. Math. Biosci. 15, 253–285.
Grossberg, S., 1973. Contour enhancement, short-term memory,

and constancies in reverberating neural networks. Stud. Appl.

Math. 52, 213–257.
Grossberg, S., 1975. A neural model of attention, reinforcement,

and discrimination learning. Int. Rev. Neurobiol. 18, 263–327.
Grossberg, S., 1976a. Adaptive pattern classification and universal

recoding, I: Parallel development and coding of neural feature

detectors. Biol. Cybern. 23, 121–134.
Grossberg, S., 1976b. Adaptive pattern classification and universal

recoding, II: Feedback, expectation, olfaction, and illusions.

Biol. Cybern. 23, 187–202.
Grossberg, S., 1978. A theory of human memory: self-organization

and performance of sensory-motor codes, maps, and plans.

In: Rosen, R., Snell, F. (Eds.), Progress in Theoretical Biology,

vol. 5. Academic Press, New York, NY, pp. 233–374.
Grossberg, S., 1980. How does a brain build a cognitive code?.

Psychol. Rev. 87, 1–51.
Grossberg, S., 1994. 3D vision and figure-ground separation by

visual cortex. Percept. Psychophys. 55, 48–120.
Grossberg, S., 1999. How does the cerebral cortex work? Learning,

attention and grouping by the laminar circuits of visual

cortex. Spat. Vis. 12, 163–186.
Grossberg, S., 2000. The complementary brain: unifying brain

dynamics and modularity. Trends Cogn. Sci. 4, 233–246.
Grossberg, S., 2007. Consciousness CLEARS the mind. Neural

Networks 20, 1040–1053.
Grossberg, S., 2009. Cortical and subcortical predictive dynamics

and learning during perception, cognition, emotion and

action. Philos. Trans. R. Soc. London, Ser. B 364, 1223–1234.
Grossberg, S., 2012. Adaptive Resonance Theory: how a brain

learns to consciously attend, learn, and recognize a changing

world. Neural Networks 37, 1–47.
Grossberg, S., Grunewald, A., 1997. Cortical synchronization and

perceptual framing. J. Cogn. Neurosci. 9, 117–132.
Grossberg, S., Kazerounian, S., 2011. Laminar cortical dynamics of

conscious speech perception: a neural model of phonemic

restoration using subsequent context in noise. J. Acoust. Soc.

Am. 130, 440–460.
Grossberg, S., Kuperstein, M., 1986. Neural Dynamics of Adaptive

Sensory-motor Control: Ballistic Eye Movements. Amsterdam,

New York North-Holland.
Grossberg, S., Markowitz, J., Cao, Y., 2011. On the road to invariant

recognition: explaining tradeoff and morph properties of cells

in inferotemporal cortex using multiple-scale task-sensitive

attentive learning. Neural Networks 24, 1036–1049.
Grossberg, S., Merrill, J.W.L., 1992. A neural network model of

adaptively timed reinforcement learning and hippocampal

dynamics. Cogn. Brain Res. 1, 3–38.
Grossberg, S., Merrill, J.W.L., 1996. The hippocampus and

cerebellum in adaptively timed learning, recognition, and

movement. J. Cogn. Neurosci. 8, 257–277.
Grossberg, S., Mingolla, E., Ross, W.D., 1997. Visual brain and
visual perception: how does the cortex do perceptual
grouping? Trends Neurosci 20, 106–111.

Grossberg, S., Paine, R.W., 2000. A neural model of
corticocerebellar interactions during attentive imitation and
predictive learning of sequential handwriting movements.
Neural Networks 13, 999–1046.

Grossberg, S., Pearson, L., 2008. Laminar cortical dynamics of
cognitive and motor working memory, sequence learning and
performance: toward a unified theory of how the cerebral
cortex works. Psychol. Rev. 115, 677–732.

Grossberg, S., Pepe, J., 1971. Spiking threshold and overarousal
effects in serial learning. J. Stat. Phys. 3, 95–125.

Grossberg, S., Pilly, P.K., 2012. How entorhinal grid cells may learn
multiple spatial scales from a dorsoventral gradient of cell
response rates in a self-organizing map. PLoS Comput. Biol. 8
(10), 31002648, http://dx.doi.org/10.1371/journal.pcbi.1002648.

Grossberg, S., Pilly, P.K., 2014. Coordinated learning of grid cell
and place cell spatial and temporal properties: multiple
scales, attention, and oscillations. Philos. Trans. R. Soc.
London, Ser. B 369, 20120524.

Grossberg, S., Raizada, R., 2000. Contrast-sensitive perceptual
grouping and object-based attention in the laminar circuits of
primary visual cortex. Vis. Res. 40, 1413–1432.

Grossberg, S., Schmajuk, N.A., 1989. Neural dynamics of adaptive
timing and temporal discrimination during associative
learning. Neural Networks 2, 79–102.

Grossberg, S., Seidman, D., 2006. Neural dynamics of autistic
behaviors: cognitive, emotional, and timing substrates.
Psychol. Rev. 113, 483–525.

Grossberg, S., Seitz, A., 2003. Laminar development of receptive
fields, maps, and columns in visual cortex: the coordinating
role of the subplate. Cerebral Cortex 13, 852–863.

Grossberg, S., Somers, D., 1991. Synchronized oscillations during
cooperative feature linking in a cortical model of visual
perception. Neural Networks 4, 453–466.

Grossberg, S., Versace, M., 2008. Spikes, synchrony, and attentive
learning by laminar thalamocortical circuits. Brain Res. 1218,
278–312.

Grossberg, S., Vladusich, T., 2010. How do children learn to follow
gaze, share joint attention, imitate their teachers, and use
tools during social interactions? Neural Networks 23, 940–965

Grossberg, S., Williamson, J.R., 2001. A neural model of how
horizontal and interlaminar connections of visual cortex
develop into adult circuits that carry out perceptual groupings
and learning. Cerebral Cortex 11, 37–58.

Grossberg, S., Yazdanbakhsh, A., 2005. Laminar cortical dynamics
of 3D surface perception: stratification, transparency, and
neon color spreading. Vis. Res. 45, 1725–1743.

Grossberg, S., Srinivasan, K., Yazdanbakhsh, A. Binocular fusion
and invariant category learning due to predictive remapping
during scanning of a depthful scene with eye movements.
Frontiers in Psychology: Percept. Sci., in press.

Guenther, F.H., 1995. Speech sound acquisition, coarticulation,
and rate effects in a neural network model of speech
production. Psychol. Rev. 102, 594–621.

Guenther, F.H., Bullock, D., Greve, D., Grossberg, S., 1994. Neural
representations for sensory-motor control, III: Learning a
body-centered representation of 3-D target position. J. Cogn.
Neurosci. 6, 341–358.

Hafting, T., Fyhn, M., Molden, S., Moser, M.B., Moser, E.I., 2005.
Microstructure of a spatial map in the entorhinal cortex.
Nature 436, 801–806.

Hahnloser, R.H.R., Kozhevnikov, A.A., Fee, M.S., 2002. An ultra-
sparse code underlies the generation of neural sequences in a
songbird. Nature 419, 65–70.

He, S., Cavanagh, P., Intriligator, J., 1996. Attentional resolution
and the locus of visual awareness. Nature 383, 334–337.

http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref72
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref72
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref72
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref73
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref73
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref73
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref74
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref74
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref74
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref75
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref75
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref76
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref76
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref76
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref77
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref77
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref78
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref78
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref78
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref79
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref79
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref80
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref80
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref80
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref81
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref81
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref81
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref82
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref82
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref82
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref82
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref83
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref83
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref84
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref84
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref85
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref85
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref85
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref86
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref86
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref87
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref87
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref88
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref88
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref88
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref89
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref89
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref89
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref90
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref90
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref91
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref91
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref91
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref91
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref92
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref92
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref92
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref92
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref93
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref93
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref93
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref94
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref94
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref94
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref95
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref95
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref95
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref96
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref96
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref96
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref96
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref97
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref97
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref97
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref97
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref98
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref98
http://dx.doi.org/10.1371/journal.pcbi.1002648
http://dx.doi.org/10.1371/journal.pcbi.1002648
http://dx.doi.org/10.1371/journal.pcbi.1002648
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref100
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref100
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref100
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref100
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref101
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref101
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref101
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref102
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref102
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref102
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref103
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref103
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref103
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref104
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref104
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref104
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref105
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref105
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref105
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref106
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref106
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref106
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref107
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref107
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref107
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref108
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref108
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref108
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref108
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref109
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref109
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref109
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref110
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref110
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref110
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref111
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref111
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref111
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref111
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref112
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref112
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref112
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref113
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref113
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref113
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref114
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref114


b r a i n r e s e a r c h 1 6 2 1 ( 2 0 1 5 ) 2 7 0 – 2 9 3292
Hebb, D.O., 1949. The Organization of Behavior. Wiley, New
York, NY.

Hecht-Nielsen, R., 1987. Counterpropagation networks. Appl. Opt.
26, 4979–4983.

Heeger, D.J., 1992. Normalization of cell responses in cat striate
cortex. Visual Neurosci. 9, 181–197.

Henriksen, E.J., Colgin, L.L., Barnes, C.A., Witter, M.P., Moser, M.B.,
Moser, E.L., 2010. Spatial representation along the
proximodistal axis of CA1. Neuron 68, 127–137.

Intriligator, J., Cavanagh, P., 2001. The spatial resolution of visual
attention. Cogn. Psychol. 43, 171–216.

James, W., 1890. The Principles of Psychology. Harvard University
Press, Cambridge, MA.

Kamin, L.J., 1969. Predictability, surprise, attention and
conditioning. In: Campbell, B.A., Church, R.M. (Eds.),
Punishment and Aversive Behavior. Appleton-Century-Crofts,
New York, NY.

Kentros, C.G., Agniotri, N.T., Streater, S., Hawkins, R.D., Kandel, E.
R., 2004. Increased attention to spatial context increases both
place field stability and spatial memory. Neuron 42, 283–295.

Kentros, C., Hargreaves, E., Hawkins, R.D., Kandel, E.R., Shapiro, M.,
Muller, R.V., 1998. Abolition of long-term stability of new
hippocampal place cell maps by NMDA receptor blockade.
Science 280, 2121–2126.

Kirkwood, A., Lee, H.-K., Bear, M.F., 1995. Co-regulation of long-
term potentiation and experience-dependent synaptic
plasticity in visual cortex by age and experience. Nature 375,
328–331.

Knowlton, B.J., Squire, L.R., 1993. The learning of categories:
parallel brain systems for item memory and category
knowledge. Science 262, 1747–1749.

Kohonen, T., 1984. Self-organization and Associative Memory.
Springer-Verlag, New York, NY.

Komatsu, Y., Toyama, K., Maeda, J., Sakaguchi, H., 1981. Long-
term potentiation investigated in a slice preparation of striate
cortex of young kittens. Neurosci. Lett. 26, 269–274.

Kraus, N., McGee, T., Littman, T., Nicol, T., King, C., 1994.
Nonprimary auditory thalamic representation of acoustic
change. J. Neurophysiol. 72, 1270–1277.

Krupic, J., Burgess, N., O’Keefe, J., 2012. Neural representations of
location composed of spatially periodic bands. Science 337,
853–857.

Langston, R.F., Ainge, J.A., Couey, J.J., Canto, C.B., Bjerknes, T.L.,
Witter, M.P., Moser, E.I., Moser, M.B., 2010. Development of the
spatial representation system in the rat. Science 328,
1576–1580.

Lashley, K.S., 1950. In search of the engram. In: Society for
Experimental Biology, Symposium 4. Physiological
Mechanisms in Animal Behavior. Cambridge University Press,
Cambridge, England2–31.

Lashley, K.S., 1960. In search of the engram. In: F.A., Beach, Hebb,
D.O. (Eds.), The Neuropsychology of Lashley. McGraw-Hill,
New York, NY, pp. 345–360.

Levi, D.M., 2008. Crowding—an essential bottleneck for object
recognition: a mini-review. Vis. Res. 48, 635–654.

Levy, W.B., Brassel, S.E., Moore, S.D., 1983. Partial quantification of
the associative synaptic learning rule of the dentate gyrus.
Neuroscience 8, 799–808.

Levy, W.B., Desmond, N.L., 1985. The rules of elemental synaptic
plasticity. In: Levy, W.B., Anderson, J., Lehmkuhle, S. (Eds.),
Synaptic Modification, Neuron Selectivity and Nervous
System Organization. Erlbaum, Hillsdale, NJ, pp. 105–121In:
Levy, W.B., Anderson, J., Lehmkuhle, S. (Eds.), Synaptic
Modification, Neuron Selectivity and Nervous System
Organization. Erlbaum, Hillsdale, NJ, pp. 105–121.

Levy, W.B., Steward, O., 1983. Temporal contiguity requirements
for long-term associative potentiation/depression in the
hippocampus. Neuroscience 8, 791–797.
MacDonald, C.J., Lepage, K.Q., Eden, U.T., Eichenbaum, H., 2011.

Hippocampal “time cells” bridge the gap in memory for

discontiguous events. Neuron 71, 737–749.
Mathot, S., Theeuwes, J., 2010. Evidence for the predictive

remapping of visual attention. Exp. Brain Res. 200, 117–122.
McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., Moser, M.B.,

2006. Path integration and the neural basis of the ‘cognitive

map’. Nat. Rev. Neurosci. 7, 663–678.
Melcher, D., 2007. Predictive remapping of visual features

precedes saccadic eye movements. Nat. Neurosci. 10, 903–907.
Melcher, D., 2008. Dynamic, object-based remapping of visual

features in trans-saccadic perception. J. Vis. 8, 1–17.
Melcher, D., 2009. Selective attention and the active remapping of

object features in trans- saccadic perception. Vis. Res. 49,

1249–1255.
Mesulam, M.-M., 1999. Spatial attention and neglect: parietal,

frontal and cingulate contributions to the mental

representation and attentional targeting of salient

extrapersonal events. Philos. Trans. R. Soc. London, Ser. B 354,

1325–1346.
Mhatre, H., Gorchetchnikov, A., Grossberg, S., 2012. Grid cell

hexagonal patterns formed by fast self-organized learning

within entorhinal cortex. Hippocampus 22, 320–334.
Miyashita, Y., Chang, H.S., 1988. Neuronal correlate of pictorial

short-term memory in the primate temporal cortex. Nature

331, 68–70.
Morris, R.G.M., Frey, U., 1997. Hippocampal synaptic plasticity:

role in spatial learning or the automatic recording of attended

experience? Philos Trans. R. Soc. London, Ser. B 1360,

1469–1503.
Morris, R.G.M., Garrud, P., Rawlins, J.N.P., O’Keefe, J., 1982. Place

navigation impaired in rats with hippocampal lesions. Nature

297, 681–683.
Moyer, J.R., Deyo, R.A., Disterhoft, J.F., 1990. Hippocampectomy

disrupts trace eye-blink conditioning in rabbits. Behav.

Neurosci. 104, 243–252.
Mulkey, R.M., Malenda, R.C., 1992. Mechanisms underlying

induction of homosynaptic long-term depression in area CA1

of the hippocampus. Neuron 9, 967–975.
O’Keefe, J., Dostrovsky, J., 1971. The hippocampus as a spatial

map. Preliminary evidence from unit activity in the freely-

moving rat. Brain Res. 34, 171–175.
Palma, J., Grossberg, S., Versace, M., 2012. Persistence and storage

of activity patterns in spiking recurrent cortical networks:

modulation of sigmoid signals by after-hyperpolarization

currents and acetylcholine. Front. Comput. Neurosci. 6, 42

(Doi: 10.3389.fncom.2012.00042).
Palma, J., Versace, M., Grossberg, S., 2012. After-hyperpolarization

currents and acetylcholine control sigmoid transfer functions

in a spiking cortical model. J. Comput. Neurosci. 32, 253–280.
Park, E.H., Dvorak, D., Fenton, A.A., 2011. Ensemble place codes in

hippocampus: CA1, CA3, and dentate gyrus place cells have

multiple place fields in large environments. PLoS One 6,

e22349.
Parron, C., Save, E., 2004. Evidence for entorhinal and parietal

cortices involvement in path integration in the rat. Exp. Brain

Res. 159, 349–359.
Pavlov, I.P., 1927. Conditioned Reflexes. Oxford University Press.
Perry, E.K., Lee, M.L.W., Martin-Ruiz, C.M., Court, J.A., Volsen, S.G.,

Merrit, J., Folly, E., Iversen, P.E., Bauman, M.L., Perry, R.H.,

Wenk, G.L., 2001. Cholinergic activity in autism: abnormalities

in the cerebral cortex and basal forebrain. Am. J. Psychiatry

158, 1058–1066.
Pilly, P.K., Grossberg, S., 2012. How do spatial learning and

memory occur in the brain? Coordinated learning of

entorhinal grid cells and hippocampal place cells. J. Cogn.

Neurosci. 24, 1031–1054.

http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref115
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref115
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref116
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref116
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref117
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref117
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref118
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref118
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref118
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref120
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref120
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref121
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref121
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref122
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref122
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref122
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref122
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref123
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref123
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref123
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref124
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref124
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref124
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref124
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref125
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref125
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref125
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref125
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref126
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref126
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref126
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref127
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref127
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref128
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref128
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref128
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref129
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref129
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref129
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref130
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref130
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref130
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref131
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref131
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref131
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref131
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref132
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref132
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref132
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref132
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref133
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref133
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref133
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref134
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref134
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref135
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref135
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref135
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref136
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref136
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref136
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref136
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref136
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref136
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref136
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref137
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref137
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref137
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref138
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref138
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref138
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref139
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref139
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref140
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref140
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref140
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref141
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref141
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref142
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref142
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref143
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref143
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref143
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref144
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref144
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref144
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref144
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref144
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref145
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref145
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref145
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref146
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref146
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref146
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref147
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref147
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref147
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref147
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref148
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref148
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref148
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref149
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref149
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref149
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref150
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref150
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref150
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref04
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref04
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref04
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref151
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref151
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref151
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref151
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref151
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref152
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref152
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref152
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref153
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref153
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref153
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref153
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref154
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref154
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref154
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref155
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref156
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref156
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref156
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref156
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref156
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref157
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref157
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref157
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref157


b r a i n r e s e a r c h 1 6 2 1 ( 2 0 1 5 ) 2 7 0 – 2 9 3 293
Pilly, P.K., Grossberg, S., 2013. Spiking neurons in a hierarchical
self-organizing map model can learn to develop spatial and
temporal properties of entorhinal grid cells and hippocampal
place cells. PLoS One, http://dxdoi.org/10.1371/journal.
pone.0060599.

Pouget, A., Dayan, P., Zemel, R.S., 2003. Inference and
computation with population codes. Annu. Rev. Neurosci. 26,
381–410.

Purves, D., 1988. Body and Brain: A Trophic Theory of Neural
Connections. Harvard University Press, Cambridge, MA.

Raizada, R., Grossberg, S., 2001. Context-sensitive bindings by the
laminar circuits of V1 and V2: a unified model of perceptual
grouping, attention, and orientation contrast. Visual Cognit. 8,
431–466.

Ranck Jr, J.B., 1984. Head-direction cells in the deep cell layers of
dorsal presubiculum in freely moving rats. In: Proceedings of
the Annual Conference of the Society for Neuroscience.
Anaheim, CA. vol. 10, p. 599.

Reynolds, J.H., Heeger, D.J., 2009. The normalization model of
attention. Neuron 61, 168–185.

Roberts, S., 1981. Isolation of an internal clock. J. Exp. Psychol.
Anim. Behav. Processes 7, 242–268.

Roberts, W.A., Cheng, K., Cohen, J.S., 1989. Timing light and tone
signals in pigeons. J. Exp. Psychol. Anim. Behav. Processes 15,
23–25.

Royer, S., Pare, D., 2003. Conservation of total synaptic weight
through balanced synaptic depression and potentiation.
Nature 422, 518–522.

Rubenstein, J.L.R., Merzenich, M.M., 2003. Model of autism:
increased ratio of excitation/inhibition in key neural systems.
Genes Brain Behav. 2, 255–267.

Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B.L., Witter, M.P.,
Moser, M.-B., Moser, E.L., 2006. Conjunctive representation of
position, direction, and velocity in entorhinal cortex. Science
312, 758–762.

Saygin, A.P., Sereno, M.I., 2008. Retinotopy and attention in
human occipital, temporal, parietal, and frontal cortex.
Cerebral Cortex 18, 2158–2168.

Sigala, N., Logothetis, N.K., 2002. Visual categorization shapes feature
selectivity in the primate temporal cortex. Nature 415, 318–320.

Singer, W., 1983. Neuronal activity as a shaping factor in the self-
organization of neuron assemblies. In: Basar, E., Flohr, H.,
Haken, H., Mandell, A.J. (Eds.), Synergetics of the Brain.
Springer-Verlag, New York, NY, pp. 89–101 (1983).

Smith, M.C., 1968. CS–US interval and US intensity in classical
conditioning of the rabbit’s nictitating membrane response.
J. Comp. Physiol. Psychol. 3, 679–687.

Solomon, P.R., Vander Schaaf, E.R., Thompson, R.F., 1986.
Hippocampus and trace conditioning of the rabbit’s classically
conditioned nictitating membrane response. Behav. Neurosci.
100, 729–744.

Sommer, M.A., Wurtz, R.H., 2006. Influence of the thalamus on
spatial vision processing in frontal cortex. Nature 444, 374–377.

Song, P., Wang, X.J., 2005. Angular path integration by moving
“hill of activity”: a spiking neuron model without recurrent
excitation of the head-direction system. J. Neurosci. 25,
1002–1014.

Tanaka, K., Saito, H., Fukada, Y., Moriya, M., 1991. Coding visual
images of objects in the inferotemporal cortex of the macaque
monkey. J. Neurophysiol. 66, 170–189.
Taube, J.S., Muller, R.U., Ranck Jr, J.B., 1990. Head-direction cells

recorded from the postsubiculum in freely moving rats. I.

Description and quantitative analysis. J. Neurosci. 10, 420–435.
Theeuwes, J., Mathot, S., Kingstone, A., 2010. Object-based eye

movements: the eyes prefer to stay within the same object.

Atten. Percept. Psychophys. 72, 597–601.
Thompson, R.F., 1976. The search for the engram. Am. Psychol.

31, 209–227.
Thompson, R.F., Clark, G.A., Donegan, N.H., Lavond, G.A., Lincoln, D.G.,

Maddon, J., Mamounas, L.A., Mauk, M.D., McCormick, D.A., 1987.

Neuronal substrates of discrete, defensive conditioned reflexes,

conditioned fear states, and their interactions in the rabbit. In:

Gormenzano, I., Prokasy, W.F., Thompson, R.F. (Eds.), Classical

Conditioning third ed Erlbaum Associates, Hillsdale, NJ, pp.

371–399.
Thorpe, S., Fize, D., Marlot, C., 1996. Speed of processing in the

human visual system. Nature 381, 520–522.
Tolias, A.S., Moore, T., Smirnakis, S.M., Tehovnik, E.J., Siapas, A.G.,

Schiller, P.H., 2001. Eye movements modulate visual receptive

fields of V4 neurons. Neuron 29, 757–767.
Tomita, H., Ohbayashi, M., Nakahara, K., Hasegawa, I., Miyashita,

Y., 1999. Top-down signal from prefrontal cortex in executive

control of memory retrieval. Nature 401, 699–703.
Tsodyks, M., Pawelzik, K., Markram, H., 1998. Neural networks

with dynamic synapses. Neural Comput. 10, 821–835.
Tyler, C.W., Kontsevich, L.L., 1995. Mechanisms of stereoscopic

processing: stereoattention and surface perception in depth

reconstruction. Perception 24, 127–153.
Umeno, M.M., Goldberg, M.E., 1997. Spatial processing in the

monkey frontal eye fields, I: Predictive visual responses.

J. Neurophysiol. 78, 1373–1383.
van Der Werf, Y.D., Witter, M.P., Groenewegen, H.J., 2002. The

intralaminar and midline nuclei of the thalamus. Anatomical

and functional evidence for participation in processes of

arousal and awareness. Brain Res. 39, 107–140.
Vladusich, T., Lafe, F., Kim, D.-S., Tager-Flusberg, H., Grossberg, S.,

2010. Prototypical category learning in high-functioning

autism. Autism Res. 3, 226–236.
Von der Malsburg, C., 1973. Self-organization of orientation

sensitive cells in the striate cortex. Biol Cybern. 14, 85–100.
Wills, T.J., Cacucci, F., Burgess, N., O’Keefe, J., 2010. Development

of the hippocampal cognitive map in preweanling rats.

Science 328, 1573–1576.
Yantis, S., Schwarzbach, J., Serences, J.T., Carlson, R.L., Steinmetz,

M.A., Pekar, J.J., Courtney, S.M., 2002. Transient neural activity

in human parietal cortex during spatial attention shifts. Nat.

Neurosci. 5, 995–1002.
Yazdanbakhsh, A., Grossberg, S., 2004. Fast synchronization of

perceptual grouping in laminar visual cortical circuits. Neural

Networks 17, 707–718.
Zaki, S.R., Nosofsky, R.M., Jessup, N.M., Unversagt, F.W., 2003.

Categorization and recognition performance of a memory

impaired group: evidence for single-system models. J. Int.

Neuropsychol. Soc. 9, 394–406.
Zoccolan, D., Kouh, M., Poggio, T., DiCarlo, J.J., 2007. Trade-off

between object selectivity and tolerance in monkey

inferotemporal cortex. J. Neurosci. 27, 12292–12307.

http://dx.doi.org/10.1371/journal.pone.0060599
http://dx.doi.org/10.1371/journal.pone.0060599
http://dx.doi.org/10.1371/journal.pone.0060599
http://dx.doi.org/10.1371/journal.pone.0060599
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref160
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref160
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref160
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref161
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref161
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref162
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref162
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref162
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref162
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref163
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref163
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref164
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref164
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref165
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref165
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref165
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref166
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref166
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref166
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref167
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref167
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref167
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref168
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref168
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref168
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref168
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref169
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref169
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref169
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref171
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref171
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref172
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref172
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref172
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref172
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref173
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref173
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref173
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref174
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref174
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref174
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref174
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref175
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref175
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref176
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref176
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref176
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref176
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref177
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref177
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref177
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref178
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref178
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref178
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref179
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref179
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref179
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref180
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref180
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref181
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref181
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref181
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref181
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref181
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref181
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref181
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref182
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref182
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref183
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref183
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref183
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref184
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref184
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref184
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref185
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref185
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref186
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref186
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref186
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref187
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref187
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref187
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref188
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref188
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref188
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref188
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref189
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref189
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref189
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref02
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref02
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref190
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref190
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref190
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref191
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref191
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref191
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref191
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref192
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref192
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref192
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref193
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref193
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref193
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref193
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref194
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref194
http://refhub.elsevier.com/S0006-8993(14)01565-0/sbref194

	From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and...
	Linking brain mechanisms to behavioral functions: Unity and complementarity
	Learning and memory by complementary cortical streams for recognition and action
	Excitatory match learning vs. inhibitory mismatch learning
	Learning to be an expert in a changing body
	Why procedural memories are not conscious
	Spatially-invariant recognition vs. spatially localized action
	Synaptic learning laws that support complementary computing

	Equations for short-term memory, medium-term memory, and long-term memory
	STM: Short-term memory dynamics of fast cellular activation and inhibition
	MTM: Habituative transmitter gates and depressing synapses
	LTM: Gated steepest descent learning combines Hebbian and anti-Hebbian properties

	When learning is not Hebbian: Combining LTP and LTD
	Gated steepest descent learning
	Monotonic weights during match-modulated category learning

	Neurophysiological data about LTP and LTD
	Adaptive resonance theory: Fast category learning without catastrophic forgetting
	Solving the stability–plasticity dilemma
	Top-down matching, resonance, attention, and fast learning
	Matching and synchronous oscillations
	The cycle of resonance and reset
	Memory consolidation and direct access to globally best match
	Vigilance, acetylcholine, and nucleus basalis
	Vigilance diseases: Autism and amnesia

	Invariant object category learning, attention, predictive remapping, and search
	Attentional shrouds and Where-to-What modulation of invariant category learning
	Conscious awareness of visual qualia: Crowding and parietal neglect
	Seeing and knowing via two kinds of attention and resonance
	Invariant object learning, recognition, predictive remapping, and search

	Laminar cortical dynamics of vision, speech, and cognition
	Laminar computing: A revolutionary new paradigm for intelligent computation
	Fast feedforward vs. slower feedback processing of unambiguous vs. ambiguous data
	Trading certainty against speed: Real-time probabilities that run as fast as they can
	Combining the stability of digital with the sensitivity of analog computing

	Spatial navigation: Entorhinal grid cell and hippocampal place cell learning
	Place cells and spatial navigation
	Grid cells and path integration
	Both grid and place cells are learned from self-organizing maps that obey the same laws
	Top-down attention stabilizes grid and place cell memory
	Unifying angular and linear acceleration, grid and place, and space and time
	Neural relativity: Spectral timing and spectral spacing in the hippocampus
	Lateral stream for time and medial stream for space

	Movement control: Inhibitory matching and mismatch learning
	Complementary computing for object recognition and movement control
	Target position, present position, and difference vector
	Difference vectors as error signals for learning
	Joining ART and VAM: Self-stabilizing expertise in evolving bodies

	References




